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The Altshuler-Aronov (AA) effect is one of the most basic quantum many-body effects in the mesoscopic
regime. It originates from the coexistence of disorder and electron-electron interaction. In this paper, we
reformulate the Feynman diagrammatic theory of the AA effect in a real-space nonequilibrium Green’s function
framework, in which an effective medium technique (via coherent potential) is employed to evaluate disorder-
induced vertices in the diagrams. As such the developed real-space formalism is compatible with the prevailing
nanodevice simulation paradigm, leading to an effective numerical approach to calculating the AA effects on
electronic structures and quantum transport properties of nanostructures. As an application, we analyze the I-V
characteristics and the full local density of states (DOS) profile of an Anderson-Hubbard lattice sandwiched
between biased electrodes. We show how the DOS anomaly due to the AA mechanism is reshaped by the
geometrical confinement and the nonequilibrium effects in a nanosystem. Our numerical findings are well
understood by the analytical results we provide in this paper.
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I. INTRODUCTION

Disorder and pair interaction are the two scattering sources
most elementary in a many-electron system. Their various
effects, and especially the interplay between them [1,2], play a
central role in the basic understanding of quantum condensed
matter. Quantum transport in the absence of electron-electron
(e-e) interaction is essentially a single-particle problem. It is
well understood that macroscopic quantum diffusion is pro-
hibited in low-dimensional (d � 2) systems with an arbitrary
concentration of impurities [3] and that, in the mesoscopic
regime, such localization effect reduces to a subleading cor-
rection, the weak localization [4], to the dominant diffusion
process. Another quantum correction to diffusive transport
arises from the e-e interaction: The spatial charge fluctua-
tion induced by impurities acts as an additional source of
scattering, and its combined effect with the electron-impurity
scattering forms a further suppression of the electronic con-
ductivity [5]. This effect was first theoretically analyzed by
Altshuler and Aronov (AA) using a many-body diagrammatic
method in the linear response framework [6]. Furthermore, it
was found that the same physical picture gave rise to a strong
suppression of the density of states (DOS) at the Fermi energy
[6], which was verified by tunneling spectroscopy studies
of dirty metallic contacts [7]. In this paper, the interaction
induced quantum corrections to conductance and DOS of
disordered systems are referred to as the AA effect [6].

While there is a great amount of literature focusing on
AA effects in the linear transport regime, it has been less
discussed how the AA mechanism reshapes the nonlinear
current-voltage (I-V ) curves and the (local) DOS profiles of
geometrically confined systems (e.g., nanostructures). The
latter problem is of great relevance to the constantly rising
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interest in nanodevices, whose nonlinear transport features
and electronic structures need to be thoroughly understood for
engineering applications. Theoretical developments in this di-
rection were initiated by Nagaev [8] who analytically derived
an expression for the nonlinear current in diffusive metal-
lic contacts, using diagrammatic perturbation theory. With a
quasiclassical approach, Schwab et al. [9] analyzed nonlinear
transport in nanostructures of a few geometries. Concerning
the AA effect on DOS, Gutman et al. [10] suggested from their
matrix field analysis that the cusp structure in the DOS profile
should split in two under nonlinear condition. Within specifi-
cally chosen models, these theoretical works provided impor-
tant understandings of different aspects of the AA effect.

In this work, we wish to put forward a unified formalism
which is consistent with existing theoretical findings while
extending the realm of applying the renowned AA theory.
To be specific, we focus on reformulating the AA diagrams
using the nonequilibrium Green’s function (NEGF) theory.
As such the developed real-space formalism is compatible
with the prevailing nanodevice simulation paradigm, leading
to an effective numerical approach to calculating the AA
effects on electronic structures and quantum transport prop-
erties of nanostructures. Associated with this formalism, we
propose a generic form of disorder-averaging technique in
terms of the diagrammatics, which improves the transfer-
ability of the diagrammatic theory. The theory developed in
this paper works in conjunction with numerical Hamiltonians
constructed with localized basis sets, thereby complying with
the state-of-the-art nanodevice simulation framework [11,12]
which supports the bottom-up device modeling in real space.
In addition, the numerical model accepts arbitrary configura-
tions of substitutional disorder. This is achieved by using the
coherent potential approximation (CPA) [13,14] to compute
the disorder-induced vertices in our diagrammatics. The use of
CPA is especially advantageous to ab initio implementations
for real materials.
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FIG. 1. (a) Keldysh contour. (b) Free energy diagrams to the first
order in e-e interaction (wavy line). The gray area in each diagram
represents the disorder vertex induced by configuration average.

A common theoretical issue in transport formalisms is
whether the formula for computing charge currents respects
charge conservation. If not, the theory would be considered
incomplete. In the literature Ref. [8] and in Sec. III B below,
there are situations where the approximate current formula
explicitly depends on the spatial coordinate, which would in
principle violate charge conservation. This problem is fixed
in our numerical formalism by applying additional vertex
corrections in the NEGF framework, and hence we obtain a
scheme that yields the same current at any cross section of the
device.

This paper is organized as follows. In Sec. II we review the
NEGF formalism and present the essential Feynman diagrams
which lead to the AA effects. In Sec. III we present the
analytical results obtained under the diffusive approximation
and at the Hartree-Fock level. These results apply to the
scenario of a short diffusive conductor sandwiched between
nonequilibrium electrodes, which corresponds to the typical
nanotransport setup. In particular, both the spatial and the
energy dependences of the local DOS in such a system are
analyzed. We also derive a compact formula for calculating
the nonlinear charge current therein. These analytical results
will be used to understand our numerical findings. In Sec. IV
we introduce an Anderson-Hubbard model of tight-binding
form, which can be viewed as a prototype for real ab initio
simulations. We also provide additional technical details about
our numerical scheme, especially about how the disorder-
induced vertices are computed with CPA. Applications of
our formalism to a one-dimensional transport structure are
reported. In particular, we find in its local DOS an interesting
spatial dependence that arises from the geometrical confine-
ment in the transport (longitudinal) direction. We will also
briefly discuss the energy relaxation effect on the DOS profile
due to inelastic e-e scattering.

II. MANY-BODY TECHNIQUE: AN OVERVIEW

In this section we outline the NEGF technique and its
associated many-body diagrammatics for analyzing general
disordered interacting systems, as these theories will be
needed in the rest of the developments below. We start by
drawing the two free energy diagrams to the first order in
the e-e interaction [see Fig. 1(b)]. The interaction vertex is
represented by the wavy lines in the graph, and the arrowed
lines denote contour-ordered Green’s functions G(rτ, r′τ ′) =
−i〈TCψ (rτ )ψ†(r′τ ′)〉 where the complex-time arguments τ

FIG. 2. Demonstration of the Kadanoff-Baym scheme for deriv-
ing self-energies (a),(b). Here the Fock (exchange) diagram is used
for example. The Hartree self-energy can be derived in a similar
manner. (c) displays the recursive structure of the vertex correction.

and τ ′ are placed on the Keldysh contour [see Fig. 1(a)] [15].
Note that spin degeneracy is assumed throughout this work.

The two Green’s function lines in each diagram are fur-
ther dressed by a four-point vertex in between, as a result
of disorder average. It can be shown that this vertex can
be expanded as a ladder series, i.e., K (2) + K (2)(GG)K (2) +
K (2)(GG)K (2)(GG)K (2) + · · · , where K (2) is a four-point
function irreducible in the particle-hole channel [14,16]. Note
that, although K (2) is commonly approximated as a local
function in space, in principle it can be nonlocal, and its
spatial nonlocality has a particular importance for describing
quantum interference effects such as localization [16].

We then generate the consistent self-energy diagrams fol-
lowing the Baym-Kadanoff procedure [17], i.e., removing a
Green’s function line at an arbitrary place in each free energy
diagram. Self-energies derived in this way can be shown to
have desired conservation properties for transport calculations
[14,17]. Depending on whether the Green’s function is re-
moved from inside an irreducible vertex K (2) or between two
adjacent K (2)’s, the resulting self-energy diagram may have
either of the two structures as shown in Figs. 2(a) and 2(b).
The total self-energy has to be the sum of these two types. Fig-
ure 2(a) can be viewed as a Fock diagram with the interaction
vertex dressed by disorder-induced corrections (represented
by the triangular objects in the diagram). The six-point vertex
K (3) that shows up in Fig. 2(b) can be formally expressed as
δK (2)/δG and is three-particle irreducible [14]. Having the
appropriate self-energy (hereafter denoted by �), one can
write down the first-order interaction-induced correction to
the Green’s function as δG = G�G, where convolutions in
real space and complex time are implied on the right hand
side.

In order to actually evaluate these diagrams, one resorts
to the real-time Green’s functions following the continuation
procedure [18]:

G(r1τ1, r2τ2) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G−− τ1, τ2 ∈ C−
G+− τ1 ∈ C+, τ2 ∈ C−
G−+ τ1 ∈ C−, τ2 ∈ C+
G++ τ1, τ2 ∈ C+

(1)
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where τ1,2 are variables on the Keldysh contour in Fig. 1(a),
and C+, C− indicate its backward and forward branches, re-
spectively. This way the complex-time arguments are removed
at the price of introducing more real-time Green’s functions.
It is then suggestive to arrange the four Green’s functions in a
matrix form

Gss′ =
[

G−− G−+
G+− G++

]
(2)

where the additional index s marks the contour branch in
which the original time argument was placed. Therefore,
complex-time convolutions along the contour are now re-
placed with integrals along the real axis plus a sum over
the branch index s. For numerically computing complex di-
agrams, the Gss′

Green’s functions turn out to be more con-
venient than the conventionally used retarded (R), advanced
(A), and Keldysh (K) Green’s functions [15], which can be
introduced as

GR = G−− − G−+,

GA = G−− − G+−,

GK = G−+ + G+−, (3)

in the current formalism.
The interaction (hereafter denoted by U ) should also be

augmented in the form of Eq. (2). The relation between U ss′

and U R/A/K follows

U R = U −− + U −+,

U A = U −− + U +−,

U K = −U −+ − U +−, (4)

instead of Eq. (3). The sign differences arise from the need
to take care of the opposite integration directions along the
two contour branches. Also, note that each interaction line
contributes a prefactor of i to the final value of the diagram.
Under the nonequilibrium random phase approximation, the
(screened) interaction is generated from [19]

U R/A = U0 + U0PR/AU R/A, (5a)

U K = U RPKU A, (5b)

where U0 is bare Coulomb interaction and P denotes polariza-
tion. When P is dressed due to disorder average, it would be
easier to compute

Pss′
(rt, r′t ′) = −i〈Gss′

(rt, r′t ′)·Gs′s(r′t ′, rt )〉, (6)

where 〈· · · 〉 denotes disorder average, and then transform Pss′

to PR/A/K using the same relation as in Eq. (3).
The diagrammatic rules regarding Gss′

, U ss′
, and Pss′

(with-
out disorder involved) are reviewed in Ref. [18]. The chal-
lenge in evaluating those diagrams of Fig. 2 lies in calculating
the disorder related vertices, which will be further elaborated
once our disorder-averaging scheme is specified (see below,
Sec. IV B).

Finally, the self-energy is obtained by putting together all
the diagrammatic building blocks and integrating over all
internal variables in the diagrams. The relation between �ss′

and �R/A/K follows that of Eq. (4).

FIG. 3. Hartree (a) and Fock (b) diagrams for the interaction cor-
rection to the DOS of weakly disordered systems. The ladder series
composed of dashed lines represents the diffuson objects. Boldface
letters (e.g., R) indicate spatial coordinates on a macroscopic scale
greater than the impurity mean free path.

III. THEORETICAL MODEL ANALYSIS

In this section, we provide analytical results of a nanowire
model sandwiched between ideal electrodes. To facilitate the
derivation, we assume a weak disorder scenario where the
mean free path (l0) of impurity scattering is much larger
than the Fermi wavelength. As such, the four-point disorder
vertex K (2) in the diagrammatics reduces to a dashed line,
i.e., first Born approximation (see Fig. 3), which is local in
the space and carries a value of (2πν0τ0)−1 [20], ν0 being
the unperturbed DOS and τ0 being the relaxation time of
impurity scattering. We also assume a phase-coherent elastic
e-e scattering, which preserves the most essential interference
process associated with the AA effects.

Before getting into the analytical derivation, it would be
helpful to review the various characteristic length scales in
the problem. First, because of momentum relaxation, wave
functions of single-particle states are confined in a spatial
region bounded by l0. However, the particle density could
correlate in space over a distance much larger than l0. This
type of long-range correlation arises from the diffusion modes
in the system and is usually characterized by a classical length
scale

√
D/ω, where D is the diffusion coefficient and ω is

the frequency of the driving field. In the following, we shall
see that the ratio between

√
D/ω and the sample size plays

an important role in the interaction effect of DOS anomalies.
At nonzero temperatures, there exists another diffusion length√

h̄D/kBT . To simplify our analysis we set T = 0 by hand
so that this thermal length becomes irrelevant. In addition to
the diffusion, another long-range object could be the Coulomb
interaction, whose spatial scope depends specifically on the
charge carrier density and the system dimension. Neverthe-
less, it is essentially the diffusive motion of carriers that is
responsible for the singularities in the interaction induced cor-
rections, whereas different models of e-e interaction merely
result in additional prefactors [6,20].

The above discussion was based on the interaction effect
to the first order. If one were to go beyond this approximation
level, other length scales, such as the energy relaxation length
and the dephasing length [21], would come into the picture
and further complicate the problem. For example, Ref. [10]
predicts that in mesoscopic films the nonequilibrium elec-
tromagnetic noise due to inelastic scattering is responsible
for smearing the DOS anomaly, and the sample size hence
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becomes an irrelevant length scale instead of the dominant
one as in the perturbation theory. These higher-order effects
will not be considered in this section; they will be discussed
in Sec. IV C by means of numerical investigation. Analytical
results of this section apply to diffusive nanowires or metallic
contacts where the dominant cutoff length scale is the longi-
tudinal size (L) itself.

A. Density of states

The first-order DOS correction due to interaction can be
written as δν(ε) = − 1

π
Im[GR�RGR], where GR denotes the

noninteracting (retarded) Green’s function. Using the dia-
grammatic rules presented in Sec. II, we obtain Fig. 3 for
evaluating δν at the Hartree-Fock level. The types of the
involved Green’s functions are labeled on the graph. The re-
tarded and advanced Green’s functions are merely propagators
of independent particles and thus do not contain any statistical
information. The particle distribution f (ε) gets involved via
G−+, which can be written as

G−+(ε) ≈ f (ε)[GA(ε) − GR(ε)] (7)

in the form of the equilibrium fluctuation-dissipation theorem
[19]. The nonequilibrium correction to Eq. (7) is of a higher
order and thus will not be explicitly considered in our analyti-
cal derivation. For a uniformly disordered system subject to an
external bias (along the x̂ direction), the distribution function
has the following linear form [8–10,22]:

f (ε, x) = f (ε, 0) + x

L
[ f (ε, L) − f (ε, 0)], (8)

where L is the distance between electrodes. f (ε, 0) and
f (ε, L) are Fermi-Dirac distributions in the respective elec-
trodes, and they take the following simple forms at zero tem-
perature: f (ε, 0) = 
(eV/2 − ε) and f (ε, L) = 
(−eV/2 −
ε), where 
 denotes the Heaviside step function and V is the
bias voltage.

In each diagram there are two blocks composed of a
series of dashed lines. Each of them represents a diffuson
which can be evaluated as (2πν0τ

2
0 )−1〈GR(ε)GA(ε − ω)〉.

Note that the diagrams which involve products of the form
GR(r1, r2)GR(r2, r1) have been discarded in advance, because
they carry a small factor of (EFτ0)−1. On the other hand,
the correlator (2πν0)−1〈GRGA〉 (i.e., the diffuson, hereafter
denoted by P) can be shown to be independent on ε, and
it equals the classical diffusion propagator in the long range
[20]. Thus the diagrams are divided into three short-range
regions by the two long-range diffusons, and the contribution
from each region can hence be computed separately. These
contributions only consist of some spatial convolutions be-
tween GR or GA, which can be evaluated by using the relation
GR(ε)GA(ε) = iτ0[GR(ε) − GA(ε)]. Collecting all the pieces
of Fig. 3, we get

δν(εR) = − ν0

π
Im

∫
dωdR′dR′′P (R, R′, ω) f (ε − ω, R′)

× [U0(R′−R′′)−2FŪδ(R′ − R′′)]P (R′′, R, ω),

(9)

where the boldface R is used to stress that the spatial coordi-
nates in this formula are based on a length scale greater than

l0. The numeric factor F induced from the Hartree diagram is
a material parameter which is defined as

F =
∫

[ImGR(r)]2U0(r)dr
(πν0)2

∫
U0(r)dr

, (10)

and Ū = ∫
U0(r)dr. Since ImGR(r) is a short-range function

decaying in space, the value of F falls in between 0 and 1.
For very strong screening, namely when the screening length
is shorter than the Fermi wavelength, F = 1, while in the
opposite limit F = 0 [20]. It is important to notice that the
actual value of F affects the sign of δν. Evaluating Eq. (9)
also requires the knowledge of U0(R′ − R′′). However, in
nanostructures the effective e-e interaction depends on the
specific device setup and thus can be very complicated in
general. To proceed from Eq. (9), we adopt a local interaction
of the form corresponding to static screening in metals [20]:

U0(R1 − R2) = (2ν0)−1δ(R1 − R2). (11)

The δ-function approximation is valid because the screening
length is much shorter than l0 in normal metals. Substituting
Eq. (11) into Eq. (9), we obtain in one dimension

δν(ε, x) = 2F − 1

2π
Im

∫
dω

∫ L

0
dx′ f (ε − ω, x′)

× [P (x, x′, ω)]2. (12)

The integral can be written in two parts:

δν = (1 − 2F )(δν1 + δν2), (13)

where

δν1(ε, x) = − 1

4π
Re[Px(ε − eV/2) + Px(ε + eV/2)] (14a)

δν2(ε, x) = Im
∫ ε+eV/2

ε−eV/2

dω

2π

∫ L

0
dx′ x

′ − L/2

L
[P (x, x′, ω)]2.

(14b)

To proceed we insert the classical solution of P subject to the
Dirichlet boundary condition in one dimension, i.e.,

P (x, x′, ω) = 2

L

∑
n>0

sin(nπx/L) sin(nπx′/L)

π2n2D/L2 − iω
(15)

= Lω

D

sinh(xm/Lω ) sinh(L − xM )/Lω

sinh(L/Lω )
, (16)

where xm = min(x, x′), xM = max(x, x′), and Lω = √
iD/ω

sets the length scale for a diffusion mode with frequency ω.
Let us first look at the first part δν1 as defined in Eq. (14a),

which is simply proportional to the recurrence probability
RePx=x′ (ω). Since RePx(ω) is an even function peaked at
ω = 0, δν1 is symmetric in ε and has two cusps at ε =
±eV/2 under an external bias. The cusp depth δν1(±eV/2)
varies with x. To see this, we set ω at zero and hence
obtain

RePx(ω = 0) = x

D

(
1 − x

L

)
. (17)
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FIG. 4. Plot of the function �(y) = (1 − 2y)(y − 1)2y2(4y2 −
4y − 1), which we invoke in Eq. (20).

Therefore δν1(±eV/2) is deepest at x = L/2, and around the
cusp,

δν1(ω, L/2) = −Re

{
tanhL/2Lω

8π
√−iDω

}
, (18)

where ω = ε ± eV/2. On the contrary, δν1(±eV/2) vanishes
at the ends of the wire. The underlying physical picture is that
the closer particles get to the boundaries, the more tendency
they will be absorbed by the reservoirs and never return to the
interacting region.

At a fixed x/L ratio, δν1(±eV/2) is proportional to L.
This implies a DOS singularity when the thermodynamic limit
L → ∞ is taken. To see this singularity on the energy axis,
we set x = x′ = L/2 at first and then get ReP (ω) = 1/

√
8Dω

from Eq. (16) in the limit L 
 Lω. Thus at equilibrium we
have δν1(ε) = −(4π

√
2Dε)−1, which reproduces the well-

known “zero-bias anomaly” (as ε → 0) first elucidated by
Altshuler and Aronov [6]. In real materials, this singularity
is usually cut off by certain finite length scales such as the
thermal diffusion length

√
h̄D/kBT or the dephasing length

[6,10]. In the present work which mainly focuses on short
wires, this anomaly is simply cut off by the system size [see
Eq. (18)].

The second part δν2 [see Eq. (14b)] exists only at nonequi-
librium, and it contributes a subleading modulation on top of
δν1. The spatial integral in Eq. (14b) yields∫ L

0
dx′ x

′ − L/2

L

[
P (x, x′, ω)

]2

= L4
ω

8LD2sinh2(L/Lω )

[(
1 − cosh

2x

Lω

− L − 2x

Lω

sinh
2x

Lω

+ 2x(L − x)

L2
ω

)
sinh2 L − x

Lω

− (x → (L − x))

]
. (19)

However, the remaining ω integral cannot be performed ana-
lytically. To proceed we simplify the result of Eq. (19) in the
low bias limit eV � h̄D/L2. The quantity h̄D/L2 is usually
termed the Thouless energy (ETh) in the literature. Expanding
Eq. (19) with respect to the small parameter L/Lω and next
completing the frequency integral, we get

δν2(ε, x) ≈ eV L5

360πD3
ε�(x/L), eV � ETh, (20)

where � is a polynomial as shown in Fig. 4. We notice
that �(x/L), as well as δν2, is an odd function with respect
to x = L/2, and that it vanishes at x = 0, L. This particular
x dependence is in fact a generic property which can be

FIG. 5. Diagrams for the first-order interaction correction to the
charge current in weakly disordered systems. Here only the Fock
diagrams are shown, since those of Hartree can be obtained by simply
rearranging the interaction vertex [see Fig. 3(a)].

easily deduced from Eq. (19). In addition, δν2 is also an odd
function of ε, which can be deduced from Eq. (15) since
flipping the sign of ω is equivalent to taking the conjugate.
If we are only concerned about the δν2 value around the
cusps, i.e., δν2(±|η + eV/2|), we can alternatively apply the
nonlinear limit L 
 Lω to Eq. (19), which then reduces to
L3

ω(2x − L)/(8LD2) for 0 < |x − L/2| < L/2. As such, we
get

δν2(±|η + eV/2|, x) ≈ ± 2x − L

8πL
√

2Dη
, ETh � η � eV.

(21)
Therefore, both the linear and the nonlinear results suggest
that the DOS correction should have a profile such that
|δν(eV/2, x)| is greater (lesser) than |δν(−eV/2, x)| if x <

L/2 (x > L/2). This point will be verified by our numerical
simulation (see Fig. 13 below).

B. Charge current

The nonequilibrium charge current can be obtained from
the Keldysh Green’s function [8]:

j(r) = eh̄

4πm

∫
dε lim

r′→r

(∇′ − ∇)
GK(r, r′, ε). (22)

The interaction induced correction to GK can be expressed
as δGK = GR�RGK + GK�AGA + GR�KGA. Putting aside
the terms involving U K for now, i.e., the dynamic part which
plays a role only in the subleading dephasing effects [23], one
obtains the diagrams of Fig. 5 (together with their Hartree
counterpart) for evaluating the charge current:

δ j(R) = De

πν0
Im

∫
dε

2π

dω

2π

∫
dR′dR′′GK(εR)P (ω, R, R′)

× GK(ε − ω, R′)[U0(R′ − R′′) − 2FŪδ(R′ − R′′)]

× ∇RP (ω, R′′, R). (23)

The two Fock diagrams in Fig. 5 were first formulated and
calculated in Ref. [8].

To proceed from Eq. (23) we rewrite GK as GK(εR) ≈
−2π iF (εR)ν0(ε), where

F (ε, x) =
(

1 − x

L

)
tanh

ε − eV/2

2kBT
+ x

L
tanh

ε + eV/2

2kBT
. (24)

In the thermodynamic limit (V/L → 0) and at a finite tem-
perature, one hence reproduces the renowned AA correction
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[6] to the linear response conductivity. Nevertheless, at zero
temperature and in a finite system, the ε integration in Eq. (23)
results in∫

F (ε, x)F (ε − ω, x′)dε

=
{

2h̄ω
L (x′ − x) + (eV −h̄ω)

L2 (2x − L)(2x′ − L), |h̄ω| � eV

sgn(ω) 2eV
L (x′ − x) + (eV − h̄ω), |h̄ω| > eV

.

(25)

To simplify the remaining spatial integrals, we adopt Eq. (11)
again, and the integrals thus reduce to [24]∫ L

0
(x − x′)P (ω, x, x′)

∂

∂x
P (ω, x′, x)dx′

=
[(

1+ 2x2

L2
ω

−cosh
2x

Lω

)
sinh

2(L − x)

Lω

+ x → (L − x)

]

× L3
ω

16D2sinh2(L/Lω )
(26)

in one dimension. At this point, one notices a drawback of
Eq. (23): The value of the thus calculated current explicitly
depends on the position x, i.e., a violation of charge conserva-
tion. This issue essentially results from the abrupt separation
between the long and short range objects in the diagrammatic
calculation; in fact, these objects are intertwined. In the nu-
merical formalism below, this issue is resolved by introducing
a proper vertex correction to the current operator (see Fig. 8
below). Here, as a partial resolution, one could either take the
average value of j(x) or use j(x = L/2) to get an unbiased
result. It can be shown that these two approaches will make
no qualitative difference in the end. Here we choose the latter
approach and thus apply x = L/2 to Eq. (26). After rewriting
the final ω integral we arrive at

δI = (1 − 2F )eD

2πL2
Im

{
ieV L2

h̄D

∫ ∞

b

ϒ(y)

y2
dy−

∫ b

0
ϒ(y)dy

}
,

(27)

where ϒ(y) = (1 + y2/2 − cosh y)/sinh y and b =√
eV L2/(ih̄D). The remaining integrals in Eq. (27) are

evaluated numerically, and the δI − V curve is plotted in
Fig. 6. Evidently, the only relevant energy scale involved in
Eq. (27) is the Thouless energy ETh = h̄D/L2. Nevertheless,
the δI-V curve appears linear over a large range of the
ratio eV/ETh, with a slight tendency to bend down at a high
eV/ETh ratio. This is in sharp contrast to the situation of δν,
whose profile at eV < ETh is noticeably different than that at
eV > ETh. When eV < ETh the two cusps in δν(ε) tend to
merge together, since their widths are of the magnitude ETh

[see Eq. (18)].
The asymptotic behavior of Eq. (27) is as follows. At high

voltages eV 
 ETh, Eq. (27) yields

δI ≈ (2F − 1)e

π

√
DeV

2h̄L2
, eV 
 ETh, (28)

and in the low bias limit, we obtain the correction to linear
conductance: δG = dδI/dV ≈ 0.4(2F − 1)e2/h. If we were

FIG. 6. δI − V curve generated from Eq. (27) for a disordered
wire at zero temperature. δI is the charge current correction to the
first order in e-e interaction.

to use a bare local potential, i.e., U0 ≈ Uδ(R1 − R2), we
would instead get

δG ≈ (0.8e2/h)Uν0. (29)

This latter scenario is more relevant to our numerical model to
be introduced in Sec. IV A, since the interaction strength will
be treated as an input parameter therein. Interestingly, these
asymptotic behaviors of δI , derived under the local interaction
model, turn out to be very similar (up to a prefactor) to the
result of Ref. [8], which was derived with a Debye-screened
interaction.

The result that δG is independent on the system size L
signifies a divergence in the linear conductivity δσ in the
L → ∞ limit, since δσ = δG · L in one dimension. This result
is consistent with the original AA theory [6,20], in which
the system is assumed to be thermodynamic so that the limit
L → ∞ is applied at first, and then the divergence in δσ is
observed as T → 0.

IV. NUMERICAL FORMALISM

In the last section, we analyzed our problem by model-
ing the system as a continuous disordered medium, where
information at the microscopic level only entered through
the unperturbed DOS ν0 and the impurity scattering time τ0.
We also resorted to classical objects such as the diffusion
propagator to simplify the diagrammatic calculations. In the
following, we shall switch our perspective. We will show how
to evaluate the diagrams of Fig. 2 from the numerical point
of view where all the given information is atomistic. This
development is very important for investigating AA physics
in real materials and practical nanostructures. The numerical
results to be presented in this section can be understood with
the theoretical analyses of the last section.

A. Model

Consider the following general Anderson-Hubbard Hamil-
tonian:

H =
∑
i, j

ξi jc
†
i c j +

∑
i

vin̂i + 1

2

∑
i �= j

Ui j n̂in̂ j +
∑

i

U0n̂i↑n̂i↓,

(30)
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FIG. 7. Schematic diagram of the tight-binding model. Disorder
and interaction are confined within the central scattering region. The
rest (leads) serves as electronic reservoirs.

where i and j label local atomic orbitals, c† (c) denotes the
fermionic creation (annihilation) operator, ξi j is a hopping
matrix, vi denotes the on-site potential, and finally, Ui j and
U0 denote the intersite and onsite Coulomb interactions, re-
spectively.

For the model system, in the following we consider a tight-
binding chain as depicted in Fig. 7. Each atom is assumed
to have one single orbital, and electron hopping is restricted
between adjacent sites with a uniform hopping amplitude ξ .
This leads to a band dispersion E (k) = −2ξcos(ka), where a
is the lattice constant. Next, disorder is introduced in a sector
(marked by black) in the middle of the chain, where the onsite
energy of each orbital takes a binary random number (as in
binary alloys), i.e., vi = ±v. A greater v means a higher de-
gree of disorder. The disorder parameter used in our numerical
model does not have to follow the weak disorder assumption
which we adopted for the analytical derivation. In addition,
the e-e interaction is also assumed to be confined within the
disordered region, and the rest of the chain (marked by gray)
can thus be treated as noninteracting leads whose degrees
of freedom can be integrated out using the surface Green’s
function technique [25]. The voltage bias (V ) is applied via
shifting the chemical potentials in the respective leads, and the
temperature is set at zero in accordance with our theoretical
analysis (see Sec. III).

The transformation of the Feynman diagrams (see Fig. 2)
into the discrete orbital representation of Eq. (30) is straight-
forward: One simply replaces the spatial integrals (

∫
dr) with

sums over orbitals (
∑

i). Besides, the internal s indices are
summed over in a brute force manner, i.e., no simplifications
such as Eq. (7) or 〈GRGR〉 ≈ 0 are used here. On top of
summing over these discrete indices, one also needs to per-
form a convolution integration over the free energy variable
in the diagram. This is done numerically with the trapezoidal
method.

The formula for computing the charge current [see
Eq. (22)] is discretized as

δIi = 2eξ

h
Re

∫
δG−+

i+1,i(ε) dε. (31)

The generalization of Eq. (31) to systems of arbitrary ge-
ometries is straightforward [4]. It is important to notice that
δG in Eq. (31) actually represents the product G�G, and
hence the two Green’s functions which eventually meet at the
current vertex need to be dressed with a disorder ladder (see
Fig. 8). Such vertex correction is essential for ensuring the
consistency of the computed current along the model system
(i.e., charge conservation). Its effectiveness has been verified
in our numerical computations.

ΣAA j

FIG. 8. Diagrammatic representation of the charge current cor-
rection [see Eq. (31)] to the first order in interaction. �AA represents
the self-energy diagrams of Fig. 2. Note that the current vertex must
be dressed with Fig. 2(c) in order to ensure charge conservation in
numerical calculations.

B. Disorder vertices

The Born approximation we used in Sec. III for disor-
der averaging is not practical for numerical models such as
Eq. (30). A more robust algorithm is the CPA, which is
henceforth used in our numerical formalism to compute the
disorder-averaged NEGFs and the vertex corrections.

The CPA method essentially constructs an effective
medium in which the quasiparticle lift time is cut off due
to disorder average. The associated medium Green’s function
and the self-energy (denoted by σ in the following) can
be self-consistently solved using the algorithm reviewed in
Ref. [26]. Using the self-consistent solution, we introduce the
locator object defined as

gi = [
σi + G−1

i − vi
]−1

, (32)

where Gi denotes the onsite diagonal of G, and note that gi

is dependent on the disorder configuration through the onsite
potential vi. Now we are in a good position to calculate the
high-order kernels which we introduced in Fig. 2. In Ref. [14]
we proved that the K (2) kernel should satisfy the local Bethe-
Salpeter equation [see Fig. 9(a)], i.e.,

K (2)
i = [〈gi〉 ∗ 〈gi〉]−1 − [〈gi ∗ gi〉]−1, (33)

where ∗ denotes an outer product defined as ( f ∗
f )(s1s4, s2s3) = f (s1s3) · f (s4s2), and hence K (2) can be
viewed as a 4 × 4 matrix. On the other hand, the K (3)

i ker-
nel is a six-point tensor with 64 elements, and it satisfies
the equation diagrammatically shown in Fig. 9(b) [14]. K (3)

i
can also be solved by means of linear equations. Note that
both K (2)

i and K (3)
i , and hence the vertex corrections to the

interaction propagator [see Fig. 2(c)], need to be individually
calculated at each pair of the energies associated to the vertex.
This turns out to be the most time consuming part of our
numerical program since the vertex correction is a tensor of

FIG. 9. Diagrammatic representation for the equations used to
compute (a) K (2)

i and (b) K (3)
i under CPA. All the objects in the

diagrams are local in space. The angle brackets denote disorder
average over the random potential vi. The stripes in (b) denote the
ladder series of K (2)

i (see Ref. [14] for more details).
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FIG. 10. (a) Numerically simulated frequency dependence of

Px (ω), i.e., the diffusive recurrence probability, at the middle of
a disordered tight-binding chain (L = 40a) sandwiched between
ballistic leads. (b) Position dependence of Px (ω) at ω = 0 under a
set of differing disorder strengths.

8N2 elements in itself (N being the number of atomic orbitals
in the scattering region) and solving for it from the linear
matrix equation implied in Fig. 2(c) is O(N3) complex.

As can be seen from our analysis in Sec. III, the quantity
which plays a central role in the AA effects is the diffuson
P . It can be verified that our CPA algorithm produces the
diffuson correctly. To be concrete, we numerically compute
the 〈GRGA〉 correlator using the vertex correction method as
demonstrated in Fig. 2(c). The function Px(ω) for a system
of 40 sites is plotted in Fig. 10. The frequency dependence of
P at x = L/2 is shown in Fig. 10(a), and it clearly displays
the causal property one would expect for a typical response
function. As discussed in Sec. III A, the peak of RePL/2 at ω =
0 is responsible for the DOS anomaly. Figure 10(b) displays
the accumulated return probability RePx(0) along the model
chain. Its overall parabolic shape agrees very well with the
classical solution [see Eq. (17)]. In addition, the green and
black curves in Fig. 10(b) exhibit wiggles in the crossover
region between the diffusive wire and the ballistic leads.
These wiggles originate from the quantum oscillations in
single-particle wave functions subject to impurity scattering.
Therefore they are on the scale of Fermi wavelength [27], and
the diffuson still remains a smooth function on a length scale
greater than the elastic mean free path (l0). As the disorder
strength increases, l0 approaches the Fermi wavelength or the
lattice constant, and thus those wiggles get suppressed [see the
red curve in Fig. 10(b)].

C. Numerical results for AA effects

To verify the numerical formalism presented above, we
first set the nonlocal interaction Ui j = 0 in our numerical
model [see Eq. (30)], which thus corresponds to the local
interaction model as specified in our analytical discussion.
Since the local interaction concerns electrons of opposite
spins only, the Fock contribution vanishes to the first order
in U0. Thus the parameter setting here corresponds to F = 1
in the analytical formulas.

0 0.2 0.4
0

0.05

0.1

0.15

0 0.2 0.4
0

0.05

0.1

0.15

FIG. 11. δI-V relation calculated using the tight-binding chain
model [see Eq. (30)] under the setting U0 = ξ,Ui j = 0. δI is the
current correction to the first order in U0. (a) The system size is set at
L = 40a while the disorder strength is varied by tuning v. (b) Results
for another two different system sizes under a given v.

The typical behavior of the charge current correction for
our model system is displayed in Fig. 11. Here the correction
δI is computed from Eq. (31) to the first order in U0. As
can be seen, the overall δI-V trend agrees very well with the
analytical prediction (see Fig. 6), i.e., it remains almost linear
even in the nonlinear transport regime. Its behavior in the
linear regime can be explained with Eq. (29), which indicates
that the linear conductance is proportional to the unperturbed
DOS ν0. As the disorder strength increases, ν0 decreases and
hence the conductance correction should decrease as well.
This relation is well reflected in Fig. 11(a). On the other
hand, Fig. 11(b) shows that the conductance correction seems
insensitive to the system size. This can be again understood
from Eq. (29) since the parameter L is not explicitly involved
on the right hand side thereof.

In the following we investigate the AA correction to the
DOS profile. As discussed in Sec. III A, the DOS correction
is overall dominated by the symmetric part δν1, which can be
well represented by the result at the middle of the chain [see
Eqs. (14a) and (18)]. The numerical result from our simulation
is displayed in Fig. 12. The solid curves mark the nonequi-
librium results obtained under a bias of V = 0.4ξ/e. Those
obtained under zero bias with otherwise the same system
parameters are marked by the dashed curves. Firstly, we notice
that the peaks [28] of δν align very well with the respective
Fermi energies of the leads, with the exception of short chains
[e.g., the black curve in Fig. 12(b)] whose linear-nonlinear
crossover sets in at a much higher bias due to its large Thou-
less energy. For those curves that clearly display the nonlinear
feature, i.e., those with split peaks, their peak values are nearly
half of those obtained in equilibrium. This is also consistent
with Eq. (14a). Furthermore, the peak values increase with
increasing disorder strength [see Fig. 12(a)], and particularly
they increase linearly versus the system size L [see Fig. 12(b)].
These observations can be well understood with Eq. (17). To
investigate the contribution from the asymmetric part δν2 [see
Eq. (14b)], we plot the full profile of δν(ε, x) at a given L and
v [see Fig. 13(a)]. In particular we observe that, away from the
middle point x = L/2, the two peak values of δν are not equal
[see Fig. 13(b)], and that their relative heights [see Fig. 13(c)]

045413-8



ALTSHULER-ARONOV EFFECTS IN NONEQUILIBRIUM … PHYSICAL REVIEW B 100, 045413 (2019)

FIG. 12. DOS corrections at the middle of the model chain.
The interaction is assumed to be local. The solid lines mark the
nonequilibrium results obtained under V = 0.4ξ/e. The dashed lines
mark the corresponding results obtained in equilibrium (i.e., V = 0).
(a) The system size L is fixed while the disorder strength v varies.
(b) The other way around.

have the x dependence as theoretically predicted in Sec. III A.
Besides, we note that the wiggles on the curves of Fig. 13(c)
originate from those quantum oscillations in the diffuson [see
the black curve in Fig. 10(b)]. Indeed, the atomistic numerical
approach allows for capturing details on a microscopic level
below the semiclassical scale.

The interesting profile of the DOS correction due to e-
e interaction can be experimentally verified by tunnel con-
ductance measurements. To this end, in addition to the two
electrical leads, a third probe needs to be added in the scat-
tering region which forms a tunnel junction with the device.
Such an experimental setup was demonstrated in Ref. [29]
for instance. For a nanostructure, one can use a scanning
tunneling microscope as the DOS probe [30,31].

FIG. 13. (a) Complete profile of the local DOS correction as a
function of position and energy in a system of L = 40a, Ui j = 0, and
v = 0.5ξ . (b) Cut at x = 10a. (c) Cut at ε = ±eV/2.

-0.5 0 0.5

-0.3

-0.2
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ε

unscreened
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screened w/
bare P
screened w/

δ

FIG. 14. DOS correction from the Fock contribution (see Fig. 2)
at the middle of the model chain (L = 40a, v = 0.5ξ ). The in-
teraction takes the form Ui j = ua/|xi − x j |. Blue curve: The bare
interaction Ui j is used in the diagram. Red curve: Screening is taken
into account via Eq. (5) where the polarization P is dressed with
vertex correction [see Eq. (6) and Fig. 2(c)]. Green curve: The
screened interaction is calculated with the bare polarization, i.e.,
without vertex correction. Dashed curves: corresponding equilibrium
results.

Although here the DOS correction is demonstrated using a
chain model, its generic behavior (as analyzed in Sec. III A)
should apply as well to other quasi-one-dimensional wires
with a nonzero cross section. However, as the width (W )
increases one would expect a decrease in the magnitude of
the local DOS correction since the diffusive return probability
to a single point decreases. In the limit W 
 L the device
becomes virtually a two-dimensional film contact (the contact
being one dimensional). As all the diffusion modes with
arbitrarily long wavelengths along W are integrated over,
the DOS anomaly tends to saturate. These predictions are
obtained on a qualitative ground using the relation between
the DOS anomaly and the diffuson [see Eq. (14)].

So far we have seen that the numerical results for the local
interaction model agree very well with our theoretical predic-
tion. In what follows, we switch to a long-range interaction
modeled by U0 = 0,Ui j = ua/|xi − x j |, which was not ac-
counted for by the theoretical analysis in Sec. III. In particular
we shall investigate the effect of many-body screening and the
associated energy relaxation effect on the DOS correction in
our model system. To this end, we replace the static potential
with that calculated from Eq. (5). U R/A/K is converted to the
form U ss′

, which is then plugged into the diagrams. Figure 14
displays the result calculated for the Fock contribution to the
DOS correction [32]. Since the Fock contribution corresponds
to F = 0 in Eq. (13), it gives rise to cusps (negative correc-
tions) instead of peaks in the DOS profile. Both the red and
the green curves in Fig. 14 are obtained with the screening
effect being taken into account. The difference is that for the
red curves a dressed polarization [see Eq. (6) and Fig. 2(c)] is
used where the disorder vertex correction is included, whereas
the bare polarization is used for the green curves. Both results
show a screening induced suppression of the DOS correction
in comparison to that calculated with the bare interaction
(blue curves). We also observe that the screening with dressed
polarization (red curves) appears less effective. This reflects
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FIG. 15. Energy relaxation effects on the DOS correction un-
der differing bias voltages (a) and interaction strengths (b). The
dashed curves represent the energy distribution function extracted
from the onsite diagonal of iG−+, which is computed with the
self-consistent GW-CPA scheme developed in Ref. [33]. The solid
curves are obtained by computing the diagrams of Fig. 2 using the
self-consistent Green’s functions. The result is presented for a model
chain (L = 40a) at its middle point. The bare interaction is modeled
as Ui j = ua/|xi − x j |.

the fact that diffusion in general tends to hinder the screening
process.

To further take into account the energy relaxation effect,
one needs to generate a Green’s function that reflects the
consequence of inelastic scattering. Thus the one-shot al-
gorithm that has been used so far would no more suffice:
The self-energy has to be inserted back into the Dyson
equation for NEGF [33], and the whole procedure needs
to be iterated. To this end, we employ the self-consistent
GW-CPA scheme of Ref. [33] and use the thus generated
Green’s function to compute the DOS correction due to the
AA mechanism. The energy relaxation is mainly manifested
in the energy distribution function at nonequilibrium [22]. The
dashed curves in Fig. 15(a) present energy distributions which
we extract from iG−+ calculated under a set of different bias
voltages. Unlike the step-shaped distribution function in the
non-self-consistent case, here we observe a slope within the
transport energy window, i.e. ε ∈ (−eV/2, eV/2), and a tail
at ε > eV/2. The slope which arises from the equilibration
process, and the tail which signifies electrons being excited
over the Fermi energy, are both signatures of energy relaxation
in nonequilibrium transport [22,33]. As the bias increases,
the equilibration gets enhanced and the sharp drops in the
distribution function are shortened. As a result, the DOS
correction is suppressed [see the blue curve in Fig. 15(a)],

akin to the situation where the temperature is increased instead
of the bias [34]. The effect of increasing interaction strength
is twofold. First, it enhances the equilibration process just
like the effect of bias increase. This is verified by the dashed
curves in Fig. 15(b). Second, the enhanced energy relaxation
tends to smear the zero-frequency peak of diffuson, since the
diffusive motion of single particles no longer conserves en-
ergy in the presence of inelastic e-e scattering. Consequently,
as the interaction increases, the two-cusp structure in the DOS
profile tends to be smeared [see the black curve in Fig. 15(b)].

V. SUMMARY

We have presented a diagrammatic formalism in the
nonequilibrium Green’s function framework devised for com-
puting the Altshuler-Aronov (AA) corrections to the elec-
tronic structure and transport properties of nanostructures.
Importantly, our theory strictly respects the law of charge
conservation, thereby featuring the theoretical consistency for
transport calculations.

The formalism has been applied to a prototypical
Anderson-Hubbard model subject to a nonequilibrium con-
dition. We find that its nonlinear differential conductance
decreases slightly as the bias voltage increases and that its
overall I-V characteristics appear insensitive to the system
size. On the other hand, in the nonlinear regime the interplay
between interaction and disorder may induce two peaks or
cusps (depending on the interaction model) on the local
DOS profile, and their relative heights or depths show an
antisymmetric dependence on the position. This finding could
be verified by tunnel conductance measurements. We also
predict that these anomalous DOS features due to the AA
effect tend to be suppressed by inelastic scattering processes.
These numerical results are well supported by our theoretical
analyses.

This work, together with previous progress [35], allows
one to initiate numerical studies of the two most basic quan-
tum corrections: weak localization and AA effects [4], in
disordered nanostructures from an atomistic point of view.
The remaining tasks include refining the numerical basis
set (e.g., linear combinations of atomic orbitals [11] or the
muffin-tin scheme [13]) and the computational algorithm, so
that real material systems can be efficiently investigated. We
hope to be able to report such a work in the future.
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