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Fermi surface nesting and intrinsic resistivity of beryllium: First-principles calculations
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Within the semiclassical Boltzmann transport theory, we perform a systematic first-principles calculation
of the intrinsic resistivity of beryllium, a nodal-line semimetal. The Wannier interpolation technique to treat
the electron-phonon (e-ph) interaction is employed to guarantee a high precision of the numerical results. Our
numerical results of the intrinsic resistivity of beryllium agree quantitatively with experimental data in a large
temperature range. We find that around each joint region between the electron and hole pockets, the Fermi
surface of beryllium forms a pair of vertical facets (parallel to c axis). Then, the nesting effect between such
Fermi surface segments near inequivalent vertices of the hexagonal Brillouin zone can be realized by e-ph
scattering with a relatively short phonon wavelength. Such a Fermi surface nesting effect plays the dominant
role in the intrinsic resistivity. It is also the underlying mechanism for linear temperature dependence of the
intrinsic resistivity from a very low critical temperature (200 K). In contrast, the contribution of the topological
nontrivial states near the nodal line to the intrinsic resistivity is less important because only a few of such states
appear in the vicinity of the Fermi surface due to the sizable dispersion of the nodal line.
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I. INTRODUCTION

As one of the basic physical properties of metal, the
intrinsic resistivity arising from electron-phonon (e-ph) scat-
tering has long been an important topic for both theoretical
and experimental studies. It is well known that the electric
transport ability of metals at room temperature is limited by
the intrinsic resistivity since the e-ph scattering increases with
temperature, dominating over other scattering mechanisms
[1]. As a common feature of most metallic materials, its
frequently verified by experiments that the intrinsic resistiv-
ity ρ is proportional to temperature T at sufficiently high
temperature [2–4]. The onset of the linear ρ-T relationship
is determined by two kinds of characteristic temperatures,
i.e., the so-called Debye temperature TD and Bloch-Grüneisen
temperature TBG [5]. According to conventional transport the-
ory, all of the phonons are fully thermally activated above the
Debye temperature TD, with the average phonon number being
about T/TD. Note that the e-ph scattering rate is proportional
to the average phonon number. As a result, the linear ρ-T
relation holds at and beyond Debye temperature. However,
for some metallic materials with a very small spherical Fermi
surface, it is possible that the linear ρ-T relation emerges
at a much lower temperature, i.e., TBG. This is because the
Fermi surface is too small so that at TBG, which may be
much smaller than TD, the phonons essential for electronic
backscattering around the Fermi surface have already been
activated thermally.

In general, many semimetals have a much more com-
plicated Fermi surface than a spherical surface, even being
composed of both the electronic and hole pockets. With regard
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to such complicated Fermi surfaces, it is inappropriate to
define a Bloch-Grüneisen temperature. Accordingly, these
semimetals are expected to have a complicated temperature
dependence of the intrinsic resistivity below the Debye tem-
perature, which requires a detailed study of both theoretical
and experimental aspects. It was not until the past decade that
the e-ph interaction in a realistic material could be calculated
by means of the density functional perturbation theory [6].
However, it is still a formidable work to perform ab initio
calculations of the intrinsic resistivity of a metallic material
since a fine Brillouin zone sampling is required for calculating
e-ph scattering around the Fermi surface with high precision.
It is indeed an unaffordable computational burden to perform
an e-ph interaction investigation entirely on the level of the
first-principles calculations. Recently, such a difficulty was
circumvented by means of the Wannier interpolation tech-
nique [7], which paves the way to study the intrinsic resistivity
of a realistic metallic material even with a complicated Fermi
surface on the level of the first-principles calculations.

The discovery of topological metallic and semimetallic
materials [8–13] has reignited interest in studying the intrinsic
resistivity of metals, focusing on the influence of the topolog-
ically nontrivial band structure on the e-ph scattering-limited
transport property. Many materials have been discovered as
nodal-line topological semimetals (NLSMs) [14–20] in recent
years. In particular, alkaline-earth metals such as beryllium
were found to be NLSMs [21] and received extensive atten-
tion. Although there are a few works involving strong e-ph
coupling of topological surface states of Be [22] and phase
transitions in extreme conditions [23], to our knowledge, a
systematic theoretical study on the level of first-principles
calculations for the intrinsic resistivity of the bulk material
of Be is yet lacking. Thus far, many relevant issues remain
unknown, for instance, the effect of the nodal-line state on
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the intrinsic resistivity, the temperature dependence of the
intrinsic resistivity, and the underlying mechanism, as well as
the contributions of phonon modes to the intrinsic resistivity
of Be.

In this work, we investigate the intrinsic resistivity of
the three-dimensional bulk material of Be, a nodal-line
semimetal, on the level of first-principles calculations. We
find that the Fermi surface of Be consists of electronic and
hole pockets with a complicated shape. Near the K and K ′
points, the electron and hole pockets touch each other, and the
Fermi surface therein looks like a pair of facets. The Fermi
surface nesting between two pairs of facets near the K and
K ′ points can be realized by the e-ph scattering with specified
phonon wave vectors. Such e-ph scattering processes play the
dominant role in contributing to the intrinsic resistivity and
determine the linear temperature dependence of the intrinsic
resistivity in a large range from 200 to 900 K. In contrast, the
topological nontrivial states near the nodal line contribute to
the intrinsic resistivity relatively weakly because of the sizable
dispersion of the nodal line.

The rest of the present work is organized as follows: In
Sec. II, we give a brief description of the theoretical methods,
including the technical details of the first-principles calcula-
tions and the formulas for calculating the intrinsic resistivity.
In Sec. III, numerical results are presented and discussed.
Finally, we summarize the main conclusions in Sec. IV.

II. METHODS AND CONVERGENCES

A. First-principles calculation

To investigate the intrinsic resistivity of a Be on the level
of first-principles calculations, detailed knowledge of the elec-
tronic and phononic states and e-ph interaction in this material
is required. To begin with, we take relatively coarse Brillouin
zone (BZ) samplings for the electronic wave vector k and
phononic wave vector q. It is thus feasible to perform a first-
principles calculation on such two coarse meshes for the elec-
tronic eigenenergy Enk, the phonon frequency ωνq, and, more
importantly, the scattering matrix elements gν

nm(k, q) between
an electronic initial state (n, k) and a final state (m, k + q)
by emitting or absorbing a phonon of state (ν, q). Note that
n, m, and ν denote the indexes of electron bands and the
phonon mode, respectively. The first-principles calculations
for the electronic state and phonon state and e-ph interaction
are performed in the theoretical frameworks of density func-
tional theory (DFT) and density functional perturbation theory
(DFPT), respectively, using the QUANTUM ESPRESSO package
[24]. In addition, we adopt the norm-conserving pseudopo-
tential [25] to model the ionic potential and the generalized
gradient approximation of the Perdew-Burke-Ernzerhof [26]
functional for the exchange-correlation interaction. A coarse
Monkhorst-Pack [27] 10 × 10 × 10 mesh is employed to sam-
ple both k points and q points in the first Brillouin zone.

The aforementioned numerical results do not suffice for
exploring the intrinsic resistivity of Be quantitatively because
the k mesh and q mesh are both too coarse to result in
an accurate description of the e-ph scattering processes in
the proximity of the Fermi surface. However, first-principles
calculations on a much finer k mesh or q mesh imply a

formidable computational burden. To circumvent such a pro-
hibitive task, we adopt a generalized Fourier interpolation
approach realized by the EPW code [28] in real space, which
enables affordable and accurate calculations of the electronic
and phonon energy spectra as well as the e-ph coupling on
ultrafine 500 × 500 × 500 k-point sampling and 50 × 50 ×
50 q-point sampling. The Dirac δ function is approximated by
the Gaussian smearing function, with a width σ = 0.001 eV.

B. Ziman’s resistivity formula

Finally, with regard to the calculation of the intrinsic
resistivity of Be we employ Ziman’s resistivity formula [29],
which we outline as follows. By virtue of a variational method
for solving the Boltzmann transport equation with the e-ph
interaction as the scattering mechanism for electronic trans-
port, the intrinsic resistivity of the metal can be formulated
in terms of the Eliashberg transport coupling function. It is
the so-called Ziman resistivity formula which expresses the
longitudinal resistivity along a given direction, say, the x
direction, in the form

ρx = π

e2h̄NE f 〈v2
x 〉

∫
d�α2

trF (�)F
(

kBT

�

)
, (1)

where

F
(

kBT

�

)
= �

kBT
sinh−2

(
�

2kBT

)
. (2)

NE f stands for the electronic density of states at the Fermi
energy E f ; T is temperature, and 〈v2

x 〉 denotes a squared
average of the x component of electronic velocity on the Fermi
surface, that is,

〈
v2

x

〉 =
∑

nk[(vnk)x]2δ(Enk − E f )∑
nk δ(Enk − E f )

, (3)

with vnk = ∇Enk/h̄ being the electronic group velocity. The
Eliashberg transport coupling function is defined as

α2
trF (�) =

∑
qν

ωqνλtr,qνδ(� − h̄ωqν ), (4)

with

λtr,qν = 1

NE f ω
2
qν

∑
mnk

∣∣Gν
mn(k, q)

∣∣2
δ(Emk+q − Enk − h̄ωqν )

× (
f 0
nk − f 0

mk+q

)[
1 − vnk · vmk+q

|vnk|2
]
, (5)

where f 0
nk and f 0

mk+q denote the Fermi-Dirac distributions at
the respective electronic states. Substituting Eqs. (2)–(4) into
Eq. (1) and integrating out �, the intrinsic resistivity can be
expressed as

ρx =
∑
nmk

∑
qν

ρν
nm(k, q), (6)
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where

ρν
nm(k, q) = πβ

e2h̄N2
E f

〈
v2

x

〉 sinh−2

(
ωqν

2kBT

)∣∣Gν
mn(k, q)

∣∣2

× δ(Enk − Emk+q − ωqν )
(

f 0
nk − f 0

mk+q

)

×
(

1 − vnk · vmk+q

|vnk|2
)

(7)

stands for the contribution of one individual scattering proce-
dure to the intrinsic resistivity. We can also define

ρ(k) =
∑
nmqν

ρν
nm(k, q), (8)

which represents the contribution of a specific electronic wave
vector k to the intrinsic resistivity. Furthermore, we define

ρx =
∑
qν

ρν (q), (9)

where

ρν (q) =
∑
nmk

ρν
nm(k, q) (10)

and

ρ(q) =
∑

ν

ρν (q). (11)

Here ρν (q) and ρ(q) show the individual contribution of each
phonon state and phonon wave vector q, respectively.

III. RESULTS AND DISCUSSION

With the theoretical approaches presented above, we are
in the position to perform numerical calculations on the
intrinsic resistivity of Be. Before proceeding, it is significant
to have a look at the crystal structure and electron and phonon
dispersions of Be. Be has a hexagonal crystal structure, with
symmetry characterized by the space group P63/mmc. The
unit cell and the Brillouin zone of Be are shown in Fig. 1.
After a full optimization, the lattice parameters of Be are
found to be a1 = 2.24 Å and a3 = 3.55 Å, which indicates
the appreciable anisotropy of the crystal structure. And such
anisotropy will manifest itself in the intrinsic resistivity shown
below. The electronic band structures of Be along the high-
symmetry lines are exhibited in Fig. 2(a), from which we can
see that more than one band spans the Fermi level. Hence, Be
has a complicated Fermi surface, which will be detailed later
on. As reported in the previous work [21], Be is a topological
nodal-line semimetal since there exists an almost circular
nodal line around the BZ center. The energy dispersion of
the nodal line ranges from 0 to 1.1 eV with respect to the
Fermi level, and the energy minimal and maximal points
of the nodal line occur along the high-symmetry lines �-M
and �-K , respectively, as labeled by N1 and N2 in Fig. 2(a).
Note that the nodal point N2 is higher than the Fermi level
by about 1.1 eV; it is too high to contribute to the intrinsic
resistivity even at room temperature since it hardly takes
part in the e-ph scattering process around the Fermi surface.
Phonon dispersion with no imaginary frequency is presented
in Fig. 2(b), where the phonon modes are identified from
ν = 1 to 6 ordered by frequency. Of course, around the �

FIG. 1. (a) and (b) The unit cell of the Be lattice. (c) Brillouin
zone of Be with high-symmetry points labeled.

point the two nearly degenerate lowest-frequency modes are
transverse-acoustic (TA) modes. In addition, the calculated
maximal phonon frequency is about 75 meV, still much too
low to excite an electron at the Fermi surface to the nodal
point N2.

The three-dimensional Fermi surface and a two-
dimensional view of it with kz scaled by color are displayed in
Figs. 3(a) and 3(b), respectively. The Fermi surface consists
of two separate electronic pockets centered at the K and K ′
points, respectively, as well as one connected hole pocket
inside of the BZ. In contrast to the hole pocket, the two
electronic pockets have a much larger extension in the kz

direction. We can see an extreme case at the part of the hole
pocket closest to �, i.e., a circle at kz = 0, with no extension
in the kz direction. As a result, the nodal-line states at this
circle are much fewer than the states near the junction of
the pockets, which could suppress the contribution of Dirac
nodal line states to resistivity. In addition, it should be noted
that around each juncture region between the electron and
hole pockets the Fermi surface forms a pair of facets which,
as seen below, plays the critical role in contributing to the
intrinsic resistivity due to the Fermi surface nesting effect.

With the help of the EPW interpolation technique, in order
to calculate the intrinsic resistivity with high precision, we
can employ very fine BZ samplings to treat the k and q
integrations numerically. As shown in Figs. 4(a)–4(c), we find
that at room temperature (300 K), a 500 × 500 × 500 k mesh
and a 50 × 50 × 50 q mesh with an appropriate Gaussian
broadening σ = 0.001 eV can bring us convergent results of
the intrinsic resistivity. In comparison with the result obtained
with much finer k and q meshes, the relative error of the
obtained intrinsic resistivity is less than 2%. In addition, even
at very low temperature our numerical calculations indicate
such fine k and q meshes are sufficient to result in a convergent
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FIG. 2. (a) Electronic and (b) phononic dispersions of Be along the high-symmetry path. Fermi energy is shifted to be 0 eV, and nodal-line
states (N1 and N2) are marked with blue circles. The phonon modes are identified by magnitude from 1 (the lowest) to 6 (the highest).

result of the intrinsic resistivity with a relative error less than
5%.

In Fig. 5(a), our calculated results of the resistivities along
the x and z directions as functions of temperature are com-
pared with an experimental result by Mitchell [30]. In general,
our results agree with the experimental ones in the whole
temperature range. Owing to the anisotropy of the crystal
structure as shown in Fig. 1, the intrinsic resistivity of Be
shows notable anisotropy. The anisotropy ratio, defined as
ρz/ρx, is about 1.5 in our numerical result, and it is indepen-
dent of temperature. In the experimental work, it ranges from
1.0 to 1.4 when temperature varies from 150 to 300 K and
stays nearly unchanged when T goes higher. In Fig. 5(b) our
numerical result for the intrinsic resistivity of polycrystalline
Be, defined as ρpoly = (2ρx + ρz )/3, is compared with the
experimental result, as well as another theoretical result with
single-site approximation [31] and some approximate models
by Sano [32]. One can see that in contrast to Sano’s result,
our numerical result agrees better with the experimental result
in almost the whole temperature range. What we would like
to emphasize is that all the theoretical results for the intrinsic
resistivity (ours and Sano’s) show a linear temperature depen-
dence as long as the temperature is higher than 200 K, which

is far lower than the Debye temperature of Be (900 K). More-
over, it seems also unreasonable to define a Bloch-Grüneisen
temperature to account for the linear ρ-T relation with a low
onset temperature since Be has a complicated Fermi surface.
In contrast, as shown in Fig. 5, the experimental result does
not show unambiguously a linear temperature dependence in
the whole temperature range. The possible reasons for the
discrepancy between the theoretical and experimental results
may be the quantum nuclear effect of Be excluded by the
Born-Oppenheimer approximation and other scattering mech-
anisms influencing the experimental result.

In order to understand the low onset temperature for the
linear temperature dependence of the intrinsic resistivity ob-
tained by our numerical calculation, it is necessary to analyze
in depth the ingredients of the intrinsic resistivity. To begin
with, let us to look at contributions of individual k points
to ρx (hereafter, we drop the subscript for simplicity), i.e.,
ρ(k) defined by Eq. (7). The numerical results are displayed
in Fig. 6. At a low temperature, say, 50 K, as shown in
Fig. 6(a), the k points with large contributions to intrinsic
resistivity spread all over the Fermi surface uniformly. That
is to say, on the Fermi surface no k point dominates over
others to contribute to the intrinsic resistivity at such a low

FIG. 3. Fermi surface of Be in (a) the 3D view and (b) the 2D view with kz marked by colors. In (b), kα (α = x, y, z) is in units of the
reciprocal lattice vector b1, and the edge of the BZ is plotted as a green solid line. Two electron pockets are at K and K ′, and another pocket
[blue in (a)] is a hole pocket.
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FIG. 4. (a) Convergence of the resistivity with a varied nk × nk × nk k mesh and a fixed 100 × 100 × 100 q mesh. (b) Convergence of the
resistivity with a fixed 600 × 600 × 600 k mesh and a varied nq × nq × nq q mesh. (c) Resistivity with varied Gaussian spreading σ and an
nk × nk × nk k mesh, with a fixed 50 × 50 × 50 q mesh; the orange dashed line is the resistivity by the tetrahedron method. All results are
calculated at 300 K.

temperature. This is because the temperature is too low to
excite all of the phonons, so the electron states near the
Fermi surface can only be scattered by limited long-wave
acoustic phonons to their adjacent states. When T is raised
to 200 K, as shown in Fig. 6(b), some points on the Fermi
surface become more important, especially those around the
juncture regions between the electronic and hole pockets.
These k points contribute to the intrinsic resistivity by at least
70%. In contrast, the contribution of the k points around the
crossing point between the nodal line and the Fermi surface
is less than 10%. At first, only a small number of k points
around the nodal line fill in the energy window for e-ph
scattering around the Fermi surface because of the nontrivial
energy dispersion of the nodal line. In addition, even for those
nodal-line states around the Fermi surface, their contributions
to the intrinsic resistivity are not expected to be nontrivial
because backscattering between nodal-line states is forbidden
since it requires a flip of the pseudospin. Therefore, our
numerical result with regard to the unimportance of nodal-line
states to the intrinsic resistivity may be viewed as an indirect
proof of the backscattering lacking for nodal-line fermions.

With temperatures higher than 200 K [Figs. 6(c)–6(e)], the
difference between high-contribution points and other points
is much more clear.

The length of the phononic wave vector, i.e., |q|-resolved
resistivity

ρ|q| =
∑
q′ν

ρν
q′δ(|q| − |q′|), (12)

is plotted in Figs. 7(a)–7(e), and we find interesting re-
sults here. At low temperature, say, 50 K, the resistivity is
dominated by long-wave phonons, unsurprisingly. However,
when T goes a little higher to 100 K, another peak with
a much larger length of the wave vector q0 = 1.2π

|a1| emerges
beyond expectation. If temperature increases to 200 K or
higher, even as high as 500 K, the long-wave phonons show
very little impact on resistivity and the peak with |q| = q0

becomes higher, which indicates astonishing dominating roles
of these phonons. Although fewer phonons with |q| = q0 are
excited than the long-wave phonon, these short-wave phonons
still contribute most of the resistivity. We also calculate the

FIG. 5. (a) Resistivity of Be versus temperature T in the x and z directions calculated in this work (named DFT, in black) is compared
with an experimental result by Mitchell (in red). (b) Resistivity of Be of polycrystal (ρpoly = (2ρx + ρz )/3) by us(in black) is compared with
an experimental result by Mitchell [30] (in red) and a semiempirical result by Sano [32] (in blue). ρpoly calculated by us is closer to the
experimental result than Sano’s work in the case of T > 450 K. Both our and Sano’s theoretical results give the linear ρ-T relationship as
T > 200 K.
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FIG. 6. The k-resolved resistivity ρ(k) at different temperatures. The edges of the BZ are plotted by a blue solid line. One of the junctures
of the electron and hole pockets is indicated with a fuchsia circle, and the nodal-line states near Ef are indicated with a green rectangle in (b).
Due to the C6 symmetry, there are five other junctures between the electron and hole pockets.

contribution of each mode to |q|-resolved resistivity

ρν
|q| =

∑
q′

ρν
q′δ(|q| − |q′|) (13)

at 300 K and plot it in Fig. 7(f). Like for ρ|q|, all modes show
the same peak at q0, but the lowest TA mode is the most
important. The relative contributions of the modes from 1 to
6 to the resistivity are calculated as 30.6%, 14.2%, 18.6%,
11.4%, 12.4%, and 12.8%, respectively. These facts suggest
that there must be a peculiar scattering mechanism in Be.

To combine the numerical results shown in Figs. 6 and 7
and to calculate ρν

nm(k, q) as defined by Eq. (6) to identify
the contributions of individual e-ph scattering processes to the
intrinsic resistivity, we find that Be has a special Fermi surface
nesting effect which plays the dominant role in contributing
to the intrinsic resistivity. Such a Fermi surface nesting is
illustrated in Fig. 8. As mentioned above, the Fermi surface
of Be looks like two vertical facets around the juncture
regions between the electronic and hole pockets. As shown
in Fig. 8(a), two such facets near the K point are denoted as
A1 and A2, and another two near the K ′ point labeled B1 and
B2 are parallel to the former two, i.e., A1 ‖ B1 and A2 ‖ B2.
Consequently, as shown in Fig. 8(a), Fermi surface nesting

can be realized between such two pairs of facets by umklapp
e-ph scattering processes, where the equation k′ = k + q + G
is satisfied with a nonzero reciprocal lattice G. Generally
speaking, the umklapp process is considered to be one of the
important scattering mechanisms for the intrinsic resistivity,
as it usually leads to a large-angle scattering, resulting in a
large variation of electronic velocity [33]. In particular, the
umklapp process is the key role in breaking the “Bloch T 5

law” of the intrinsic resistivity of most metallic materials at
low temperature [34–36]. As seen below, the nature of the
large-angle scattering of the umklapp process is one of the
reasons for the Fermi surface nesting being the dominant
role in determining the intrinsic resistivity of Be. The nesting
wave vector q0 connecting the facets has a length of just 1.2π

|a1| .
Due to the C3 rotational symmetry, similar nesting effects
can occur between two other pairs of Fermi surfaces, as
shown in Fig. 8(b). Notice that the length of the nesting wave
vectors which have different directions is the same for these
different Fermi surface nestings, i.e., q0 = 1.2π

|a1| . In addition,
owing to the space inversion symmetry, the electronic states
on facets A1 and B1 (and also A2 and B2) have opposite
velocities. As a result, the Fermi surface nesting always cor-
responds to the large-angle scattering, which implies the large
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FIG. 7. (a)–(e) The |q|-resolved resistivity ρ|q| at different temperatures. The peaks in (b), (c), and (d) are at 0.59|b1|, which coincides with
|q0|. (f) |q| and mode-resolved resistivity at 300 K; all peaks are at |q0| too.

weighting contributions to the intrinsic resistivity. In contrast,
the long-wave acoustic phonon can only scatter an electron
to adjacent states, which is scarcely a large-angle scattering
process. Therefore, it is surprising that as shown in Fig. 7, at
a relatively low temperature, e.g., 200 K, the Fermi surface
nesting effect becomes more important than the long-wave
phonon scattering in contributing to the intrinsic resistivity.

Now we are ready to give a reasonable explanation for the
untimely occurrence of the linear temperature dependence of
the theoretical result of the intrinsic resistivity of Be. Accord-
ing to Eq. (1), the temperature dependence of the intrinsic
resistivity arises from both the transport spectral function
α2

trF (�) and the function F (kBT/�). They arise from the
temperature dependence of the electron and phonon distribu-
tions and are plotted in Figs. 9(a) and 9(b), respectively. The
function F (kBT/�) says that the linear ρ-T relation occurs
with an onset temperature of 0.22TD [see Fig. 9(b)]. TD is a
cutoff frequency (in units of temperature) beyond which the

transport spectrum function vanishes rapidly. TD is determined
by the Debye frequency or the Bloch-Grüneisen temperature
in the case of a small Fermi surface (for the case of Be,
TD ≈ 900 K). However, the ρ-T relation is also influenced by
the e-ph transport spectrum function. We find that owing to the
Fermi surface nesting, α2

trF (�) is independent of temperature
as T > 200 K. As shown in Eq. (5), at the nesting vector q0

the joint density of states δ[Enk − Emk+q0 − ωq0ν] is singular
when the two electronic states are in the nesting facets where
∇[Enk − Emk+q0 ] = 0. This implies that the electronic states
around the nesting facets make the dominant contribution
to the transport spectral function. In addition, the difference
between the two Fermi distribution functions in Eq. (5) gives
a δ-function-like peak around Fermi energy with temperature
broadening. When T > 200, the temperature broadening is
large enough to incorporate all the Fermi surface nesting
processes into the k summation in Eq. (5). Therefore, α2

trF (�)
becomes temperature independent. This implies that as
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FIG. 8. (a) Top view of two pairs of vertical facets crossing at the k and k′ points, both of which are the Fermi surface segments around the
joint regions between electronic and hole pockets. Fermi surface nesting between the two segments can be realized by e-ph scattering via an
umklapp process of k′ = k + q0 + G, where q0 and G are the phonon vector and lattice reciprocal vector, respectively. (b) A simple illustration
of all the possible Fermi surface nestings between the vertical facets near the inequivalent vertices of the Brillouin zone. Note that any facet is
parallel to its nesting partner, e.g., A1 ‖ B1, A2 ‖ B2.

T > 200 K, the temperature dependence of resistivity is
solely determined by the function F (kBT/�), which gives a
linear ρ-T relation with an onset temperature T ≈ 0.22TD ≈
200 K.

In the relevant literature the e-ph transport spectrum func-
tion is often suggested to take the form of a double-δ approxi-
mation. In such an approximation the temperature dependence
of the transport spectrum function is completely omitted. As a
result, the temperature dependence of the resistivity is solely
determined by the function F (kBT/�). Our work indicates
that the temperature dependence of the transport spectrum
function is associated with the details of the Fermi surface,
which influences the ρ-T relation to some extent. A notewor-
thy issue is whether it is suitable to adopt the double-δ ap-
proximation to calculate the e-ph transport spectrum function
for metallic materials, especially for those with a complicated
Fermi surface. Such a topic is left for future study.

IV. CONCLUSIONS

In this work, we have performed a systematic theoretical
study of the intrinsic resistivity of bulk Be, a nodal-line

topological semimetal, by means of the first-principles calcu-
lations along with the Wannier interpolation method. The cal-
culated resistivities ρx and ρz, i.e., the ones perpendicular and
parallel to the c axis, respectively, agree quantitatively with an
experimental result and a previous semiempirical theoretical
result in a large temperature range from 50 to 900 K. We
have found that the intrinsic resistivity shows anisotropy, with
the ratio ρz/ρx being about 1.5, independent of temperature.
This result also agrees with the experimental value (1.4 at
300 K or higher). More interestingly, our calculation has
shown that the intrinsic resistivity of Be begins to depend
on temperature linearly just above a critical temperature, i.e.,
Tc = 200 K, which coincides with the previous theoretical
result. Such a critical temperature (200 K) is much smaller
than the Debye temperature of Be (900 K). In addition, the
complicated Fermi surface prevents us from defining a Bloch-
Grüneisen temperature. Hence, Bloch-Grüneisen theory is
not applicable to explain such a low critical temperature for
the linear temperature dependence of the intrinsic resistivity
of Be.

With such a problem, we studied in depth the profile of the
Fermi surface and the individual contributions of electronic

FIG. 9. (a) The Eliashberg transport coupling function at different temperatures. (b) The plot of the function F (x) (black solid line). When
the argument x < 0.22, the function F (x) begins to deviate from a linear function (red dashed line).
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and phonon states to the intrinsic resistivity. We found that
the electron and hole pockets of the Fermi surface touch each
other near the six vertices of the hexagonal Brillouin zone, i.e.,
the K and K ′ points. Around such touching regions, the Fermi
surface looks like a pair of vertical facets (parallel to the c
axis). And any pair of facets near the K point has a counterpart
parallel to it farthest K ′ point. Hence, the Fermi surface nest-
ing can be realized between them by e-ph scattering processes
with a specific phonon wave vector. With the increase of
temperature, the e-ph scattering processes associated with the
Fermi surface nesting become the dominant feature in limiting
the intrinsic resistivity. Although all phonon modes with a
nesting wave vector take part in the Fermi surface nesting,
the acoustic transverse phonon mode is the most important
one. Our numerical result indicates that as the temperature
gets higher than 200 K, the Eliashberg transport spectral
function is independent of temperature, owing to the Fermi
surface nesting effect. Accordingly, the linear temperature

dependence of the intrinsic resistivity of Be with a very low
critical temperature (200 K) can be well justified. In contrast
to the Fermi surface nesting effect, the contribution of the
topological nontrivial states near the nodal line to the intrinsic
resistivity of Be is less important because only a few such
states appear in the vicinity of the Fermi surface due to the
sizable dispersion of the nodal line.
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