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Fermi surface reconstruction by a charge density wave with finite correlation length
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Even a small amplitude charge-density wave (CDW) can reconstruct a Fermi surface, giving rise to new
quantum oscillation frequencies. Here, we investigate quantum oscillations when the CDW has a finite
correlation length ξ—a case relevant to the hole-doped cuprates. By considering the Berry phase induced by
a spatially varying CDW phase, we derive an effective Dingle factor that depends exponentially on the ratio
of the cyclotron orbit radius, Rc, to ξ . In the context of YBa2Cu3Oy (YBCO), we conclude that the values of ξ

reported to date for bidirectional CDW order are, prima facie, too short to account for the observed Fermi surface
reconstruction; on the other hand, the values of ξ for the unidirectional CDW are just long enough.
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I. INTRODUCTION

Charge-density-wave (CDW) order is a common feature
of cuprate superconductors, and is generally believed to be
responsible for the Fermi surface reconstruction apparent in
quantum oscillation (QO) experiments [1,2]. In YBa2Cu3Oy

(YBCO), two kinds of CDW are observed in x-ray scattering:
a bidirectional CDW and a field-induced unidirectional CDW
[3]. Most commonly, the Fermi surface reconstruction is
attributed to the bidirectional CDW [4,5], since the requisite
electronlike pocket [6] is most directly obtained through a
bidirectional reconstruction scheme. However, there are also
proposals for reconstruction by the field-induced unidirec-
tional CDW [7,8], which, if combined with a nematic distor-
tion of the underlying Fermi surface, also yields an electron
pocket. Such proposals are consistent with the fact that the
unidirectional CDW appears above ≈15 T, whereas QOs are
observed only above ≈18 T [9].

An important observation is that the correlation length
of the bidirectional CDW is rather short: ξ2Q ≈ 100 Å [10],
whereas the cyclotron radius at the lowest fields for which
QOs are observed is Rc ≈ 400 Å. Since QOs are expected
to be strongly damped when ξ � Rc, it is unclear whether
the observed signal is consistent with reconstruction by the
bidirectional CDW.

On the other hand, the correlation length of the unidi-
rectional CDW is longer: ξ1Q ≈ 200Å [11] at fields relevant
for QOs, which could more easily account for experimental
observations. A quantitative understanding of QOs in disor-
dered CDWs may therefore help distinguish between the two
proposed reconstruction scenarios.

With this experimental motivation in mind, we undertake
a theoretical investigation of Fermi surface reconstruction by
a CDW with finite correlation length. Our primary result is
an expression for the Dingle factor RD(p), which suppresses
the amplitude of the pth QO harmonic. For the first har-
monic and for the reconstruction scenarios relevant to the
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cuprates:

RD(p = 1) = e−BD/B, BD = 2nh̄kF

eξ
. (1)

Here ξ is the relevant CDW correlation length, n = 1 for
unidirectional order, and n = 2 for bidirectional order, and
2kF is defined to be the distance between points on the Fermi
surface at which the CDW Bragg scatters the electron. BD

in Eq. (1) is a lower bound on the experimentally observed
Dingle field Bexp

D , as it neglects all disorder besides the finite
CDW correlation length.

Combining this result with the measured correlation
lengths ξ1Q and ξ2Q, we predict

Bexp
D �

{
90 T unidirectional order
340 T bidirectional order (2)

in YBa2Cu3O6.59, whereas from QO measurements we find
Bexp

D ≈ 110 T. That is, the lower bound set by the bidirectional
CDW is violated, while the lower bound set by the unidirec-
tional CDW is just satisfied. Given that the QO frequency
evolves smoothly with hole doping, this observation is not
easy to reconcile with reconstruction by the bidirectional
CDW. On the other hand, reconstruction by the unidirectional
CDW is marginally consistent.

The effect of CDW phase disorder on the semiclassical
spectrum can be expressed in terms of a contribution to a
Berry phase each time an electron Bragg scatters off the CDW.
This formulation leads to a remarkable real-space structure
to the local density of states in the case of a locally com-
mensurate CDW punctuated by well-separated, sharp discom-
mensurations (DCs). For a commensurability m CDW, the
Landau-level spectrum is shifted by ±h̄ωc/m in a region of
width Rc about the DC—something which should be directly
observable in scanning tunneling spectroscopy. In terms of the
spectrum of QOs, this has the unusual consequence that while
most of the harmonics are suppressed by the same sort of
Dingle factor already discussed, if disordering of the CDW is
caused entirely by randomly spaced DCs, the p = m harmonic
(and all multiples of it) are not affected at all. To verify this
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result, we have reproduced it by exact solution of an explicit
lattice-scale model.

Returning to YBCO, this raises the possibility that the
dominant 540 T QO frequency observed in experiment might
actually be the sixth harmonic of a 90 T fundamental. We
make no serious assertion that this major reinterpretation
of the data is correct—but it is an interesting possibility
naturally suggested by our results, and which could resolve
other experimental discrepancies.

The remainder of this paper is organized as follows. We
introduce a model Hamiltonian in Sec. II, which we use
throughout to illustrate our argument, and as a basis for
numerics. In Sec. III, we briefly review the semiclassical
theory of QOs in conventional metals. We introduce a heuris-
tic “scattering picture” to derive an expression for an extra
phase γ that enters the semiclassical quantization condition in
Sec. IV. The resulting expression is generalized and evaluated
for Fermi-surface reconstructions relevant to the cuprates in
Sec. V and VI, respectively. In Sec. VII, we show that γ may
also be obtained as a Berry phase. In Sec. VIII we derive
the Dingle factor and Dingle field, including a discussion of
higher harmonics for a random DC array. These theoretical
results are confirmed by numeric simulations in Sec. IX.
We then apply these results to experiments in YBa2Cu3Oy

in Sec. X. Finally, we summarize our main conclusions in
Sec. XI.

II. MODEL

Throughout this paper, we describe weak CDW order by
an effective Hamiltonian H = H0 + U , where H0 describes
the underlying crystal and U is the CDW potential. Here, we
introduce a specific model used to illustrate our results. We
take

H0 = −t
∑
〈r′,r〉

(c†
r′cr + H.c.), (3)

where c†
r creates an electron at position r = (x, y) on a square

lattice and 〈r′, r〉 denotes nearest neighbors. H0 can be diago-
nalized as

H0 =
∑

k

E0(k)c†
kck, (4)

where c†
k creates an electron in the Bloch state with crystal

momentum k and

E0(k) = −2t[cos(akx ) + cos(aky)], (5)

where a is the lattice constant.
For EF < 0, this yields a roughly circular electronlike

Fermi surface centered at k = 0. For the CDW potential, we
take

U = 2V
∑

r

cos[Q · r + φ(r)]c†
r cr, (6)

where V > 0 and φ(r) is the local phase of the CDW. The
assumed CDW is “weak” in the sense that V/|EF | � 1.

III. REVIEW OF SEMICLASSICAL ANALYSIS IN THE
ABSENCE OF A CDW

We first consider the the problem in the absence of a CDW,
i.e., V = 0. Assuming the band under consideration has no
Berry curvature, the equations of motion (EOM) for the mean
position r (now treated as a continuous variable) and gauge
invariant crystal momentum k of a wave packet are [12]

ṙ = 1

h̄
∇kE0(k), (7)

h̄k̇ = −eṙ × B. (8)

Combining the above,

k̇ = e

h̄2 B × ∇kE0(k), (9)

so the k-space orbit coincides with the Fermi surface. Since
we are considering a problem with a closed Fermi surface, the
wave packet executes periodic cyclotron motion in k-space. In
real space,

ṙa = h̄

eB
εabk̇b, (10)

where ε is the Levi-Cevita symbol and the sum over b = x, y
is implicit. Therefore, to switch between k-space and real
space we simply rotate and rescale the trajectory.

There is an infinite family of cyclotron orbits, each labeled
by its time-independent guiding center:

Ra = ra − h̄

eB
εabkb. (11)

Periodic cyclotron motion gives rise to a discrete quantum en-
ergy spectrum, determined by the semiclassical quantization
condition,

S(En) = 2π

(
n + 1

2

)
, (12)

where the action,

S(E ) =
∮ (

k − e

h̄
A(r)

)
· dr, (13)

can loosely be thought of as the phase picked up by a wave
packet over the course of a cyclotron period. Using the EOM,
it is straightforward to obtain

S(E ) = h̄A(E )

eB
, (14)

where A(E ) is the area of the Fermi surface. Thus,

h̄A(En)

eB
= 2π

(
n + 1

2

)
. (15)

If the Fermi energy is fixed, Landau levels cross EF peri-
odically in 1/B. This happens with frequency

F = h̄A(EF )

2πe
. (16)

As most properties of a metal depend on the density of states
at EF , this gives rise to conventional QOs.
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IV. SEMICLASSICAL ANALYSIS WITH A CDW:
SCATTERING PICTURE

Here, we use a heuristic “scattering picture” to understand
dynamics and quantization in the presence of a weak CDW,
which may be disordered. This discussion is closely related to
work by Pippard on QOs in the presence of lattice dislocations
[13].

A. Dynamics

In a weak CDW, a wave packet evolves along the Fermi
surface of H0 essentially as in the absence of the CDW except
at discrete “scattering points” defined by the nesting condi-
tion E0(k) = E0(k ± Q). Assuming the wave packet is fully
scattered from momentum k into k ± Q (i.e., no magnetic
breakdown), the following simplified picture applies: k fol-
lows the Fermi surface (of H0) until it hits a scattering point,
then jumps by ±Q across the Fermi surface, then follows the
Fermi surface until the next scattering point, and so on. This
is illustrated in Fig. 1. Stitching together the segments of the
orbit, we obtain a closed k-space figure which we identify as
the reconstructed Fermi surface; when rotated and rescaled it
gives the real space orbit, also indicated in Fig. 1.

Above, we implicitly assumed that the wave packet can
scatter only through momenta ±Q. This is true if we restrict
our attention to first-order processes. Higher order processes
can scatter the wave packet through arbitrary nQ, but the scat-
tering rate will be suppressed relative to first order by powers
of V/t . Therefore, we expect a broad range of magnetic fields
where the the probability of magnetic breakdown is small for
first-order scattering, but nearly equal to 1 for higher order
scattering. As shown in Appendix A, the appropriate range is(

V

EF

)2( V

vF

)2

� eB

h̄
�

(
V

vF

)2

, (17)

where vF is a characteristic Fermi velocity of the underlying
band structure.

Since only first-order scattering enters the dynamics, there
is no distinction between commensurate and incommensurate
CDWs. Moreover, since the CDW is so weak that it only
affects the wave packet at the scattering points, the only effect
of slightly phase-disordering the CDW is a possible small
displacement of the scattering points. A random array of sharp
DCs is special in this regard: The semiclassical dynamics are
entirely unaffected, except for rare orbits whose scattering
points intersect DCs.

B. Quantization

To quantize this motion, we need to compute the total
phase, S(E ), picked up by a wave packet of energy E as it
executes a single closed orbit,

S(E ) = SF (E ) + θR + θL, (18)

where SF is the action associated with evolution along the
Fermi surface, and θR, θL, are the phase shifts suffered at the
right and left scattering points on the Fermi surface. We de-
note the corresponding real-space points by rR, rL, as in Fig. 1.

Let us ignore the possible displacements mentioned above;
this is justified in Appendix D. Then SF is unaffected by

FIG. 1. Reconstruction by a Q = (1/3)(2π/a) CDW in the
model Hamiltonian. Top: k-space cyclotron orbit, visualized in terms
of scattering across the unreconstructed Fermi surface. For clarity,
each scattering process is folded back into the first Brillouin zone.
Bottom: Corresponding real-space orbit.

disorder. However, θR/L depend on the CDW phase at the
corresponding scattering points, φ(rR/L ).

We can understand this dependence as follows. According
to scattering theory, the reflected wave is obtained by integrat-
ing the incoming wave against the scattering potential. Now
let us consider the effective scattering potential felt by a wave
packet near rR/L, that is, within the blue regions (exaggerated
in size for clarity) indicated in Fig. 2. First consider R. The
momentum transfer picks out the plus component of the CDW,

FIG. 2. Effective scattering near real space scattering point.
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and since the phase of the CDW is essentially constant in
the blue region, we can make the replacement φ(r) → φ(rR).
Hence the effective potential is

UR = Vei[Q·r+φ(rR )]. (19)

For L, the momentum transfer picks out the minus compo-
nent, and we can make the replacement φ(r) → φ(rL ), giving

UL = Ve−i[Q·r+φ(rL )]. (20)

It follows that

θR = φ(rR) + . . . , (21)

θL = −φ(rL ) + . . . , (22)

where the piece of the phase shift contained in . . . is indepen-
dent of the CDW phase. Putting these pieces together,

S(E ) = S0(E ) + φ(rR) − φ(rL ) (23)

= S0(E ) + 	φ, (24)

where S0(E ) is the action for a uniform CDW. Since

S0(E ) = h̄A(E )

eB
, (25)

with A(E ) the area of the stitched-together k-space orbit (plus
possible small corrections), we conclude that

S(E ) = h̄A(E )

eB
+ 	φ(R), (26)

where we have emphasized that the phase difference depends
on the guiding center R of the orbit under consideration. This
extra orbit-dependent phase will generically smear out the QO
signal. Before discussing this point more quantitatively, we
generalize this result to arbitrary dispersion and CDW order,
and show that 	φ is a Berry phase.

V. GENERAL RESULT

Consider a general dispersion and a CDW with ordering
vectors Q1, . . . , QM , and corresponding phases φ j (r). Generi-
cally, scattering across the Fermi surface of H0 yields multiple
closed orbits. Let us focus our attention on one of them. The
different real-space scattering points can be labeled r1, . . . rN

(ordered sequentially). At scattering point α, the wave packet
scatters in k-space by some ηαQ jα , where ηα ∈ {±1} and jα ∈
{1, . . . M}. Then the effective scattering potential at scattering
α is

Uα = eiηα [Q jα ·r+φ jα (rα )], (27)

so we conclude

S(E ) = h̄A(E )

eB
+ γ (R), (28)

with

γ (R) =
N∑

α=1

ηαφ jα (rα ). (29)

FIG. 3. Proposed reconstruction by bidirectional order in the
cuprates.

VI. RECONSTRUCTIONS IN THE CUPRATES

Let us apply these results to the Fermi surface reconstruc-
tions proposed for the cuprates. Consider reconstruction by a
bidirectional CDW [4,14] with Q1 = (Q, 0), Q2 = (0, Q), and
Q ≈ (1/3)(2π/a), indicated in Fig. 3. Then, in evaluating γ ,

j1 = j3 = 1, (30)

j2 = j4 = 2, (31)

η1 = η2 = −η3 = −η4 = −1, (32)

so

γ (R) = −[φ1(r1) − φ1(r3) + φ2(r2) − φ2(r4)] (33)

= −[	φ1(R) + 	φ2(R)], (34)
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FIG. 4. Proposed reconstruction by unidirectional order in
YBCO, with nematic distortion of the underlying Fermi surface.

with 	φ1(R) the phase difference in component 1 between
right and left scattering points, and 	φ2(R) the phase differ-
ence in component 2 between top and bottom.

Consider now reconstruction by a unidirectional CDW.
This proposal presupposes a substantial nematic distortion of
the underlying Fermi surface to obtain the requisite electron-
like pocket [7]. The resulting reconstruction is indicated in
Fig. 4. Since the topology of the reconstructed orbit is the
same as in the model Hamiltonian, γ (R) = 	φ(R) as before.

VII. BERRY PHASE APPROACH

Here we solve the problem using a fully semiclassical ap-
proach, accounting for the CDW as part of the band structure.
In this picture, the extra phase γ appears as a Berry phase.

We follow the general theory of Berry phases in solid-state
systems developed by Sundaram and Niu [15]. For the sake
of definiteness, consider the model Hamiltonian. Drawing on
insight from the scattering picture, we construct a wave packet
from the Bloch-like states,

|ψk(r)〉 = c1(k, r)|k〉 + c2(k, r)|k + Q〉, (35)

which diagonalize the projection of the local Hamiltonian near
r onto the span of {|k〉, |k + Q〉}. Explicitly, the vector of co-
efficients c = (c1, c2) satisfies Hc = Ec, where the effective
Hamiltonian is

H(r, k) =
(
E0(k) Ve−iφ(r)

Veiφ(r) E0(k + Q),

)
(36)

and E is the local band energy. In the uniform limit, the upper
band yields the reconstructed Fermi surface.

The band energy E is unaffected by CDW phase disorder,
so the leading order effect is entirely due to Berry phase terms.
These appear in the classical Lagrangian which governs the

evolution of r and k. Its calculation proceeds exactly as in
Ref. [15], except the cell periodic function is everywhere
replaced by c. This Lagrangian, along with further elaboration
on the Berry phase approach, are presented in Appendix B.

The Berry phase terms imply that the total action is now a
sum of h̄A(EF )/(eB) and a Berry phase γ , which we compute
here directly from the Berry connection. In Appendix B, γ is
obtained from the associated Berry curvature.

Let us parametrize the orbit by t ∈ [0, T ], where T is the
cyclotron period, and consider the total Berry connection,

A(t ) =
〈
c(r, k)

∣∣∣∣i d

dt

∣∣∣∣c(r, k)

〉
, (37)

where bra-ket notation involving c means the usual inner
product on C2. We are free to demand that c ≈ (1, 0) on the
right half of the Fermi surface and c ≈ (0, 1) on the left half of
the Fermi surface. In this partially fixed gauge, A(t ) vanishes
except at the left and right scattering points. Then the Berry
phase is

γ =
∫ T

0
dt A(t ) =

∫
IL

dt A(t ) +
∫

IR

dt A(t ), (38)

where IL/R are small time intervals about the left and right
scattering points.

Consider the integral over IR = [ti, t f ]. The boundary con-
ditions are c(ti ) ≈ (1, 0), c(t f ) ≈ (0, 1). In addition, the phase
is essentially constant over this interval, so we can substitute
φ(r) → φ(rR) in Eq. (36). As shown in Appendix C, this fixes
the value of the integral:∫

IR

dtA(t ) = φ(rR). (39)

Similarly, ∫
IL

dtA(t ) = −φ(rL ), (40)

so γ = 	φ, reproducing Eq. (26). More generally, either the
CDW or the underlying band structure may break inversion
symmetry. Then a Berry phase appears even in the uniform
limit, and γ as defined in Eq. (29) is the piece induced by
CDW disorder. Above, we neglected the modification to the
semiclassical trajectories; this is justified in Appendix D.

In a recent paper on semiclassical dynamics in quasicrys-
tals [16], Spurrier and Cooper have also obtained an expres-
sion for the Berry phase as a sum of Bragg scattering phase
shifts. In that context, a nonzero Berry phase appears because
the Bragg scattering points may be connected nontrivially in
momentum space—whereas here, it is a consequence of a
spatially varying CDW phase.

VIII. DINGLE FACTORS

In this section, we find the Dingle factor and Dingle field.
In a uniform system, the density of states is

ν(EF , B) = A′(EF )

(2π )2

∑
p

(−1)p exp[ipS(EF )]. (41)

045128-5



GANNOT, RAMSHAW, AND KIVELSON PHYSICAL REVIEW B 100, 045128 (2019)

In a disordered system, we should average this over all orbits,
so

ν(EF , B)

= A′(EF )

(2π )2

∑
p

(−1)pRD(p) exp

[
ip

(
2πF

B
+ θ (p)

)]
, (42)

where

RD(p) = |eipγ |, (43)

θ (p) = arg(eipγ ), (44)

and the bar denotes an average over different orbits.

A. Fundamental

Here we consider the fundamental, RD ≡ RD(p=1). In the
unidirectional case,

RD,1Q = |ei	φ| (45)

is the CDW correlation function evaluated at the distance
between left and right scattering points. Letting 2Rc denote
this distance:

RD,1Q ∼ e−2Rc/ξ . (46)

In the bidirectional case:

RD,2Q = |ei(	φ1+	φ2 )|. (47)

Assuming the two CDW components are independent, this
factors into a product of two correlation functions, so

RD,2Q ∼ e−2Rc/ξ × e−2Rc/ξ , (48)

∼ e−4Rc/ξ , (49)

where 2Rc is again the distance between left and right scatter-
ing points, or, equivalently, top and bottom scattering points.

In terms of the Dingle field, where RD = e−BD/B,

BD = 2nh̄kF

eξ
, (50)

where n = 1 for the unidirectional reconstruction, n = 2 for
the bidirectional reconstruction, and 2kF is the distance be-
tween scattering points in momentum space.

B. Higher harmonics

The result for the first harmonic depends only on the
correlation length, and not on the microscopic details of the
CDW—in particular, it does not matter whether the phase fluc-
tuates smoothly throughout the sample or if there is instead a
random array of sharp DCs.

The higher harmonics are, however, sensitive to this dis-
tinction. In the smoothly fluctuating case, RD(p) decreases
rapidly with p. For instance, if 	φ is Gaussian distributed,
then

RD(p) = exp(−2p2Rc/ξ ). (51)

Note that in contrast to what is expected for potential scatter-
ing [17], the exponent in the Dingle factor is quadratic in p,
not linear.

For a random DC array, however, certain harmonics are
completely unaffected by phase disorder. Consider, for the

sake of definiteness, a unidirectional reconstruction (in either
our model Hamiltonian or YBCO) with local wave vector
Q = (l/m)(2π/a), with l , m relatively prime positive integers.
Then the phase difference between any two points in the sam-
ple is 	φ = 2πn/m for some integer n. Therefore, RD(p) = 1
whenever p is an integer multiple of m. All other harmonics
are generically damped. As a consequence, higher harmonics
can be significantly stronger than the fundamental.

One way to understand this result is that after m periods all
electrons in the sample have gained the same phase modulo
2π . The signal may also be understood as a superposition of
conventional QO signals offset by integer multiples of 1/m
times the period, leading to multiple peaks per oscillation
period instead of dephasing. Below, we examine the real-
space Landau-level spectrum in the presence of DCs, showing
explicitly how different parts of the sample contribute to the
density of states.

IX. NUMERICS

In this section, we test (and confirm) the above predictions
by exact numeric experiments on our model Hamiltonian.

A. Numeric technique and setting up the model

We use a recursive Green’s function method, which al-
lows computing the density of states of 1D systems with
computational effort scaling linearly in length [14,18,19]. By
choosing the Landau gauge A = (0, Bx), and considering a
CDW that is perfectly correlated in the y direction, we can
preserve translation symmetry in the y direction. Therefore,
we can reduce the problem to independent 1D chains labeled
by canonical momentum py.

Explicitly, we start with

H =
∑

r

[−(c†
r+x̂cr + e−i2πBxc†

r+ŷcr + H.c.)

+ 2V cos[Qx + φ(x)]c†
r cr]. (52)

For this section, we use units where a = t = h/e = 1.
Introducing the operator c†

x,py
, which creates a state local-

ized in the x direction and with crystal momentum py in the y
direction,

H =
∑

py

∑
x

[ − (
c†

x+1,py
cx,py + H.c

) + (−2 cos[py + 2πBx]

+ 2V cos[Qx + φ(x)])c†
x,py

cx,py

]
. (53)

In Ref. [19], it is shown that for a uniform CDW, for
generic B the density of states is independent of py in the
thermodynamic limit. This is because the role of py is just
to specify the minima of the effective cosine potential in
Eq. (53), but the offset of the minima relative to the lattice
will drift throughout the sample even if we do not average
of py. For a disordered CDW, the density of states is still
independent of py, by self-averaging.

We generate the phase φ(x) of the CDW by computing a
1D random walk. To generate a smoothly varying phase, we
allow the increment at each step to be Gaussian distributed.
For a random DC array, we allow only a discrete jump at each
step. In each case, the resulting phase is smoothed out.
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FIG. 5. Numerically computed QOs in the density of states for
several values of ξ . Parameter values indicated in the main text.

B. Dingle field for smoothly varying phase

Here we present results for a smoothly varying phase; we
extract values of BD and compare them with the theoretical
predictions.

We set Q = 2π/3 and consider 2V = 0.175 and 2V =
0.11, values that compromise between maintaining well-
defined Bragg scattering points and avoiding magnetic break-
down. We compute the density of states at a fixed energy,
E = −0.22, as a function of B. To confirm that the density
of states is sufficiently insensitive to the absolute phase of the
CDW even in this commensurate case, we add a small linearly
varying phase and find a slight shift in the QO frequency, but
no damping.

For 2V = 0.175, results for CDW correlation length ξ =
1500, 700, 500, and 400 are shown in Fig. 5, together with
results for a uniform CDW. Note that we added a small
imaginary part to the energy to broaden out singularities. As
a result, the signal amplitude decreases with 1/B even for the
uniform CDW.

To extract the numerically observed Dingle field Bnum
D , we

Fourier transform over several 1/B windows, obtaining the
1/B dependence of the amplitude of the fundamental. The
amplitude at each field is normalized by the amplitude at the
same field for a uniform CDW, and the log of the result is
fit to a straight line. Comparison with the predicted Dingle
field [Eq. (50)] is shown in Table I. The results are in very
good agreement; the consistent underestimate for 2V = 0.175

TABLE I. Comparison of theoretically expected Dingle field
BD, and numerically observed Dingle field Bnum

D . Error bars are the
standard error of the least-squares fit.

Bnum
D × 104 Bnum

D × 104

ξ BD × 104 (2V = 0.175) (2V = 0.11)

1500 1.94 2.12 ± 0.02 1.93 ± 0.02
700 4.16 4.47 ± 0.04 4.14 ± 0.05
500 5.82 6.22 ± 0.03 5.81 ± 0.05
400 7.28 7.78 ± 0.04 7.33 ± 0.06

FIG. 6. Comparison of QOs for disordering via DCs and
smoothly varying phase, for ξ = 400 (top) and ξ = 100 (bottom).

reflects the relatively large CDW amplitude, which leads to
additional dephasing effects not captured by our theory.

C. Persistent oscillations for a sharp array of DCs

Here we present results for a random array of sharp DCs.
Still with Q = 2π/3, we generate a correlation length ξ by
an appropriate density of ±Q phase DCs. QOs for ξ = 400,
100 are shown in Fig. 6, where they are compared against a
CDW with the same correlation length but a smoothly varying
phase. For ξ = 400, the harmonic content for DCs is already
highly unusual; by ξ = 100, the oscillations have apparently
tripled in frequency while oscillations in the smoothly varying
case are undetectable. This is precisely what was predicted in
Sec. VIII B.

D. Real-space Landau-level structure near
a discommensuration

Here we demonstrate the real-space Landau-level struc-
ture near a DC. Consider a commensurate CDW with Q =
2π (l/m). Take a phase configuration φ(x) such that φ(x) = 0
for x < 0, and φ(x) = ±2π/m for x > 0—that is, a single,
(minimal) DC at x = 0. Then for all Landau levels with
guiding center Rx such that |Rx| > Rc γ = 0, but for the
remaining Landau levels with |Rx| < Rc, γ = ±2π/m. Aside
from the difference in γ , nearly every orbit is unaffected by
the DC. Individual guiding-center resolved energy levels are
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FIG. 7. Position-resolved density of states with a single DC at
x = 0, whose phase slips by +2π/3 (top) or −2π/3 (bottom) as x
increases. Red dashed lines mark ±Rc.

well defined, with quantization condition

h̄A(En)

eB
+ γ (R) = 2π

(
n + 1

2

)
, (54)

so Landau levels with |Rx| > Rc are unaffected by the DC,
but all Landau levels with |Rx| < Rc are shifted in energy by
∓h̄ωc/m.

Taking Q = 2π/3, we demonstrate this by computing the
position-resolved density of states for a single DC in Fig. 7.
The levels are shifted through ±1/3 of their spacing, with
the expected sign. Note that for a sharp DC, the spectrum
in the vicinity of the DC does not bend down to meet the
spectrum away from the DC; instead, density of states from
the shifted levels dies off while density of states from the
unshifted levels simultaneously picks up. This is because a
Landau level with guiding center Rx contributes density of
states for all x ∈ [Rx − Rc, Rx + Rc].

This striking Landau-level structure is a consequence of
the Berry phase being uniquely defined by the phase differ-
ence between the two scattering points; the effect should be
observable in scanning tunneling spectroscopy on a suitable
CDW system, similar to recent experiments which observe
defect-shifted Landau levels [20].

X. APPLICATION TO YBCO

Here we apply the present theoretical results to the case of
the QOs seen in YBa2Cu3Oy. It is a rational supposition, but
not one which is directly confirmed in experiment, that the
small Fermi surface areas apparent in the QOs reflect a Fermi
surface reconstructed by one or the other of the observed
CDW orders (phenomenological descriptions of these orders

may be found in Refs. [21–23]). However, given that the CDW
correlation lengths are at best comparable to the cyclotron
radius, it is worth asking whether the observed Dingle factors
are consistent with these correlation lengths. In this context,
we consider the Dingle factors computed above to represent
an upper bound on the QO amplitude—other forms of disorder
(in addition to that represented by the phase-disordering of the
CDW) will only reduce the amplitude of the QOs further.

We denote by Bexp
D the actual Dingle field observed in QO

experiments on YBa2Cu3Oy. Consistency requires

Bexp
D > BD, (55)

where CDW phase disorder alone would produce the Dingle
field

BD = 2nh̄kF

eξ
, (56)

where for unidirectional (bidirectional) order n = 1 (n = 2)
and ξ = ξ1Q (ξ = ξ2Q) is the relevant correlation length ex-
tracted from x-ray data. Note that since n = 1 in the unidirec-
tional case whereas n = 2 in the bidirectional case, we expect
more strongly damped QOs in the bidirectional case, even
before taking into account the difference in correlation length.

A. Evaluating BD

First, we rewrite the above in terms of the QO frequency F
as

BD = 2nα

ξ

√
2h̄F

e
, (57)

where α depends on the geometry of the reconstructed orbit,
and is defined by the relation

kF = α
√

A(E )/π, (58)

so for a circular Fermi surface, α = 1. For the diamondlike
orbits in Figs. 3 and 4, the value α ≈ 1.25 would be appro-
priate. However, since the precise shape of the reconstructed
Fermi surface is at present unknown, we opt for a face-value
analysis with α = 1.

For bidirectional order, Ref. [10] finds ξ2Q ≈ 100Å in y =
6.67, at 17 T and 2 K. For unidirectional order, Ref. [11] finds
ξ1Q ≈ 190Å in y = 6.60 and ξ1Q ≈ 310Å in y = 6.67, both at
≈17 T. With these correlation lengths, F ≈ 540T, and α = 1,
we find

BD,2Q ≈ 340 T y = 6.67, (59)

BD,1Q ≈
{

90 T y = 6.60

55 T y = 6.67.
(60)

Uncertainty in these values is due to uncertainty in α and
ambiguity in the way that ξ is extracted from the structure
factor; the references above define ξ as the inverse standard
deviation of a Gaussian fit.

B. Measured Dingle field

In Table II, we report experimental Dingle field measure-
ments in YBa2Cu3Oy for several dopings.
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TABLE II. Observed Dingle fields Bexp
D . The error bars are rep-

resent the uncertainty due to multiple oscillation frequencies. Data
from Refs. [24,25].

y p (doping) Bexp
D (T)

6.51 0.092 260 ± 25
6.59 0.110 110 ± 20
6.67 0.125 420 ± 40
6.75 0.135 460 ± 45
6.80 0.140 560 ± 55
6.86 0.152 750 ± 75

Except for y = 6.59, the Dingle field is extracted by fitting
the background-removed data to a Lifshitz-Kosevich (LK)
form. For y = 6.59—where the strongest oscillations are ob-
served down to the lowest fields—the presence of multiple
frequencies of comparable amplitude complicates the fit. In-
stead, we first divide out the known temperature-dependent
LK factor, and then scale the oscillations by a factor e+BD/B,
choosing BD so the amplitude of the signal is as constant
as possible over the relevant field range. This procedure is
presented, along with the raw data, in Fig. 8.

C. Consistency check

Consider first reconstruction via bidirectional order. Zero-
field measurements indicate ξ2Q does not depend strongly
on doping [27,28]; assuming this holds in field as well, we
compare all QO measurements against BD,2Q ≈ 340 T. While
the lower bound in Eq. (55) is satisfied by most dopings,
it is violated by Bexp

D = 110 T in y = 6.59. This violation is
quite severe, as the Dingle field enters the amplitude through
an exponent: The observed QO signal drops in amplitude by
a factor of 50 going from 70 T down to 20 T, whereas the
predicted drop assuming a bidirectional reconstruction is by a
factor of at least 2 × 105. We conclude that it is not easy to
reconcile the experimental observations with reconstruction
by the bidirectional CDW.

Consider now reconstruction by unidirectional order,
where we compare Bexp

D in y = 6.67 against BD,1Q in the same
doping, and Bexp

D in y = 6.59 against BD,1Q in y = 6.60. The
lower bound in Eq. (55) is satisfied in both cases, although it
comes close to saturation in y = 6.59. Reconstruction by the
unidirectional CDW is therefore at least marginally consis-
tent; the near saturation in y = 6.59 could indicate this doping
has very little disorder besides CDW phase disorder.

The above analysis relied on correlation lengths measured
at only 17 T, but pulsed-field measurements (which are less
accurate, but can access higher fields) indicate ξ2Q is roughly
constant above 15 T, whereas ξ1Q grows [21,29]. Therefore,
considering the field dependence of ξ does not change the
conclusions above.

D. Interpreting the main peak as a harmonic

Soon after QOs were discovered in YBCO, it was pointed
out that three primary frequencies are apparent in the Fourier
transform of the oscillations [30]. The main frequency is

FIG. 8. Raw (top) and background-removed (bottom) data for
y = 6.59. We extract BD from the 4 K data, where the second har-
monic is suppressed by temperature. We divide out the factor RT =
2π2kBT

h̄ωc
/ sinh( 2π2kBT

h̄ωc
), where the cyclotron frequency ωc = eB/m� is

known from previous measurements [26]. The data is then scaled by
e+BD/B, with BD chosen so that the amplitude is field-independent.

approximately 540 T, with two side lobes situated at ap-
proximately ±90 T. Measurements over a broader field range
reveal a second set of side lobes, situated a further ±90 T
from the first two side lobes [9]. Combined with the reported
solitary frequency at 95 ± 10 T [31], this presents the unusual
scenario of six oscillation frequencies that are all multiples of
approximately 90 T.

Our result that certain harmonics of the QOs can be un-
damped by phase disorder raises the interesting possibility
that all observed frequencies are harmonics of a single pocket
with area ≈90 T. As shown in Sec. VIII B, a random array
of DCs in a locally period-3 CDW would leave the third
and sixth harmonics undamped. Indeed, the sixth harmonic—
540 T—is the dominant frequency observed. The lack of a
significant third harmonic could be explained by consider-
ing the Zeeman-splitting factor of QOs, or the inclusion of
other damping coefficients, including those due to regular
disorder and temperature. It is therefore not inconceivable
that the complex but regularly spaced spectral structure in
the QO Fourier transform, and the dominance of the 540 T
frequency, is due to the special damping factor from random
DCs in a locally period-3 CDW. Indeed, random DCs have
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been directly observed in the cuprate Bi2Sr2CaCu2O8+x us-
ing scanning tunneling microscopy [32], making it plausi-
ble that the CDW in YBCO has the requisite microscopic
character.

One appealing corollary of a small fundamental pocket
size in YBa2Cu3O6.59 pertains to the heat capacity. The 95 T
pocket reported by Doiron-Leyraud et al. [31] has a cyclotron
mass of only m� = 0.45 ± 0.1 me—not too far from 1/6 of
the mass measured in YBa2Cu3O6.59 (m�/6 ≈ 0.3 me [26]).
Assuming a single pocket per copper oxide plane, with two
planes per unit cell in YBCO, the electronic contribution to the
heat capacity would be γ = 0.9 mJ/mol K2. As open sheets
would further contribute to the heat capacity but would not be
seen in QOs, this is consistent with the experimental value of
≈4 mJ/mol K2 observed in the normal state of YBa2Cu3O6.59

in high magnetic fields [33,34].

XI. SUMMARY

In this paper, we investigated whether the correlation
lengths of the unidirectional and bidirectional CDW in YBCO
are long enough to account for the observed Fermi surface
reconstruction. To address this question, we considered more
generally the problem of QOs in a CDW with finite correlation
length. We found that a spatially varying CDW phase induces
a Berry phase, Eq. (29), which depends on the local phase of
the CDW at discrete Bragg scattering points along a cyclotron
orbit.

From this, we derived an explicit expression for an effec-
tive Dingle field, Eq. (50), which when combined with the
correlation lengths measured in x-ray scattering experiments
sets a lower bound, Eqs. (59) and (60), on the experimentally
observed Dingle field. Comparing with Table II, we found that
the lower bound is typically respected by either CDW—except
in YBa2Cu3O6.59, where the lower bound is violated assuming
the bidirectional CDW is responsible for the reconstruction,
but just satisfied assuming the unidirectional CDW is respon-
sible.

We also considered the Landau-level spectrum near a DC
in a locally period-m CDW. We found that levels within
roughly Rc of the DC are uniformly shifted in energy by
±h̄ωc/m, as demonstrated in Fig. (7). This effect is consistent
with the surprising prediction that for a CDW disordered
by a random array of such DCs, every mth QO harmonic
would be unaffected in amplitude. Combined with the obser-
vation that all the QO frequencies measured in YBCO are
approximately multiples of 90 T, this raises the possibility
that the dominant 540 T peak could be a sixth harmonic of
a 90 T fundamental—its dominance explained by the unusual
damping factor associated with locally commensurate CDW
order.

Though this interesting reinterpretation of the data de-
serves further investigation, our primary conclusion regarding
YBCO remains as follows: The correlation lengths reported
to date for the bidirectional CDW are, prima facie, too short
to account for the observed Fermi surface reconstruction,
whereas the correlation lengths for the unidirectional CDW
are just long enough.
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APPENDIX A: MAGNETIC BREAKDOWN

Here we derive Eq. (17). At an nth order scattering point,
the CDW opens a gap 	 between E0(k) and E0(k ± nQ). Mag-
netic breakdown near the avoided crossing may be neglected
as long as

eB

h̄
�

(
	

vF

)2

(A1)

is satisfied [12]. Conversely, there is nearly full magnetic
breakdown if the reverse inequality is satisfied. Moreover,
	 ∼ V (V/EF )n−1 at an nth order scattering point, so it is
possible to have negligible magnetic breakdown at nth and
lower-order scattering points but nearly full magnetic break-
down at (n + 1)th and higher-order scattering points if(

V

vF

)2(V

t

)2n

� eB

h̄
�

(
V

vF

)2(V

t

)2n−2

. (A2)

Similar conditions were invoked in Refs. [16,19]. Choosing
the case n = 1 above yields Eq. (17).

APPENDIX B: DETAILS OF THE SEMICLASSICAL
FORMALISM

Here we discuss the details of the semiclassical formalism
as applied to our model Hamiltonian. We work in units where
h̄ = 1.

1. General formalism

The Lagrangian which generates the EOM Eq. (35) is [15]

L = −E + ṙ · (k − eA) + ṙ · Ar + k̇ · Ak . (B1)

Strictly speaking, the energy E includes gradient corrections
and the wave-packet Zeeman energy. However, the former
produces effects that are parametrically small in V/t , while
the latter vanishes in our model Hamiltonian, so these terms
will be ignored; that is, we take E as the band energy. The
Berry connections are

Ar = 〈c|i∇r|c〉, (B2)

Ak = 〈c|i∇k|c〉. (B3)

The EOM are

ṙ = ∇kE − (�kr ṙ + �kk k̇), (B4)

k̇ = −eṙ × B + (�rr ṙ + �rk k̇), (B5)

where the Berry curvature tensors are, for example,

(�kr )ab = ∂ (Ar )b

∂ka
− ∂ (Ak )b

∂ra
. (B6)
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Since the energy E (k) is conserved, the k-space orbits co-
incide with the Fermi surface as in the absence of CDW
disorder.

2. Berry curvatures

Start with the eigenstate

c =

⎛
⎜⎝e−iφ(r)/2

√
1
2

(
1 + 	E0

	E
)

eiφ(r)/2
√

1
2

(
1 − 	E0

	E
)

⎞
⎟⎠ (B7)

for the upper band of H, where

	E0(k) = E0(k) − E0(k + Q) (B8)

and 	E is the difference in energy between the upper and
lower bands. Then the Berry curvatures may be directly
evaluated:

�rr = 0, (B9)

�kk = 0, (B10)

(�kr )ab = 1

2

[
∂

∂ka

(
	E0

	E

)]
∂φ

∂rb
. (B11)

This simplifies in the strict V/t → 0 limit, where

(�kr )ab = δ(kx − k̄x )

[
δax

∂φ

∂rb

]
, (B12)

and

k̄x = π

a
− Q

2
(B13)

is the vertical line 	E0 = 0. Small but finite V/t broadens the
δ function slightly, rounding out singularities or discontinu-
ities that appear in the strict V/t → 0 limit.

3. Effect on classical trajectories

In the presence of disorder, the k-space orbit still coincides
with the Fermi surface, but Eq. (10) is replaced by

ṙa = 1

eB
εab(k̇b + (�kr )cbk̇c), (B14)

which reduces in the V/t → 0 limit to

ṙa = 1

eB
εab

(
k̇b + ∂φ

∂rb

d

dt
θ (kx − k̄x )

)
. (B15)

This equation describes the displacement of the scattering
points in the case where the CDW phase varies smoothly
throughout. As a simple example, consider φ = (δQ)x, δQ �
Q. This describes a uniform CDW with wavevector Q + δQ,
so we expect that the top leg of the real-space orbit is displaced
upward by δQ/eB relative to constant φ. Integrating the
equation above, this is indeed the case.

Using Eq. (B15), we also find that after a single period, the
guiding center drifts by

	Ra = − 1

eB
εab

∂γ

∂Rb
. (B16)

This is perpendicular to ∂γ /∂Ra, so, on average, γ is con-
served and R follows lines of constant γ . This average behav-
ior may also be obtained by regarding the local Landau level
energy

En(R) = −ωc
γ (R)

2π
+ constant (B17)

as a classical Hamiltonian, where Rx and Ry satisfy the Pois-
son bracket {Rx, Ry} = 1/eB.

4. Berry phase

In addition to possibly perturbing the classical trajectories,
the Berry curvature gives to a Berry phase

γ =
∫

Ar · dr + Ak · dk. (B18)

Using the generalized stokes theorem, this can be written as

γ =
∫

R
d2r eB Tr(�kr ), (B19)

where R is the interior of the real-space orbit, and the argu-
ment k of �kr is expressed in terms r using Eq. (11). Written
in this way, we may think of the electron as feeling a spatially
fluctuating magnetic field b = eB Tr(�kr ) that depends on the
guiding center of the orbit under consideration, but not on its
energy. In the strict V/t → 0 limit,

b = δ(y − ȳ)
∂φ

∂x
, (B20)

where ȳ is the horizontal reflection axis of the orbit. In this
limit, we directly obtain γ = 	φ.

In this loose analogy, the case of an orbit crossing a DC
corresponds to inserting a flux tube in the center of the orbit.
As in the Aharanov-Bohm effect, this leaves the semiclassical
dynamics unaffected, but modifies the action and the energy
spectrum.

APPENDIX C: BERRY PHASE ACROSS SCATTERING
POINT

Here we evaluate the Berry phase picked up after passing
through a scattering point. Let us consider the interval IR =
[ti, t f ] in Sec. VII. To reiterate, the boundary conditions are
c(ti ) ≈ (1, 0), c(t f ) ≈ (0, 1). The simplest eigenstate for the
upper band of H in the vicinity of the scattering point is
obtained by substituting φ(r) → φ(rR) in Eq. (B7). This has
zero Berry connection, but the wrong boundary condition,
c(ti ) ≈ (e−iφ(rR )/2, 0), and c(t f ) ≈ (0, eiφ(rR )/2) at the end. To
fix this, multiply by e−iα(t ), where α is any function satisfying
α(ti ) = −φ(rR)/2 and α(t f ) = φ(rR)/2 at late times. This
gauge transformation then changes the Berry phase to α(t f ) −
α(ti ) = φ(rR).

APPENDIX D: PERTURBED ACTION AND OPEN ORBITS

In the main text, we assumed that we could neglect changes
in the semiclassical trajectory produced by a spatially varying
CDW phase, and thus focused entirely on the change in the
Berry phase. This assumption is trivially justified in the case
of an array of sharp DCs, where (in the appropriate limit
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of a weak CDW potential) the semiclassical trajectory is
unaffected by disorder.

In the case where the CDW phase varies smoothly, how-
ever, the trajectories are slightly modified: The scattering
points are displaced by a distance of order l2

B ∂φ/∂r, where
lB = √

h̄/eB is the magnetic length. Moreover, the modified
trajectories drift, so, strictly speaking, there is no closed orbit
to quantize. Nevertheless, the effect of these modifications
on the quantized energy levels is negligible, as we now
demonstrate.

First, to start with closed orbits, we define a slightly
modified reference Hamiltonian,

H̃ = H + eE · r, (D1)

where E is chosen so near some point r0, the resulting E × B
drift cancels the local drift due to CDW disorder. This requires

E ∼
(

ωcl2
B

∂φ

∂r

)
B. (D2)

Since the family of orbits of H̃ with guiding centers near
r0 is closed, we can obtain the corresponding energy levels
semiclassically.

Adding an electric field to Eq. (B1), the classical wave
packet Lagrangian associated with H̃ is

L̃ = −E + ṙ · (k − eA) + [−eE · r + ṙ · Ar + k̇ · Ak].

(D3)

Assume we have picked coordinates so r0 = 0 (that is, the
electric field is a small perturbation to the orbits under
consideration). Then the terms in the brackets may be

accounted for using semiclassical perturbation theory. Specif-
ically, if a Lagrangian is perturbed, L → L + δL, then the
classical orbits are perturbed such that the total change in
action is

δS =
∫ T

0
dt δL. (D4)

A derivation for the case without Berry phases can be found
in Ref. [35]. For the problem at hand,

δS = −eE · 〈r〉T + γ , (D5)

where angled brackets denote the time average of r.
This gives the obvious shift in the quantization condition

for H̃ . Now, however, the energies of the corresponding states
in H must be corrected perturbatively in the strength of
the electric field. To first order, its expectation value in an
eigenstate of H̃ yields −eE · 〈r〉, canceling the shift in the
energy levels due to the first term in Eq. (D5). This leaves
behind the effect of the Berry phase γ , plus corrections δE
which appear in higher order perturbation theory. Since the
energy gap is h̄ωc and the matrix elements to higher/lower
Landau levels scale as eElB,

δE

h̄ωc
=

(
eElB
h̄ωc

)2

(D6)

=
(

lB
∂φ

∂r

)2

� 1, (D7)

so, under the assumption that the phase disorder is short-range
correlated, to excellent approximation the energy spectrum
can be obtained by simply shifting each orbit’s action by γ .
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