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Topological phases in quantum and classical systems have been of significant recent interest due to
their fascinating physical properties. Floquet topological insulators represent one of the possible venues for
engineering topological phases, yet they have been so far largely restricted to temporal modulation of Hermitian
potentials. On the other hand, in many physical systems, including acoustic and optical systems, modulating
loss or gain can be more straightforwardly achieved. On the other hand, non-Hermitian Floquet potentials
have not been shown to yield any novel topological phases to date. It is therefore of great interest to explore
time-modulated non-Hermitian potentials in periodic lattices, and the emergence of topological phases associated
with them. Here we demonstrate that non-Hermitian Hamiltonians can indeed result in topological phases
supporting nonreciprocal edge states propagating without dissipation, as well as regimes of dissipative and
amplifying topological edge transport.
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I. INTRODUCTION

The discovery of topological phases of quantum matter
has triggered active research in a broad range of classical
systems, from acoustics and mechanics to photonics [1–23].
Characterized by the presence of robust edge states, their
classical counterparts open the opportunity of unusual signal
transport and wave manipulation in optical and mechanical
metamaterials. In this regard, designed topological materials
hold a special promise for alternative ways of transmitting,
manipulating, and processing information. However, due to
their very nature, no classical topological phases can be
induced by time-reversal (TR) symmetry alone. Two common
approaches to overcome this limitation have been explored:
breaking time-reversal symmetry or exploiting symmetry pro-
tected phases relying on underlying spatial symmetries.

Unfortunately, the means of breaking TR symmetry for
mechanical or optical waves are quite limited, and are of-
ten hard to implement in practice due to charge neutrality
of phonons and photons, leading to their weak interaction
with magnetic fields, and weak magneto-optical and mag-
netoelastic effects. Symmetry protected topological phases,
on the other hand, have obvious limitations imposed by the
restricted nature of their robustness, which is vulnerable to
any symmetry violating perturbations, as they are bound to
obey reciprocity. For this reason, there is currently an on-
going pursuit in establishing classical potentials capable of
inducing topological nontrivial phases in practical technolog-
ical platforms. In this respect, Floquet topological phases in
classical systems with periodically varying potentials can be
considered as a viable alternative to the approaches relying on
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symmetries [6,7,9,19,24–33]. Moreover, Floquet systems can
show new rich physical properties; for example, in addition
to topological Chern-class phases, Floquet systems have been
reported to host another unique topological phase, referred to
as the anomalous topological phase [31,34,35].

Besides aspects related to topological properties, due to
the urgent need in nonreciprocal devices for photonic and
acoustic applications, there is a significant interest in uti-
lizing time modulation to achieve nonreciprocal propagation
[6,9,33,36]. For this reason, combining nonreciprocity with
topological robustness may open exciting opportunities for
practical technology. Indeed, it has already been shown that
such an approach allows the achievement of high-performance
and broadband nonreciprocal isolators and one-way leaky
antennas in Hermitian acoustic Floquet systems [33].

However, temporal modulation itself in either optical or
mechanical systems is a rather nontrivial task, especially at
high frequencies. This is particularly problematic in photon-
ics, due to the extremely weak character of electro-optical
and nonlinear phenomena, which could be used to modulate
dielectric permittivity or high-frequency conductivity of ma-
terials. Interestingly, this limitation does not necessarily apply
in such strong terms to the imaginary part of the dielectric
constant [37], as both gain and loss can be modulated with
relatively large amplitude, e.g., in systems with saturable
absorption such as graphene and reduced graphene oxide, as
well as in optically active media, such as quantum wells and
quantum dots, where one can achieve reversal of loss to gain
by increasing the amplitude of the modulating pump signal.
Also the modulation of Drude conductivity can be achieved
by electron-hole plasma generation using ultrafast optical
pumping. Fast relaxation time in these systems may further
enable modulation at rates high enough to yield topological
Floquet phases in infrared and terahertz domains, provided
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that modulation of dissipative or amplifying responses in time
yields topological properties.

Gain and loss modulation thus could be exploited to in-
duce topological responses, although it is not at all obvi-
ous that such modulation may yield topologically nontrivial
phases. The role of non-Hermitian corrections to Hermitian
topological Hamiltonians has been recently explored, and
it was shown that some interesting phenomena, including
exceptional points in bulk and edge topological spectra, and
topological transitions induced by gain and loss, have been
demonstrated [38–51].

In order to understand whether topological phases are fea-
sible in systems with time-modulated gain and loss, here we
study the effect of time-periodic non-Hermitian potentials on
topologically trivial Hermitian systems. We demonstrate that,
in the case of time-driven non-Hermiticity, time modulation
can lead to topologically nontrivial Floquet phases of Chern
and anomalous types. Moreover, we find that topological
edge states in such systems can be rendered dissipationless
by effectively averaging gain and loss over the modulation
period, where the pseudo-Hermiticity of the effective Hamil-
tonian guarantees the existence of real spectra. Alternatively,
non-Hermitian Floquet systems can be driven into a regime
of purely amplifying or dissipating edge transport, which can
be important for applications, such as in topological lasers
[52–55].

II. ANALYTICAL RESULTS

Before proceeding to our numerical results demonstrat-
ing the outlined topological regimes, we start with the
analytical theory supporting such responses. We consider
the topologically trivial time-independent Hermitian Hamil-
tonian Ĥ0, whose eigenstates satisfy the time-dependent
Schrödinger equation Ĥ0|ψ0〉 = i∂t |ψ0〉, and its temporal evo-
lution described by the unitary operator Û0(t ) = exp[−iĤ0t].
The time-periodic non-Hermitian perturbation V̂ (t ) = iV̂S (t ),
where V̂S (t ) = V̂S (t + T ) is the Hermitian time-periodic op-
erator, is added to Ĥ0 to describe modulation of gain and
loss, and thus V̂ (t ) represents the anti-Hermitian operator.
The periodic character of the perturbation implies that the
standard stroboscopic evolution approach can be utilized
to describe the system dynamics. The trivial dynamics of
the system [described by Û0(t )] can be conveniently elimi-
nated in the interaction representation picture, in which the
Schrödinger equation assumes the form iV̂I (t )|ψI〉 = i∂t |ψI〉,
where V̂I (t ) = Û −1

0 (t )V̂S (t )Û0(t ). Due to the unitary property
of the evolution operator Û0(t ), the operator V̂I (t ) is Hermitian

and periodic in time. The evolution of the perturbed system is
then described by the evolution operator

ÛI (t1, t2) = T̂ exp

[∫ t2

t1

V̂I (t )dt

]
, (1)

which represents a time-ordered product of exponents of Her-
mitian operators, and therefore in general can be nonunitary
(as opposed to the case of unitary evolution operators with
anti-Hermitian exponents). Stroboscopic evolution of the sys-
tem allows us to describe the effects of gain-loss modulation
in terms of an effective Hamiltonian Ĥ eff

I = 1
iT log[ÛI (0, T )]

(in the interaction picture), in which case the system can
be characterized by an effective Hamiltonian Ĥ eff by trans-
forming back to the Schrödinger picture. Ĥ eff can be divided
into two parts, the unperturbed Hamiltonian Ĥ0 and effective
potential V̂ eff = Ĥ eff − Ĥ0. If Ĥ eff

I commutes with Ĥ0 (which
is true for our case), then Ĥ eff

I is equal to the effective potential
V̂ eff in the Schrödinger picture, with Ĥ eff of the form Ĥ eff =
Ĥ0 + Ĥ eff

I [26].
Interestingly, despite the fact that neither Ĥ0 nor the

instantaneous perturbing potential V̂ (t0 = const.) may yield
the topological phase, the resultant time-modulated system
described by the effective Hamiltonian Ĥ eff can in fact be
topological. For this statement to be correct, the effective po-
tential V̂ eff should contain a (topologically nontrivial) Hermi-
tian part. This is indeed possible, due to the fact that Hermitian
operators do not form closed commutative algebra; therefore,
in general, the product of exponents of Hermitian operators
V̂I (t ) in Eq. (1) may give rise to an effective stroboscopic
potential V̂ eff containing both Hermitian and anti-Hermitian
parts. Surprisingly, as we show below, the effective Hamilto-
nian may have a vanishing imaginary part of its eigenvalues
(for some distributions of gain and loss modulation), in which
case we refer to the system to as pseudo-Hermitian [39,56];
thus the system behaves as dissipationless on average. This
case has some similarity with PT-symmetric systems [48],
but applies to a broader class of non-Hermitian topological
systems.

To further show that time-modulated gain and loss may in-
duce the effective Hamiltonian to be topologically nontrivial,
we first consider the geometry illustrated in Fig. 1. It consists
of a kagome lattice with unit cell containing three identical
single-mode resonators with resonant frequency ω0 coupled
to each other. For the simplicity of further notation we assume
that a0 = 1. Assuming intracell and intercell hopping ampli-
tudes, κ and j, respectively, in the absence of time modulation
we obtain the unperturbed tight-binding Hamiltonian,

�

H0 =

⎛
⎜⎜⎝

ω0 κ + jei( 1
2 kx+

√
3

2 ky ) κ + je−i( 1
2 kx−

√
3

2 ky )

κ + je−i( 1
2 kx+

√
3

2 ky ) ω0 κ + je−ikx

κ + jei( 1
2 kx−

√
3

2 ky ) κ + jeikx ω0

⎞
⎟⎟⎠, (2)

where k = (kx, ky) is the two-dimensional Bloch vector. The
spectrum of Ĥ0 is shown in Fig. 1(c) and it reveals three
bands, corresponding to one monopolar and two dipolar

states. The triangular symmetry of the lattice yields two Dirac
points, due to degeneracies between dipolar and monopo-
lar modes at the K and K ′ points at the corners of the
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FIG. 1. Non-Hermitian Floquet kagome lattice. (a,b) unit cell and periodic arrangement of time-modulated kagome lattice with on-site
frequency (energy) ωn(t ) = ω0 + ivn(t ), and intercell and intracell coupling j and κ . Modulation of gain and loss vn(t ) follows the rotational
pattern shown in (a) and is periodic with modulation period T with 120° phase shift between sites in the trimer. (c) Band structure and modal
profiles of the states supported by the unmodulated kagome lattice, revealing degeneracies at K , K ′, and � points.

hexagonal Brillouin zone (BZ). In addition, due to rotational
and time-reversal symmetries, the system possesses a degen-
eracy between dipolar modes at the � point of the BZ.

Non-Hermitian periodic modulation is introduced by
adding a piecewise time-dependent potential V̂ (t ) = iV̂S (t ),
where V̂S (t ) is a diagonal matrix with diagonal elements
diag(V̂S1) = v(1, − 1

2 ,− 1
2 ) for the first one-third of the

Floquet period (t ∈ (0, T/3]), diag(V̂S2) = v(− 1
2 , 1, − 1

2 )
for the second one-third of the period (t ∈ (T/3, 2T/3]),
and diag(V̂S3) = v(− 1

2 ,− 1
2 , 1) for the last one-third of the

period (t ∈ (2T/3, T ]); i.e., the on-site loss/gain in the three
resonators is modulated with a phase delay of 120° [57], and
parameter v is the depth of the non-Hermitian modulation.
A similar modulation protocol of Hermitian modulation has
been previously shown to yield nonreciprocal and topological
effects [33,58].

For illustrative purposes, here we limit the analytical treat-
ment and effective Hamiltonian description to the proximity

of the degeneracy between dipolar modes at the � point. In
this case, the two-band approximation can be used, and the
model yields a simple analytical result.

To disentangle dipolar modes from the lower-frequency
monopole, the unitary transformation is applied to the Hamil-
tonian Ĥ0 and to the time-dependent potential V̂S (t ):

Û = 1√
3

⎛
⎜⎝

1 1 1

1 e−i 2
3 π ei 2

3 π

1 ei 2
3 π e−i 2

3 π

⎞
⎟⎠. (3)

At the � point, the two doublets are degenerated, and the
singular mode is decoupled with the dipolar modes. We do
not consider the singular mode in this �-point perturbation
discussion. Under the condition κ = j, where intracell and
intercell hopping are equal, the resultant 2 × 2 reduced-
dimension Hamiltonian acts on circularly polarized dipolar
modes and up to the second order in wave number, has the
form

�

H
′
0(k) =

(
j
4

(
k2

x + k2
y

) − i
2 jkxky + j

4

(−k2
x + k2

y

)
i
2 jkxky + j

4

(−k2
x + k2

y

) j
4

(
k2

x + k2
y

)
)

, (4)

while the resultant reduced piecewise potential in the interaction picture has the form

VI1
′(k) = v

(
i
2 jkxky

i
2

i
2

i
2 jkxky

)
,

VI2
′(k) = v

(
i
√

3
8 j

(−k2
x + k2

y

) + i
4 jkxky

(−i−√
3)

4
(−i+√

3)
4 − i

√
3

8 j
(−k2

x + k2
y

) − i
4 jkxky

)
, (5)

VI3
′(k) = v

(
i
√

3
8 j

(
k2

x − k2
y

) + i
4 jkxky

(−i+√
3)

4
(−i−√

3)
4 − i

√
3

8 j
(
k2

x − k2
y

) − i
4 jkxky

)
,

At the � point, assuming weak modulation (v � 1), we find that the largest corrections are of second order in v, and the gain-loss
induced modulation leads to the correction to the effective Hamiltonian of the form

Ĥ eff ′
I =

(√
3

72 v2T 0

0 −
√

3
72 v2T

)
+ O(v3) + . . . , (6)
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FIG. 2. Complex photonic band structure of non-Hermitian Floquet kagome lattice. (a–c) Real part of eigenvalues of the quasifrequency
(quasienergy) of time-modulated gain and loss in the structure, with progressively increasing modulation depth v. (d–f) Complex eigenvalues
of quasifrequency of cases shown in (a–c), respectively. The green bands indicate the band gap between doublets, and the violet bands indicate
the Dirac cone band gaps. The gray dashed lines are the unperturbed bands.

which allows us to write the effective Hamiltonian in the Pauli
basis as

Ĥ eff ′ = j
(
k2

x + k2
y

)
4

σ̂0 + j
(
k2

y − k2
x

)
4

σ̂x

+ jkxky

2
σ̂y +

√
3

72
v2T σ̂z, (7)

With the σ̂z term playing the role of an effective magnetic
field opening topological band gap between dipolar bands
at the � point. Note that around the � point the commuta-
tor [Ĥ′

0(k), Ĥ eff ′
I ] only contains higher-order terms O(k2v2)

leading to the effective potential V̂ eff ′ = Ĥ eff ′
I =

√
3

72 v2T σ̂z.
The σ̂z term can be interpreted as an effective magnetic bias
opening a topological band gap between dipolar bands at
the � point. Importantly, the effective potential

√
3

72 v2T is
a real number, despite the fact that the modulation applied
to the system is purely imaginary. As we confirm below
by numerical calculations, this conclusion holds beyond our
approximations, and regimes exist when both bulk and edge
states have purely real spectra.

III. NUMERICAL RESULTS

These analytical results are validated with numerical sim-
ulations, in which we assume a continuous periodic time-
dependent potential V̂ (t ) = iV̂S (t ), where V̂S (t ) has a har-
monic form. As before, the on-site gain/loss is modulated
with a phase shift of 120° between resonators diag[V̂S (t )] =

v[sin(ωt ), sin(ωt + 2π
3 ), sin(ωt + 4π

3 )], and the unperturbed
Hamiltonian Ĥ0 in Eq. (2) is unchanged.

We use a tight-binding Hamiltonian of a kagome lattice
with nearest-neighbor hopping and apply Floquet periodic
modulation numerically according to Eq. (1), with discrete
time steps in a period. At large time steps the spectrum starts
to converge and we get our final spectrum. The effective
Hamiltonian is calculated by numerically evaluating the prod-
uct of matrix exponents at discrete times, with 1800 steps per
modulation period, ensuring excellent convergence. The band
structures obtained for the effective Hamiltonian for different
modulation depths are shown in Fig. 2. We clearly see that, in
the case of weak modulation v = 0.09ω0, the band structure
is primarily affected near the points of former degeneracies,
at K/K ′ and the � points of BZ, respectively, where complete
band gaps are open by the modulation. Inspection of the
complex band structure in Fig. 2(b) shows that the bands
retain their purely real character, despite the presence of gain
and loss. Note that this is not due to PT symmetry, but rather
due to averaging of gain and loss over one modulation period,
which, for this specific choice of modulation protocol, appears
to balance the effects of gain and loss on the modes for
all wave numbers, leading to a pseudo-Hermitian real-valued
spectrum.

As seen from Figs. 2(c)–2(f), the pseudo-Hermitian regime
does not hold for larger values of modulation depth, and
some dramatic changes appear in the band structure. As the
modulation depth is increased, we first observe increased sep-
aration between higher-frequency dipolar bands, and eventual
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FIG. 3. Complex photonic band structure of non-Hermitian Floquet kagome supercell for weak modulation. (a,c) Complex eigenvalues
of quasifrequency (quasienergy) of the time-modulated structure with modulation depth v = 0.09ω0 and v = 0.12ω0, respectively. The edge
modes of both geometries are shown in (b) (note that the supercell was truncated from 20 to 10 to better highlight the mode profile). For the
edge states in (b), we mapped the wave function on the corresponding sites in the kagome supercell to visualize the field distribution.

collision of one of the bands with a lower-lying monopo-
lar band when the modulation depth is v = 0.12ω0. In the
quasifrequency description, this is due to the high-frequency
band entering the diagram from the low-frequency side. The
collision of bands leads to degeneracy in the real quasifre-
quency, with degeneracy being lifted in the imaginary part of
the spectrum. Therefore, the wave numbers exist where the
spectrum experiences transitions from real to complex valued,
which represent exceptional points of the Floquet spectrum.
Interestingly, the closure of the band-gap separation of former
high- and low-frequency bands does not affect band gaps open
by the modulation at the K and K′ points. In addition, one of
the former dipolar bands remains purely real valued, even for
increased modulation strength.

Further increase in the modulation depth (v = 0.155ω0)
leads to even more nontrivial changes in the spectrum. In
particular, the exceptional points gradually move towards the
edges of the BZ, until the degeneracy in imaginary quasifre-
quency is completely removed (lastly at the K/K ′ points). At
this point, the real spectrum is completely degenerate, and the
band gap exists only in the imaginary quasifrequency direc-
tion. This regime resembles the anomalous Floquet regime
of Hermitian Floquet systems, since the gap appears between
bands of different Floquet orders, with the difference that in
our case the gap appears in the imaginary and not the real
part of the spectrum. This raises the question of whether such
a transition, accompanied by a gap opening in the imaginary
plane, leads to topological features, and to the emergence of
topologically protected edge states.

Emergence of band-crossing edge states is one of the main
signatures of topologically nontrivial regimes. In order to see
whether such states emerge within the band gaps (both in
real and imaginary frequency directions), we calculated the
band structure of a supercell consisting of 1 × 20 trimers (unit
cells) of modulated crystals terminated on upper (bearded-
like) and lower (straight) edges, and with periodic boundary
conditions imposed in the horizontal direction. The resultant
complex band structure for the cases of weak and intermediate
modulation is shown in Fig. 3, and it clearly reveals a set
of states within the bulk band gaps. The wave functions of
these states appear to be localized at the edges of the system
[Fig. 3(b)], and therefore represent edge states induced by

the gain-loss modulation. Their dispersion is nonreciprocal,
due to the selected rotating modulation scheme, and one-way
transport along the upper (lower) edge takes place in the
positive (negative) direction. Just as for Hermitian Floquet
systems, the propagation direction reverses when the rotation
direction is flipped [33]. Note that the edge spectrum for
two cuts is not symmetric, and the respective bands do not
transform one into another under k‖ → −k‖ transformation.
This asymmetry in the edge spectrum is related to the fact
that the upper (bearded) and lower (straight) cuts are not
equivalent.

For the case of weak modulation, the edge states appear
to be purely real, thus indicating that gain and loss are
compensated on average over a single period for the given
cuts. Note that a different modulation protocol, in particular
a different modulation phase, may correspond to edge states
with a small imaginary quasifrequency component. The real
bulk spectrum also allows us to immediately apply the stan-
dard approach of calculating Berry curvature [Figs. 4(a)–4(c)]
and Chern numbers for the bands, which are found to be
C = (1,−2, 1) for three bands counted from lowest eigen-
frequency up in Figs. 2(a) and 3(a). In accordance with the
bulk-boundary correspondence principle, these numbers agree
well with the number of edge states, and with the direction
of the modes on a particular cut, thus further confirming that
non-Hermitian time-modulated potentials can yield effective
Hermitian (pseudo-Hermitian) topological phases in the stro-
boscopic picture.

With an increase in modulation depth, the topological char-
acter of the edge states ensures that they will prevail, as long
as the gaps remain open. This is confirmed by our calculation
for the “intermediate” modulation depth v = 0.12ω0 shown
in Fig. 3(c), where, despite closure of a trivial gap between
different Floquet orders (between lowest and highest bands),
and emergence of exceptional points and complex-valued bulk
spectrum, the edge spectrum remains purely real valued. Note
that, although for intermediate modulation we have effectively
entered the anomalous Floquet regime, due to the crossing
of bulk bands belonging to different Floquet orders, this
crossing does not lead to a new topological phase, as no
new gaps arise in either the real or imaginary parts of the
spectrum.
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FIG. 4. Berry curvature for weak (0.09ω0) and strong (0.155ω0) modulation bands. Chern numbers for weak modulation (a–c) and strong
modulation (d–f) cases are calculated, with the same group of values C = (1, −2, 1) for each case.

This picture is dramatically modified if we further in-
crease the modulation depth and enter the regime of “strong”
modulation (v = 0.155ω0), which is characterized by opening
of a complete band gap between the first and third bands
of different Floquet orders in the imaginary quasifrequency
dimension [Fig. 5(a)]. As the bands appear to be spectrally
separable again, this allows us to calculate Chern numbers,

which appear to be C = 1 for complex-valued bulk bands and
C = −2 for the real-valued band, and corresponding Berry
curvatures are shown in Figs. 4(d)–4(f). This agrees well
with the previous calculation in the pseudo-Hermitian regime;
indeed, the real-valued band is still separated from the other
two, and its topological invariant is therefore preserved. The
other two bands merge together and split again, now in the

FIG. 5. Complex photonic band structure of non-Hermitian Floquet kagome supercell for strong modulation. (a,c) Complex eigenvalues
of quasifrequency (quasienergy) of the time-modulated gain and loss in the structure with modulation depth v = 0.155ω0. The typical edge
modes of both cases are shown in (b). Numbers 3 and 4 represent the two branches of the complex-valued edge band.
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FIG. 6. Edge states of finite kagome structure. We use a source at one site on the boundary (red arrow) to excite the edge states. ωe is the
excitation quasifrequency of the source. (a) Edge state induced by weak modulation, with excitation quasifrequency at the edge between two
doublet bands. (b) Same as (a), but with a defect at the edge, highlighting the robustness of the edge state. (c) Edge state for strong modulation.
We picked an excitation quasifrequency corresponding to the real part of the complex-valued edge states (and observe exponential growth in
time).

imaginary frequency direction, but, under this transition, they
again acquire the same values of topological invariant, which
we tend to attribute to the symmetry of the spectrum. Indeed,
the sum of Chern numbers of all three bands vanishes, leaving
us with the total Chern number of the two complex bands
equal to 2, which guarantees the topological character of at
least one of these bands. However, as the complex bands are
clearly symmetric,—i.e., they have an identical real part of
the spectrum and a complex conjugate imaginary part—they
are poised to have identical Chern numbers. This heuristic
argument is confirmed by a direct inspection of the wave
functions in the complex bulk bands, which appear to be
identical up to a similarity transformation (inversion in the
direction parallel to the edge). Note, however, that this is not
a general argument and it has been shown that the symmetry
of the spectrum can yield nonidentical topological invariants
of the two bands [59].

The above conclusions about the Chern numbers directly
translate to the properties of the edge spectrum in the strongly
modulated non-Hermitian case. However, the complex spec-
trum contains an important difference from the case of Her-
mitian (and pseudo-Hermitian) systems, which should affect
the way the edge and bulk states interconnect in both real
and imaginary parts of the spectrum. Thus, according to
the bulk-boundary correspondence, we should observe two
edge bands each interconnecting one of the complex bulk
bands with the real-valued bulk band. We indeed see that
the edge bands interconnect the bulk bands, but this con-
nectivity takes place via a set of states within the complex
spectrum that interconnect the two complex bulk bands with
each other. These states are not found in the bulk spectrum
calculated for an infinite crystal [Fig. 2(f)], thus implying
that they are related to the presence of the edges. Indeed,
an inspection of the wave function of these states shows
that they are localized to the edges [Fig. 5(b)]. We therefore
conclude that the connectivity of the edge and bulk spectra
takes place via exceptional points in the edge spectrum.
The main consequence of this observation is that the edge
spectrum of the same system can be either real or complex
valued.

As a result, the edges of the system can support either (i) a
conventional lossless (and gainless) topologically robust edge
transport via edge states with real spectrum, (ii) topologically
robust propagation exponentially attenuating in time, and,
finally, the most intriguing regime, (iii) topologically robust

propagation that amplifies exponentially in time. The latter
regime can be of importance for practical applications, in
particular, for designing topologically robust active optical
devices, including topological lasers [52–55].

To further understand the behavior of the edge states, we
performed modeling of large domains of crystals, shown in
Fig. 6, with edge states excited by a point source located
in the proximity of one of the edges (indicated by the ar-
row in Fig. 6). As expected, only edge modes within the
quasifrequency range of the topological band gap are excited,
and we observe their reflectionless propagation across sharp
corners of different cuts, and around deliberately introduced
defects.

Note that the spatial distribution of edge states in Fig. 6
can be misleading at first, as it appears to be different for
different but equivalent boundaries. This behavior, however,
is attributed to the nontrivial temporal dynamics in the mod-
ulated non-Hermitian lattices. Thus, the evolution in time
is presented not by a simple eiεt dynamics, but should be
properly calculated by applying the nonunitary evolution
operator Û (t ). As a result of this nonunitary dynamics, the
wave function exhibits additional variations in time due to
alternating attenuation and growth cycles, which take place at
different times for different atoms of the lattice. This complex
dynamics can be understood in simple language as the result
of amplification and decay when a particular atom of the
lattice enters a period of gainy or lossy response, leading
to a local growth or decay of the field amplitude. Direct
application of the evolution operator to the instantaneous
(stroboscopic) wave function confirms that the field profiles
on different cuts are equivalent, with a phase shift of ± 120°
(and temporal shift of T/3) between them. Moreover, the
energy density averages over one cycle of gain-loss modu-
lation, leading to a uniform field profile of the edge states
(not shown). The case of temporal dynamics of the edge states
with the complex-valued spectrum is of special interest. The
nonvanishing imaginary part of their quasifrequency implies
that the edge states exponentially grow or decay in time.
Indeed, directly applying the evolution operator to complex
edge states, we find that over time the energy density of the
state experiences a uniform (synchronous) exponential growth
or decay at all sites of the lattice.

The proposed non-Hermitian Floquet scheme can be read-
ily implemented in a variety of systems. In particular, radio-
frequency (RF) and acoustic systems with gain and loss have
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been of significant recent interest in the context of PT sym-
metric structures, and a number of successful experimental
realizations have been reported. On the other hand, modula-
tion of Hermitian RF and acoustic systems was of separate
interest, due to the possibility of achieving nonreciprocal
responses; a few prototype nonreciprocal devices have been
presented [33]. Combining these two ideas should be straight-
forward. A more challenging task, however, is to translate
this concept to higher frequencies, for example, aiming at
optical applications. Here, the main restriction comes from
the limited modulation speed of the material parameters. For
graphene, the modulation of absorption with a periodically
modulated pump field through saturable absorption is pos-
sible, yet it is limited by the relaxation time of carriers in
graphene τr ∼ 1 ps, which sets the upper limit of modulation
of a few to tens of THz, and therefore the proposed scheme
may be realized in the mid-IR domain. A promising path to
push this idea further into near-IR and visible frequencies is
to utilize optomechanically induced coherent photon-phonon
gain, which has been recently used in the experimental real-
ization of nonreciprocal amplifying responses [57,60].

IV. CONCLUSIONS

In summary, we have shown that time-modulated non-
Hermitian potentials can lead to the emergence of unique
topological regimes associated with the presence of excep-
tional points in the edge spectrum. These topological Floquet
regimes have been shown to yield amplifying edge trans-
port and lossless robust edge propagation, despite the non-
Hermiticity of the lattice. These results can therefore be of
immense importance for practical applications, such as for
robust lasers and nonreciprocal devices.
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