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Excitonic magneto-optics in monolayer transition metal dichalcogenides:
From nanoribbons to two-dimensional response
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The magneto-optical response of monolayer transition metal dichalcogenides, including excitonic effects, is
studied using a nanoribbon geometry. We compute the diagonal optical conductivity and the Hall conductivity.
Comparing the excitonic optical Hall conductivity to results obtained in the independent-particle approximation,
we find an increase in the amplitude corresponding to one order of magnitude when excitonic effects are included.
The Hall conductivities are used to calculate Faraday rotation spectra for MoS2 and WSe2. Finally, we have also
calculated the diamagnetic shift of the exciton states of WSe2 in different dielectric environments. Comparing
the calculated diamagnetic shift to recent experimental measurements, we find a very good agreement between
the two.
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I. INTRODUCTION

With the successful exfoliation of monolayers of transition
metal dichalcogenides (TMDs) [1], a new group of inter-
esting semiconducting materials became available for study
and potential applications. The characteristics of monolayer
TMDs include a direct band gap [1–3], broken inversion
symmetry [4,5], strong spin-orbit coupling [6], and strongly
bound excitons and excitonic complexes [7–10]. In addition
to these characteristics, monolayer TMDs have also been
shown to exhibit interesting magneto-optical properties such
as valley polarized Landau levels [11–13], valley Zeeman
splitting [14–18], and magnetic-field-induced rotation of the
polarization state of light [19,20]. These properties have in-
spired potential new applications in areas such as optoelec-
tronics [21] and valleytronics [22,23]. Magnetic fields have
also been used to probe exciton properties, such as effective
mass, size [24–26], and how they are affected by the dielectric
environment [27].

So far, the theoretical analysis of TMD magnetoexcitons
has relied on effective-mass models, such as the Wannier
model [10,24,27,28]. We recently validated that the Wannier
model can be used to accurately describe certain properties
of magnetoexcitons [29]. However, in the Wannier model,
the Bloch part of the wave function is replaced by a plane
wave, which makes the task of computing the single-particle
momentum matrix elements unfeasible. For the diagonal op-
tical response there is a solution to this problem [30], but for
the Hall conductivity no solution currently exists. Thus, the
Wannier model cannot be applied to the task of calculating
the Hall conductivity, which is a necessary step in computing
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the magneto-optical Kerr effect and the Faraday rotation
[31,32]. The issue can be resolved in the independent-particle
approximation (IPA) [13,33,34], but the optical properties
of TMDs are dominated by excitonic effects. Hence, for
an accurate description of the magneto-optical response of
TMDs, excitons should be included.

The main computational difficulty in going beyond effec-
tive mass models when treating magnetoexcitons is that the
external magnetic field breaks the translation symmetry of
the single-particle Hamiltonian. Depending on the choice of
magnetic vector potential gauge, translation symmetry will be
broken in at least one direction. The translation symmetry can
be restored by considering a magnetic supercell, but the size
of the supercell is inversely proportional to the magnetic field
strength [33]. Consequently, for experimentally obtainable
field strengths, a very large supercell is needed, thus making
the task of computing the excitonic properties unfeasible [35].
In the present work, we address this issue by using a system of
finite width in the direction, for which translation symmetry is
broken. This approach corresponds to considering wide TMD
nanoribbons. By increasing the size of the system in the finite
direction, we are able to recover the two-dimensional (2D)
response, including excitonic effects. Using this approach, we
then describe quantitatively the excitonic effects on both the
diagonal conductivity and the Hall conductivity of monolayer
TMDs perturbed by an external magnetic field. This allows
us to compute Faraday rotation spectra as well as excitonic
diamagnetic shifts.

The paper is structured as follows: In Sec. II, the tight-
binding model used to describe the single-particle properties
of both 2D monolayer TMDs and nanoribbons is introduced.
In this section, we also check the width convergence of
the nanoribbon optical response in the independent-particle
approximation. In Sec. III, we include excitonic effects in our
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FIG. 1. (a) Schematic of the tight-binding couplings in the NNN-
TB model for monolayer MX 2 TMDs. (b) Unit cell of a MX 2

armchair nanoribbon of width (N − 1)a/2 and length
√

3a, where
a is the lattice constant. (c) Band structure of WSe2 along the path in
the Brillouin zone specified by the letters. The blue and red lines are
the spin-up and spin-down bands, respectively. (d) Brillouin zone of
monolayer TMD.

model and check convergence of the optical response. Finally,
in Sec. IV, the magneto-optical response including excitons
is studied using our nanoribbon model. In this section, we
also calculate the diamagnetic shift of excitons in WSe2 and
compare to recent experimental results.

II. SINGLE-PARTICLE PROPERTIES

In this section, we present the theoretical framework used
to describe the single-particle properties of monolayer TMDs
and nanoribbons. Two important characteristics of monolayer
TMDs are the broken inversion symmetry and the strong spin-
orbit coupling (SOC), which result in spin splitting of the con-
duction and valence band edge states [4,36–38]. In addition,
TMDs also exhibit broken electron-hole symmetry, which
leads to electrons and holes with different effective masses. To
describe the single-particle properties of monolayer TMDs,
we apply a tight-binding (TB) model. An orthogonal nearest-
neighbor (NN) TB model always has electron-hole symmetry.
Thus, in order to have different effective masses of electrons
and holes, we need to use either a next-nearest-neighbor
(NNN) model or include a finite overlap [31]. For this work,
we have chosen to use a NNN TB model. The couplings
used for a TMD with lattice constant a are illustrated in
Fig. 1(a). Here, γ1 and γ2 are the NN and NNN hopping terms,
respectively, and −� and � denote the on-site energies for
transition metal (M) and chalcogen (X ) atoms, respectively.
Additionally, isλMη is the SOC between NNN transition metal
atoms, where s = ±1 denotes the spin and η = ±1 [39,40].
As shown for hBN systems in [39], the value of η depends on
the rotation sense in a hexagon, η = +1 (−1) for clockwise

(counterclockwise) orientation. This also holds for TMDs
as they share the same point group as hBN [4,6,38]. For
simplicity, we assume that the SOC between chalcogen atoms
is negligible. The same couplings are used to describe both
TMD monolayers and nanoribbons. Recently, a similar TB
model was used in both the study of spin Hall effects in
monolayer TMDs [40] and to compute the optical response
of gapped and proximitized graphene [41].

We begin by considering a TMD monolayer placed in the
xy plane. The couplings described above give the following
two-band Hamiltonian for a state with wave vector k:

Ĥ =
[
� − γ2h −γ1 f
−γ1 f ∗ −� − sλMg − γ2h

]
, (1)

where
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To determine the hopping parameters γ1 and γ2, we fit to the
effective masses of electrons and holes in monolayer TMDs
extracted from first-principles calculations in Ref. [42]. When
doing this, we can assume that λM = 0. This holds since λM

is small compared to the band gap and, consequently, using a
finite λM would only give a small correction to the hopping
terms. Then, the energy bands are given by

E±(k) = γ2h(k) ±
√

�2 + γ 2
1 | f (k)|2. (5)

By expanding E±(k) around the K point (kx, ky) =
2π (1/

√
3, 1/3)/a in the Brillouin zone [illustrated in

Fig. 1(d)], we get the following relations between the hopping
parameters and the effective masses:

3a2γ 2
1

8�
+ 3a2

4
γ2 = h̄2

2m∗
e

, (6)

3a2γ 2
1

8�
− 3a2

4
γ2 = h̄2

2m∗
h

. (7)

Here, m∗
e(h) is the effective electron (hole) mass and h̄ is the

reduced Planck constant. Solving for γ1 and γ2 in Eqs. (6) and
(7) gives the hopping parameters. The spin-dependent band
gaps at the K and K ′ points are given by Eg = 2� ∓ 3

√
3sλM ,

where + (−) holds at the K (K ′) point. The value of the SOC
parameter λM is determined by matching the split to the spin
splitting of the valence band edge calculated in Ref. [42]. The
resulting band structure for WSe2 is plotted in Fig. 1(c). In
Table I, we provide the complete set of parameters used for
monolayer TMDs in the present paper.
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TABLE I. Model parameters for the four common TMDs. The
on-site energy, lattice constants, and screening lengths r0 are taken
from Ref. [42]. The SOC strengths are calculated from the spin
splitting in Ref. [42], and the tight-binding couplings γ1 and γ2 are
found by fitting to the electron and hole effective masses of Ref. [42].

� (eV) γ1 (eV) γ2 (meV) λM (meV) a (Å) r0 (Å)

MoS2 1.24 1.498 8.2 14.4 3.18 44.3
MoSe2 1.09 1.359 92.5 18.3 3.32 51.2
WS2 1.22 1.661 −51.7 43.3 3.19 39.9
WSe2 1.04 1.444 −43.6 48.5 3.32 46.2

We introduce the external magnetic field by transforming
the hopping integrals according to the Peierls substitution
[43], which is simply the transformation t �→ ti j = teiφi j ,
where t is equal to either γ1, γ2, or λM . The Peierls phase
φi j is given by

φi j = e

h̄

∫ R j

Ri

A · dl. (8)

Here, e is the elementary charge, Ri and R j denote the location
of atoms at site i and j, respectively, and A is the magnetic
vector potential, related to the magnetic field by B = ∇ × A.
We take the magnetic field to be given by B = Bẑ, where B is
the magnetic field strength. For 2D systems the phase factor
evidently breaks the periodicity of the tight-binding Hamil-
tonian, but it can be restored by using a suitable magnetic
supercell [44]. As mentioned in Sec. I, the relation between
field strength and the supercell size makes the calculation of
excitonic properties unfeasible for experimentally obtainable
fields. Indeed, with the current methodology (TB + BSE) and
computer power available, magnetoexcitonic calculations are
limited to field strengths of several thousand teslas. However,
for a nanoribbon system, which is finite in the y direction,
the Landau gauge, A = −Byx̂, does not affect the transla-
tion symmetry of the system [35]. Hence, no restrictions on
the magnetic field strength and no magnetic supercell are
required. This is the motivation for using nanoribbons as a
tool to describe the magneto-optical response of monolayer
TMDs for arbitrary magnetic field strengths. We will consider
armchair nanoribbons, which are infinite in the x direction and
have a finite width of W = (N − 1)a/2, where N is the num-
ber of dimer lines in the y direction. The unit cell is illustrated
in Fig. 1(b). Since the nanoribbon system is finite in the x
direction, edge states are expected to exist for all nanoribbon
widths [45]. In Appendix A, we check the convergence of the
electronic structure by examining the density of states (DOS).
The edge states are found to have negligible effect on the
electronic structure for N � 200. Consequently, by increasing
N , we expect the optical response of the nanoribbons to
converge to that of the 2D system.

To calculate the linear optical conductivity, we make use
of the following expression for the spin-up and spin-down
contribution to the linear optical conductivity [33],

σ s
αβ (ω) = − ie2h̄2ω

m2A

∑
cvk

pα
cvk,s pβ

vck,s

E2
cvk,s(Ecvk,s − h̄ω − ih̄�)

, (9)

FIG. 2. Single-particle linear optical conductivities versus pho-
ton energy. The spectra are calculated for B = 130 T and h̄� =
25 meV. The factor of 10−2 should be multiplied with the y axis
directly underneath. The blue lines refer to the 2D conductivities and
red and yellow lines to the nanoribbon case.

with α, β ∈ {x, y}, h̄ω the photon energy, h̄� a phenomeno-
logical broadening parameter, m the free electron mass, A =
W L the system area, where W is the system width and L is
the system length, pα

cvk,s the momentum matrix elements, and
Ecvk,s := Ec(k, s) − Ev (k, s) the transition energy. The sum
runs over all combinations of conduction (c) and valence (v)
bands and k points, and we have neglected the nonresonant
term of the conductivity. In the nanoribbon geometry, the limit
where L goes to infinity should be taken. In practice this
is done by converting the sum over k points to an integral
by using that the distance between two k points is equal to
�k = 2π/L. The linear optical conductivity tensor ele-
ments are then found by summing over spin, i.e., σαβ (ω) =
σ+

αβ (ω) + σ−
αβ (ω). By symmetry, we have the relation

σ+
αα (ω) = σ−

αα (ω) for the diagonal elements, and σ+
αβ (ω) =

−σ−
αβ (ω) for the off-diagonal elements when B = 0 T. We

note that the expression in Eq. (9) holds for both nanoribbons
and 2D monolayers, but k denotes a scalar quantity in the
former case and a vector quantity in the latter case.

In Fig. 2, we show the real part of the optical conductivity
in the single-particle approximation for 2D monolayers and
nanoribbons. All spectra are plotted in units of σ0 = e2/4h̄
and calculated for a Brillouin zone discretized using 120 k
points. In the particular case of Fig. 2, we plot the spectra
with a broadening of 25 meV. This value is used in order to
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clearly show the different features of the optical response and
how they converge. Throughout, we focus on MoS2 and WSe2

as examples of monolayer TMDs, but similar results hold for
other types of TMDs. In Fig. 2, the spectra are computed for
a very strong magnetic field to make it possible to distinguish
the peaks due to Landau levels (LLs). The LLs are clearly
visible in both the diagonal and off-diagonal response. The
plots also illustrate the finite off-diagonal conductivities, the
so-called Hall conductivities, present when there is an external
magnetic field. Comparing the response of the N = 100 and
N = 300 nanoribbons to the bulk conductivity, we see that
for σxx(ω) and σ+

xy (ω) both nanoribbon widths capture the
qualitative features. However, the wider nanoribbons more
accurately capture the position of the higher Landau levels
and the amplitudes of the peaks. In contrast, for σxy(ω) very
wide nanoribbons are needed to obtain good convergence of
the amplitudes. This is due to the fact that σxy(ω) is the
sum of σ+

xy (ω) and σ−
xy (ω), both of which are much bigger

in amplitude than σxy(ω). Thus, while the difference between
the spin-dependent off-diagonal response of nanoribbons and
2D is small compared to the amplitude of σ+

xy (ω) it is
large compared to the amplitude of the Hall conductivity—
consequently, making the Hall conductivity susceptible to
poor convergence. The excitonic spectra are expected to show
better convergence since the optical response is dominated
by excitons and the excitons are strongly localized in TMDs
[7,8,46]. Finally, we note that the valley Zeeman splitting is
not described by the TB Hamiltonian in this paper.

III. EXCITONIC EFFECTS

In this section, we include excitonic effects in our de-
scription of TMD monolayers and nanoribbons. The approach
follows that of Refs. [35,47]. We expand the excitonic wave
function |exc〉 in a basis of singlets formed by excitations be-
tween a single pair of spin-dependent valence and conduction
bands at k, such that the wave function is given by

|exc〉 =
∑
cvk,s

As
cvk|vks → cks〉, (10)

where As
cvk are the expansion coefficients and |vks → cks〉 the

singly excited states. Note that we only include excitations
between bands of equal spin and that k can be either a
vector or scalar quantity depending on the dimensionality
of the system under consideration. The excitonic states are
governed by the Bethe-Salpeter equation (BSE) [7], which for
the expansion in Eq. (10) take the form

Ecvk,sA
s
cvk +

∑
c′v′k′,s′

W s,s′
cvk,c′v′k′As′

c′v′k′ = EAs
cvk . (11)

Here, W s,s′
cvk,c′v′k′ is the electron-hole interaction matrix ele-

ments and E is the exciton energy. Note that we have ne-
glected the exchange term in the BSE for simplicity. Then,
the electron-hole interaction matrix elements are given by

W s,s′
cvk,c′v′k′ = 〈vks → cks|U |v′k′s′ → c′k′s′〉, (12)

where U is the electron-hole interaction potential defined
below. Performing the spin integral in Eq. (12), we find

W s,s′
cvk,c′v′k′ = δs,s′

∫∫
d3rd3r′φ∗

cks(r)φvks(r′)

× U (r − r′)φc′k′s(r)φ∗
v′k′s(r

′). (13)

Here, φαks(r) are the tight-binding states with α ∈ {c, v}.
Equation (13) shows that the spin-up and spin-down equations
decouple and can be solved independently.

In a strict 2D system the electron-hole interaction is not the
usual Coulomb potential, but instead modeled by the Keldysh
potential [48,49],

U (r) = − e2

8ε0r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
. (14)

Here, ε0 is the vacuum permittivity, H0 and Y0 are Struve and
Neumann functions, respectively, r = |r|, r0 is an in-plane
screening length, and κ is the average of the relative dielectric
constant of the substrate and capping material. The values of
r0 used in this paper are listed in Table I. For the strict 2D
system, a straightforward calculation of the matrix elements
in Eq. (13) can be done using the approach of Ref. [47].
For the nanoribbon geometry, additional considerations are
needed. We want the excitonic properties in the nanoribbon
geometry to converge to those of the 2D system, when the
ribbon width is sufficiently large. Thus, we need to modify
the approach of Ref. [47] to work for structures, which are
periodic in one direction, but have non-negligible width. The
details are provided in Appendix B, but the main result is that
for the nanoribbon geometry the matrix elements W s,s

cvk,c′v′k′
can be computed from

W s,s
cvk,c′v′k′ =

∑
n,m

In,s
ck,c′k′ I

m,s
v′k′,vkU

k,k′
n,m . (15)

Here n and m run over the atomic sites in the unit cell and
In,s
αk,βk′ = Cn∗

αksC
n
βk′s is the Bloch overlap given by the product

of the tight-binding eigenvector elements belonging to site n.
Finally, the integral factor U k,k′

n,m is defined as

U k,k′
n,m = − e2

2πLε0

∫ ∞

0
dzK0

(√
r2

0z2 + Y 2
nm|k − k′|

)
e−κz,

(16)

where K0 is a modified Bessel function of the second kind
and Ynm = Yn − Ym is the difference between the y coordinates
of the atoms belonging to orbitals n and m. The integral
in Eq. (16) is computed numerically using a suitable Gauss
quadrature.

The eigenvalue problem defined in Eq. (11) can be solved
by diagonalization. Due to the decoupling of spin-up and spin-
down equations, the matrix to be diagonalized is block diago-
nal. Thus, to obtain the full solution two eigenvalue problems
of dimension NcNvNk have to be solved. Here, Nc and Nv are
the number of conduction and valence bands, respectively, and
Nk is the number of k points. For a magnetic field of 100 T the
2D magnetic supercell consists of roughly 2000 atoms, hence
making diagonalization of the BSE problem computationally
unfeasible. On the other hand, using nanoribbons as a theo-
retical tool the linear optical response converges to the bulk

045411-4



EXCITONIC MAGNETO-OPTICS IN MONOLAYER … PHYSICAL REVIEW B 100, 045411 (2019)

FIG. 3. Many-body diagonal conductivities versus photon en-
ergy, calculated for B = 0 T, h̄� = 50 meV, and κ = 1. The blue
lines refer to the 2D conductivities and yellow and red lines to the
nanoribbon spectra.

2D response when the nanoribbon unit cell contains roughly
200 atoms. The result is that the computations are feasible,
although still very demanding. However, if only the optical
response and not the full eigenvalue decomposition is needed
a significant reduction in computational complexity can be
obtained by using the Lanczos approach in Refs. [35,47].

The Lanczos routine is based on the fact that the real part
of the linear optical conductivity can be computed from the
expression [47]

Reσαβ (h̄ω) = − e2

m2ωA

∑
s

Im〈Pαs|Ĝs(h̄ω)|Pβs〉, (17)

with α, β ∈ {x, y}, Ĝs(h̄ω) the many-body Green’s function
given below, and Pαs given by

|Pαs〉 := P̂α|0, s〉 =
√

2
∑
cvk

As
cvk pα

cvk,s. (18)

Here, |0, s〉 is the many-body ground state, P̂α is the many-
body momentum operator, and pα

cvk,s denote the single-
particle momentum matrix elements. The many-body Green’s
function in Eq. (17) is given by

Ĝs(h̄ω) = lim
h̄�→0+

(h̄ω + ih̄� − Ĥs)−1, (19)

where Ĥs is the many-body Hamiltonian. In practice, we
allow a small, finite h̄� to add broadening to the spectra.
The matrix elements of the Green’s function in Eq. (17) are
evaluated effectively as in Ref. [35], i.e., using the Lanczos-
Haydock routine for tridiagonalization [50]. Computationally
this is still a daunting task due to the size of the problem.
For a nanoribbon with N = 100 and using a discretization
with Nk = 120, the matrix that is to be tridiagonalized has
dimension (1.2 × 106) × (1.2 × 106). We reduce the size of
the problem by disregarding the top and bottom half of the

conduction and valence bands, respectively, which primarily
affect the high-energy part of the spectra.

In Fig. 3, we show the convergence of the nanoribbon con-
ductivities to the 2D response in the unperturbed case (B = 0).
The two main exciton peaks at 1.88 eV and 2.02 eV for MoS2

and at 1.37 eV and 1.82 eV for WSe2 are denoted by A and
B, respectively. The results show a good convergence for the
nanoribbon with N = 100. Both the A and B exciton peaks
coincide with the bulk results and the peaks corresponding to
the excited states also match the bulk results. The discrepancy
at high photon energies is due to our disregarding some bands
in the excitonic calculations. Regarding the amplitude of the
peaks, we see that the amplitude is close to the bulk result for
Reσxx, while the Reσyy results could be improved by using
wider nanoribbons. However, as our goal is to study the effect
of an external magnetic field on the optical response, the
convergence shown in Fig. 3 is satisfactory. Comparing to
the spectra of unperturbed TMDs in Ref. [9], we see that the
qualitative features agree well.

IV. RESULTS

In this section, we present the results obtained from the
theoretical framework of Secs. II and III. All calculations
are based on the nanoribbon geometry and are calculated
for nanoribbons with N = 100. This corresponds to a ribbon
width of 15.7 nm and 16.4 nm for MoS2 and WSe2, re-
spectively. The one-dimensional Brillouin zone is discretized
using 120 k points. For the spectra in this section, a broad-
ening of h̄� = 50 meV is used, which is at the high end
of experimentally measured broadenings [51–53]. However,
this value is needed in order to remove artifacts caused by
the finite width of the system. The framework described in
Sec. III is based on the assumption that the temperature is
0 K. However, as the thermal energy at room temperature
(≈25 meV) is smaller than the broadening, the band gap, and
the exciton binding energy, we expect the spectra presented
here to be good approximations at room temperature. It should
be noted that the band gap tends to decrease with temperature.
Consequently, the spectra should be shifted accordingly for
comparison with room-temperature measurements.

The results presented in this paper are for magnetic field
strengths of 10, 30, 65, and 130 T. Currently, measurements of
magneto-optical properties of TMDs have been performed in
fields up to 65 T and, thus, most of the results presented here
are experimentally verifiable [24,27,28]. Moreover, destruc-
tive pulsed magnets can deliver fields as high as 130 T [54].
Another interesting approach is to study TMDs placed on a
magnetic substrate. This has been shown to induce exchange
fields in the TMD monolayer equivalent to extremely high
magnetic fields [55,56].

In Fig. 4, the first row of plots shows the change of the
real part of the diagonal conductivity as a function of the
magnetic field strength relative to the zero-field case. To
illustrate this, we have plotted the difference between the
diagonal conductivity at a finite magnetic field strength and
at 0 T. The plots show that the exciton peaks in MoS2 and
WSe2 exhibit a small blueshift in response to the applied
magnetic field. This small but important phenomena is what
allows for experimental estimation of the spatial extent and
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FIG. 4. Excitonic optical conductivity versus photon energy,
for different magnetic field strengths. The first row illustrates
�Reσxx (ω), which is the difference between the diagonal conduc-
tivity at a finite magnetic field strength and at 0 T. The dashed gray
lines show the unperturbed spectra. The second row shows the Hall
conductivities at different magnetic field strengths. Spectra are for
nanoribbons with N = 100 and κ = 1. The factor 10−1 should be
multiplied with the y axis directly underneath.

effective mass of excitons. We will evaluate the size of the
shift and discuss this in detail below. In addition to the
blueshift of the peaks, the amplitudes also increase slightly
as the field strength increases. Comparing to the amplitude of
the peaks in the unperturbed spectra in Fig. 3, the increase in
amplitude due to the magnetic field is only a few percent for
a field strength of 130 T. Thus, both effects are small changes
relative to the unperturbed results. Finally, in the high-energy
part of the spectra, the results show the emergence of an
oscillating modulation appearing at strong magnetic fields.
These oscillations correspond to transitions between Landau
levels.

The second row of plots in Fig. 4 shows the Hall conduc-
tivities of MoS2 and WSe2. Similarly to the single-particle
case, the time-reversal symmetry present in the absence of an
external magnetic field ensures that the unperturbed excitonic
Hall conductivities vanish identically; that is, σxy(B = 0) = 0.
Consequently, they are not shown in Fig. 4. When time-
reversal symmetry is broken by the external magnetic field,
finite Hall conductivities are found even at small magnetic
field strengths. Thus, we have σxy(B > 0) = 0. In other words,
the Hall conductivity goes from being identically zero to hav-
ing a finite magnitude when the magnetic field is turned on.
Hence, the relative change of the Hall conductivities is very
significant. In contrast, the relative change of the diagonal
conductivity is only minor, as σxx(B > 0)/σxx(B = 0) ≈ 1.
Comparing the excitonic magneto-optical response in Fig. 4 to
the IPA results in Fig. 2, we see that excitonic effects change
the optical response significantly. In addition to changing the
overall shape of the spectra, we also see that the excitonic
Hall conductivities are approximately one order of magnitude

FIG. 5. Plot of the Verdet constant versus photon energy for
normal incident light on a TMD monolayer in vacuum.

larger than the IPA response. Hence, for an accurate descrip-
tion of the magneto-optical properties of monolayer TMDs,
it is clearly important to account for excitons. Regarding the
magnetic field dependence of the Hall conductivities in Fig. 4,
we see that the amplitude scales linearly with the magnetic
field strength. However, as we go to stronger fields, small
changes in the shape of the spectra occur. These changes are
due to the emergence of Landau levels and additional effects
that are nonlinear in B, such as the diamagnetic shift.

The finite Hall conductivity, present when there is an ex-
ternal magnetic field, causes the system to exhibit a magneto-
optical Kerr effect (MOKE) and a Faraday effect. The MOKE
is a rotation of the polarization state of light when reflected
off the surface of a magnetized material, while the Faraday
effect is a rotation of the polarization of the transmitted light.
Here, we compute the Faraday rotation angle θ for normal
incidence of light on a single layer of TMD. The rotation angle
for a single passage of the monolayer can be approximated by
[32,57]

θ = 1

(n1 + n2)cε0
Reσxy(ω), (20)

where n1 and n2 are the refractive index of the substrate and
capping material, respectively, and c is the speed of light. The
expression in Eq. (20) is valid when σxx � σxy. As the Hall
conductivity scales linearly with B at small field strengths,
the Faraday rotation angle is often expressed as θ = V B,
where V is the so-called Verdet constant [31]. In Fig. 5, we
have computed the Verdet constant for freestanding MoS2

and WSe2. As shown by the figure, the rotation for a single
passage of the TMD monolayer is very small. However, this
could be increased by placing the monolayer in an optical
cavity in order to enhance the rotation by multiple passes
[57,58].

As mentioned in Sec. III, the electron-hole interaction
is screened by the substrate and capping materials. This
screening is described by the κ parameter, which is simply
the average of the relative dielectric constant of the substrate
and capping material. In Fig. 6, the optical conductivity of
WSe2 is shown for κ values of 1, 1.55, and 4.5. These values
correspond to WSe2 placed in vacuum, on a SiO2 substrate,
or encapsulated in hBN, respectively [27,59]. It should be
noted that an exchange self-energy correction to the single-
particle band gap exists, and this effect is not included in our
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FIG. 6. Excitonic optical conductivity versus photon energy,
calculated for WSe2 in different dielectric environments. The top
panel shows the diagonal conductivity in the unperturbed case. The
middle panel shows the change in the diagonal conductivity from
the unperturbed case to the B = 30 T case. The bottom panel shows
the Hall conductivities calculated at B = 30 T. The factors of 10−1

should be multiplied with the y axes directly underneath.

simple model. The self-energy correction decreases when the
screening from the surroundings increases [29,34]. To account
for this missing effect, the spectra in Fig. 6 are shifted by
the band gap energy. This allows us to observe changes in
exciton binding energy as a function of κ . The first plot is of
the diagonal conductivity for B = 0 T, and the results show a
blueshift of the exciton peaks as κ increases. This is due to a
decrease in the exciton binding energy as the screening from
the surroundings is increased. The binding energy decreases
from 455 meV to 160 meV as κ increases from 1 to 4.5. The
second row shows the change in the diagonal conductivity
between the unperturbed case and the B = 30 T case. The
plots show that the diamagnetic shift of the 2s exciton states
becomes harder to observe at higher values of κ , and that the
Landau levels are not affected by the dielectric environment.
Finally, the last plot is of the Hall conductivities. Here, the
same blueshift is observed as in the diagonal conductivity.
When going to the limit κ → ∞, we recover the IPA results,
as has been checked numerically.

In the low-field limit, the magnetic field dependence of
the energy of s-type excitons can be described by the relation
EB ≈ E0 + σB2, where E0 is the unperturbed exciton energy
and σ is the diamagnetic shift coefficient. The quadratic
diamagnetic shift of the exciton peaks is illustrated in Fig. 7
for the A exciton in WSe2. This coincides precisely with the
small shift observed in the diagonal conductivities in Fig. 4.
As mentioned, the value of σ is related to the spatial extent
of the exciton. The relation is given by σ = e2〈r2〉/8μ, where

FIG. 7. Diamagnetic shift of the peak associated with the 1s state
of the A exciton in WSe2. The vertical dashed lines indicate the
peak position at different magnetic field strengths. The upper panel
illustrates the fit of the function E0 + σB2 (blue line) to the peak
positions marked by the red dots.

√
〈r2〉 is the root-mean-square (rms) radius of the exciton and

μ is the reduced exciton mass. If μ is known, this relation
allows for an experimental estimate of the exciton size. As the
Lanczos method only provides the optical conductivity, and
not the exciton energies, we compute the shift coefficient by
following the exciton peak in the spectra as the field strength
changes. The shift of the exciton peak is then fitted to a
parabola, and the diamagnetic shift coefficient is found. Doing
this for the A exciton peak of freestanding WSe2, we find a σ

value of 0.22 μeV/T2. Using the same effective masses as
applied to find the TB parameters, we find an rms radius of
1.52 nm for the A exciton.

The dielectric environment is expected to affect the size
of the diamagnetic shift. Increasing κ results in less tightly
bound excitons, thus having a larger radius. This consequently
results in larger diamagnetic shift coefficients. This effect was
studied experimentally in Ref. [27]. In Table II, we summarize
our findings with regard to the effect of the dielectric environ-
ment on the diamagnetic shift coefficient. We have also in-
cluded values computed from the Wannier model presented in
Ref. [29]. The Wannier model consistently underestimates σ ,
when comparing to the experimental values and the values
computed using the nanoribbon approach. The explanation
for this is found in the fact that the Bloch overlaps are
disregarded in the Wannier model. This causes the excitons
to be more strongly bound in the Wannier framework than in
BSE framework and, consequently, have smaller diamagnetic
shift coefficients. This shows the importance of including the
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TABLE II. Calculated and experimental values of σ in units of
μeV/T2 for the 1s state of the A exciton in WSe2. The first column
gives the values calculated using the approach presented in this
paper, while the second column gives the values calculated using
the Wannier model from Ref. [29]. The κ values of 2.25 and 3.30
correspond to TMDs on a SiO2 substrate capped by polybisphenol
carbonate and hBN, respectively [27].

κ σ (BSE) σ (Wannier) σ (Expt.)

1.00 0.22 0.13
1.55 0.24 0.15 0.18 [27]
2.25 0.27 0.17 0.25 [27]
3.30 0.31 0.19 0.32 [27]
4.50 0.36 0.23 0.24 [26], 0.31 [24]

Bloch overlaps when modeling magnetoexcitons. Comparing
the diamagnetic coefficients calculated using the nanoribbon
approach to the experimental results, we observe a better
agreement.

V. SUMMARY

In summary, we have used nanoribbons as a theoretical tool
for the study of the magneto-optical response of monolayer
TMDs. We have shown that by increasing the width of the
nanoribbons the optical response will converge to that of a
2D monolayer. This has proven to be useful for including
excitonic effects in the calculation of the magneto-optical
response of TMDs, since a strict 2D calculation is not cur-
rently feasible. Beginning from a simple tight-binding model,
we added excitonic effects in the framework provided by the
Bethe-Salpeter equation. The linear optical conductivity was
calculated effectively using the Lanczos-Haydock routine. We
found that a 15–16 nm wide nanoribbon system is sufficient
for a reasonable convergence of the optical response.

Using this approach, we are able to compute the excitonic
Hall conductivity of monolayer TMDs. The calculated Hall
conductivity spectra can be used to compute Faraday rotation
in monolayer TMDs, an important magneto-optical effect.
We also evaluated the diamagnetic shift coefficient, which
provides a useful quantity for evaluating the size of excitons.
So far, the experimentally determined diamagnetic shift coef-
ficients have only been compared to theoretical results based
on effective mass models. But our approach provides the
option of going beyond effective mass models when analyzing
experimental data. We compared the theoretical diamagnetic
shift coefficient given by our calculation to values calculated
using a Wannier model and to recent experimentally deter-
mined coefficients. The comparison with the values computed
from the Wannier model showed the importance of including
Bloch overlaps, while the comparison with experimental val-
ues showed a very good agreement between our calculations
and the experimental results.

Finally, another potential use of the approach presented in
this paper is as a benchmark for future strict 2D models. As
it is currently not possible to compute the excitonic Hall con-
ductivities in any 2D model, the Hall conductivity presented
here can provide a reference when attempting to develop new
models.
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APPENDIX A: CONVERGENCE

In this Appendix, we examine the convergence of the
electronic properties of the nanoribbon system. We need to
ensure that the effect of edge states in the nanoribbon system
is negligible. This is done by studying the DOS of the nanorib-
bons and comparing to that of the 2D system. The DOS is
defined as

D(E ) = 1

A

∑
α,s,k

δ(E − Eα (k, s)), (A1)

where α runs over all bands. In practice, the δ function
in the DOS is approximated by a Lorentzian with 25 meV
broadening.

In Fig. 8 the convergence of the nanoribbon DOS is illus-
trated. For nanoribbons with N = 50 and N = 100, oscilla-
tions in the DOS due to the finite width of the system are
observed. In contrast, the DOS of the larger nanoribbons with
N = 200 and N = 300 are almost identical to the 2D DOS
except for two small small peaks around −3.3 and 3.5 eV.
One of the peaks is illustrated in the inset in Fig. 8. The peaks
corresponds to edge states in the nanoribbon system and, as
we have checked numerically, will remain a feature of the
nanoribbon DOS independently of the ribbon width. However,
the photon energy needed for transitions from an edge state to
a bulk state is approximately 4.3 eV (the energy difference be-
tween the valence edge states to the bottom of the conduction

FIG. 8. DOS versus energy for WSe2 plotted for a 2D monolayer
and different nanoribbon widths. The inset shows a zoom of the DOS
in the vicinity of the conduction edge states around 3.47 eV.
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band). Consequently, edge states will not affect the optical
response in the photon range considered in the present work.

APPENDIX B: ELECTRON-HOLE INTERACTION MATRIX
ELEMENTS FOR NANORIBBONS

In this Appendix, we will find an expression for the matrix
elements in Eq. (13) for the nanoribbon geometry. We begin
by considering the product of two tight-binding states, such
as the ones in Eq. (13). Exploiting the fact that the atomic
orbitals are localized and orthogonal, we can write

φ∗
αks(r)φβk′s(r) ≈ 1

Nuc

∑
n,X

In,s
αk,βkei(k′−k)X ϕ2

n (r − Xx̂), (B1)

where Nuc is the number of unit cells, X is the location of the
unit cell in the periodic direction, In,s

αk,βk = Cn∗
αksC

n
βk′s are the

products of the tight-binding eigenvector elements belonging
to the nth atomic orbital, and ϕn are the atomic orbitals. The
X sum runs over the location of the unit cells in the periodic
direction. To evaluate the matrix elements, we need integrals
of the form

Un,m(X, X ′)=
∫∫

ϕ2
n (r−Xx̂)U (r−r′)ϕ2

m(r′−X ′x̂)d3rd3r′.

(B2)

For strongly localized atomic orbitals, we can assume the
effective interaction

Un,m(X, X ′) ≈ U eff
n,m(X − X ′)

≡ − e2

8ε0r0

[
H0

(
κ
√

(X − X ′)2 + Y 2
nm

r0

)

− Y0

(
κ
√

(X − X ′)2 + Y 2
nm

r0

)]
. (B3)

Here, Ynm denotes the difference in y coordinates of the atomic
site belonging to orbitals n and m. This effective interaction
is validated by its ability to recover the 2D results, as shown
in the paper. In the following, it is advantageous to rewrite
U eff

n,m(X − X ′) using an integral form of the Keldysh potential
[60]. This gives

U eff
n,m(X −X ′) =− e2

4πε0

∫ ∞

0

1√
(r0z)2+(X −X ′)2+Y 2

nm

e−zκdz.

(B4)

The interaction matrix elements in Eq. (13) can then be
approximated by

W s,s′
cvk,c′v′k′ ≈ δs,s′

∑
n,m

In,s
ck,c′k′I

m,s
v′k′,vk

1

L

∫
ei(k′−k)XU eff

n,m(X )dX,

(B5)

where we have converted the sum over X to an integral and L
denotes the length of the system. Finally, we have to do the X
integration, which corresponds to taking the Fourier transform
of the effective interaction. This gives

1

L

∫
ei(k′−k)XU eff

n,m(X )dX

= − e2

2πLε0

∫ ∞

0
dzK0

(√
r2

0z2 + Y 2
nm|k − k′|

)
e−κz, (B6)

where K0 denotes a modified Bessel function of the second
kind. The remaining integral over z can be evaluated numer-
ically. Inserting Eq. (B6) into Eq. (B5), we obtain an expres-
sion for the interaction matrix elements in the nanoribbon
geometry.
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