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Hidden mechanism for embedding the flat bands of Lieb, kagome, and checkerboard
lattices in other structures
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The interplay of hopping parameters that can give rise to flat bands in consequence of quantum interference
in electronic, photonic, and other interesting materials has become an extensively studied topic. Most of the
recognized structures having flat bands are lattices that can be understood by the mathematical theory of line
graphs, such as the Lieb, kagome, and checkerboard lattices. Here, we demonstrate that the structures that can
realize the same kinds of flat bands given by those well-known lattices hosting exotic quantum phases are more
flexible. The flat bands belonging to the recognized structures can be ideally embedded into new structures
that cannot be considered as the original ones in terms of a unitary transformation. The uncovered mechanism
enriches the understanding of physics behind the localized quantum states and broadens the choice of materials
that can be used for designing electronic and photonic devices from the zero band dispersion.
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I. INTRODUCTION

Much attention has been paid to the studies of mass-
less and infinitely heavy quasiparticles in condensed matter
[1–7]. As indicated by their names, massless quasiparticles,
such as massless Dirac and Weyl fermions [1,2], can move
relativistically in contrast to infinitely heavy fermions with
divergently large effective masses [3–7]. These two seem-
ingly exclusive behaviors could have interesting connections.
Perhaps the most well-known example is the Chern number
connecting the dispersionless Landau level with the Weyl
point, which is the magnetic monopole of Berry flux, for
characterizing their topology [2]. Both types of quasiparti-
cles can also exist simultaneously in a band structure, for
example, the one given by the Lieb or kagome lattice [8–10].
Another focus of the flat-band physics is on the destructive
quantum interference of localized energy eigenstates existing
owing to the energy degeneracy in the entire Brillouin zone,
which is accessible by a simple tight-binding model, and
therefore is of general interest [3–7]. Early studies of such
simple lattice models can be traced back to the realization
of the localization of electronic wave functions in a dice
lattice [11], finding an ideal model for understanding ferro-
magnetism [12–16], and making a connection of the lattice
structures with line graphs [12–16]. The flat-band physics
has become an extensively studied topic in a variety of ma-
terials, such as electronic, photonic, and cold-atom systems
[17–36].

To experimentally realize flat electronic bands in real mate-
rials, on the other hand, is still challenging and requires more
theoretical investigations [37–40]. Very recently, flat bands
have been directly observed by angle-resolved photoemission
spectroscopy experiments in Fe3Sn2 kagome lattices [41]
and bilayer graphene [42]. The existence of flat bands given
by the kagome lattice was also discussed in a recent paper
reporting the results of scanning tunneling microscopy and

scanning tunneling spectroscopy measurements on twisted
multilayer silicene formed on Ag(111) [43]. This progress
has promised to realize many exotic quantum phenomena,
for example, high-temperature superconductivity associated
with the infinitely large density of states of the flat bands
[42,44,45], in real materials soon. There is another boost
that the ideal kagome bands, which host exotic quantum
phases, can also be exhibited in a lattice distinct from the
original kagome lattice, and the equivalency is verifiable by
a unitary transformation [46]. Along the line of broadening
the choice of real flat-band materials with tunability while
still keeping certain exotic quantum phenomena proposed in a
simple model, it is interesting to ask whether there still exists
physics that has not been revealed so far, especially given that
many elegant combinations of tight-binding parameters can
give rise to the flat bands [47–49].

Since the Hamiltonian and its corresponding eigenvalue
equation of a system hosting flat bands contain all of the
needed ingredients for revealing k-independent energy eigen-
values, we will demonstrate that the same eigenvalue equation
giving rise to a flat-band solution, and therefore the same
kind of quantum interference, can be embedded into the
eigenvalue equation of a new system. This new system cannot
be obtained by a unitary transformation from the original
Hamiltonian because the band structures are in general dif-
ferent from each other—neither can be directly revealed by
the line-graph theory since the embedding is hidden and are
only possible under certain conditions. We will show that
the nature of the flat band existing in the original system is
essential for such an ideal embedding and will introduce a
condition that is easy to satisfy by tuning the property of
an adatom, such as its height and species, in three different
lattices deformed from the commonly studied Lieb, kagome,
and checkerboard lattices, which will be discussed in detail in
Sec. II.
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FIG. 1. (a) Lieb lattice. (b) Distorted Lieb lattice formed by the
displacement indicated by the arrows shown in (a). (c) An adatom
(red circle) is added in (b). (d) A structure composed of H atoms
locating at A : (0, 0), B : (0.5, 0.1), C : (0.1, 0.5), and D : (0.5, 0.5)
with the lattice constant a = 7.5 Å. (e) Band structure of (d) for
the case of D-atom height at 3.087 Å with � : (0, 0), M : (0.5, 0.5),
X : (0.5, 0), and Y : (0,−0.5). (f) Three-dimensional band structure
with D-orbital contribution. (g) Top view of the flat band with
D-orbital weight.

II. LATTICES HOSTING FLAT BANDS AND
THEIR EMBEDDING

In this section, we will introduce three lattices that can host
flat bands by just considering first-neighbor hopping and then
demonstrate how they can be embedded into new structures
via deformation and the addition of adatoms. The adatom
could be different from the original atomic species or the same
as the original one. A condition that is important for such
embedding will be discussed for all the examples.

A. Lieb lattice

A Lieb lattice having one orbital, say, an s orbital, per
atom with the nearest-neighbor hopping integral t1 is shown
in Fig. 1(a). The site energies of the orbitals locating at A,
B, and C sites are denoted as εA, εB, and εB, respectively.
Having these tight-binding parameters, the band structure can
be obtained by solving the eigenvalue problem,

εACA + t1(1 + K∗
a )CB + t1(1 + K∗

b )CC = λCA, (1)

t1(1 + Ka)CA + εBCB + 0 = λCB, (2)

t1(1 + Kb)CA + 0 + εBCC = λCC, (3)

where C′s, Ka, and Kb denote the eigenvector coefficients,
ei2πka , and ei2πkb , respectively. The eigenvalue λ is in general
k dependent and should vary with the given k point, (ka, kb).
However, there exists a k-independent solution, λ = εB, which
is what we call a flat band.

We now introduce a new structure that can be obtained by
displacing the B and C atoms along the b and a directions,
respectively. Such an arrangement does change the system, for
example, the hopping integral between orbital B and orbital
C becomes non-negligible, as denoted by t2 in Fig. 1(b). The
idea to design a material that still behaves as a Lieb lattice is to
add one additional atom, whose species, height, and in-plane
position are in principle tunable, into the system. To realize
the same kind of flat band revealed in the Lieb lattice, we shall
restrict orbital D so that it can only hop to the B and C orbitals
via the hopping parameter t3, as shown in Fig. 1(c). The new
equations for the eigenvalue problem become

εACA + t1(1 + K∗
a )CB + t1(1 + K∗

b )CC + 0 = λCA, (4)

t1(1 + Ka)CA + εBCB + t2CC + t3CD = λCB, (5)

t1(1 + Kb)CA + t2CB + εBCC + t3CD = λCC, (6)

0 + t3CB + t3CC + εDCD = λCD. (7)

We will show step by step that the flat band of the Lieb lattice
can be embedded into this newly introduced structure under
one condition, based on the flat-band nature revealed in the
original Lieb lattice.

First, Eq. (7) can be rescaled by a factor of t2/t3,

t2CB + t2CC + t2(εD − λ)/t3CD = 0. (8)

One can find that Eqs. (5) and (6) can be restored to Eqs. (2)
and (3), respectively, under the condition

t2(εD − λ)/t3 = t3, (9)

that is, subtracting Eq. (8) from Eqs. (5) and (6),

t1(1 + Ka)CA + (εB − t2)CB + 0 = λCB, (10)

t1(1 + Kb)CA + 0 + (εB − t2)CC = λCC . (11)

By comparing Eqs. (4), (10), and (11) with Eqs. (1), (2),
and (3), the effect of the deformation is to shift the site
energy of B and C orbitals from εB to εB − t2. Therefore,
the flat band is still preserved with a new value of energy,
λ = εB − t2. It should be noted that Eq. (9) cannot be satisfied
in general for arbitrary k points since the eigenvalue λ(�k) is k
dependent while the site energy and hopping parameters are
not. Therefore, this embedding is only possible because of
the nature of the flat band, whose energy is a k-independent
constant, already revealed in the original Lieb lattice.

Our derivation shows that a perfect flat band can appear
once Eq. (9) is satisfied by the parameters given in a tight-
binding Hamiltonian, where we assume the physics is domi-
nated by short-range hopping. An example for the parameters
can be obtained by performing first-principles calculations
with the adoption of atomic orbitals as the basis. The H
atom with one s orbital is then adopted and deployed into the
structure shown in Fig. 1(d). The atomic radius is chosen as
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TABLE I. Tight-binding parameters for the deformed Lieb (L)
and kagome (K) structures shown in Figs. 1(d) and 2(d), respectively,
in units of meV. The parameters for the deformed checkerboard (C)
structure shown in Fig. 3(c) are in units of t .

εA εB εD εE t1 t2 t3 λflat

L −7.6 −7.2 −0.7 −62.7 −23.1 −19.6 15.9
K −29.3 −29.3 −27.7 −38.6 −38.4 −66.3 86.3
C 0 0 0 −0.0125 −1 −0.8 −1.5 2.8

5 bohrs, and the lattice constant is set to 7.5 Å to avoid long-
range hopping. Expectedly, the band structure highly depends
on the D-atom height measured from the plane composed of
A, B, and C atoms. When the height reaches 3.087 Å, Eq. (9)
is satisfied and a flat band is revealed as shown in Figs. 1(e)
and 1(f). The three-dimensional band structure is generated
using FERMISURFER [50]. The corresponding tight-binding
parameters can be obtained via a unitary transformation from
the Bloch states to the Wannier-function basis and are listed
in Table I, where the condition, Eq. (9), is perfectly satisfied.
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FIG. 2. (a) Kagome lattice. (b) Triangular lattice formed by the
displacement indicated by the arrows shown in (a). (c) Bitriangular
lattice formed by adding an adatom (red circle). (d) A structure
composed of H atoms locating at A : (1/2, 1/6), B : (5/6, 1/2), C :
(1/6, 5/6), and D : (1/2, 1/2) with the lattice constant a = 7 Å. (e)
Band structure of (d) for the case of D-atom height at 2.995 Å with
the symbols defined as � : (0, 0), K : (1/3, 2/3), M : (1/2, 1/2), and
M ′ : (0, −1/2). (f) Three-dimensional band structure with D-orbital
contribution. (g) Top view of the flat band with D-orbital weight.

In addition, the circumstance shown in Fig. 1(b) can also
be realized by a peculiar orbital order without the real-space
distortion, as long as the hopping behavior is effectively the
same.

B. Kagome lattice

The second example is the structure that has been discussed
elsewhere, namely, the coloring-triangle lattice [46]. In the
following discussion, we will call the lattice a bitriangular
lattice since we will focus on the flat band that can be
realized by considering all relevant nearest-neighbor hopping
parameters and site energies. What we will demonstrate is
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FIG. 3. (a) Checkerboard lattice with six hopping parameters of
the same strength (t1) per site. (b) A substrate having protruding
atoms (green circles) on the surface. The effect of the presence of
protruding atom is to enhance an equal amount of hopping strength
to the hopping parameters between orbitals A, B, C, and D by t2.
(c) The checkerboard lattice on the substrate with additional adatoms
(red circles). The orbital at the adatom can hop to orbitals A, B, C,
and D via the parameter t3. The supercell is indicated by the red
lines. (d) Band structure given by the parameters listed in Table I
along the same path shown in Fig. 1(e). (e) Three-dimensional band
structure with E -orbital contribution. (f) Top view of the flat band
with E -orbital weight.
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that the flat band of the kagome lattice can be embedded in
the bitriangular lattice under the same condition that has been
illustrated for the Lieb lattice.

The band structure of the kagome lattice with the site
energy εA and the nearest-neighbor hopping integral t1 can be
obtained by diagonalizing the Hamiltonian,

⎡
⎣

εA t1(K∗
a + K∗

b ) t1K∗
b (1 + Ka)

t1(Ka + Kb) εA t1Ka(1 + K∗
b )

t1Kb(1 + K∗
a ) t1K∗

a (1 + Kb) εA

⎤
⎦,

where the flat band is at the energy εA − 2t1. After displacing
the atoms following the arrows shown in Fig. 2(a), a trian-
gular lattice is formed. In this new structure, the hopping
parameter t2 indicated in Fig. 2(b) is no longer negligible
and should be equal to t1. To allow the same mechanism that
gives rise to the flat band in the kagome lattice functioning
in the triangular lattice, an adatom D, which forms another
triangular lattice and can hop to A, B, and C atoms via t3,
is introduced as shown in Fig. 2(c). The new Hamiltonian
becomes

⎡
⎢⎣

εA t2 + t1(K∗
a + K∗

b ) t2 + t1K∗
b (1 + Ka) t3

t2 + t1(Ka + Kb) εA t2 + t1Ka(1 + K∗
b ) t3

t2 + t1Kb(1 + K∗
a ) t2 + t1K∗

a (1 + Kb) εA t3
t3 t3 t3 εD

⎤
⎥⎦.

One can apply the same mathematics as was done for the
Lieb lattice by rescaling the last row of the above matrix
with the factor of t2/t3 and imposing the condition given
by Eq. (9). The effective Hamiltonian for the flat band
becomes

⎡
⎣

(εA − t2) t1(K∗
a + K∗

b ) t1K∗
b (1 + Ka)

t1(Ka + Kb) (εA − t2) t1Ka(1 + K∗
b )

t1Kb(1 + K∗
a ) t1K∗

a (1 + Kb) (εA − t2)

⎤
⎦.

This demonstrates that the flat band of the kagome lattice is
embedded in the bitriangular lattice under the imposed con-
dition for the flat band, whose new energy is λ=εA−t2−2t1.
An example for the parameters can be obtained again by
performing first-principles calculations with the H s orbital.
The lattice constant shown in Fig. 2(d) is set to 7 Å to avoid
long-range hopping. We then tune the height of atom D and
find that a flat band is revealed when the height reaches
2.995 Å, as shown in Figs. 2(e) and 2(f). The tight-binding
parameters obtained from the Wannier functions are listed in
Table I.

C. Checkerboard lattice

The deformation applied to the lattices that host flat bands
can also be introduced by the presence of a substrate. The
third example we will show is the checkerboard lattice. The
checkerboard lattice that can give a flat band is shown in
Fig. 3(a), where an orbital having the dz2 shape is located at
each site and ordered in a way that both first-neighbor and
second-neighbor hopping parameters have the same strength
(denoted as t1) at a delicate lattice constant. The flat band
can be found at the energy of ε − 2t1. By fabricating the
checkerboard lattice on the substrate surface having protrud-
ing atoms, for example, the one shown in Fig. 3(b), some sort
of effective hopping has also been introduced into the system.
Following the idea that the system allows for six hopping
paths of the same strength per site, we also assume the effect
of the protruding atom is to increase the hopping strength
by an amount of t2 for the six surrounding paths as shown
in Fig. 3(b). The way to eliminate the effect of t2 that has
modified the flat band is to add an adatom E in a supercell
to result in a new hopping parameter t3 that can hop to its
first-neighbor orbitals A, B, C, and D. The new system is
indicated by the supercell shown in Fig. 3(c).

The band structure of the modified system can be obtained
by solving the eigenvalue problem,

⎡
⎢⎢⎢⎣

ε t2 + t1(1 + K∗
a ) t2 + t1(K∗

a + K∗
b ) t2 + t1(1 + K∗

b ) t3
t2 + t1(1 + Ka) ε t2 + t1(1 + K∗

b ) t2 + t1(Ka + K∗
b ) t3

t2 + t1(Ka + Kb) t2 + t1(1 + Kb) ε t2 + t1(1 + Ka) t3
t2 + t1(1 + Kb) t2 + t1(K∗

a + Kb) t2 + t1(1 + K∗
a ) ε t3

t3 t3 t3 t3 εE

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

CA

CB

CC

CD

CE

⎤
⎥⎥⎥⎦ = λ

⎡
⎢⎢⎢⎣

CA

CB

CC

CD

CE

⎤
⎥⎥⎥⎦. (12)

To reveal the embedded checkerboard ingredient that gives the
flat band in the modified system, the last row of Eq. (12) can
be first rewritten as

t2CA + t2CB + t2CC + t2CD + t2(εE − λ)/t3CE = 0. (13)

For the cancellation of t2 and t3 in the first four rows of
Eq. (12), we have reached the same needed condition,

t2(εE − λ)/t3 = t3, (14)

which can be realized by, for example, tuning the height of
atom E . The new energy eigenvalue is λ = ε − t2 − 2t1. One
example of the tight-binding parameters is given in Table I,
and the band structure is shown in Figs. 3(d) and 3(e). We
emphasize again that this embedding is only possible because
of the flat-band nature in the original checkerboard lattice that
gives a k-independent constant for each parameter in Eq. (14).
We further note that under the condition of Eq. (14), Eq. (12)
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can be reduced back to the equations expressed by the orbitals
in the original unit cell for realizing the flat band even though
the supercell is needed in the presence of the adatom and
substrate.

D. Discussion

The eigenvector coefficients of the flat band in each of
the illustrated deformed systems are the same as those in
the original system at every individual k point in the entire
Brillouin zone, regardless of the renormalization factor due to
the presence of the adatom. In Figs. 1(g), 2(g), and 3(f), the
contributions of the adatoms to keep the bands highly degen-
erate in energy are plotted for the Lieb, kagome, and checker-
board lattices, respectively. Note that the major adatom weight
is not on the flat bands; otherwise, the flat bands just belong to
trivial isolated states constructed by the adatom orbitals with
t3 ∼ 0. As already discussed for the three examples, Eqs. (9)
and (14) cannot be satisfied by just tuning the property of
an adatom without the help of the hidden symmetry that can
give rise to a flat band because of the k-dependent eigenvalue
λ(�k). Consequently, many interesting physical phenomena
associated with the flat bands, such as ferromagnetism, super-
conductivity, and fractional quantum Hall effects [17–36], are
expected to be found in more materials beyond the currently
investigated structures [37–43].

Generally speaking, the new systems in which the recog-
nized flat bands are embedded cannot be considered as the
original systems since the new band structures would deviate
from the original ones due to the nonzero t2 and t3. However,
the embedded ingredients can still be observed in the wave
functions that give the flat bands in the new systems at certain
k points, where the adatoms become invisible, as shown by
the zero (blue) weight in Figs. 1(g), 2(g), and 3(f) for the Lieb,
kagome, and checkerboard lattices, respectively. For example,
one can confirm that the eigenvector coefficients at the � point
between the original and the deformed systems are exactly
the same in the introduced Lieb, kagome, or checkerboard
lattices. Even though additional orbitals are added into those
systems through the adatoms, their eigenvector coefficients at
the � point are zero once the discussed condition is satisfied.
In such a case, the flat-band eigenstates in the two systems

are identical except for the real-space distortion due to the
introduced displacement. Finally, it is worth mentioning that
the exotic feature in the kagome lattice, namely, the coexis-
tence of one flat band and two Dirac bands, can still be found
with the presence of the adatom, as shown in Fig. 2(f), where
the blue parts of the bands provide a good example for the
equivalency between the kagome lattice and the bitriangular
lattice [46].

III. CONCLUSION

We have shown that the flat bands given by the well-
known lattices, such as the Lieb, kagome, and checkerboard
lattices, can be embedded in new structures that cannot be
recognized as the original ones, indicating that interesting
flat-band physics can be realized in many more materials. Al-
though the new Hamiltonian cannot be obtained by a unitary
transformation from the original system, such embedding is
mathematically and physically exact in the sense that they
satisfy the same eigenvalue equations for revealing the flat
bands, and the additional tight-binding parameters introduced
into the original system cannot affect the flat-band energy
eigenstates at the � point. This hidden mechanism for real-
izing flat bands cannot be directly predicted by the line graphs
because the embedded ingredients are hidden in different
structures. Such a finding opens an avenue for designing
nearly flat bands around the imposed condition by selecting
different species and/or heights of the adatoms in a variety of
electronic, photonic, and other interesting materials.
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