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Composite fermions in Fock space: Operator algebra, recursion relations, and order parameters
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We develop recursion relations, in particle number, for all (unprojected) Jain composite fermion (CF) wave
functions. These recursions generalize a similar recursion originally written down by Read for Laughlin states,
in mixed first-second quantized notation. In contrast, our approach is purely second-quantized, giving rise to
an algebraic, “pure guiding center” definition of CF states that de-emphasizes first quantized many-body wave
functions. Key to the construction is a second-quantized representation of the flux attachment operator that
maps any given fermion state to its CF counterpart. An algebra of generators of edge excitations is identified.
In particular, in those cases where a well-studied parent Hamiltonian exists, its properties can be entirely
understood in the present framework, and the identification of edge state generators can be understood as an
instance of “microscopic bosonization.” The intimate connection of Read’s original recursion with “nonlocal
order parameters” generalizes to the present situation, and we are able to give explicit second-quantized formulas
for nonlocal order parameters associated with CF states.

DOI: 10.1103/PhysRevB.100.045136

I. INTRODUCTION

Several years after Laughlin’s seminal wave function [1]
and subsequent hierarchical constructions [2,3] opened the
door for a theoretical understanding of the fractional quantum
Hall (FQH) effect, Jain discovered what can be understood as
the essential weakly interacting degrees of freedom under a
large variety of circumstances: the concept of a “composite
fermion” [4,5] with no/residual interactions [6–8] offers a
compelling way to predict almost all of the observed plateaus
in the lowest Landau level (LL), and has served as the basis
for important field theoretical developments [9]. At the same
time, reservations regarding the very definition of a compos-
ite fermion have been voiced [10]. At a technical level, it
is usually defined as a prescription for the construction of
variational states via flux attachment, or interchangeably, the
attachment of “zeros” or “vortices.” This somewhat opera-
tional definition is of course in good keeping with tradition
in the theory of the FQH effect, which is to give prescriptions
for the variational construction of first-quantized many-body
wave functions.

In this work, we wish to depart from this tradition. There
is an alternative school of thought in the microscopic study of
FQH systems that runs counter to the idea of describing states
through analytic functions of coordinates. In a strong mag-
netic field, activation of degrees of freedom associated with
dynamical momenta is energetically costly. These degrees
of freedom can therefore be considered either completely or
largely frozen out. The physics thus takes place in a reduced
Hilbert space that is, to large degree or entirely, stripped of dy-
namical momenta. This reduced Hilbert space is too coarse to
allow for the concept of a position with continuous spectrum.
As the orbitals in any given LL may be labeled by an integer,
this Hilbert space is properly thought of as associated to a

one-dimensional lattice, with the retained LLs (if more than
one) interpreted as an internal degree of freedom. The particle
position, once projected onto this Hilbert space, is an operator
associated to the classical guiding center coordinate (at least
in the limit of only the lowest LL kept). Its components have
nontrivial commutation relations. Some approaches to the
physics in the FQH regime eschew the use of analytic wave
functions in favor of working directly with the algebra of these
guiding-center coordinates (e.g., Refs. [11–13]). Here, we
wish to give a characterization of the concept of a composite
fermion using such an approach.

In the past, we have found fruitful a setting in part moti-
vated by certain varieties of multilayer graphene [14–16], and
in part by an interesting class of parent Hamiltonians [17–19].
Here, the n lowest Landau levels are taken to be degenerate,
and a local interaction is imposed to stabilize model FQH
wave functions within the degenerate LL subspace. These
interacting Hamiltonians are extraordinary in that there exists
a scheme to infer the long distance physics of the state that
is both compelling and simple, and leaves very little room for
ambiguity. They unambiguously define a “zero mode space”
of elementary excitations, and the counting of such zero
modes at given angular momentum (relative to the ground
state) tends to exactly match the mode counting in a conformal
edge theory. Whenever this applies, we will say that the
FQH parent Hamiltonian in question satisfies the “zero mode
paradigm.”

There are, of course, many such interesting Hamiltonians
known for the case n = 1 [20–23]. In this case, some of
us have recently shown [24–26] (for the simplest, Laughlin
state parent Hamiltonians) that the rigorous characterization
of the zero mode space may be done in a purely second-
quantized framework that does not reference the analytic
polynomial wave functions of the traditional approach at all.
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These developments were very useful for the study of the case
n > 1, which we argued [27,28] is absolutely necessary to
consider if we wish to establish a zero mode paradigm for a
more representative set of FQH states. Indeed, already for the
phases described by Jain states, which are elemental to both
theory and experiment, we argued that a zero mode paradigm
requires n > 1, with the n = 2 case extensively discussed in
Ref. [27], where a suitable amalgam of first- and second-
quantized methods was adopted. The utility of this mixed
first-/second-quantized formalism was further demonstrated
in Ref. [28], where the notion of an “entangled Pauli princi-
ple” was introduced, and much of the low-energy physics of
the non-Abelian, mixed Landau level Jain 221 state [5,16,29]
was linked to properties of its microscopic two-body parent
Hamiltonian.

Here we want to again adopt the “purist” point of view of
Refs. [24–26] and describe unprojected, i.e., mixed Landau
level composite fermion states in a purely algebraic, second-
quantized framework, using operators that are all manifestly
expressible in terms of electron creation/annihilation opera-
tors referring to some preferred LL basis. In particular, we
wish to give such an algebraic definition to the composite
fermion and the associated “vortex-attachment” concept itself,
within the unprojected, mixed-LL setting described above.
In doing so, we simultaneously make contact with second-
quantized recursion formulas, in particle number N , for Jain-
type composite fermion states. This again naturally extends
work by some of us on the Laughlin state(s) [24–26]. More-
over, such recursion formulas turn out to be intimately tied to
the concept of an order parameter as discussed by Read [30].
This has the added benefit that we are able to give explicit
second-quantized formulas for such order parameters.

The remainder of this paper is organized as follows. In
Sec. II, we develop the backbone of the formalism for the
lowest Landau level only. We develop a second-quantized
algebra closely related to symmetric polynomials, following
earlier work. We use this to define the composite fermion
“flux-attachment” operator in second quantization, Eq. (2.13).
In particular, we develop a recursion relation for this operator
that also clarifies its relation to power-sum, or alternatively,
elementary symmetric polynomials. From this we rederive a
recursion relation [25] for the Laughlin state. In Sec. III, we
generalize all these results to a general number of Landau
levels, resulting, in particular, in recursion relations for the
second-quantized Jain composite fermion states, Eqs. (3.25)–
(3.28). The algebra of symmetric polynomials is replaced
with a larger algebra of so-called “zero-mode generators,”
Eqs. (3.14)–(3.16). In Sec. IV, we specialize to two Lan-
dau levels, simplifying some of the more general results. In
Secs. V and VI, we elaborate on implications of our results in
the presence of special parent Hamiltonians and in particular
for the zero mode structure of such Hamiltonians. For the
special case of filling factor 2/5, some earlier conjectures are
proven. The algebra of zero-mode generators, while arising in
a microscopic setting, is shown to encode the effective edge
theory. In Sec. VII, we use the formalism constructed in pre-
ceding sections to give explicit expressions for n-component
nonlocal order parameters for composite fermion states dis-
cussed by Read [31] in terms of the microscopic electron
operators [Eqs. (7.7) and (7.9)]. We conclude in Sec. VIII.

II. DERIVATION OF RECURSIVE FORMULA
IN THE LOWEST LANDAU LEVEL

The heart of this paper will be a second-quantized formula,
recursive in particle number N , for the composite fermion
vortex attachment operator

ĴN :ψ (z1, z̄1, . . . , zN , z̄N )

→ N
∏

1�i< j�N

(zi − z j )
Mψ (z1, z̄1, . . . , zN , z̄N ), (2.1)

where M is an even number that we will usually leave implicit,
the zi are the particle’s complex coordinates, and we leave
room for a (N-dependent) normalization factor N that we
will not be interested in. For pedagogical reasons, we will
begin our discussion by focusing on the lowest LL (n = 1)
in this section. A second-quantized recursion relation for
the Laughlin state was given earlier in Ref. [25]. The main
difference between the latter and the developments in this
section will be that here we establish the recursion directly
for the Jastrow vortex-attachment operator ĴN itself. This
will descend to the earlier recursion for the Laughlin state.
However, the extension to the operator ĴN will prove essential
to the generalization of the recursion formulas to unprojected
Jain states (the case n > 1).

Considering for now n = 1, recall that the N-particle
Laughlin state may be written as

|ψN 〉 = ĴN |�N 〉, (2.2)

where |�N 〉 = c†
0c†

1c†
2 · · · c†

N−1|0〉 is an integer quantum Hall
state for fermions, and the Bose-Einstein condensate |�N 〉 =
(c†

0)N |0〉 for bosons, we will see that a recursion of ĴN will
descend to a recursion of the Laughlin state. (Here, |0〉 denotes
the vacuum state.) Analogous statements will be true for
n > 1 (Jain states).

The object ĴN in Eq. (2.1), can be interchangeably viewed
as an operator and as a symmetric polynomial in N variables.
As such, it can be written as JN (z1, . . . , zN ) or JN (p1, . . . , pN )
(we will stick to the latter), where the pk = ∑N

i=1 zk
i are

power-sum symmetric polynomials. As a byproduct, we will
clarify the relation between JN and such power-sum symmet-
ric polynomials, again via recursion. At operator level, we
may then also write

ĴN = JN ( p̂1, . . . , p̂N ), (2.3)

where the p̂k are operator representations of the pk that
facilitate the multiplication of first-quantized wave functions
with the symmetric polynomial pk . Such representations have
been discussed at some length in Refs. [24–26]. They depend
slightly on the geometry (and LL basis), where, with the
conventions of the “thick cylinder,” one simply has

p̂k =
∑

m

c†
m+kcm (k � 0). (2.4)

In this section, we will adopt these thick cylinder conventions
for simplicity. Other geometries differ from the above only
by normalization conventions that can be implemented via the
replacements

cm → Nmcm , c†
m → N−1

m c†
m , (2.5)
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TABLE I. Normalization constants Nm for various geometries. κ

is the inverse radius of the cylinder κ = 1/Ry. R is the radius of the
sphere and N� is the number of flux quanta threading the sphere.

disk cylinder sphere

Nm
1√

2mm!
exp

( − 1
2 κ2m2

)
1

(2R)m+1

√(N�

m

)

which can be facilitated via the similarity transformation
D−1( )D, D = exp(

∑
m ln(Nm)c†

mcm). We give the normaliza-
tion constants Nm for various relevant geometries in Table I.
The electron creation/annihilation operators c†

m, cm refer to
lowest LL orbitals with angular momentum m about the quan-
tization axis. The results in this section will be stated in a man-
ner that is valid for both bosonic as well as fermionic com-
mutation relations, except where explicitly stated otherwise.
The sum in Eq. (2.4) is generally unrestricted, but we will use
the convention c†

m = cm = 0 for m < 0 for the cylinder and
disk geometry (thus rendering the cylinder “half-infinite”),
and analogous appropriate restrictions for the sphere. It should
be emphasized that for many of our purposes, the “first-
quantized” interpretation of the operators Eq. (2.4) as power-
sum symmetric polynomials does not matter, but indeed the
definition (2.4) and the resulting algebraic properties are all
that we need. For example, it is trivial to verify that the
operators (2.4) all commute (k � 0 !). However, whenever
definiteness is required, the term “symmetric polynomial”
means a polynomial in the complex coordinates zi only in
disk geometry. On the cylinder, it means a polynomial in the
quantities ξi = exp(κzi), where κ is the inverse radius of the
cylinder. Analogous statements can be made for the spherical
geometry, which we will not use explicitly in this work, but
refer the reader to Ref. [24] for further details in this context.
The reader who wishes to focus on the disk should always
have the substitutions (2.5) in mind, which do not affect any
of the following algebra.

According to a well-known theorem in algebra, any
symmetric polynomial P (z1 . . . zN ) in N variables can be
uniquely expressed through a polynomial in p1, . . . , pN [P =
P(p1, . . . , pN )]. This includes the pk for k > N . Note, how-
ever, that the operators Eq. (2.4) are defined for any parti-
cle number N , and the aforementioned polynomial relations
between the pk∈{1,...,N} and the pk>N carry over to the p̂k

only within subspaces of particle number � N . Similarly, it
is convenient to define p̂0 = ∑

m c†
mcm ≡ N̂ , which, for fixed

particle number N , can be viewed as representing a constant
(degree zero) polynomial.

Alternatively, any symmetric polynomials in N variables
P (z1 . . . zN ) can be generated from elementary symmetric
polynomials ek = ∑

1�i1<...<ik�N zi1 · . . . · zik , 1 � k � N , i.e.,
P = P(e1, . . . , eN ), with P a polynomial. Again, we may
ask what second-quantized operator facilitates multiplication
with ek . These are [25,26]

êk = 1

k!

∑
l1,...,lk

c†
l1+1c†

l2+1 · · · c†
lk+1clk · · · cl2 cl1 ,

with ê0 := 1,

(2.6)

given here again for the simple thick cylinder conventions,
with disk conventions as detailed in Eq. (2.5) and Table I. It is
worth noting that unlike the pk , the ek vanish automatically
for k > N . This is respected by the operators êk , which
automatically vanish on any state with particle number N < k.
The êk and the p̂k are related by the Newton-Girard formulas,

êk = 1

k

k∑
d=1

(−1)d−1 p̂d êk−d . (2.7)

These can be directly derived [26] from the operator defi-
nitions (2.4) and (2.6), without any reference to the “poly-
nomial interpretation” of these operators. Clearly, Eq. (2.7)
is invariant under the similarity transformation leading to
Eq. (2.5), and is thus seen to be geometry independent even
if we did not know about its meaning in terms of polynomials.
Eq. (2.7) may first be used for k � N to express all êk�N

through p̂k�N . Subsequently, letting êk>N ≡ 0, it can be used
to explicitly obtain the identities for the p̂k>N in terms of the
p̂k�N mentioned above, valid within the subspace of particle
number � N . Independent of N , it is also obvious from these
relations that the êk commute with one another (as the p̂k do),
and also commute with all of the p̂k (for the same reason).

We will now derive a second-quantized recursive formula
for ĴN , which turns out to be straightforward to generalize to
higher Landau levels. At the polynomial level, we will also
clarify the relation between the Laughlin-Jastrow factor (2.1)
and power-sum symmetric polynomials. More precisely, we
will give a recursive operator definition of ĴN both through
electron creation/annihilation operators as well as in terms of
polynomial expressions in the pk .

We begin by stating a technical lemma.
Lemma 0. Let P(p0, p1, . . . , pN ) be a polynomial in N + 1

variables. The operator P( p̂0, p̂1, . . . , p̂N ) obtained by substi-
tuting the operators p̂k , Eq. (2.4), for pk satisfies

c†
kP( p̂0, p̂1, . . . , p̂N )

=
∑

l0,l1,...,lN

(−1)l0+l1+···lN

l0!l1! · · · lN !

(
∂ l0

p0
· · · ∂ lN

pN
P
)
( p̂0, p̂1, . . . , p̂N )

× c†
k+l1+2l2+···+NlN

. (2.8)

Note that we will often be interested only in the action of
operators such as P within the subspace of fixed particle
number N . In this context. it may not be warranted to have
explicit dependence on p̂0, which is then just a constant,
and representing the constant part of P through p̂0 may be
considered redundant/unnecessary. It is, however, easy to
specialize the lemma to the case of no dependence on p̂0.

Proof. We start by noting

[c†
k , p̂r] = −c†

r+k, (2.9)

trivially obtained from (2.4), for both fermions and bosons.
We first prove Eq. (2.8) for the case of powers of the form
P = p̂d

r , by induction in d , then prove the case of general
polynomials by induction in N . For this proof, we will not
distinguish between the variables pr and the operators p̂r for
notational convenience. Considering now P = pd

l , we see that
Eq. (2.8) is trivially satisfied for d = 0. Assuming Eq. (2.8) is
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satisfied for pd−1
r , we have

c†
k pd

r = [c†
k , pr]pd−1

r + pr
(
c†

k pd−1
r

)
= −c†

k+r pd−1
r + pr

∑
l

(−1)l

l!

(
∂ l

pr
pd−1

r

)
c†

k+rl

=
∑

l

(−1)l

l!

(
l∂ l−1

pr
pd−1

r + pr∂
l
pr

pd−1
r

)
c†

k+rl

=
∑

l

(−1)l

l!

(
∂ l

pr
pd

r

)
c†

k+rl , (2.10)

where we used induction in the third and fourth line,
and ∂ l

xxd = l∂ l−1
x xd−1 + x∂ l

xxd−1 in the last. Having proven
Eq. (2.8) for simple powers of the pr , we now prove it for
general polynomials by simple induction in N . By linearity,
it is sufficient to consider monomials. Assume hence that
Eq. (2.8) is true for P = pmN−1

N−1 · · · pm0
0 . We have

c†
k pmN

N pmN−1
N−1 · · · pm0

0

=
∑

lN

(−1)lN

lN !

(
∂ lN

pN
pmN

N

)
c†

k+NlN
pmN−1

N−1 · · · pm0
0

=
∑

lN ,lN−1,...,l0

(−1)l0+l1+···lN

l0!l1! · · · lN !

× (
∂ l0

p0
· · · ∂ lN

pN
pmN

N pmN−1
N−1 · · · pm0

0

)
c†

k+l1+2l2+···+NlN
. (2.11)

This concludes our induction proof. �
We now define some useful operators:

Ŝ� = (−1)�
∑

n1+n2+···+nM=�

ên1 ên2 · · · ênM for � � 0,

Ŝ� = 0 for � < 0. (2.12)

Note that, again, the Ŝ� also depend on M, the “flux attach-
ment” parameter defined in Eq. (2.1), which we usually leave
implicit. With the help of these, we now define the following
operator recursion:

Ĵ0 = 1,

ĴN = 1

N

∑
r�0

∑
m�0

c†
m+r ŜM(N−1)−r ĴN−1cm,

(2.13)

From this definition, it is not immediately obvious that the
operator ĴN is of the form Eq. (2.3), i.e., is a polynomial
in the p̂k�N . Our first goal will be to prove precisely that.
This then has two important consequences: 1. Any operator
that commutes with all the p̂k also commutes with ĴN and
moreover, 2. the operator ĴN acts on N-body wave functions
via multiplication with a certain symmetric polynomial, since
all the p̂k have this property. We will then establish that this
polynomial is, up to a normalization, the Laughlin-Jastrow
flux-attachment factor, Eq. (2.1).

To see this, we assume ĴN−1 = JN−1( p̂1, . . . , p̂N−1), JN−1

a polynomial. This induction assumption is obviously true for

Ĵ0. We may then use Eq. (2.8) to get the following:

ĴN = 1

N

∑
r,m

∑
l1,...,lN−1

(−1)l1+···lN−1

l1! · · · lN−1!

× (
∂ l1

p1
· · · ∂ lN−1

pN−1
SM(N−1)−rJN−1

)∣∣
p1→ p̂1,...

× c†
m+r+l1+2l2+···+(N−1)lN−1

cm

= 1

N

∑
r

∑
l1,...,lN−1

(−1)l1+···lN−1

l1! · · · lN−1!

× (
∂ l1

p1
· · · ∂ lN−1

pN−1
SM(N−1)−rJN−1

)∣∣
p1→ p̂1,...

× p̂r+l1+2l2+···+(N−1)lN−1 . (2.14)

In writing the above, S� is a polynomial such that Ŝ� =
S�( p̂1, . . . , p̂N−1) when acting on states of N − 1 particles
or less. We can always achieve this, as explained earlier, by
expressing the êk�N−1 through the p̂k�N−1 in Eq. (2.12), and
letting the êk�N equal to zero. [Note that if ĴN acts on N-
particle states, then ĴN−1 in Eq. (2.13) acts on N − 1 particle
states.] We may similarly express all the terminal p̂ operators
in the last line of Eq. (2.14) through the p̂k�N . With these re-
placements, the difference between Eq. (2.13) and Eq. (2.14)
strictly speaking vanishes only on states with particle number
� N . However, since we will exclusively be interested in the
action of ĴN on states with N particles, this difference can
be ignored in the following. Anticipating that the last two
equations really define the composite fermion operator (2.1),
we see that Eq. (2.14), viewed as an equation for symmetric
polynomials (i.e., omitting hats) gives a recursive definition of
the (even M) Laughlin-Jastrow factor in terms of power-sum
symmetric polynomials. In this polynomial sense, Eq. (2.14)
must of course be correct independent of the number of LLs
kept, unlike the operator definitions given in this section,
which so far stand only for the lowest LL. Working backwards
from Eq. (2.14), we will be able to generalize the operator
recursion (2.13) to higher Landau levels.

Before we do this, we give applications of Eq. (2.13) within
the lowest LL, and in doing so, establish correspondence with
Eq. (2.1). Consider now fermions and the N-particle state

|ψN 〉 = ĴN c†
0c†

1 · · · c†
N−1|0〉. (2.15)

We will use Eq. (2.1) to re-establish a recursive relation for
this state, from which, via Ref. [25] it is then known that
Eq. (2.15) defines the densest zero mode of a pseudopotential
Hamiltonian (for M = 2, the V1 Haldane pseudopotential),
thus identifying it uniquely as the 1/(M + 1) Laughlin state.

From the definition of ĴN in Eq. (2.13), we can prove the
following identity:

cr ĴN =
∑

m

ŜM(N−1)−r+mĴN−1cm. (2.16)

The proof of Eq. (2.16) is given in Appendix A. Using
Eq. (2.16), we obtain

cr |ψN 〉 =
∑

m

ŜM(N−1)−r+mĴN−1(−1)m

× c†
0 · · · c†

m−1c†
m+1 · · · c†

N−1|0〉. (2.17)
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We observe that c†
0 · · · c†

m−1c†
m+1 · · · c†

N−1|0〉 is just

êN−1−mc†
0c†

1 · · · c†
N−2|0〉 (2.18)

using the definition of êk in Eq. (2.6). Thus we have

cr |ψN 〉 =
∑

m

ŜM(N−1)−r+m(−1)mêN−1−m|ψN−1〉 (2.19)

in which we have used that ĴN−1, being a polynomial in the
p̂k , commutes with êN−1−m. The latter can be written more
suggestively after defining

Ŝ	

� = (−1)�
∑

n1+n2+···+nM+1=�

ên1 ên2 · · · ênM+1 for � � 0,

Ŝ	

� = 0 for � < 0, (2.20)

i.e., Ŝ	

� is defined just as Ŝ� but with the odd number M + 1
replacing the even number M. With this we can rewrite
Eq. (2.19) as

cr |ψN 〉 = (−1)N−1 Ŝ	
(M+1)(N−1)−r |ψN−1〉, (2.21)

which, up to a constant (−1)N−1 amounting to a phase conven-
tion, is the same as that obtained in Ref. [25] for the Laughlin
state with filling fraction 1/(M + 1). This formula and its
generalizations will be crucial in much of the following. It
should be read as follows: The operator cr creates a (charge
1) hole of well-defined angular momentum. Due to bulk-edge
correspondence, such a hole can always be interpreted as an
edge excitation of the N − 1 particle incompressible state,
though possibly one of high energy, living deeply in the bulk
of the system. As we have explained elsewhere [25,26], the
operator Ŝ	

� and the êk it is composed of should be thought
of as generators of such edge excitations when acting on the
incompressible state. To make these notions more precise, one
may consider a pseudopotential Hamiltonian of the form [2]

H = V1 + V3 + · · · + VM−1, (2.22)

where the positive operator Vk is (proportional to) the kth
Haldane pseudopotential. It is well-known that the 1/(M + 1)
Laughlin state is the densest zero energy mode (zero mode)
of this Hamiltonian, and one may define quasihole/edge
excitations as the set of all other zero modes of the same
Hamiltonian. It is easy to see [25] that the left-hand side
of Eq. (2.21) is a zero mode if |ψN 〉 is, and the êk can be
shown [26] to generate a complete set of zero modes of
the same particle number when acting on the incompressible
1/(M + 1) Laughlin state. Equation (2.21) is the precise way
to express the charge-1 quasihole cr |ψN 〉 in this manner, i.e.,
as a superposition of edge excitations created in the state
|ψN−1〉.

At this point, a recursion for the Laughlin state can be ob-
tained following the logic of Ref. [25]. Applying the operator
c†

r to Eq. (2.21) and summing over r produces a factor of
the particle number N on the left-hand side. Dividing by this
factor gives

|ψN 〉 = 1

N

∑
r

(−1)N−1 c†
r Ŝ	

(M+1)(N−1)−r |ψN−1〉. (2.23)

This recursion, with |ψ1〉 = c†
0|0〉, has been shown in Ref. [25]

to give the densest (lowest angular momentum) zero mode of
the Hamiltonian (2.22), thus uniquely identifying the |ψN 〉,
Eq. (2.15), as the 1/(M + 1) Laughlin state (defined up to an
overall constant). As we have shown above, the effect of the
operator ĴN on any N-particle state is the multiplication of
the state’s wave function with a fixed symmetric polynomial
JN (p1, . . . , pN ). We may find this polynomial by looking at
Eq. (2.15), which we now know to be the Laughlin state. From
this equation, we thus have

N
∏
i< j

(zi − z j )
M+1 = JN (p1, . . . , pN )

∏
i< j

(zi − z j ), (2.24)

where the left-hand side is the 1/(M + 1) Laughlin state, on
the right-hand side we used that c†

0c†
1 · · · c†

N−1|0〉 in Eq. (2.15)
is just a Vandermonde determinant, and we dropped Gaus-
sian factors on both sides. This determines the polynomial
JN (p1, . . . , pN ) to be the Laughlin-Jastrow factor in Eq. (2.1).
The same derivation is possible for bosons with very few
changes.

We remark that a variant of the recursion (2.23) that uses
mixed first/second-quantized notation was first given by Read
[30] (see also Sec. VII below). The operator-level recursion
(2.13) for the composite fermion flux attachment is more
general, however, as it implies the Laughlin state recursion,
but cannot be derived from the latter. Moreover, it has more
general uses which we will turn to in the following. For one, it
immediately gives rise to similar recursions for (unprojected)
Jain-type composite fermion states. Moreover, there is a gen-
eral connection between the recursion for the Laughlin states,
and an “order parameter” construction for these states, as dis-
cussed by Read [30]. Via Eq. (2.13), systematic generalization
of this connection to Jain states will be possible.

III. DERIVATION OF RECURSIVE FORMULAS
FOR MULTIPLE LANDAU LEVEL COMPOSITE

FERMION STATES

A. Operator recursion

In the preceding section we have constructed a recur-
sion relation for the lowest Landau level composite fermion
(Laughlin) state |ψN 〉. The central ingredient was the re-
cursion for the Jastrow (CF flux attachment) operator ĴN ,
Eq. (2.13). The key to the generalization of this recursion
to higher-LL CF states is the fact that this recursion is the
operator manifestation of a polynomial recursion, which we
have formally expressed as (2.14). This last equation must
remain valid, since in any number of LLs the (M-dependent)
Jastrow factor is always represented by the same symmetric
polynomial in the holomorphic coordinates. As we empha-
sized earlier, the second-quantized operators associated to the
multiplication with such polynomials somewhat depend on
the geometry in question, at least when the standard orbital
basis for that geometry is used. At the same time, they depend
on the number of Landau levels kept. The goal is now to
work out the second-quantized operator equations of the last
section for the case of multiple LLs, especially the recursion
Eq. (2.13). Our strategy will be to work backwards from
Eq. (2.14), which is essentially a statement about polynomials
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and which therefore holds independent of the number of
LLs. The glue between these two equations was the general
Eq. (2.8), which flows from the elementary Eq. (2.9). We thus
begin by re-establishing relations concerning the operators
associated with power-sum and elementary symmetric poly-
nomials. We will consider n = 2 first, from which the general
structure will become obvious. In Sec. II, we used thick
cylinder conventions for pedagogical reasons. In the presence
of multiple Landau levels, the advantage of this geometry
is less immediate, and hence we will start by working in
disk geometry. The following treatment will specialize to a
rederivation of most of the results of Sec. II for disk geometry
when all the higher LL creation/annihilation operators are set
equal to zero.

We start by giving the equation for the operator p̂k ,
which again describes the multiplication with the polynomial∑N

i=1 zk
i . As before, these are single-particle operators, and

can be straightforwardly worked out in second quantization
from their first-quantized definition. We quote them from
Ref. [27]:

p̂k =
+∞∑
r=0

√
(r + k)!

r!
c†

0,r+kc0,r +
+∞∑

r=−1

k

√
(r + k)!

(r + 1)!
c†

0,r+kc1,r

+
+∞∑

r=−1

√
(r + k + 1)!

(r + 1)!
c†

1,r+kc1,r . (3.1)

Here, the operator cm,r now refers to the orbital with angular
momentum r in the mth LL, with r � −m. An inconvenience
is the fact that the commutator [c†

m,r, p̂k] is not diagonal in
m, i.e., in general produces terms referring to Landau levels
other than m. This precludes straightforward generalization
of Eq. (2.8) (lemma 0), which rests on the simple form of
Eq. (2.9). However, one can rewrite the Eq. (3.1) as

p̂k =
+∞∑
r=0

√
(r + k)!

r!
c†

0,r+k (c0,r − √
r + 1c1,r )

+
+∞∑

r=−1

√
(r + k + 1)!

(r + 1)!
(c†

1,r+k + √
r + k + 1c†

0,r+k )c1,r .

(3.2)

It turns out that the operators made explicit in this factor-
ization have favorable commutation relations. We introduce
“pseudofermions”

c̃∗
a,r =

∑
b

A(r)abc†
b,r ; c̃a,r =

∑
b

A(r)−1
ba cb,r, (3.3)

where

A(r) =
( √

r! 0
(1 + r)

√
r!

√
(1 + r)!

)
, (3.4)

and note that c̃∗
i,r 	= c̃†

i,r , but we still have anticommutation
relations

{c̃i,r, c̃∗
j,r′ } = δi, jδr,r′ ,

{c̃i,r, c̃ j,r′ } = {c̃∗
i,r, c̃∗

j,r′ } = 0. (3.5)

The restriction r � −i of the ci,r and c†
i,r operators carries

over to the c̃i,r and c̃∗
i,r operators, As usual, we will use the

convention c̃i,r = c̃∗
i,r = 0 whenever r lies outside this range.

The significance of the operators c̃∗
i,r is that they create the

nonorthogonal, non-normalized single-particle states zi+r z̄i

(Gaussians are omitted). This gives

p̂k =
∑

a=0,1

+∞∑
r=−a

c̃∗
a,r+k c̃a,r (3.6)

such that

[c̃∗
a,r, p̂k] = −c̃∗

a,r+k, (3.7)

which is analogous to Eq. (2.9), with the “LL level like”
basis label a a pure spectator. We still have p̂0 = N̂ . Observe
that if we specialize to a single LL, the transformation (3.3)
facilitates just the similarity transformation discussed in the
preceding section. The only difference is that here we do not
view this as an “active” transformation between different ge-
ometries, but rather as a “passive” change of basis, involving
a nonorthonormal basis (though still orthogonal for n = 1).

With this new expression for the p̂k , it is straightforward to
adapt the operators for the elementary symmetric polynomi-
als:

êk = 1

k!

∑
a1,...,ak=0,1

∑
l1,...,lk

c̃∗
a1,l1+1c̃∗

a2,l2+1 · · · c̃∗
ak ,lk+1

× c̃ak ,lk · · · c̃a2,l2 c̃a1,l1

for k > 0,

ê0 = 1, êk = 0 for k < 0. (3.8)

Indeed, the êk and p̂k still satisfy the Newton-Girard formula
(2.7). Given that the p̂k represent power-sum symmetric poly-
nomials, this again uniquely identifies the êk in the above
equation as representing elementary symmetric polynomials.
Owing to Eqs. (3.6) and (3.7), the proof that Newton-Girard
equations are satisfied is a straightforward generalization of
that given in Ref. [26] for the LLL. Details are given in
Appendix B.

In a similar vein, one then easily generalizes Eq. (2.8) to
the present situation, using the same procedure as in Sec. II:

c̃∗
a,kP( p̂0, p̂1, . . . , p̂N )

=
∑

l0,l1,...,lN

(−1)l0+l1+···lN

l0!l1! · · · lN !

(
∂ l0

p0
· · · ∂ lN

pN
P
)
( p̂0, p̂1, . . . , p̂N )

× c̃∗
a,k+l1+2l2+···+NlN . (3.9)

With this it is a simple task to carry out the program described
at the beginning of this section: We take the last line of
Eq. (2.14) as the recursive definition of the ĴN operator, with
Ĵ0 = 1. From this we easily obtain, using the generalized
Eq. (2.8), a generalized version of the operator recursion
(2.13):

Ĵ0 =1,

ĴN = 1

N

∑
a

∑
r�0

∑
m�−a

c̃∗
a,m+r ŜM(N−1)−r ĴN−1c̃a,m, (3.10)
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Lastly, just as in the preceding section, and as explained
in Appendix A, we obtain from this the generalization of
Eq. (2.16):

c̃a,r ĴN =
∑

m�−a

ŜM(N−1)−r+mĴN−1c̃a,m. (3.11)

With all the key ingredients in hand, let us now construct
the densest composite fermion states occupying two Landau
levels, also known as � levels (�Ls) in this context [32].
These are just the Jain states at filling factor 2/(2M + 1). We
define

|ψ2N 〉 ∼ Ĵ2N c†
1,−1c†

1,0 . . . c†
1,N−2c†

0,0c†
0,1 . . . c†

0,N−1|0〉,
|ψ2N+1〉 ∼ Ĵ2N+1c†

1,−1c†
1,0 . . . c†

1,N−2c†
0,0c†

0,1 . . . c†
0,N−1c†

0,N |0〉
(3.12)

for particle number 2N and 2N + 1, respectively. It is easy to
see that, up to normalization factors, these are exactly equal to

|ψ2N 〉 = Ĵ2N c̃∗
1,−1c̃∗

1,0 . . . c̃∗
1,N−2c̃∗

0,0c̃∗
0,1 . . . c̃∗

0,N−1|0〉,
|ψ2N+1〉 = Ĵ2N+1c̃∗

1,−1c̃∗
1,0 . . . c̃∗

1,N−2c̃∗
0,0c̃∗

0,1 . . . c̃∗
0,N−1c̃∗

0,N |0〉,
(3.13)

which we use to fix the normalization. We note that for M = 2
this defines precisely the Jain 2/5 state, for which again a
local pseudopotential Hamiltonian can be given, such that
the states (3.13) are densest zero modes [17,18,27]. It can
be shown that the set of all (N-particle) zero modes of this
Hamiltonian is precisely the range of the operator ĴN , that is,
the set generated from states obtained when ĴN acts on general
N-particle Slater determinants [27], as opposed to only the
densest Slater determinants used in the definitions (3.13). For
the cases M > 2 and/or n > 2, their exist, to our knowledge,
no local parent Hamiltonians with similar properties in the
literature, and we leave their discussion as an interesting
problem for the future. For these cases, we will simply
define the N-particle zero mode space as the range of the
operator ĴN .

B. Zero mode generators

Before we further apply the results of this section, we need
to introduce a larger set of operators that we will think of
as “zero mode generators.” Also, we use this opportunity to
generalize the setting of the preceding subsection from 2 to a
general number of n LLs. This is straightforward in principle.
Essentially, all it takes is to generalize Eq. (3.3) by means of
an appropriate n × n matrix A(r). The explicit form of A(r) is
given in Appendix C.

In the following, we will be interested in the generalization
of the recursive formulas for the (n = 1) Laughlin state to the
n-�L composite fermion states, in particular, (3.13) for n = 2.
In addition to the operator recursion (3.10), this requires an
understanding of zero mode generators, i.e., operators like the
êk and p̂k that generate more (possibly, all) zero modes when
acting on the “incompressible” (densest) zero mode. To this
end, in the n LL system, one can construct additional operators

which will satisfy a modified Newton-Girard formula, namely,

p̂a,b
k =

+∞∑
r=−b

c̃∗
a,r+k c̃b,r, (k � b − a) (3.14)

and, for a � b − 1, k � 0,

êa,b
k = 1

k
p̂a,b

1 êa,b
k−1 + δa,b

k

k∑
d=2

(−1)d−1 p̂a,b
d êa,b

k−d , (3.15)

where êa,b
k can be written explicitly,

êa,b
k = 1

k!

+∞∑
l1,...,lk=−b

c̃∗
a,l1+1c̃∗

a,l2+1 · · · c̃∗
a,lk+1

× c̃b,lk · · · c̃b,l2 c̃b,l1 , (k > 0),

êa,b
0 =1. (3.16)

The proof of these (modified) Newton-Girard formulas is
given in Appendix B. It is through the introduction of these
new operators that our formalism offers true advantage over
a first-quantized language of polynomials. Unlike the p̂k and
êk , Eqs. (3.14) and (3.16) have no particularly natural presen-
tation in polynomial language (see below), but still have the
favorable algebraic properties discussed here.

The significance of these operators is the following. We
identify the operators p̂a,a

d as the operators that send first-
quantized expressions of the form z̄aza+� to z̄aza+�+d . It is then
clear that the operator

p̂d =
∑
a,b

δa,b p̂a,b
d . (3.17)

multiplies any single-particle wave function by zd , and, in
the general many-particle context, can be identified as the
operator associated with the power-sum polynomial pd as
before. In order to further motivate the physical meaning of
p̂a,b

d , let us look into their commutation relations,[
p̂a,b

k , p̂b′,a′
k′

] = δb,b′ p̂a,a′
k+k′ − δa,a′ p̂b′,b

k+k′ . (3.18)

This immediately implies[
p̂a,b

k , p̂k′
] = 0. (3.19)

For the composite fermion operator ĴN , on the other hand,
we will always use the recursion Eq. (2.14) as the defining
property. Therefore, as before, the ĴN are always expressible
through the p̂k . The last equation then gives[

ĴN , p̂a,b
k

] = [
ĴN , êa,b

k

] = 0, (3.20)

where, for the êa,b
k , we have used the fact that by the relations

(3.15), we can express all of the latter through the p̂a,b
k .

As explained/defined above, the space of all zero modes is
precisely the range of the operator ĴN . Equations (3.20) then
say that the zero mode space is invariant under the action of
the p̂a,b

k or êa,b
k . That is, when any of these operators acts on

a zero mode, a new zero mode results. It is for this reason
that we think of these operators as zero mode generators.
It is further true that we can generate any N-particle zero
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FIG. 1. Connecting bare fermion Slater determinants |�N−1〉 (integer quantum Hall) and |�m,k
N 〉 (one hole) via zero mode generators.

Shown are visualizations of the processes used in Eqs. (3.25)–(3.27). All three relevant cases (see main text) are illustrated for n = 3 Landau
levels.

modes by repeatedly acting with these generators on certain
incompressible zero modes ψN , such as the Laughlin state or
a Jain state. In this sense, it turns out that we can in particular
think of the p̂a,b

k as a complete set of zero mode generators.
We close this section by remarking that with the gener-

alized A(r) matrix of Appendix C, Eqs. (3.10) and (3.11)
generalize without change to n > 2 LLs.

C. Recursion formulas for general composite fermion states

Let us consider the second-quantized composite fermion
wave function at the filling fraction ν = n

Mn+1 for N =
nLmax + q particles with 1 � q � n,

|ψN 〉 = ĴN |�N 〉, (3.21)

Explicitly,

|�N 〉 = c̃∗
n−1,−(n−1)c̃

∗
n−1,−(n−2) · · · c̃∗

n−1,Lmax−nc̃∗
n−2,−(n−2)c̃

∗
n−2,−(n−3) · · · c̃∗

n−2,Lmax−n+1 · · · c̃∗
q,−qc̃∗

q,−q+1 · · · c̃∗
q,Lmax−q−1

× c̃∗
q−1,−(q−1) · · · c̃∗

q−1,Lmax−q+1 · · · c̃∗
0,0 · · · c̃∗

0,Lmax
|0〉. (3.22)

By abuse of terminology, we will now refer to the index r in
c̃∗

r, j as a �-level index, and to the orbitals created by c̃∗
r, j with

fixed r as a � level. The wave function |�N 〉 corresponds to
the state in which 0, 1...q − 1th �-levels each have Lmax + 1
particles, and q, q + 1, . . . , n − 1th �-levels each have Lmax

particles. Let us introduce a state |�m,k
N 〉, where we have

created a hole in the kth �L at angular momentum m with
k = 0, 1, . . . , n − 1. With Eq. (3.11), we have

c̃k,r |ψN 〉 =
∑

m�−k

ŜM(N−1)−r+mĴN−1c̃k,m|�N 〉

=
∑

m�−k

ŜM(N−1)−r+mĴN−1

∣∣�m,k
N

〉
. (3.23)

Now we need to relate |�m,k
N 〉 to some zero mode generator

acting on |�N−1〉, where the only difference between |�N−1〉
and |�N 〉 is that the orbital at Lmax − q + 1 in (q − 1)th �L
in |�N−1〉 is vacant. What’s required is that the zero mode
generator moves the particle from the orbital corresponding to

c̃∗
k,m to that corresponding to c̃∗

q−1,Lmax−q+1 in |�N−1〉. For the
sake of conciseness, we will simply say moving the particle
from c̃∗

k,m to c̃∗
q−1,Lmax−q+1 and similarly for other processes

involving moves of particles.
As seen in Fig. 1, we need to consider three cases, (i) k >

q − 1, (ii) k = q − 1, and (iii) k < q − 1. In case (i), k > q −
1, the first step is to act with p̂q−1,k

k−q+2 on |�N−1〉 so that one
particle is moved from c̃∗

k,Lmax−k−1 to c̃∗
q−1,Lmax−q+1. The second

step is to further act êk,k
Lmax−k−m−1 on the resultant state to move

all the particles in kth �L beginning with c̃∗
k,m and ending

with c̃∗
k,Lmax−k−2 to the right such that their angular momenta

all increase by 1. This is reflected by the following identity:

êk,k
Lmax−k−m−1 p̂q−1,k

k−q+2|�N−1〉 = (−1) f (m)
∣∣�m,k

N

〉
, (3.24)

where f (m) = (n − q)Lmax + m + k.
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This leads to

c̃k,r |ψN 〉 =∑
m�−k

(−1) f (m)ŜM(N−1)+m−r êk,k
Lmax−k−m−1 p̂q−1,k

k−q+2|ψN−1〉,

(3.25)

where we have used the commutation relations (3.19) and
(3.20).

Case (ii), k = q − 1, is very similar, only that no action
with a p̂-type operator is necessary. We obtain

c̃k,r |ψN 〉 =
∑

m�−k

(−1) f (m)ŜM(N−1)+m−r êk,k
Lmax−k−m|ψN−1〉.

(3.26)

In case (ii), k < q − 1, the first step is to act p̂ q−1,k
k−q+1

on |�N−1〉 so that one particle is moved from c̃∗
k,Lmax−k to

c̃∗
q−1,Lmax−q+1. Then we act êk,k

Lmax−k−m on the resultant state to
move all the particles in the kth �L beginning with c̃∗

k,m and
ending with c̃∗

k,Lmax−k−1 to the right such that their angular
momenta all increase by 1. The overall phase picked up in
the process differs by Lmax + 1 from the formula given for the
other two cases. Thus we have

c̃k,r |ψN 〉 =∑
m�−k

(−1) f (m)+Lmax+1ŜM(N−1)+m−r êk,k
Lmax−k−m p̂q−1,k

k−q+1|ψN−1〉.

(3.27)

It is now clear that we can repeat the logic that led to the
recursion (2.23) for the higher �L composite fermion states:
To this end, we simply state

|ψN 〉 = 1

N

∑
k,r

c†
k,rck,r |ψN 〉 = 1

N

∑
k,r

c̃∗
k,r c̃k,r |ψN 〉. (3.28)

In here, we simply replace c̃k,r |ψN 〉 with Eqs. (3.25)–(3.27).
This gives the desired recursion of |ψN 〉 in terms of |ψN−1〉.
In the following section, we apply these results to the special
case n = 2 again.

IV. RECURSION FORMULAS FOR n = 2 � LEVEL
COMPOSITE FERMION STATES

In the last section, we have constructed recursive formulas
for any second-quantized composite fermion wave functions.
In this section, we will further simplify these formulas for
composite fermion states involving two �Ls. In Sec. V, we
will prove, for the special case M = 2 describing the Jain
2/5 state, that this state is indeed the densest zero mode of
its parent Hamiltonian of the general form (2.22). Our proof
differs from a previous one [27] in that it makes no use
whatsoever of the polynomial structure of the state’s first-
quantized wave function, but rests entirely on the operator
algebra developed here. There, we will also comment further

on the connection between the quasihole operators given in
Ref. [27] and those in this paper. In a similar vein, we will
show how to extract the filling factor of the CF states using
the present, “polynomial free” apparatus. In this section, we
will find it convenient to denote the particle number as 2N
and 2N + 1, respectively, for the even and odd case, as in
Eq. (3.13) above.

We now use Eq. (3.26), specializing to n = 2, k = 1, q = 1
and Lmax = N for 2N + 1 particles. This gives

c̃1,r |ψ2N+1〉 =
N−2∑

m=−1

(−1)N+m+1Ŝ2MN+m−r ê1,1
N−2−m p̂0,1

2 |ψ2N 〉.
(4.1)

The above can be put into a concise form,

c1,r |ψ2N+1〉 = −
√

(r + 1)!Ŝ	1,1
(2M+1)N−2−r p̂0,1

2 |ψ2N 〉, (4.2)

where

Ŝ	a,b
� =

∑
m

(−1)mŜ�−mêa,b
m , (4.3)

a definition that we may adopt for any n. In the last equation,
we have also replaced c̃1,r with the operator c1,r , referring to
the original (orthonormal) basis.

Similarly using Eq. (3.27), we obtain

c̃0,r |ψ2N+1〉 = Ŝ	0,0
(2M+1)N−r |ψ2N 〉. (4.4)

This leads to

c0,r |ψ2N+1〉 =
−

√
r!

(
(r + 1)Ŝ	1,1

(2M+1)N−2−r p̂0,1
2 − Ŝ	0,0

(2M+1)N−r

)
|ψ2N 〉,

(4.5)

Note that

c1,r |ψ2N+1〉 = 0 for r > (2M + 1)N − 2,

c0,r |ψ2N+1〉 = 0 for r > (2M + 1)N, (4.6)

as, by definition, S	a,b
� vanishes for � < 0. This establishes that

the highest occupied orbital in |ψ2N+1〉 has angular momen-
tum �max � (2M + 1)N . Moreover, since S	a,b

0 = 1, Eq. (4.5)
for r = (2M + 1)N gives that the orbital created by c†

0,(2M+1)N
is certainly occupied in the state |ψ2N+1〉, as long as |ψ2N 〉
is not zero. In particular, the state |ψ2N+1〉 does not vanish
as long as |ψ2N 〉 does not. Assuming this for the moment,
we find �max = (2M + 1)N . Defining the filling factor as the
particle number 2N + 1 divided by �max, we see that the filling
factor approaches 2/(2M + 1) in the thermodynamic limit, as
expected. Similar arguments carry over to larger n.

In the same way of obtaining Eqs. (4.2) and (4.5), we
obtain

c1,r |ψ2N 〉 = (−1)N+1
√

(r + 1)!Ŝ	1,1
(2M+1)N−M−2−r |ψ2N−1〉

(4.7)
and

c0,r |ψ2N 〉 = −
√

r!
(

(−1)N (r + 1)Ŝ	1,1
(2M+1)N−M−2−r + Ŝ	0,0

(2M+1)N−M−1−r p̂1,0
−1

)
|ψ2N−1〉. (4.8)
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Again, we can immediately see that c1,r |ψ2N 〉 vanishes for r > (2M + 1)N − M − 2 and c0,r |ψ2N 〉 vanishes for r > (2M +
1)N − M − 1. On the other hand, c0,(2M+1)N−M−1|ψ2N 〉 is proportional to p̂1,0

−1|ψ2N−1〉. In particular, |ψ2N 〉 is nonzero if
p̂1,0

−1|ψ2N−1〉 is, which follows immediately by acting on the latter with c̃1,(2M+1)(N−1)−1, commuting past p̂1,0
−1, and using earlier

observations for the state of odd particle number. Together with the observation below Eq. (4.6), this establishes inductively that
the states |ψ2N 〉, |ψ2N+1〉 do not vanish (even if we did not know the meaning of the operator ĴN in first quantization), and that
�max = (2M + 1)N for |ψ2N+1〉 and �max = (2M + 1)N − M − 1 for |ψ2N 〉.

Now we use Eqs. (4.2), (4.5), and the identity (3.28) to get a recursive formula

|ψ2N+1〉 = −1

2N + 1

(2M+1)N−2∑
r=−1

√
(r + 1)! c†

1,r Ŝ	1,1
(2M+1)N−2−r p̂0,1

2 |ψ2N 〉

− 1

2N + 1

(2M+1)N−2∑
r=0

(r + 1)
√

r! c†
0,r Ŝ	1,1

(2M+1)N−2−r p̂0,1
2 |ψ2N 〉

+ 1

2N + 1

(2M+1)N∑
r=0

√
r! c†

0,r Ŝ	0,0
(2M+1)N−r |ψ2N 〉. (4.9)

Likewise, we can also obtain |ψ2N 〉 from |ψ2N−1〉,

|ψ2N 〉 = (−1)N+1

2N

(2M+1)N−M−2∑
r=−1

√
(r + 1)! c†

1,r Ŝ	1,1
(2M+1)N−M−2−r |ψ2N−1〉

+ (−1)N+1

2N

(2M+1)N−M−2∑
r=0

(r + 1)
√

r! c†
0,r Ŝ	1,1

(2M+1)N−M−2−r |ψ2N−1〉

− 1

2N

(2M+1)N−M−1∑
r=0

√
r! c†

0,r Ŝ	0,0
(2M+1)N−M−1−r p̂1,0

−1|ψ2N−1〉. (4.10)

The above recursions, together with the expressions of local
charge-1 holes through zero mode generators acting on an
incompressible state, as well as their n > 2 generalizations of
the preceding section, are the central results of this paper.

V. PROOF OF ZERO MODE PROPERTY

The construction of parent Hamiltonians for FQH states
has traditionally emphasized analytic clustering properties of
special wave functions. Obstructions for successfully doing
this, so far, for most composite fermion states have been
discussed by some of us [27]. In short, we argued that a suc-
cessful parent Hamiltonian satisfying the zero mode paradigm
discussed in the introduction is possible in principle only for
unprojected CF states, such as discussed in this paper. (There
may, of course, be parent Hamiltonians outside this paradigm
[33].) On the other hand, Landau level mixing makes it harder
to harvest nice analytic clustering properties for the construc-
tion of a parent Hamiltonian. A notable exception is the case
n = M = 2, leading to the Jain 2/5 state. An extensive discus-
sion of its parent Hamiltonian was given in Ref. [27]. There,
some of the framework established in this paper has been
anticipated, as well as the fact that the zero mode properties
of the 2/5-parent Hamiltonian can be understood as a purely
algebraic consequence of the second-quantized operators that
can be used to define it [Eq. (5.1) below] and their interplay
with the zero mode generators extensively discussed here.
Indeed, this approach allows one to establish properties of
parent Hamiltonians while “forgetting” the analytic properties
of the associated first-quantized many-body wave functions.
While this is somewhat counter to traditional construction

principles in FQH physics, we argue this to be fruitful in the
context of CF states with n � 2, where parent Hamiltonians
are somewhat scarce. This approach also resonates with the
manifestly guiding-center-projected language recently advo-
cated by Haldane [13]. While in Ref. [27] we did not elaborate
on how to establish the zero mode properties of the 2/5
Hamiltonian in such a purely algebraic manner, here we
are in a perfect position to do so. We begin by presenting
the Hamiltonian as the sum of four two-particle projection
operators at each pair-angular momentum 2R,

H = E (1)
∑

R

T (1)†
R T (1)

R + E (2)
∑

R

T (2)†
R T (2)

R

+ E (3)
∑

R

T (3)†
R T (3)

R + E (4)
∑

R

T (4)†
R T (4)

R . (5.1)

Here, T (λ)
R = ∑

x,m1,m2
η

(λ)
R,x,m1,m2

cm1,R−xcm2,R+x is a fermion
bilinear that destroys a pair of particles of angular momen-
tum 2R. The details of the form factors η

(λ)
R,x,m1,m2

are of no
importance in the following, but will be given in Appendix B.
The E (λ) are positive constants that are arbitrary in principle,
but may be chosen so as to give the Hamiltonian a simple
“Trugman-Kivelson” form [34] in first quantization, see again
Appendix B for this choice. Note that the sum over R goes
over integers and half-odd integers, and x sums in the T
operators are restricted so that R ± x are integers.

From the positivity of each of the four terms in the
Hamiltonian (5.1), it follows that the zero mode property is
equivalent to the following:

T (λ)
R |ψzm〉 = 0, for λ = 1, 2, 3, 4. (5.2)
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The zero mode property of the Jain 2/5 state as given
by Eq. (3.21) (for M = n = 2), with the recursively defined
composite fermion operator ĴN , Eq. (3.10), then rests on the
following properties.

(1) The operators identified in Sec. III B are zero mode
generators precisely in the strict sense defined at the end of
Sec. III A: Namely, they leave invariant the zero mode space
defined in terms of the Hamiltonian through Eq. (5.2). We
show this in Appendix B.

(2) The operators T (λ)
R satisfy

T (λ)
R = 1

2

∑
m,k

[
T (λ)

R , c†
m,k

]
cm,k . (5.3)

This is a generic property of the fermion bilinears, and does
not depend on the form factors η

(λ)
R,x,m1,m2

.
(3) The two-particle CF state |ψN=2〉 is a zero mode,

allowing an “induction beginning.”
We begin by demonstrating property 3. Since |ψN=0〉 =

|0〉, we get |ψN=1〉 = c†
0,0|0〉 and |ψN=2〉 = (

√
2c†

1,−1c†
0,2 +

2c†
0,1c†

1,0 − √
2c†

0,0c†
1,1 − 4c†

0,0c†
0,1)|0〉 using Eqs. (4.9) and

(4.10). It is trivial to see that |ψN=0〉, and |ψN=1〉 are zero
modes, and indeed |ψN=2〉 can also straightforwardly shown
to satisfy the zero mode conditions Eq. (5.2), using the
explicit formulas for the T (λ)

R given in Appendix B. (Note
that this only requires the relatively simple special cases with
R = 1/2.) Now assuming |ψ2N 〉(N � 1) is a zero mode, we
immediately find

T (λ)
R c1,k|ψ2N+1〉 = 0 (5.4a)

and

T (λ)
R c0,k|ψ2N+1〉 = 0, (5.4b)

since on the right-hand sides of Eqs. (4.2) and (4.5), all
operators are zero mode generators, acting on the zero mode
|ψ2N 〉, thus giving another zero mode.

Acting with T (λ)
R , λ = 1, 2, 3, 4 on the identity (3.28) with

particle number being 2N + 1 instead of N , and then using
Eq. (5.4), we obtain

T (λ)
R |ψ2N+1〉 = 1

2N + 1

∑
k

[
T (λ)

R , c†
0,k

]
c0,k|ψ2N+1〉

+ 1

2N + 1

∑
k

[
T (λ)

R , c†
1,k

]
c1,k|ψ2N+1〉

= 2

2N + 1
T (λ)

R |ψ2N+1〉, (5.5)

where in the last line, we have used Eq. (5.3). This implies
that |ψ2N+1〉 satisfies the zero mode condition Eq. (5.2). The
induction step from odd particle number 2N + 1 to even
particle number 2N + 2 proceeds analogously, with the help
of Eqs. (4.7) and (4.8), thus concluding the induction proof for
the zero mode property of n = M = 2 (ν = 2/5) Jain state.
Using the methods of Ref. [27], which we later characterized
as making use of an “entangled Pauli principle”(EPP) [28], we
can also establish that these are the densest possible (highest
filling factor) zero modes (see Ref. [28] for details). Aside
from the EPP, the only ingredients needed are knowledge of
the total angular momentum of the CF state as defined in

Eq. (3.21), and/or its highest occupied orbital, all of which
is either manifest or follows from the discussion in Sec. IV.
In particular, as we have shown here, none of this requires
knowledge of the analytic structure of the first-quantized Jain
2/5 state wave function.

One may envision that the results of this section readily
generalize to other CF states, for which, to the best of our
knowledge, so far no (zero mode paradigm) parent Hamilto-
nians have been discussed in the literature, with the exception
of the case n = 1. This requires identification of the proper
set of operators T (λ) that generalize the algebraic features
discussed here and in Appendix B to larger n and M, which
will require a larger set of such operators. We will comment
on this interesting problem elsewhere [35].

VI. MICROSCOPIC BOSONIZATION

In this brief section, we make contact with an observation
made in Ref. [27] (and earlier for Laughlin states in Ref. [26]).
This is the fact that the zero mode generators p̂m,m

k (no
summation implied), Eq. (3.14), formally look like bosonic
modes generating excitations in the mth branch of a free chiral
fermion edge theory. Indeed, a zero mode at small angular
momentum k relative to the incompressible ground state must
be interpreted as a low-energy edge excitation. This can be
made concrete by considering a confining potential propor-
tional to total angular momentum, which may be added to
the parent Hamiltonian—in those cases where one is known—
without changing the eigenstates of the system. Our result can
then be considered a microscopic form of bosonization—the
identification of generators of eigenstates for the microscopic
Hamiltonian with corresponding counterparts in the effective
edge theory. To make this case, we must argue that the p̂m,m

k
in some sense generate a complete set of low-energy modes.
In this case, we can unambiguously deduce the effective
edge theory from exact properties of the microscopic parent
Hamiltonian. We note that the latter is quite nontrivial even
for the Laughlin state parent Hamiltonians using conventional
polynomial methods [36].

In Ref. [27], we conjectured that the operators formed by
products of the p̂a,b

k do indeed generate a complete set of zero
modes (not just at small angular momentum) for the Jain 2/5
parent Hamiltonian when acting on the Jain 2/5 state |ψN 〉.
With the results of this work, this becomes an easy corollary.
To this end, we first note that a complete set of zero modes is
given by

ĴN |�〉, (6.1)

where |�〉 is any N-particle state within the first n LLs.
Specifically for the Jain 2/5 state (n = M = 2), we estab-
lished the densest zero mode in the preceding section, which
is of the form (6.1). The general statement for all possible
zero modes can either be established in first quantization,
or, using EPP-based methods and knowledge of the densest
zero mode, in second quantization. See Ref. [27] for details.
Here we want to show that all zero modes, of given total
particle number N , are obtained by acting on the densest zero
mode, |ψN 〉 = ĴN |�N 〉, Eq. (3.21), with sums of products of
the operators p̂a,b

k . (For n = 1, pertinent considerations were
carried out earlier [26], using somewhat different methods.)
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We first focus on such zero modes where the |�〉 in Eq. (6.1)
has the same particle number in each � level as the integer
quantum Hall state |�N 〉. For this we may restrict ourselves
to the operators p̂a,b

k . Since we have established that these
operators commute with ĴN , the statement is thus simply that
each fermion state |�〉, with given particle number in each
of n �Ls equal to that in the state |�N 〉, can be expressed
as |�N 〉 acted upon by sums of products of the p̂a,b

k . For
a = b = m, these operators now act on �Ls exactly as the
ones that appear in the bosonization dictionary. The fact that
these operators, within each branch (�L) m, generate the full
fermionic subspace of the same particle number when acting
on the “vacuum” present in |�N 〉 is a well-known theorem
in bosonization. Here, we need a version of this theorem at
finite particle number, which is also readily available [26,37].
Similarly, it is easy to see that the operators p̂a,b

k , k � b − a,
which likewise commute with ĴN , can be used to generate an
arbitrary imbalance in particle number between the occupied
�Ls in |�N 〉, without introducing any holes into any of these
�Ls. By the same reasoning, when acting on these states
with all possible combinations of the p̂m,m

k , we generate the
full Fock space of n �Ls at fixed particle number. Note that
the relative ease with which we can establish this property
here crucially depends on having control of the relationship
between the operator ĴN and the operators p̂a,b

k , in particular
their trivial commutators.

The above considerations may serve as an alternative proof
[27] for the fact that the Jain 2/5 parent Hamiltonian falls into
the “zero mode paradigm”: Counting of zero modes at given
angular momentum �k relative to the “incompressible state”
(densest zero mode) reproduces exactly the mode counting in
an associated conformal edge theory.

VII. COMPOSITE FERMION STATE
ORDER PARAMETERS

The question of off-diagonal long-range order has been an
influential subject in the theory of the Hall effect, leading,
in particular, to a description in terms of effective Ginzburg-
Landau type actions [30,31,38,39]. Beyond this theoretical
use, nonlocal order parameters could in principle be useful in
practical numerical calculations, serving as diagnostics for the
myriad possible phases in the fractional quantum Hall regime.
Unfortunately, a number of reasons seem to have prohibited
widespread use of this approach. For one, there is the problem
of efficient evaluation of nonlocal objects such as

O(z) := (�(z)†)p
∏

i

(z − zi )
q, (7.1)

where the zi are the complex electron coordinates, and �(z)†

is a local electron creation operator. This order parameter is
expected to characterize the order of all composite fermion
states with “single-particle condensates” at filling fraction
ν = p/q [30,31]. The nonlocality of this object and the mixed
first-second-quantized definition make numerical evaluation
challenging, though, making use of special properties of
spherical geometry, related order parameters have been eval-
uated for eight-particle systems [39]. We are not aware of
any attempt to numerically evaluate Eq. (7.1) on the cylinder,
which is arguable the preferred geometry for DMRG. What

is more important, the order parameter (7.1) is by itself still a
rather crude diagnostic. Already for composite fermion states
in n �Ls, a multiplet of n independent order parameters
is expected to exist, which can be given precise meanings
in suitable variational wave functions [31], and which are
the basis for field theoretic and/or Ginzburg-Landau level
descriptions [31,40]. Except for Eq. (7.1), which is always
a member of the “lattice” [31] of order parameters, we are,
however, not aware of a general definition of these order
parameters as operators acting on the microscopic Fock space.

The results of the preceding sections allow us to address
these obstacles in the following way. We will be able to
express order parameters such as Eq. (7.1) in a fully second-
quantized form that is directly applicable to planar, spherical,
and cylinder geometries, respectively. What’s more, for n > 1
composite fermion states we will do the same for an n-tuplet
of generators of the order parameter lattice, all of whose
members will create charge 1 and are thus more elementary
than Eq. (7.1), which creates charge p > 1 for n > 1.

A close connection between quantum Hall-type order pa-
rameters and the developments of this paper could be sur-
mised on the basis that Read wrote the Laughlin state as
(
∫

dz(O(z))N |vac〉, which leads to the Laughlin state recur-
sion Eq. (2.23), albeit in a mixed first/second-quantized guise.
We will immediately discuss the general case n � 1. We start
with an argument similar to one made by Read [30] for the
Laughlin state and, originally, leading up to the special order
parameter (7.1). We will, however, start by working in the
orbital basis. Consider the correlation function of the orbital
density ρr = ∑

k c†
k,rck,r ,

〈ψN+1|ρrρr′ |ψN+1〉 −→ 〈ρr〉〈ρr′ 〉 ∼ ν2, (7.2)

where, on the right-hand side, we take the limit of large |r −
r′| and expect that correlations decay exponentially, causing
the un-connected correlator to approach a nonzero constant
equal to the square of the filling factor ν. As argued by
Read, electron destruction operators such as ck,r acting on
|ψN+1〉 generally should give a state that can be thought of
as q quasihole operators, fused at the same location, acting
on the incompressible state |ψN 〉. Here we use the fact that
in the presence of a special Hamiltonian as discussed above,
this notion becomes entirely sharply defined in a microscopic
sense. Indeed, since |ψN 〉 is a zero mode of the Hamiltonian,
then so is ck,r |ψN+1〉, as all the ck,r commute with all fermion
bilinears T (λ)

R . ck,r |ψN+1〉 is thus always uniquely expressible
in any basis of N-particle zero modes. Moreover, one may
prefer to think of N-particle zero modes as being generated by
appropriate operators acting on the N-particle incompressible
state. While in some abstract sense, such operators may al-
ways exist, here we have already unambiguously defined them
via concrete expressions involving only microscopic electron
creation and annihilation operators, Eqs. (3.25)–(3.27). More
concisely, we have shown that

c̃k,r |ψN+1〉 = S	k,k
MN−r−δ+Lmax (N+1,n)RN,n,k|ψN 〉, (7.3)

where RN,n,k is a local operator (in the orbital basis) that may
be inferred from Eqs. (3.25)–(3.27), along with δ ∈ {0, 1}.
Writing ρr = ∑

k c̃∗
k,r c̃k,r as in Eq. (3.28), Eq. (7.2) takes on

045136-12



COMPOSITE FERMIONS IN FOCK SPACE: OPERATOR … PHYSICAL REVIEW B 100, 045136 (2019)

the form

〈ψN |O†
rOr′ |ψN 〉 −→ ν2, (7.4)

where

Or =
∑

k

c̃∗
k,rS	k,k

MN−r−δ+Lmax (N+1,n)RN,n,k . (7.5)

The object Or therefore exhibits off-diagonal long-range or-
der (ODLRO). Equation (7.5) is closely related to Eq. (7.1)
only for p = 1. It is different for p > 1, as it adds only one
particle overall whereas Eq. (7.1) adds p particles. More im-
portantly, Eq. (7.1) is just a single point in an “order parameter
lattice” that has n generators [31]. In contrast, it stands to
reason that in Eq. (7.5) each term for given k contributes
to the ODLRO. In fact, this is of a kind with an SU(n)
symmetry discussed in Ref. [31] on the basis of variational
wave functions, and which moreover can be seen to be a
property of the zero mode spaces associated to all composite
fermion states, given appropriate parent Hamiltonians [35].
(This is quite a robust property of n > 1 special Hamiltonians,
and generalizes even to more complicated “parton” states
[28].) It is thus natural to define

Ok,r = c̃∗
k,rS	k,k

MN−r−δ+Lmax (N+1,n)RN,n,k . (7.6)

and identify this family of n operators for k = 0, . . . , n − 1
as the generators of the order parameter lattice, which exhibit
ODLRO in the orbital degree of freedom r. In fact, we can
make this argument more directly by noting that the ORDLO
of Eq. (7.6), for the composite fermion states |ψN 〉, follows ex-
actly in the same manner as for the original Or , assuming only
that the “partial densities” ρk,r = c̃∗

k,r c̃k,r have exponentially
decaying correlations (which is given [41] in the presence of a
gap), and assume a nonzero expectation value 〈ρk,r〉 	= 0. Note
that we have ρr = ∑n−1

k=0 ρk,r , and the ρk,r essentially measure
the occupancy density in the kth � level as defined above.

Several remarks are in order. For one, the operators RN,n,k

are a consequence of choosing a particular edge configuration
for the reference state |ψN 〉, which is not uniquely determined
in general without some conventions, such as chosen above.
These operators must be kept if Eq. (7.4) is to be exact for
the given composite fermion state |ψN 〉 as defined above.
However, the ODLRO is expected to be a property of all states
in the same phase, and is not expected to rely on the choices
leading to the RN,n,k operators. [Note that in Eq. (3.26), RN,n,k

is proportional to the identity anyway, and is proportional to
the single body operators p̂q−1,k

k−q+2, p̂q−1,k
k−q+1 in the other cases,

respectively.] In the same vein, the parameter δ ∈ {0, 1} is
irrelevant to the ODLRO. We may thus settle for the slightly
more streamlined variant

O′
k,r = c̃∗

k,rS	k,k
MN−r+Lmax (N+1,n). (7.7)

Note that although we have arrived at a reasonably compact
definition for these operators using an n-Landau level
framework, all of these operators remain meaningful,
nontrivial, and independent when projected onto the lowest
Landau level. To see this, observe that the S	 operator in
Eq. (7.7) creates a (charge 1) quasihole in the kth composite
fermion � level, at orbital location r. One expects such
states for different k to remain linearly independent even
after lowest-LL projection. For an n > 1 composite fermion

state, there are n-distinct ways of creating a charge 1 hole at
given (orbital or real space) location. These n distinct way
are encoded in the S	 operators, whose relation to electron
creation/annihilation operators is explicitly given here, and
which remain distinct objects whether or not we choose to
lowest Landau level project. In the spirit of Ref. [31], to
create an order parameter, these n distinct types of holes can
then be filled by the action of any electron creation operator,
in particular, one in the lowest Landau level. Note that in
particular the creation operator c̃∗

k,r of Eq. (7.7) always has a
nonzero component in the lowest Landau level. The relevance
of the order parameters (7.7) is thus by no means limited
to the mixed Landau level setting used here to derive them.
After lowest Landau level projection, the k labels refer to �

levels in the original, purely emergent sense of the term [42].
It should be emphasized that the two processes in (7.7) are

very different, where the S	 operator creates a hole via flux
insertion into one of the � levels, but without changing overall
particle number, a highly nonlocal operation. In contrast, this
hole is then filled by a local electron creation operator. In
Eq. (7.7), both the hole and the subsequently inserted particle
are localized in orbital space. If desired, it is easy to construct
corresponding order parameters with both electron and hole
localized in real space (but the latter still facilitated by a
nonlocal operator). If a local electron destruction operator
ψ̂ j (z) is obtained via

ψ̂ j (z) =
∑
k,r

Fk,r, j (z)c̃k,r, (7.8)

where Fk,r, j (z) depends in straightforward ways on the matrix
A(r)ab defined in Eq. (3.3) and the Landau level basis wave
functions, the desired order parameter is given by

O′
j (z) = ψ̂

†
j (z)

∑
k,r

Fk,r, j (z)S	k,k
MN−r+Lmax (N+1,n). (7.9)

Equation (7.9) is obtained following strictly the same logic
leading up to Eq. (7.7).1 However, since for j > 0, ψ̂

†
j (z)

now does create a state orthogonal to the lowest Landau
level, projection to the lowest Landau level now warrants
replacement of ψ̂

†
j (z) with ψ̂

†
0 (z). In view of the discussion

above, this should not affect the ODLRO of these operators.

VIII. CONCLUSION

In this work, we have developed a comprehensive for-
malism to discuss composite fermions in Hilbert space. The
heart of this formalism is a presentation of the Laughlin-
Jastrow flux attachment operator in terms of second-quantized
electron creation and annihilation operators. This allows us
in particular to define certain operations that add fermions
to a reference composite fermion ground state, as well as
general operations that remove them, while staying in the
composite fermion sector of the Hilbert space. As a result,
we can define Jain composite fermions states recursively in
the orbital basis, generalizing similar recursions for Laughlin
states. This operator-based approach has several advantages.

1We could, of course, have obtained an analogous expression based
on Eq. (7.6).
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The properties of parent Hamiltonians, where they exist,
can be rigorously established. This in particular establishes
edge theories microscopically on much more than variational
grounds. n-component order parameters for the Jain com-
posite fermion phases can be microscopically defined, i.e.,
their relation to microscopic electron creation and annihilation
operators is fully specified, and their meaning thus extended
from a variational subspace to the full Hilbert space.

We expect that this work will spur further developments
in particular along several interesting directions: One is the
construction of new special parent Hamiltonians for mixed
Landau level wave functions. This includes all of the Jain
states [35], but also other, more exotic quantum Hall states in-
cluding parton states [16,28,29,43]. Indeed, the present work
and the treatment [28] by some of us of the non-Abelian Jain
221 state can both be regarded as different natural extensions
of earlier work on the Jain 2/5 state [25]. It therefore seems
likely that further extensions of the formalism developed here
to non-Abelian states are possible. This formalism, in connec-
tion with the idea of “entangled Pauli principles” (EPP) that
naturally extends the notion of “generalized Pauli principles”
[44,45] or thin torus patterns [23,46–55], represent a powerful
new framework to construct and study FQH parent Hamil-
tonians from the point of view of infinite-range frustration-
free one-dimensional lattice models, as opposed to analytic
wave functions. This may further turn out to be beneficial
when studying spectral properties of such models at nonzero
energy [56], or making connection between EPPs and braiding
statistics [57–59]. Another exciting prospect is the further
development of nonlocal order parameters as numerical di-
agnostic and theoretical tool. There is further much to be
said about the connection between the present developments
and the conformal field theory [60,61]/matrix product state
[62–64] representability of fractional quantum Hall states. We
leave these as interesting problems for future work [65].
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APPENDIX A: PROOF OF Eq. (2.16)

We first prove Eq. (2.16) by induction. It is trivial to see
that it is satisfied for N = 0, 1. Now assume

cr ĴN−1 =
∑

m

ŜM(N−2)−r+mĴN−2cm (A1)

is true. The induction hinges on the following two identities:

crŜ� =
M∑

k=0

(−1)k

(
M

k

)
Ŝ�−kcr−k, (A2)

Ŝ�c†
r =

M∑
k=0

(−1)k

(
M

k

)
c†

r+kŜ�−k, (A3)

which one easily obtains from the definition of the Ŝ� opera-
tors, Eq. (2.12), with the aid of the following two commuta-
tors:

[cr, ên] = ên−1cr−1, (A4)

[ên, c†
r ] = c†

r+1ên−1. (A5)

Then, using the definition in Eq. (2.13) and the identity
Eq. (A2), we have

cr ĴN = 1

N

∑
m

ŜM(N−1)−r+mĴN−1cm − 1

N

∑
m,r′

M∑
k=0

(−1)k

(
M

k

)
c†

r′+mŜM(N−1)−r′−kcr−k ĴN−1cm. (A6)

Henceforth, the indices of sums r, r′, m, m′ go from 0 to +∞ unless otherwise noted. We can separate the above sum in k from
0 to M into two partial sums(one is from 0 to M − 1 and another is k = M) and then use Eq. (A1) to get

cr ĴN = 1

N

∑
m

ŜM(N−1)−r+mĴN−1cm − 1

N

∑
m′,m,r′

M−1∑
k=0

(−1)k

(
M

k

)
c†

r′+mŜM(N−1)−r′−kŜM(N−2)−r+k+m′ ĴN−2cm′cm

− 1

N

∑
m′,m,r′

c†
r′+mŜM(N−1)−r+m′ ŜM(N−2)−r′ ĴN−2cm′cm. (A7)

In the third term of the above, we have exchanged the order of two commuting Ŝ operators. We can further move ŜM(N−1)−r+m′

to the left of c†
r′+m using the identity Eq. (A3). After doing this, we have

cr ĴN = 1

N

∑
m

ŜM(N−1)−r+mĴN−1cm − 1

N

∑
m′,m,r′

M−1∑
k=0

(−1)k

(
M

k

)
c†

r′+mŜM(N−1)−r′−kŜM(N−2)−r+k+m′ ĴN−2cm′cm

+ 1

N

∑
m′

ŜM(N−1)−r+m′

(∑
m,r′

c†
r′+mŜM(N−2)−r′ ĴN−2cm

)
cm′

+ 1

N

∑
m′,m,r′

M∑
k=1

(−1)k

(
M

k

)
c†

r′+m+kŜM(N−2)−r′ ŜM(N−1)−r+m′−k ĴN−2cm′cm. (A8)
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The third term in the above is just

N − 1

N

∑
m′

ŜM(N−1)−r+m′ ĴN−1cm′ (A9)

using Eq. (2.13). Combined with the first term, it gives the desired result. The second term cancels with the fourth term after
we make the change of variables k = M − k′, r′ = r′′ − k = r′′ − M + k′ in the fourth term and use the fact that Ŝ� ≡ 0 for
l > (N − 2)M when acting on states with particle number N − 2. This concludes our induction proof of Eq. (2.16).

Furthermore, generalizing the above proof of Eq. (2.16) to the case of n Landau levels by using notations in Eq. (3.3) with
A(r) given in Appendix C and using the following generalization of Eqs. (A2) and (A3):

c̃a,r Ŝ� =
M∑

k=0

(−1)k

(
M

k

)
Ŝ�−k c̃a,r−k, (A10)

Ŝ�c̃∗
a,r =

M∑
k=0

(−1)k

(
M

k

)
c̃∗

a,r+k Ŝ�−k, (A11)

we easily arrive at Eq. (3.11) using the same method.

APPENDIX B: ZERO MODE GENERATORS

In Ref. [27], we have obtained in second-quantized form the parent Hamiltonian for the unprojected Jain 2/5 state,

H = E (1)
∑

R

T (1)†
R T (1)

R + E (2)
∑

R

T (2)†
R T (2)

R + E (3)
∑

R

T (3)†
R T (3)

R + E (4)
∑

R

T (4)†
R T (4)

R , (B1)

where E (1) = 5+√
17

16π
, E (2) = 9

8π
, E (3) = 1

4π
, E (4) = 5−√

17
16π

.

The bilinear T operators are given by T (λ)
R = ∑

x,m1,m2
η

(λ)
R,x,m1,m2

cm1,R−xcm2,R+x with

η
(1)
R,x,m1,m2

=
√

2

2
√

17 − √
17

(
(−1 + √

17)

2R+1/2

√(
2R + 1

R + x

)
δm1,1δm2,0 − 4x

2R+1/2

√
1

2R + 2

(
2R + 2

R + 1 + x

)
δm1,1δm2,1

)
,

η
(2)
R,x,m1,m2

= 1

2R3

(√
2 x

√
1

R

(
2R

R + x

)
δm1,0δm2,0 + 2(2x2 − 2x − R)

√
1

2R(2R + 1)

(
2R + 1

R + x

)
δm1,1δm2,0

− (2x3 − (3R + 2)x)

√
1

2R(2R + 1)(2R + 2)

(
2R + 2

R + 1 + x

)
δm1,1δm2,1

)
,

η
(3)
R,x,m1,m2

=1 − 2x

2R+1/2

√
1

2R + 1

(
2R + 1

R + x

)
δm1,1δm2,0,

η
(4)
R,x,m1,m2

=
√

2

2
√

17 + √
17

(
(−1 − √

17)

2R+1/2

√(
2R + 1

R + x

)
δm1,1δm2,0 − 4x

2R+1/2

√
1

2R + 2

(
2R + 2

R + 1 + x

)
δm1,1δm2,1

)
. (B2)

We have found four classes of one-body zero mode generators in Ref. [27], which leave invariant the zero mode space of the
above Hamiltonian,

P̂(1)
d =

+∞∑
r=−1

√
(r + d )!

(r + 1)!
c†

0,r+d c1,r,

P̂(2)
d =

+∞∑
r=0

√
(r + d )!

r!
c†

0,r+d c0,r +
+∞∑

r=−1

√
(r + d + 1)!

(r + 1)!
c†

1,r+d c1,r,

P̂(3)
d =

+∞∑
r=−1

(
(r + d + 1)

√
(r + d )!

(r + 1)!
c†

0,r+d c1,r +
√

(r + d + 1)!

(r + 1)!
c†

1,r+d c1,r

)
,
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P̂(4)
d =

+∞∑
r=0

(√
(r + d + 1)!

r!
c†

1,r+d c0,r + (r + d + 1)

√
(r + d )!

r!
c†

0,r+d c0,r

)

−
+∞∑

r=−1

(
(r + 1)

√
(r + d + 1)!

(r + 1)!
c†

1,r+d c1,r + (r + 1)(r + d + 1)

√
(r + d )!

(r + 1)!
c†

0,r+d c1,r

)
. (B3)

The fact that they are indeed zero mode generators re-
sults from the nontrivial commutation relations [T (λ)

R , P̂(i)
d ] =∑4

λ′=1 αλ,λ′,i,R,dT (λ′ )
R− d

2

for λ, i = 1, 2, 3, 4, where αλ,λ′,i,R,d is a

coefficient depending on λ, λ′, i, R, d .
Simple calculations show that p̂a,b

d s and p̂d in the main
paper are essentially equivalent to the above zero mode gen-
erators. Indeed, we have

p̂0,0
d = P̂(2)

d + dP̂(1)
d − P̂(3)

d , p̂0,1
d = P̂(1)

d , p̂1,0
d = P̂(4)

d ,

p̂1,1
d = P̂(3)

d , p̂d = p̂0,0
d + p̂1,1

d = P̂(2)
d + dP̂(1)

d . (B4)

As shown in Eq. (3.18), p̂a,b
d s form a graded Lie algebra,

[ p̂a,b
k , p̂b′,a′

k′ ] = δb,b′ p̂a,a′
k+k′ − δa,a′ p̂b′,b

k+k′ . Now if we define Q(1)
R

and Q(4)
R as linear combinations of T (1)

R and T (4)
R :

Q(1)
R =

√
1

34
(17 −

√
17)T (1)

R −
√

1

34
(17 +

√
17)T (4)

R ,

Q(4)
R =

√
1

34
(17 +

√
17)T (1)

R +
√

1

34
(17 −

√
17)T (4)

R ,

(B5)

the zero mode condition Eq. (5.2) becomes

T (λ)
R |ψzm〉 = 0, for λ = 2, 3,

Q(λ′ )
R |ψzm〉 = 0, for λ′ = 1, 4. (B6)

It is easy to verify that p̂a,b
d are indeed zero mode generators

by virtue of the following commutators:

[
Q(1)

R , p̂0,0
d

] = 21− d
2

√
(2R + 1)!

(2R − d + 1)!
Q(1)

R− d
2

, (B7a)

[
T (2)

R , p̂0,0
d

] = 2(1−d )/2

√
(2R − 1)!

(2R − d + 1)!

(
2d (d − 1)

3
Q(1)

R− d
2

+
√

2(2R − d )(2R − d + 1)T (2)
R− d

2

+ d (d − 1)Q(4)
R− d

2

)
. (B7b)

[
T (3)

R , p̂0,0
d

] = 21− d
2

√
(2R)!

(2R − d )!
T (3)

R− d
2

, (B7c)

[
Q(4)

R , p̂0,0
d

] = 21− d
2

√
(2R + 1)!

(2R − d + 1)!
Q(4)

R− d
2

, (B7d)

[
Q(1)

R , p̂0,1
d

] = 0, (B7e)

[
T (2)

R , p̂0,1
d

] = −2(3−d )/2

3

√
(2R − 1)!

(2R − d + 1)!

(
(d − 1)Q(1)

R− d
2

+√
2R − d + 1T (3)

R− d
2

+ 2(d − 1)Q(4)
R− d

2

)
,

(B7f)

[
T (3)

R , p̂0,1
d

] = 21− d
2

√
(2R)!

(2R − d + 1)!
Q(4)

R− d
2

, (B7g)

[
Q(4)

R , p̂0,1
d

] = 0, (B7h)

[
Q(1)

R , p̂1,0
d

] = 2− d
2

√
(2R + 1)!

(2R − d + 1)!

(
(d + 1)Q(1)

R− d
2

+ (2R + 1)
√

2R − d + 1T (3)
R− d

2

)
, (B7i)

[
T (2)

R , p̂1,0
d

] = 2(1−d )/2

3

√
(2R − 1)!

(2R − d + 1)!

×
(

(1 + d )R(1 + 2R)Q(1)
R− d

2

+ 3
√

2(2R − d )(2R − d + 1)T (2)
R− d

2

− R(1 + 2d − 2R)
√

2R − d + 1T (3)
R− d

2

− 2(d + 1)R(−2 + d − 4R)Q(4)
R− d

2

)
, (B7j)

[
T (3)

R , p̂1,0
d

] = 2−1− d
2

√
(2R)!

(2R − d + 1)!

×
(

− 2(1 + d )(2R + 1)Q(1)
R− d

2

− 3
√

2(2R − d )(2R − d + 1)T (2)
R− d

2

+ 2(1 + d )
√

2R − d + 1T (3)
R− d

2

+(d2 − d − 4 − 4R2 − 4dR − 10R)Q(4)
R− d

2

)
,

(B7k)

[
Q(4)

R , p̂1,0
d

] = 2− d
2

√
(2R + 1)!

(2R − d + 1)!

(
− (d + 1)Q(1)

R− d
2

+√
2R − d + 1T (3)

R− d
2

)
, (B7l)

[
Q(1)

R , p̂1,1
d

] = 2− d
2

√
(2R + 1)!

(2R − d + 1)!

(
Q(1)

R− d
2

− Q(4)
R− d

2

)
,

(B7m)
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[
T (2)

R , p̂1,1
d

] = 2(3−d )/2

3

√
(2R − 1)!

(2R − d + 1)!

(
dRQ(1)

R− d
2

− R
√

2R − d + 1T (3)
R− d

2

+ 2dRQ(4)
R− d

2

)
,

(B7n)

[
T (3)

R , p̂1,1
d

] = 2− d
2

√
(2R)!

(2R − d + 1)!

×
(

dQ(1)
R− d

2

+ √
2R − d + 1T (3)

R− d
2

+ (1 + 2d + 2R)Q(4)
R− d

2

)
, (B7o)

[
Q(4)

R , p̂1,1
d

] = 21− d
2

√
(2R + 1)!

(2R − d + 1)!
Q(4)

R− d
2

, (B7p)

Most importantly, the operators appearing on the right-hand
sides are always linear combinations of the operators in
Eq. (B6), and thus vanish within the zero mode subspace. This
ensures that the action of any of the p̂a,b

d on any zero mode
gives a new zero mode.

Now we will prove that the êk defined in Eq. (3.8) satisfy
the Newton-Girard formula (B9). Therefore these operators
are k-body zero mode generators as they can be expressed in
terms of the p̂d with d = 1, . . . , k. As a result, Ŝ� is also a zero
mode generator by its definition. To prove the Newton-Girard
formula, we can write down êk in terms of êk−1,

êk = 1

k

∑
n,l

c̃∗
n,l+1êk−1c̃n,l . (B8)

Using the commutator [êk, c̃n,l ] = −êk−1c̃n,l−1 to move the ê
operator all the way to the right of the c̃ operators, one can
arrive at the Newton-Girard formula

êk = 1

k

k∑
d=1

(−1)d−1 p̂d êk−d . (B9)

In the same way, one can use [êa,b
k , c̃b,l ] = −δa,bêa,b

k−1c̃b,l−1 to
obtain a modified Newton-Girard formula

êa,b
k = 1

k
p̂a,b

1 êa,b
k−1 + δa,b

k

k∑
d=2

(−1)d−1 p̂a,b
d êa,b

k−d . (B10)

Consequently, êa,b
k are also k-body zero mode generators since

they can be expressed in terms of either p̂a,b
1 or p̂a,b

d with d =
1, . . . , k. With Eq. (B9) and the above (modified) Newton-
Girard formulas, we immediately see that Ŝ and êa,b are zero
mode generators.

APPENDIX C: A(r) MATRIX FOR n LLs

Here we generalize the transformation matrix A(r) for 2
LLs to the case of n LLs. Its entries are

A(r)i j = (i + r)! i!

(i − j)!

1√
( j + r)! j!

, (i � j), (C1)

and vanish for i < j, as well as for i < −r, j < −r, as
obtained straightforwardly by expanding monomials z̄izi+r

(Gaussian omitted) in disk Landau level wave functions.
The A(r)i j are basically the expansion coefficients, up to
i-dependent normalization factors that we dropped for sim-
plicity, as they do not affect the properties of the operators
defined in the main text in any essential way. (Note that
Table I does contain these extra factors, for the special case of
the LLL.) The operators c̃∗

i,r = ∑
j A(r)i jc

†
j,r therefore create

single-particle states proportional to the monomials z̄izi+r .
Strictly speaking, A(r) is invertible only for r � 0. How-

ever, we leave understood that at any given r, we always work
within the range of A(r) (thus ignoring unphysical indices
i, j < −r). With this restriction in mind, we can always invert
A(r) to obtain a likewise lower-triangular matrix with the
following nonzero entries:

A−1(r)i j = (−1)i+ j

√
(i + r)!i!

(i − j)!( j + r)! j!
, (i � j). (C2)

For definiteness, we still take A−1(r)i j = 0 for i or j being
< −r.
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