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Thin film of a topological insulator as a spin Hall insulator
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We study the spin conductivity of the surface states in a thin film of a topological insulator within Kubo
formalism. Hybridization between the different sides of the film opens a gap at the Dirac point. We found that in
the gapped region spin conductivity remains finite. In the gapless region near the band gap, spin conductivity is
enhanced. These findings indicate that a thin film of a topological insulator is a promising material for spintronic
applications.
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I. INTRODUCTION

The spin Hall effect—generation of a transverse spin cur-
rent by applied voltage—has been predicted in materials with
spin-orbit scattering [1] and with strong spin-orbit interaction
[2,3]. However, it has been shown that spin current in latter
materials is small due to vertex corrections caused by point
nonmagnetic disorder [4,5], which is consistent with the ex-
perimental data [6].

While spin current is dissipationless itself [2], the accom-
panying charge current is dissipative. An ideal material for
the spintronics should have high spin conductivity along with
low charge conductivity. In fact, a finite spin current can
be produced in the insulators, where the charge current is
absent due to the band gap. Such an effect is referred to as
the quantum spin Hall effect (QSHE), and it is predicted in
narrow gap semiconductors [7], graphene with enhanced spin-
orbit interactions [8], and strained Rashba materials [9]. Also,
QSHE is predicted in transition-metal dichalcogenides, but
for experimentally relevant conditions spin Hall conductivity
inside the gap does not occur [10].

Topological insulators have robust surface states that form
a Dirac cone due to a topologically nontrivial band structure in
the bulk [11]. Such materials have a potential in spintronics:
record spin currents have been reported recently [12–16]. In
a thin film finite hybridization between surface states opens
a gap at the Dirac point [17,18]. We argue that finite spin
conductivity exists in the gapped region of such a film.

In a previous paper, we studied the bulk and surface spin
conductivity of thick topological insulators [19]. Also, spin
conductivity in a thin film of a topological insulator was stud-
ied without taking into the account the intralayer scattering
and vertex corrections in Ref. [20]. The case of the gapped
surface states due to intralayer hybridization was missed. In
this paper, we focus on the effects of finite hybridization
between the surface states in a thin film of a topological
insulator.

We calculate the spin conductivity of the surface states of
a thin film of a topological insulator using Kubo formulas
taking into account vertex corrections. We found that spin

conductivity remains finite in the gapped region. Spin con-
ductivity is enhanced near the gap in the metallic region.
These finding can open the way for application of thin films
of topological insulators in low dissipative spintronics.

II. MODEL

Low-energy surface states in the thin film of a topological
insulator can be described by the Hamiltonian [17,18,21]
(h̄ = 1)

Ĥ = r
(
k2

x + k2
y

) + μ + vFk (kxσy − kyσx )τz + �τx,

vFk = vF
[
1 + s

(
k2

x + k2
y

)]
, (1)

where σ = (σx, σy, σz ) are the Pauli matrices acting in the spin
space, τ = (τx, τy, τz ) are the Pauli matrices acting in the layer
space, μ is the chemical potential, vF is the Fermi velocity,
r = 1/(2m) is the inverse mass term, s characterizes the next
order correction to the Fermi velocity, kx = k cos φ and ky =
k sin φ are the in-plane momentum components, and � is the
value of the gap at the Dirac point due to hybridization of the
surface states belonging to different layers. The spectrum of
the Hamiltonian (1) is doubly degenerate and is given by

E± = μ + rk2 ±
√

v2
F k2(1 + sk2)2 + �2. (2)

If we measure the energy in terms of v2
F /r, then the chemical

potential, the next-order correction to the Fermi velocity, and
the gap are conveniently characterized by the dimensionless
values rμ/v2

F , sv2
F /r2, and r�/v2

F , respectively.
The spectrum is shown at Fig. 1. This spectrum forms a

Dirac cone when the inverse mass term is small, sv2
F /r2 >

1/3. In the opposite case, an additional Fermi surface with
opposite helicity emerges for some values of chemical poten-
tial [19]. Note that the vanished inverse mass term r = 0 leads
to vanished spin conductivity.

In general, the spin conductivity can be presented as a sum
of three terms [22,23],

σ
γ

αβ = σ
Iγ
αβ + σ

IIγ
αβ + σ

IIIγ
αβ , (3)
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FIG. 1. Energy spectrum (2) for different values of the gap � for
sv2

F /r2 = 2. Blue dashed line is the spectrum for zero gap � = 0,
and the red solid line is the spectrum for a finite gap r�/v2

F = 0.5.

where the first two terms correspond to a contribution from
the states at the Fermi level and the third one from the filled
states. Here α and β denote the in-plane coordinates x and y,
correspondingly, and γ denotes the spin projection.

At zero temperature the σ
Iγ
αβ and σ

IIγ
αβ contribution of states

at the Fermi energy can be written as [4,22]

σ
Iγ
αβ = e

4π

∫
d2k

(2π )2
Tr

[
jγα G+ Vβ G−]

, (4)

σ
IIγ
αβ = − e

8π

∫
d2k

(2π )2
Tr

[
jγα G+ Vβ G+ + jγα G− Vβ G−]

. (5)

Here jγα = {σγ , vα}/4, vα = ∂H/∂kα is the velocity operator,
Vα = vα + δvα is the velocity operator with vertex corrections
δvα , { , } means the anticommutator, and G± are the retarded
and advanced disorder averaged Green functions, which will
be specified later.

The contribution to the spin conductivity from the filled
states is

σ
IIIγ
αβ = e

8π

∫
d2k

(2π )2

∫ μ

−∞
f (E )dE

× Tr

[
jγα G+ vβ

dG+

dE
− jγα

dG+

dE
vβ G+ + c.c.

]
, (6)

where f (E ) is the Fermi distribution function (that is, the
Heaviside step for zero temperature), and c.c. means complex
conjugate.

III. DISORDER AND VERTEX CORRECTIONS

We will describe disorder by a potential Vimp =
u0

∑
i δ(r − R j ), where δ(r) is the Dirac δ function, and

R j are the positions of the randomly distributed pointlike
impurities with the local potential u0 and concentration ni.
We assume that the disorder is Gaussian, that is, 〈Vimp〉 = 0
and 〈Vimp(r1)Vimp(r2)〉 = niu2

0δ(r1 − r2). We introduce the
disorder parameter as γb = niu2

0/(4v2
F ).

In the self-consistent Born approximation (SCBA), the
impurity-averaged Green’s functions can be calculated
as G± = G±

0 + G±
0 �±G±, where G±

0 are bare
retarded/advanced Green’s functions of the Hamiltonian
(1) and �± is the self-energy. Self-energy is defined as
�± = 〈VimpG±Vimp〉. In the case under consideration, we
can calculate the self-energy �± = �′ ∓ i
 using a Dyson
equation �± = niu2

0

∑
k G±. The self-energy has nontrivial

structure in the side space τ . Along with the diagonal
element �0τ0 it has a nondiagonal one �xτx. Therefore, the
expression for G± is similar to G±

0 , in which ±i0 is replaced
by ±i
0, μ by μ − �′

0, and � by � − �′
x + i
x. The value


0 describes the diagonal scattering rate while 
x describes
the nondiagonal scattering rate.

We start with the case of large chemical potential |μ| � �.
In this case we can neglect a small correction to the value of μ

due to real part of the self-energy and put �′ = 0. In this limit
we suppose that scattering rates 
0, 
x → 0 are small and we
obtain that 
 = Im�+ = niu2

0

∑
k ImG+

0 .

Now we consider r = s = 0. In the metallic region |μ| >

� we get that the diagonal scattering rate is independent of
chemical potential [24]:


0 = −γb|μ|, 
x = γb�μ/|μ|. (7)

The condition 
0� = −
xμ stands even for |μ| 	 �. Near
the band gap |μ| 
 � we calculate scattering rates self-
consistently and found that the scattering rates are exponen-
tially suppressed for a weak disorder 
0(x) ∝ e−2/(πγb), which
is expected for the Dirac system [25]. In the insulating region
|μ| < � condition, Eq. (7) fails and nondiagonal scattering is
always smaller than diagonal scattering, |
0| > |
x|.

The impurity-averaged Green function can be calculated as
G± = (1 + �G±

0 )−1G±
0 or in the explicit form

G± = μ + rk2 ± i
0 − vFk (kxσy − kyσx )τz − (� ± i
x )τx

(μ + rk2 ± i
0)2 − [
v2

Fkk2 + (� ± i
x )2
] .

(8)

In the SCBA, following the approach described in
Ref. [26], we can derive an equation for the vertex-corrected
velocity operator [27]:

Vα (k) = vα (k) + niu2
0

(2π )2

∫
G+(k)Vα (k)G−(k)d2k. (9)

We found that hybridization � has little influence on the
vertex corrections. For r = s = 0 we get a standard expres-
sion for the vertex-corrected velocity operator for the Dirac
spectrum, Vα = 2vα [25,27].

Pointlike disorder renormalizes the k-independent part of
the velocity operator. Thus, we write

Vx = vx + δvσyτz,

Vy = vy − δvσxτz, (10)

where vertex corrections δv are calculated by the substitution
of Eq. (10) into Eq. (9).
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FIG. 2. Bare spin conductivity σ Iz
xybv for γb = 0.001, sv2

F /r2 = 1
(upper panel), and sv2

F /r2 = 5 (lower panel). The blue line corre-
sponds to � = 0, the red dashed line to r�/v2

F = 0.2, and the purple
dot-dashed line to r�/v2

F = 0.5.

IV. SPIN CONDUCTIVITY FROM THE STATES AT THE
FERMI SURFACE

Now we use the obtained results and Eqs. (4) and (5) to
calculate the contribution to the spin conductivity due to the
states at the Fermi surface. In this way, we obtained, first, that
in the considered approach the term σ

IIγ
αβ vanishes exactly and

we should compute the term σ
Iγ
αβ only.

The isotropic tensor component σ Iz
xy = −σ Iz

yx is the only
term that exists in the system. From Eq. (4), using the con-
dition 
0� = 
xμ we derive that

σ Iz
xy = σ Izbv

xy + δσ Iz
xy ,

σ Izbv
xy = −σ z

0

∫
k dk

8r
0v
2
Fkk2

πEg+Eg−
,

δσ Iz
xy = −σ z

0

∫
k dk

8r
0vFkδvk2

πEg+Eg−
,

Eg± = (μ + rk2 ± i
0)2 − v2
Fkk2 − (� ± i
x )2. (11)

FIG. 3. Spin conductivity contribution from vertex corrections
δσ Iz

xy for γb = 0.001, sv2
F /r2 = 1 (upper panel), and sv2

F /r2 = 5
(lower panel). The blue line corresponds to � = 0, the red dashed
line to r�/v2

F = 0.2, and the purple dot-dashed line to r�/v2
F = 0.5.

Here σ Iz
xybv is the spin conductivity without vertex corrections,

and δσ Iz
xy is the spin conductivity contribution from the vertex

corrections. We plot spin conductivity contributions as a func-
tion of the chemical potential for different values of the gap
� and correction to the Fermi velocity s. Spin conductivity
without vertex corrections is shown at Fig. 2. We can see that
this contribution to the spin conductivity takes maximal value
near the gap μ ∼ � and decreases with the increase of the gap.
Contribution the spin conductivity from the vertex corrections
is shown at Fig. 3. This contribution has a similar dependence
on the value of chemical potential as the contribution without
vertex corrections and is slightly smaller.

V. SPIN CONDUCTIVITY FROM THE FILLED STATES

We study Eq. (6) in a weak disorder limit. The isotropic
component σ IIIz

xy = −σ IIIz
yx is the only term that exists in

the system. After energy integration using a constant damp
approximation for 
0 we get that the contribution to the spin
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conductivity from the filled states consists of two parts,

σ IIIz
xy = σ IIIz

xy0 − σ Izbv
xy , (12)

where σ IIIz
xy0 is the spin conductivity in a clean limit, and σ Izbv

xy
is given by Eq. (11). Similar expressions have been obtain
for the anomalous charge Hall conductivity for the Dirac
Hamiltonian [28]. Spin conductivity from the filled states in
a clean limit can be expressed as [3,29]

σ
IIIγ
αβ0 = e

∑
k,n 
=n′

( fnk − fn′k )
Im〈un′k| jγα |unk〉〈unk|vβ |un′k〉

(Enk − En′k )2
.(13)

Here Enk is the energy of an electron in the nth band with the
momentum k, unk is the corresponding Bloch vector, Ĥunk =
Enkunk, fnk is the Fermi distribution function corresponding
to Enk (which is the Heaviside step function in the considered
case of zero temperature), Im is for the imaginary part, and
〈...〉 is the scalar product. Using Eq. (13) we obtain

σ IIIz
xy0 = σ z

0

∫ ∞

0
(θ (E+) − θ (E−))k dk

2rk2v2
Fk(

v2
Fk + �2

) 3
2

, (14)

where θ (x) is Heaviside step function and σ z
0 = e/(8π ) is the

spin conductivity quanta. Finite disorder has a little impact on
this term in the spin conductivity. The Heaviside step func-
tion θ (E±) is replaced by the normalized arctangent function
2/π arctan E±/
0. This substitution leads to the insignificant
blurring of the spin conductivity near the gap μ 
 ±� for
a small disorder. Spin conductivity in a clean limit σ IIIz

xy0 is
shown in Fig. 4 for different values of the gap � and Fermi
velocity correction s. Spin conductivity is a constant in the
gapped region and decreases in the gapless region. Also,
its particle-hole asymmetry is controlled by the parameter
sv2

F /r2: asymmetry is smaller for larger values of the param-
eter. We can see that spin conductivity in a gapped region
is comparable to the spin conductivity in a metallic region
near the gap σ IIIz

xy0 (μ = 0,�) 
 σ IIIz
xy0 (μ = �,� = 0), so at

the Dirac point spin conductivity decreases with the increase
of the gap �.

VI. ESTIMATES FOR THE EXPERIMENT

We can extract information on the disorder from the half-
width of the quasiparticle peak in angle-resolved photoelec-
tron spectroscopy (ARPES) from Ref. [30] and get γb ∼
10−2. Scanning tunneling microscopy shows that there is

approximately 1 defect per Å
2

for a clean surface [31]. If we
suppose that the typical impurity potential is of the order of
the chemical potential μ ∼ 200 meV (which is true for the
vacation defects) and Fermi velocity for the surface states [32]

vF ∼ 3 eV Å
−1

, then we get an estimate for γb ∼ 10−3. The
value of correction to the Fermi velocity s for the surface
states is extracted from Ref. [33], and we get sv2

F /r2 = 0.7,
where [34] v2

F /r = 1 eV. Hybridization between the layers �

depends strongly on the number of layers and reaches values
of � = 0.2 eV for two layers of Bi2Te3 [35].

We can see from Eqs. (11) and (12) that the term σ Iz
xy0

cancels out from σ Iz
xy and σ IIIz

xy . So, only contributions to
the spin conductivity from the vertex corrections and spin
conductivity in a clean limit remain. We plot total spin

FIG. 4. Spin conductivity in a clean limit σ IIIz
xy0 as a function of

chemical potential for sv2
F /r2 = 1 (upper panel) and for sv2

F /r2 = 5
(lower panel). The blue line corresponds to � = 0, the red dashed
line to r�/v2

F = 0.1, the purple dot-dashed line to r�/v2
F = 0.5, and

the green line to r�/v2
F = 1.

conductivity σ z
xy = δσ Iz

xy + σ IIIz
xy0 as a function of chemical

potential for the experimentally relevant parameters at Fig. 5.
Spin conductivity remains finite inside the gap and is en-
hanced just outside of the gap. Also, it possesses considerable
particle-hole asymmetry. Charge conductivity is calculated by
[36], σxx = σ0/2

∑
k Vx(G+ − G−)vx(G+ − G−), where σ0 =

e2/h̄. Charge conductivity is suppressed inside the gap, and
it has a weak dependence on the value of chemical potential
away from the gap, as expected for the Dirac system [25].

VII. DISCUSSION

Spin conductivity exists in a gapped region of a topological
insulator thin film, so this system is a spin Hall insulator.
Spin conductivity is not changing inside the gap if we vary
chemical potential. However, its value is not equal to the
spin conductivity quanta, because the Hamiltonian does not
commute with the z component of the spin [H, σz] 
= 0 [37],
so spin is not conserved. In this way our system differs from
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FIG. 5. Total spin conductivity σ z
xy (blue line) and charge con-

ductivity σxx (dashed red line) for the experimentally relevant data
γb = 0.01, sv2

F /r2 = 0.7.

other spin Hall insulators [7–10]. In a similar way, charge
quantum Hall conductivity is not quantized in superconduc-
tors, since charge is not conserved in such materials [38].

In the Kane-Mele–like models, where spin is conserved
[H, σz] = 0, spin conductivity is generated by the spinful
interaction between the Dirac cones ∼σz [8,10]. In our model
interaction between the Dirac cones is independent of the spin,
and spin conductivity is generated by the intrinsic spin-orbit
coupling, as expected for Rashba systems [3].

We suppose that both sides of the film are identical. In
real samples asymmetry between different sides of the film
can arise due to different doping and concentration of the
defects. In a weak scattering limit, different scattering on the
different sides of the film has almost no influence on the total
spin conductivity if vertex corrections are neglected. However,
significant asymmetry between the layers can have an effect
on the vertex corrections.

Hybridization between layers, given by �τx, couples the
electron (hole) from the Dirac cone of one layer to the hole
(electron) of Dirac cone of another layer with the same spin.
Such a bound state does not carry a charge but carries double
spin and has spin-momentum locking of the parent electron.
If we apply the electric field, then the flow of such bound
states with zero charges will produce spin current without
generation of an electric current.

The region inside the gap is of special interest. Scattering
and dissipation are strongly suppressed due to an absence

of the states at the Fermi energy. However, finite spin con-
ductivity is present. Such a phase can be promising for low-
dissipation spintronics applications.

Outside the gap spin conductivity is enhanced due to
presence of the contribution of the states at the Fermi
energy. This enhancement is significant only for thin
films � ∼ v2

F /r. If there are several layers then the gap
is significantly suppressed in comparison with the mass
parameter � � v2

F /r ∼ 1 eV. For the four-layer film, the band
gap reaches a value of � ∼ 180 meV and almost vanishes for
thicker samples [35]. Thus, the effect of the enhancement of
spin conductivity is significant only in samples of a few layers.

Experimentally, the dissipationless spin current can be
measured by the spin-transfer torque effect [6,39]. If we apply
voltage, then magnetization of the magnetic layer on the top
of the topological insulator can be changed by the spin current
without generation of the electrical current. Thus, the ratio
of spin current to charge current—spin Hall angle—would
be extremely large for such a system. However, the magnetic
layer on the top should be an insulator to prevent shunting.

We do not consider the influence of the magnetic field on
the spin conductivity. In real experiments on spin-transfer
torque magnetic layers are used. Thus, the magnetization of
the magnetic layer affects the value of the spin conductivity
of the topological insulator. However, if magnetization is
small (value of the Zeeman splitting is much smaller than
chemical potential |B| � |μ|), then its influence on the spin
conductivity can be neglected.

Experiments on spin-transfer torque in a film of topological
insulators with eight layers have been performed [12]. Good
quality ultrathin films of topological insulators with a few lay-
ers are available [40,41]. The gap for the surface states is about
180 meV for the four-layer samples [42]. So, the measure of
spin current in a thin-layer topological insulator inside and
near the gap is as an experimentally achievable task.

To sum up, hybridization between the surface states in
different layers of a thin film of a topological insulator opens
a gap near the Dirac point. We found that finite spin conduc-
tivity exists in the gapped region. In a metallic region near
the gap, spin conductivity is enhanced. These findings can be
crucial towards the implementation of thin films of topological
insulators in low-dissipation spintronics.
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