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Photoinduced electron-electron pairing in the extended Falicov-Kimball model
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By employing the time-dependent exact diagonalization method, we investigate the photoexcited states of the
excitonic insulator in the extended Falicov-Kimball model (EFKM). We here show that the pulse irradiation
can induce the interband electron-electron pair correlation in the photoexcited states, while the excitonic
electron-hole pair correlation in the initial ground state is strongly suppressed. We also show that the photoexcited
states contain the eigenstates of the EFKM with a finite number of interband electron-electron pairs, which are
responsible for the enhancement of the electron-electron pair correlation. The mechanism found here is due to
the presence of the internal SU(2) pairing structure in the EFKM and thus it is essentially the same as that for the
photoinduced η pairing in the repulsive Hubbard model reported recently [T. Kaneko et al., Phys. Rev. Lett. 122,
077002 (2019)]. This also explains why the nonlinear optical response is effective to induce the electron-electron
pairs in the photoexcited states of the EFKM. Furthermore, we show that, unlike the η pairing in the Hubbard
model, the internal SU(2) structure is preserved even for a nonbipartite lattice when the EFKM has the direct-type
band structure, in which the pulse irradiation can induce the electron-electron pair correlation with momentum
q = 0 in the photoexcited states. We also discuss briefly the effect of a perturbation that breaks the internal SU(2)
structure.
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I. INTRODUCTION

Physics of the excitonic order and excitonic insulator [1–3]
has attracted renewed attention [4–6], triggered by recent dis-
coveries of a number of candidate materials. The excitonic or-
der is described as a quantum condensed state of electron-hole
pairs (or excitons) via interband Coulomb interactions [1–3],
and the insulator realized by the excitonic order or strong
excitonic correlation is called the excitonic insulator. As the
promising candidates among transition-metal compounds, the
possible realization of spin-singlet excitonic phase has been
suggested in the transition-metal chalcogenides 1T -TiSe2

[7–12] and Ta2NiSe5 [13–18].
Recently, the pump-probe measurements are applied to

these candidate materials [19–29], and the nonequilibrium dy-
namics of the excitonic insulators induced by laser pulse have
also been investigated theoretically [30–33]. In 1T -TiSe2,
the pump-probe measurements have been used to extract
the excitonic contribution from the electron-phonon coupled
charge density wave state [19–24]. In Ta2NiSe5, the pump
fluence dependent gap narrowing and opening [25], coherent
order parameter oscillations [27,28], and insulator-to-metal
transition [29] have been observed as indications of an ex-
citonic order. Concurrently with the experiments, the theories
for the photoinduced dynamics of the excitonic insulator have
been developed by using the Hartree-Fock and GW approx-
imations [30–33]. However, since these theoretical studies
employed the approximations, the numerically exact analysis
based on unbiased methods is desirable in order to provide
new insight for the photoinduced dynamics of the excitonic
insulator.

Here, in this paper, we employ the time-dependent exact
diagonalization method to investigate the pulse excited states
of the extended Falicov-Kimball model (EFKM), which is the
simplest spinless model for describing the excitonic insulator
[34–40]. In particular, we demonstrate that the interband
electron-electron pair correlation can be photoinduced in the
excitonic insulator of the EFKM, in analogy with the photoin-
duced η pairing in the Hubbard model, where the pair density
wave like correlation is induced by the pulse irradiation in
the Mott insulator [41]. By decomposing the photoexcited
states into the eigenstates of the EFKM, we show that the
photoexcited states have a finite weight of the eigenstates with
a finite number of electron-electron pairs, thus enhancing the
electron-electron pair correlation in the photoexcited states.
The mechanism found here is due to the presence of the
internal SU(2) pairing structure in the EFKM, which is in
principle the same as that for the photoinduced η pairing in the
Hubbard model [41]. Furthermore, we show that, in contrast
to the η pairing in the Hubbard model, this internal SU(2)
structure is preserved even for a nonbipartite lattice when the
EFKM has the direct-type electron and hole band structure, in
which the electron-electron pair correlation with momentum
q = 0 can be induced by the pulse irradiation.

The rest of this paper is organized as follows. In Sec. II, we
introduce the EFKM and discuss the internal SU(2) structure
of the model and the relation to the Hubbard models. In
Sec. III, we briefly describe the numerical method to calculate
the dynamics of the time-dependent Hamiltonian. In Sec. IV,
we provide the numerical results for the one-dimensional (1D)
chain and the two-dimensional (2D) square and triangular
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lattices. The paper is concluded in Sec. V. The photoinduced
interband η pairing is discussed for the EFKM with the
indirect-gap-type band structure in Appendix.

II. MODEL

A. Extended Falicov-Kimball model (EFKM)

To study the effects of photoexcitation in an excitonic
insulator, we consider the EFKM at half filling. The model
is defined by the following Hamiltonian:

Ĥ = −
∑
〈i, j〉

∑
α=1,2

t (α)
h (ĉ†

i,α ĉ j,α + H.c.)

+ D

2

L∑
j=1

(n̂ j,2 − n̂ j,1) + U
L∑

j=1

n̂ j,1n̂ j,2, (1)

where ĉ j,α (ĉ†
j,α) is the annihilation (creation) operator of an

electron at site j with orbital α (= 1, 2), and n̂ j,α = ĉ†
j,α ĉ j,α .

The sum indicated by 〈i, j〉 runs over all pairs of nearest-
neighbor sites i and j with the hopping parameter t (α)

h that
depends on the orbital. D (>0) is the energy level splitting
between the two orbitals and U (>0) is the interband repulsive
interaction, which gives rise to the strong electron-hole pair
(i.e., exciton) correlation. L is the number of lattice sites, and
Nα is the total number of electrons for each orbital α (=1, 2).

The sum of the first and second terms of Eq. (1) may be
written in momentum (k) space as

Ĥ0 =
∑
k,α

εα (k)ĉ†
k,α

ĉk,α (2)

with

ε1(k) = −2t (1)
h

∑
τ

cos kτ − D

2
(3)

and

ε2(k) = −2t (2)
h

∑
τ

cos kτ + D

2
, (4)

where kτ = k · aτ and aτ is the vector between the nearest-
neighbor sites i and j. Here, we implicitly assume that the
hoppings are finite between sites connected through the prim-
itive translation vectors and the unit cell contains only a single
site. Figure 1(a) shows a schematic band structure of the
EFKM with t (1)

h · t (2)
h < 0 and U = 0, which is a direct-gap-

type semimetal [42]. At half filling, i.e., N1 + N2 = L, the

FIG. 1. Schematic band structures of (a) a semimetal (U = 0)
and (b) an excitonic insulator in the EFKM with t (1)

h · t (2)
h < 0.

ground state of the EFKM for large U is an insulator [see
Fig. 1(b)] with the strong excitonic correlation [18]. Note
that, when t (1)

h = t (2)
h , the EFKM is essentially equivalent to

the Hubbard model. Therefore, as in the case of the Hubbard
model, the EFKM with t (1)

h = t (2)
h has the internal SU(2)

structure defined by the η-pairing operators [43–45]. Below,
we will show that the EFKM with t (1)

h = −t (2)
h displays the dif-

ferent internal SU(2) structure defined by interband electron-
electron pairing operators, which we refer to as �-pairing
operators. Most importantly, this internal SU(2) structure is
realized even for nonbipartite lattices and therefore it is not
simply obtained by a local gauge transformation from the
Hubbard model (see Sec. II D 1).

B. Internal SU(2) structure in EFKM

In order to consider the interband electron-electron pairing
in the EFKM, let us first introduce the following operators:

�̂+
j = ĉ†

j,2ĉ†
j,1, �̂−

j = ĉ j,1ĉ j,2, (5)

and

�̂z
j = 1

2 (n̂ j,1 + n̂ j,2 − 1). (6)

We can easily show that these operators satisfy the SU(2)
commutation relations, i.e.,

[�̂+
j , �̂−

j ] = 2�̂z
j, (7)

[�̂z
j, �̂

±
j ] = ±�̂±

j . (8)

Similarly, we introduce the total �̂ operators as

�̂+ =
∑

j

ĉ†
j,2ĉ†

j,1 =
∑

k

ĉ†
−k,2ĉ†

k,1, (9)

�̂− =
∑

j

ĉ j,1ĉ j,2 =
∑

k

ĉk,1ĉ−k,2, (10)

and

�̂z = 1

2

∑
j

(n̂ j,1 + n̂ j,2 − 1), (11)

which also satisfy the SU(2) commutation relations, i.e.,

[�̂+, �̂−] = 2�̂z, [�̂z, �̂±] = ±�̂±, (12)

and are referred to as �-pairing operators. Defining the total
�-pairing operator as

�̂2 = 1
2 (�̂+�̂− + �̂−�̂+) + �̂2

z , (13)

we can also easily show that

[�̂2, �̂z] = 0. (14)

The essential property of the �-pairing operators is

[Ĥ0, �̂
+] =

∑
k

[ε1(k) + ε2(−k)]ĉ†
−k,2ĉ†

k,1

= −2
(
t (1)
h + t (2)

h

)∑
τ,k

cos(kτ ) ĉ†
−k,2ĉ†

k,1 (15)

and therefore [Ĥ0, �̂
+] = 0 when t (1)

h = −t (2)
h . A similar re-

lation holds for �̂− and thus [Ĥ0, �̂
±] = 0 when t (1)

h = −t (2)
h .
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The commutation relation for the third term of Eq (1), ĤU =
U

∑
j n̂ j,1n̂ j,2, is given by [ĤU , �̂±] = ±U �̂±. Hence, we

have the relation

[Ĥ, �̂±] = ±U �̂± (16)

for the EFKM with t (1)
h = −t (2)

h . Using this commutation
relation and the definition of �̂z in Eq. (11), we can show that
Ĥ commutes with �̂2 and �̂z, i.e.,

[Ĥ, �̂2] = [Ĥ, �̂z] = 0, (17)

when t (1)
h = −t (2)

h . In this paper, we refer to a model as
preserving the internal SU(2) structure with respect to the
�-pairing operators, if the model described by Hamiltonian
Ĥ satisfies the commutation relations given in Eq. (17) with
the �-pairing operators that themselves satisfy the SU(2)
commutation relations in Eq. (12) [46].

Equations (14) and (17) imply that any eigenstate of
Ĥ is also the eigenstate of �̂2 and �̂z with eigenvalues
�(� + 1) and �z, respectively [47]. We denote this eigen-
state as |�,�z〉. Assuming that N1 � N2 and L − N1 + N2

is even, |�,�z〉 can take � = 0, 1, 2, · · · , (L − N1 + N2)/2
and �z = −�,−� + 1, · · · ,� − 1,�. Note that �z = 0 at
half filling with N1 + N2 = L. The state |�,�z = −�〉 is the
lowest weight state (LWS) that satisfies �̂−|�,�z = −�〉 =
0 [44,45]. The other eigenstates with � can be generated
from the LWS by applying �̂+. For example, the eigenstate
with finite � (>0) at half filling �z = 0 is given as |�,�z =
0〉 ∝ (�̂+)�|�,�z = −�〉, indicating that a �-pairing state
is generated from a hole-doped state (i.e., �z < 0). Note also
that, because of Eq. (16), the energy is increased (decreased)
by U every time that �̂+ (�̂−) is applied to the eigenstate
of Ĥ.

Similarly, the EFKM with t (1)
h = t (2)

h (i.e., the indirect-
gap-type band structure) has the internal SU(2) structure
with respect to the interband η-pairing operators defined
as η̂+ = ∑

j (−1) j ĉ†
j,2ĉ†

j,1, η̂− = ∑
j (−1) j ĉ j,1ĉ j,2, and η̂z =

1
2

∑
j (n̂ j,1 + n̂ j,2 − 1). The details are discussed in Ap-

pendix A.

C. External field

The time-dependent external field is introduced in the
hopping term of Eq. (1) via the Peierls phase as

t (α)
h ĉ†

i,α ĉ j,α → t (α)
h e−iA(t )·(Ri−R j )ĉ†

i,α ĉ j,α, (18)

where R j is the position of site j and A(t ) = A(t )dA is the
time-dependent vector potential along the direction dA, thus
corresponding to applying the time-dependent electric field
along dA. The velocity of light c, elementary charge e, Planck
constant h̄, and the lattice constant are all set to 1. In this paper,
we consider a pump pulse given as

A(t ) = A0e−(t−t0 )2/(2σ 2
p ) cos[ωp(t − t0)] (19)

with the amplitude A0 and frequency ωp. This pulse has a
width σp and is centered at time t0 (>0) [48–52].

D. Relation to the Hubbard models

It is well known that the EFKM with t (1)
h = −t (2)

h can be
transformed to the repulsive and attractive Hubbard models

in the pseudospin representation [34]. Here, we summarize
the relation among the EFKM with t (1)

h = −t (2)
h , the repulsive

Hubbard model, and the attractive Hubbard model, to empha-
size the difference of the condition under which the internal
SU(2) structure is preserved.

1. Repulsive Hubbard model

The EFKM with t (2)
h = −t (1)

h = th can be transformed into
the repulsive Hubbard model by the following gauge transfor-
mation:

ĉ j,1 → (−1) j d̂ j,↑

ĉ j,2 → d̂ j,↓
. (20)

Indeed, the EFKM Ĥ is transformed as

Ĥ → ĤR = −th
∑

〈i, j〉,σ
(d̂†

i,σ d̂ j,σ + H.c.)

− D

2

∑
j

(n̂ j,↑ − n̂ j,↓) + U
∑

j

n̂ j,↑n̂ j,↓ (21)

provided that the hoppings are finite between sites on different
sublattices. Here, n̂ j,σ = d̂†

j,σ d̂ j,σ and σ =↑,↓. ĤR is the re-
pulsive Hubbard model in the presence of a Zeeman coupling
with a magnetic field D.

Under the transformation in Eq. (20), the excitonic
(electron-hole) pair operator is transformed as

ĉ†
j,2ĉ j,1 → (−1) j d̂†

j,↓d̂ j,↑, (22)

thus corresponding to the antiferromagnetic operator in the
Hubbard model ĤR. The local �-pairing operators are trans-
formed as

�̂+
j = ĉ†

j,2ĉ†
j,1 → (−1) j d̂†

j,↓d̂†
j,↑

�̂z
j = 1

2 (n̂ j,1 + n̂ j,2 − 1) → 1
2 (n̂ j,↑ + n̂ j,↓ − 1), (23)

which correspond to the η-pairing operators in the Hubbard
model ĤR, and therefore the total �-pairing operators, �̂±
and �̂z, are transformed to the total η-pairing operators in the
Hubbard model ĤR when the model is defined on bipartite
lattices [43–45].

It is now clear that the internal SU(2) structure of the
EFKM with t (1)

h = −t (2)
h in terms of the �-pairing operators

corresponds to that of the Hubbard model with respect to the
η-pairing operators. Here, there are two important remarks.
First, this correspondence is true only when the model is
defined on bipartite lattices. Second, the bipartite condition
for lattices (and thus L being necessarily even) is required to
show the internal SU(2) structure of the repulsive Hubbard
model in terms of the η-pairing operators [43–45], whereas
this condition is not assumed to show the internal SU(2)
structure of the EFKM with t (1)

h = −t (2)
h . Therefore, in this

sense, the model space preserving the internal SU(2) structure
is larger for the EFKM than the repulsive Hubbard model.

The same transformation in Eq. (20) can transform
the hopping term in the presence of the Peierls phase

045121-3



FUJIUCHI, KANEKO, OHTA, AND YUNOKI PHYSICAL REVIEW B 100, 045121 (2019)

in Eq. (18) as ∑
α

t (α)
h e−iA(t )·(Ri−R j )ĉ†

i,α ĉ j,α

→ th
∑

σ

e−iA(t )·(Ri−R j )d̂†
i,σ d̂ j,σ , (24)

which is exactly the hopping term with the Peierls phase in the
Hubbard model. Note that here the hoppings are assumed to
be finite only between sites on different sublattices. Therefore,
even the photoinduced dynamics of the EFKM with t (1)

h =
−t (2)

h is equivalent to the repulsive Hubbard model when
the lattice has a bipartite structure. Hence, we expect that
� pairing is photoinduced in the excitonic insulator of the
EFKM, which corresponds to the photoinduced η pairing in
the Mott insulator of the Hubbard model found in Ref. [41].

2. Attractive Hubbard model

It is also instructive to consider the correspondence be-
tween the EFKM and the attractive Hubbard model. Since the
repulsive Hubbard model and the attractive Hubbard model
are mutually transformed via the so-called Shiba transforma-
tion [45,53], it is obvious that the EFKM with t (2)

h = −t (1)
h =

th can also be transformed into the attractive Hubbard model.
For example, the following transformation

ĉ j,1 → d̂†
j,↑

ĉ j,2 → d̂ j,↓
(25)

can transform the EFKM Ĥ as

Ĥ → ĤA = −th
∑

〈i, j〉,σ
(d̂†

i,σ d̂ j,σ + H.c.)

+ D

2

∑
j

(n̂ j,↑ + n̂ j,↓ − 1)

−U
∑

j

n̂ j,↑n̂ j,↓ + U
∑

j

n̂ j,↓. (26)

We should emphasize that here we do not assume the sub-
lattice condition necessary for the transformation from the
EFKM to the repulsive Hubbard model in Eq. (21).

The same transformation transforms the excitonic pair
operator as

ĉ†
j,2ĉ j,1 → d̂†

j,↓d̂†
j,↑, (27)

which is the onsite superconducting pair operator in the
attractive Hubbard model ĤA. The local �-pairing operators
are transformed as

�̂+
j = ĉ†

j,2ĉ†
j,1 → d̂†

j,↓d̂ j,↑

�̂z
j = 1

2 (n̂ j,1 + n̂ j,2 − 1) → − 1
2 (n̂ j,↑ − n̂ j,↓), (28)

corresponding to the spin operators in the attractive Hubbard
model ĤA, and therefore the total �-pairing operators, �̂±
and �̂z, are transformed to the total spin operators in the
attractive Hubbard model ĤA. The internal SU(2) structure
of the EFKM with respect to the �-pairing operators thus
corresponds to that of the attractive Hubbard model with
respect to the spin operators. Note that these correspondences
do not require a bipartite lattice structure.

However, the photoexcited dynamics of the EFKM with
t (1)
h = −t (2)

h is different from those of the attractive Hubbard
model. This is simply because the transformation in Eq. (25)
transforms the hopping term with the Peierls phase in Eq. (18)
as∑

α

t (α)
h e−iA(t )·(Ri−R j )ĉ†

i,α ĉ j,α

→ the+iA(t )·(Ri−R j )d̂†
i,↑d̂ j,↑ + the−iA(t )·(Ri−R j )d̂†

i,↓d̂ j,↓, (29)

which is different from the hopping term with the Peierls
phase in the attractive Hubbard model ĤA. The difference of
the photoexcited dynamics has been discussed in the context
of the repulsive and attractive Hubbard models [54].

III. METHOD

In the presence of the external field A(t ), the Hamiltonian
becomes time dependent, Ĥ → Ĥ(t ). To evaluate the state
|	(t )〉 under the time-dependent Hamiltonian Ĥ(t ), we solve
the time-dependent Schrödinger equation numerically with
the initial condition |	(t = 0)〉 = |ψ0〉, where |ψ0〉 is the
ground state of Ĥ. We employ the time-dependent exact-
diagonalization (ED) method based on the Lanczos algo-
rithm [55,56]. In this method, the time evolution with a short
time step δt is calculated as

|	(t + δt )〉 � e−iĤ(t )δt |	(t )〉

�
ML∑
�=1

e−iξ�δt |ψ̃�〉 〈ψ̃�|	(t )〉 , (30)

where ξ� and |ψ̃�〉 are eigenenergies and eigenvectors of Ĥ(t ),
respectively, in the corresponding Krylov subspace generated
by ML Lanczos iterations [51,55,56]. We use a finite-size
cluster of L (even) sites with periodic boundary conditions
(PBC). We adopt δt = 0.01/th and ML = 15 for the time
evolution, which provides results with an almost machine-
precision accuracy.

In order to detect the photoinduced � pairing, we calculate
the time evolution of the onsite electron-electron pair correla-
tion function defined as

P( j, t ) = 1

L

∑
i

〈	(t )| (�̂+
i+ j�̂

−
i + H.c.) |	(t )〉 (31)

and the corresponding structure factor

P(q, t ) =
∑

j

eiq·R j P( j, t ). (32)

Notice that P( j, t ) at j = 0 is proportional to the double
occupancy nd (t ), i.e.,

P( j =0, t ) = 2

L

∑
i

〈	(t )| n̂i,1n̂i,2 |	(t )〉 = 2nd (t ). (33)

Because the ground state of the EFKM has a strong electron-
hole pairing correlation, we also calculate the excitonic corre-
lation function defined as

NX ( j, t ) = 1

L

∑
i

〈	(t )| (b̂†
i+ j b̂i + H.c.) |	(t )〉 (34)

045121-4



PHOTOINDUCED ELECTRON-ELECTRON PAIRING IN … PHYSICAL REVIEW B 100, 045121 (2019)

and the structure factor

NX (q, t ) =
∑

j

eiq·R j NX ( j, t ), (35)

where b†
j = c†

j,2c j,1 is the creation operator of an exciton.

Hereafter, we define th ≡ |t (1)
h | and use th (t−1

h ) as the unit
of energy (time). We set the total number of electrons N =
N1 + N2 to be L, i.e., half filling. Note that the number Nα of
electrons for each orbital α (= 1, 2) is conserved even in the
presence of the external field in Eq. (18). Nα depends on the
values of D and U . The results shown in the next section are
for t (2)

h = −t (1)
h > 0 and D > 0 with N1 > N2.

IV. NUMERICAL RESULTS

The correspondence shown in Sec. II D 1 implies that �

pairing can be photoinduced in the excitonic insulator of the
EFKM with the direct-gap-type band structure (i.e., t (1)

h =
−t (2)

h ). Because the η pairing in the Hubbard model studied
previously in Ref. [41] corresponds to the EFKM with t (1)

h =
−t (2)

h and D = 0, here we focus on the case with D 
= 0 as
well as a nonbipartite lattice. The photoinduced interband η

pairing in the EFKM with the indirect-gap-type band structure
(i.e., t (1)

h = t (2)
h ) is discussed in Appendix.

A. 1D system

First, we show the results for the 1D EFKM with
t (2)
h = −t (1)

h = th. Here, we set the vector potential A(t ) =
A(t )ex along the chain direction, i.e., t (α)

h ĉ†
j,α ĉ j+1,α →

t (α)
h eiA(t )ĉ†

j,α ĉ j+1,α . We assume that U = 8th and D = 0.75th
in L = 16, for which the ground state of the 1D EFKM, i.e.,
the initial state before the pulse irradiation, is the excitonic
insulator with N1 = 12 and N2 = 4 (see Fig. 2).

π-ππ

ω
[t h
]

( )b()a

k

FIG. 2. (a) Excitonic (i.e., electron-hole pair) structure factor
NX (q) and (b) single-particle excitation spectrum A(k, ω) for the
ground state of the 1D EFKM with t (2)

h = −t (1)
h = th, U = 8th, and

D = 0.75th in L = 16, where N1 = 12 and N2 = 4. The Fermi energy
is set at ω = 0 in (b). Here, the single-particle excitation spec-
trum is defined as A(k, ω) = ∑

α〈ψ0|ĉ†
k,αδγ (ω + Ĥ − E0)ĉk,α|ψ0〉 +∑

α〈ψ0|ĉk,αδγ (ω − Ĥ + E0)ĉ†
k,α|ψ0〉, where ĉ†

k,α is the Fourier trans-
form of ĉ†

j,α [also see Eq. (36)]. The broadening factor γ in A(k, ω)
is 0.1th.

(a) (b)

(c) (d)

j

π

FIG. 3. (a) Time evolution of the onsite electron-electron pair
correlation function P( j, t ). (b) P( j, t ) at t = 0 (blue circles) and t =
30/th (orange squares). (c) Time evolution of the electron-electron
pair structure factor P(q, t ) and the excitonic (i.e., electron-hole
pair) structure factor NX (q, t ) at q = 0. (d) P(q, t ) at t = 0 (blue
circles) and t = 30/th (orange squares). The results are for the 1D
EFKM with t (2)

h = −t (1)
h = th, U = 8th, and D = 0.75th in L = 16.

In this case, the initial state before the pulse irradiation (i.e., the
ground state of the 1D EFKM) has N1 = 12 and N2 = 4. We set
A0 = 0.4, ωp = 7th, σp = 2/th, and t0 = 10/th for A(t ). The vertical
dashed lines in (a) and (c) indicate t0.

Figure 3(a) shows the time evolution of the real-space
electron-electron pair correlation function P( j, t ). We con-
firm the enhancement of P( j, t ) at j = 0, corresponding to
nd (t ), by the pulse irradiation, which is similar to the case
in the Hubbard model [41]. As we expected, the electron-
electron pair correlation P( j 
=0, t ) is also enhanced by the
pulse irradiation and becomes positive for all sites. As shown
in Fig. 3(b), the pair correlation after the pulse irradiation
extends to longer distances over the cluster, while the pair
correlation is essentially absent in the initial excitonic insu-
lating state before the pulse irradiation. It is also clear that
the sign of P( j, t ) is positive for all sites, and consequently
the pair structure factor P(q, t ) shows a sharp peak at q = 0
[see Fig. 3(d)]. The time evolution of P(q, t ) and the exci-
tonic structure factor NX (q, t ) are also calculated at q = 0
in Fig. 3(c). The excitonic correlation NX (q = 0, t ) is indeed
large in the initial state, as shown also in Fig. 2(a), and is
significantly suppressed by the pulse irradiation. In contrast,
the pair correlation P(q = 0, t ) is strongly enhanced despite
that it is exactly zero before the pulse irradiation.

In order to identify the optimal control parameters for the
enhancement of P(q = 0, t ), Fig. 4(b) shows the contour plot
of P(q = 0, t ) after the pulse irradiation with different values
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FIG. 4. Contour plots of (a) the excitonic structure factor NX (q =
0, t ) averaged from t = 20/th to 40/th and (b) the electron-electron
pair structure factor P(q = 0, t ) at t = 30/th in the parameter space
of ωp and A0. (c) Optical spectrum χJJ (ω) calculated for the ground
state of the EFKM, which is compared with P(q = 0, t = 30/th ) as
a function of ωp for different values of A0. The results are for the
1D EFKM with t (2)

h = −t (1)
h = th, U = 8th, and D = 0.75th in L =

16. In this case, the initial state before the pulse irradiation (i.e., the
ground state of the 1D EFKM) has N1 = 12 and N2 = 4. We set σp =
2/th and t0 = 10/th for A(t ). The broadening factor γ in χJJ (ω) is
0.2th in (c).

of A0 and ωp. As shown in Fig. 4(c), for small A0, we find
that the peak structure of P(q = 0, t ) as a function of ωp are
essentially the same as the ground-state optical spectrum

χJJ (ω) = 1

L
〈ψ0| Ĵδγ (ω − Ĥ + E0)Ĵ |ψ0〉

= − 1

πL
Im

[
〈ψ0| Ĵ

1

ω − Ĥ + E0 + iγ
Ĵ |ψ0〉

]
, (36)

where |ψ0〉 is the ground state of Ĥ with its energy E0,

Ĵ = i
∑
j,α

t (α)
h (ĉ†

j+1,α ĉ j,α − ĉ†
j,α ĉ j+1,α ) (37)

is the current operator, and γ is the broadening factor [57,58].
As discussed later, this can be understood on the basis of

the internal SU(2) structure of the EFKM with t (1)
h = −t (2)

h .
We also notice in Fig. 4(b) that with further increasing A0,
where the nonlinearity becomes important, the peak structure
of P(q = 0, t ) as a function of ωp slightly shifts from that
of χJJ (ω). The optimal parameters for the enhancement of
P(q = 0, t ) is ωp ∼ 7th and A0 ∼ 0.4 for the system studied
in Fig. 4. On the other hand, as shown in Fig. 4(a), the
excitonic correlation is strongly suppressed in the region
where the electron-electron pair correlation is enhanced. We
should emphasize that the enhancement of P(q = 0, t ) cannot
be simply explained by a dynamical phase transition induced
by effectively varying the model parameters because there is
no region in the ground state phase diagram of the EFKM [39],
showing large electron-electron pairing correlations.

Two remarks are in order. First, the spike structure of
P(q = 0, t ) found in Fig. 4(b) depends on the system size and
is expected to be smooth in the thermodynamic limit (L →
∞), as in the case for the optical spectrum χJJ (ω), shown in
Fig. 4(c), where the spike structure becomes less pronounced
and eventually smooth with increasing L [59,60]. Second,
the electron-electron pair structure factor P(q = 0, t ) is most
apparently enhanced in the frequency region of 5th � ωp �
12th, which corresponds approximately to the single-particle
excitation gaps at different momenta for the initial state [see
Fig. 2(b)].

To understand the origin of the enhancement of the onsite
electron-electron pair correlations by the pulse irradiation, let
us now elucidate the nature of the photoinduced state |	(t )〉
in terms of the � pairs. For this purpose, we calculate the
eigenenergies εm and the electron-electron pair structure fac-
tors P(q=0) for all the eigenstates |ψm〉 of the 1D EFKM Ĥ
at half filling. As shown in Fig. 5(a), the structure factor P(q=

FIG. 5. (a) All the eigenenergies εm and P(q = 0) for the eigen-
states |ψm〉 of the half-filled 1D EFKM Ĥ with t (2)

h = −t (1)
h = th

for L = 10 under PBC at U = 8th and D = 0.4th, where N1 = 6
and N2 = 4. The color of each point (diamond) indicates the weight
| 〈ψm|	(t )〉 |2 of the eigenstate |ψm〉 in the photoinduced state |	(t )〉
at t = 30/th for A(t ) with A0 = 0.3, ωp = 7th, σp = 2/th, and t0 =
10/th. When the eigenstates are degenerate, the color indicates the
sum of | 〈ψm|	(t )〉 |2 over these degenerate states. The inset shows
the time evolution of P(q = 0, t ) for |	(t )〉. (b) The total weight
w(�) of | 〈ψm|	(t )〉 |2 over the eigenstates |ψm〉 with the same value
of � in (a). Note that

∑
� w(�) = 1.
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0) for each eigenstate is exactly quantized. This is understood
because each eigenstate |ψm〉 of Ĥ is also the eigenstate of �-
pairing operators �̂2 and �̂z with the eigenvalues � and �z,
respectively [see Eqs. (14) and (17)]. Therefore, the structure
factor P(q=0) is given as

P(q = 0) = 2

L
〈ψm| �̂+�̂− |ψm〉

= 2

L
〈ψm| (�̂2 − �̂2

z + �̂z
) |ψm〉

= 2

L
�(� + 1) (38)

with � = 0, 1, . . . , N2, where N2 (�N1) is the maximum
number of � pairs and we have used �z = 0 at half filling.
Thus, the quantized value corresponds to the eigenvalue � of
�̂2 for the eigenstate |ψm〉 of Ĥ.

We can construct the eigenstate with the number N� of �

pairs from the LWS for the �-pairing operators as

|ψN�
〉 ∝ (�̂+)N�

∣∣∣∣�= L

2
− N1 + N2 − 2N�

2
,�z =−�

〉
,

(39)

where we assume that there are N1 and N2 electrons
for orbitals 1 and 2, respectively, in |ψN�

〉, and L �
N1 + N2 − 2N�. Since we are at half filling, i.e., N1 + N2 =
L, |ψN�

〉 ∝ (�̂+)
N� |� = N�,�z = −�〉 ∝ |� = N�,�z =

0〉. Therefore, in this case, 〈ψN�
| �̂+�̂− |ψN�

〉 = N�(N� + 1)
and thus P(q = 0) = 2N�(N� + 1)/L. Comparing with
Eq. (38), we can thus notice that the eigenvalue � of �̂2 for
|ψm〉 corresponds to the number N� of � pairs contained in
|ψm〉 at half filling.

As an example, we construct |ψN�
〉 from the exact ground

state |ψ (GS)
N1−N�,N2−N�

〉 of the 1D EFKM with N1 − N� (N2 −
N�) electrons for orbital 1 (2), which is the LWS for the �-
pairing operators. Figure 6 shows the onsite electron-electron

FIG. 6. (a) Onsite electron-electron pair correlation function
P( j) and (b) the corresponding structure factor P(q) for the half-
filled eigenstate |ψN�

〉 with the different number N� of � pairs.
The eigenstate |ψN�

〉 is constructed from the exact ground state of
the 1D EFKM with N1 − N� and N2 − N� electrons for orbitals 1
and 2, respectively, calculated by the ED method, for U = 8th and
D = 0.4th in L = 10 under PBC, where N1 = 6 and N2 = 4.

pair correlations P( j) and the corresponding structure factor
P(q) for |ψN�

〉 containing different number N� of � pairs.
With increasing N�, the enhancement of P( j) and P(q=0)
are clearly observed. Their structures are in good qualitative
agreement with the electron-electron pair correlations of the
photoinduced state |	(t )〉 shown in Figs. 3(b) and 3(d). No-
tice that the quantized values of P(q=0) found in Fig. 5(a)
corresponds exactly to the values of P(q=0) in Fig. 6(b).

In Fig. 5(a), the color of each point indicates the weight
| 〈ψm|	(t )〉 |2 of the eigenstate |ψm〉 in the photoinduced state
|	(t )〉 that exhibits the strong enhancement of P(q=0, t )
after the pulse irradiation [see the inset of Fig. 5(a)]. We
find that the state |	(t )〉 after the pulse irradiation contains
the nonzero weights of the eigenstates |ψm〉 with finite �

[also see Fig. 5(b)]. This is precisely the reason for the
photoinduced enhancement of P(q=0, t ). The EFKM itself
has the eigenstates with P(q=0) 
= 0 and the photoinduced
state |	(t )〉 captures the weights of those eigenstates. Since
the number N� of � pairs in |ψm〉 is �, the photoinduced state
|	(t )〉 contains a finite number of � pairs.

The process of the enhancement of P(q=0, t ) is es-
sentially the same as the photoinduced η pairing in the
Hubbard model [41] and is understood as follows. Before
the pulse irradiation, the initial state is the ground state
of the EFKM Ĥ with |� = 0,�z = 0〉, i.e., the singlet
state for the �-pairing operators, and P(q = 0) = 0. The
pulse irradiation via A(t ) breaks the commutation relation as
[Ĥ(t ), �̂+] = [Ĥ, �̂+] + ∑

k F (k, t )ĉ†
−k,2ĉ†

k,1 with F (k, t ) =
4t (1)

h sin[A(t )] sin k for t (1)
h = −t (2)

h , and this transient breaking
of the internal SU(2) structure stirs states with different values
of �. After the pulse irradiation, the Hamiltonian again satis-
fies the commutation relation because A(t ) = 0 but the state
|	(t )〉 now contains components of |� 
= 0,�z = 0〉, which
enhance P(q = 0, t ).

However, this does not explain details of the spectrum
structure in Fig. 5(a), i.e., why some particular eigenstates
|ψm〉 are selectively excited in the photoinduced state |	(t )〉
and others are not. For example, focusing the eigenstates |ψm〉
with the eigenenergies εm ∼ 10th, the eigenstates with � = 0
and 2 have large overlap | 〈ψm|	(t )〉 |2 with the photoinduced
state |	(t )〉, but no overlap with the eigenstates with � = 1 is
observed in this eigenenergy region. As shown in Sec. IV C,
the understanding of the detailed spectrum structure requires
the symmetry argument based on the internal SU(2) structure
of the EFKM with respect to the �-pairing operators.

B. Two-dimensional systems

1. Square lattice

Similarly, � pairs can be photoinduced in the two-
dimensional (2D) EFKM in the square lattice. This is expected
because, as described in Sec. II D 1, when the system is
bipartite, the 2D EFKM with t (1)

h = −t (2)
h can be mapped onto

the repulsive Hubbard model where η pairs can be induced
by the pulse irradiation [41]. Since the η pair in the repulsive
Hubbard model corresponds to the � pair in the EFKM with
t (1)
h = −t (2)

h [see Eq. (23)], the photoinduced � pairs are
anticipated in the EFKM with t (1)

h = −t (2)
h when the system

is bipartite.
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FIG. 7. Time evolution of the electron-electron pair structure fac-
tor P(q, t ) and the excitonic (i.e., electron-hole pair) structure factor
NX (q, t ) at q = 0 = (0, 0) for the 2D EFKM with t (2)

h = −t (1)
h =

th, U = 8th, and D = th in a 4 × 4 square lattice under PBC. In this
case, the initial state before the pulse irradiation (i.e., the ground
state of the 2D EFKM) has N1 = 12 and N2 = 4. The time-dependent
vector potential A(t ) = A(t )(ex + ey ) is applied along the diagonal
direction (indicated in the figure). We set A0 = 0.4, ωp = 8th, σp =
2/th, and t0 = 10/th for A(t ). The vertical dashed line indicates t0.

Figure 7 shows the time evolution of the electron-electron
pair structure factor P(q, t ) and the excitonic (electron-hole)
pair structure factor NX (q, t ) at q = 0 = (0, 0) for the 2D
EFKM with t (1)

h = −t (2)
h on a 4 × 4 cluster with PBC. Here,

the time-dependent vector potential A(t ) is applied along the
diagonal direction, i.e., A(t ) = A(t )(ex + ey), where ex(y) is
the unit vector along the x (y) direction and A(t ) is defined
in Eq. (19). As in the 1D case shown in Fig. 3(c), the
initial ground state is the excitonic insulator and the exci-
tonic correlation NX (q = 0, t ) is significantly suppressed after
the pulse irradiation, while the enhancement of the onsite
electron-electron pairing correlation P(q = 0, t ) by the pulse
irradiation is indeed observed.

2. Triangular lattice

A nontrivial system is the 2D EFKM in the triangular
lattice, for which there is no correspondence to the repulsive
Hubbard model, as discussed in Sec. II D 1. In contrast to the
case of the η-pairing operators in the Hubbard model, the
�-pairing operators in the EFKM satisfy [Ĥ, �̂±] = ±U �̂±,
regardless of whether the lattice is bipartite or nonbipartite,
since ε2(−k) = −ε1(k) when t (1)

h = −t (2)
h [see Eq. (15)].

Therefore, the internal SU(2) structure with respect to the
�-pairing operators are preserved for the 2D EFKM with
t (1)
h = −t (2)

h in the triangular lattice. This implies that the
similar results found for the 1D EFKM in Sec. IV A and for
the square EFKM in Sec. IV B 1 are expected for the triangular
EFKM.

Figure 8 shows the time evolution of the electron-electron
pair structure factor P(q, t ) and the excitonic (electron-hole)
pair structure factor NX (q, t ) at q = 0 for the 2D EFKM with
t (1)
h = −t (2)

h on a 4 × 4 triangular cluster with PBC. Here, the

FIG. 8. Time evolution of the electron-electron pair structure
factor P(q, t ) and the excitonic (i.e., electron-hole pair) structure
factor NX (q, t ) at q = 0 = (0, 0) for the 2D EFKM with t (2)

h =
−t (1)

h = th, U = 8th, and D = 1.3th in a 4 × 4 triangular lattice under
PBC. In this case, the initial state before the pulse irradiation (i.e.,
the ground state of the 2D EFKM) has N1 = 12 and N2 = 4. The
time-dependent vector potential A(t ) = A(t )( 1

2 ex +
√

3
2 ey ) is applied

along the direction indicated in the figure. We set A0 = 0.6, ωp =
8th, σp = 2/th, and t0 = 10/th for A(t ). The vertical dashed line
indicates t0.

time-dependent vector potential A(t ) = A(t )( 1
2 ex +

√
3

2 ey) is
applied in the direction indicated in Fig. 8. As in the square
lattice, we find that the excitonic correlation NX (q = 0, t ) is
suppressed by the pulse irradiation, while the onsite electron-
electron pairing correlation P(q = 0, t ) is enhanced.

Figures 9(a) and 9(b) show the results of the optimal
parameter A0 and ωp search for the enhancement of the onsite
electron-electron pair correlation in the photoexcited state. As
in the case for the 1D EFKM shown in Figs. 4(a) and 4(b), the
electron-electron pair correlation is most efficiently enhanced
when the excitonic electron-hole pair correlation is most
significantly suppressed. We also find in Fig. 9(c) that the
electron-electron pair correlation factor P(q = 0, t = 30/th)
as a function of ωp is essentially the same, when A0 is small,
as the optical spectrum χJJ (ω) calculated for the ground state
of the 2D EFKM in the triangular lattice. As discussed in
Sec. IV C, this is due to the symmetry property of the current
operator Ĵ with respect to the �-pairing operators.

To better understand the nature of the photoexcited state
|	(t )〉, we calculate the electron-electron pair structure factor
P(q) at q = 0 for all the eigenstates |ψm〉 of the 2D EFKM
Ĥ in the triangular lattice. As shown in Fig. 10(a), we find
that P(q = 0) is exactly quantized for all the eigenstates |ψm〉
and the quantized values are give in Eq. (38). This is because
any eigenstate |ψm〉 of the 2D EFKM Ĥ in the triangular
lattice is also the eigenstate of �̂2 and �̂z with the eigenvalues
�(� + 1) and �z (= 0 at half filling), respectively. We can
also find in Fig. 10(a) that the photoexcited state |	(t )〉
acquires finite overlap | 〈ψm|	(t )〉 |2 with the eigenstates |ψm〉
of Ĥ with nonzero � [see also Fig. 10(b)]. These eigenstates
|ψm〉 with nonzero � are photoexcited by transiently breaking
the internal SU(2) structure during the pulse irradiation. This
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FIG. 9. Contour plots of (a) the excitonic structure factor NX (q =
0, t ) averaged from t = 20/th to 40/th and (b) the electron-electron
pair structure factor P(q = 0, t ) at t = 30/th in the parameter space
of ωp and A0. (c) Optical spectrum χJJ (ω) calculated for the ground
state of the EFKM, which is compared with P(q = 0, t = 30/th ) as
a function of ωp for different values of A0. The results are for the
2D EFKM with t (2)

h = −t (1)
h = th, U = 8th, and D = 1.3th in a 4 × 4

triangular lattice under PBC. In this case, the initial state before
the pulse irradiation (i.e., the ground state of the 2D EFKM) has
N1 = 12 and N2 = 4. We set σp = 2/th and t0 = 10/th for A(t ). The
broadening factor γ in χJJ (ω) is 0.2th in (c).

is exactly the reason for the enhancement of the electron-
electron pair correlations in the photoexcited state |	(t )〉.

C. Selection rule

The distribution of the weight | 〈ψm|	(t )〉 |2 in the pho-
toexcited state |	(t )〉 among the eigenstates |ψm〉 found in
Figs. 5(a) and 10(a) requires better understanding of the
properties of the current operator Ĵ with respect to the �-
pairing operators. To be concrete, here we assume the 1D
EFKM with t (2)

h = −t (1)
h = th but the following argument is

easily extended to other EFKMs, including 2D EFKM in the
triangular lattice, as long as t (2)

h = −t (1)
h = th.

FIG. 10. (a) All the eigenenergies εm and P(q = 0) for the eigen-
states |ψm〉 of the half-filled 2D EFKM Ĥ with t (2)

h = −t (1)
h = th in a

4 × 3 triangular cluster under PBC at U = 8th and D = 0.8th, where
N1 = 9 and N2 = 3. The color of each point (diamond) indicates the
weight | 〈ψm|	(t )〉 |2 of the eigenstate |ψm〉 in the photoinduced state
|	(t )〉 at t = 30/th for A(t ) with A0 = 0.4, ωp = 9th, σp = 2/th, and
t0 = 10/th. When the eigenstates are degenerate, the color indicates
the sum of | 〈ψm|	(t )〉 |2 over these degenerate states. The inset
shows the time evolution of P(q = 0, t ) for |	(t )〉. (b) The total
weight w(�) of | 〈ψm|	(t )〉 |2 over the eigenstates |ψm〉 with the
same value of � in (a). Note that � corresponds to the number N� of
� pairs at half filling and

∑
� w(�) = 1.

In the 1D EFKM with the direct-gap-type band structure,
i.e., t (2)

h = −t (1)
h = th, the current operator Ĵ (1)

0 = Ĵ is given as

Ĵ (1)
0 = ith

∑
j

∑
α=1,2

(−1)α (ĉ†
j+1,α ĉ j,α − ĉ†

j,α ĉ j+1,α ). (40)

We can now easily show that[
�̂±, Ĵ (1)

0

] =
√

2Ĵ (1)
±1 (41)

and [
�̂z, Ĵ (1)

0

] = 0, (42)

where Ĵ (1)
±1 is defined as

Ĵ (1)
+1 =

√
2ith

∑
j

(
ĉ†

j,2ĉ†
j+1,1 − ĉ†

j+1,2ĉ†
j,1

)
(43)

and

Ĵ (1)
−1 =

√
2ith

∑
j

(
ĉ j+1,1ĉ j,2 − ĉ j,1ĉ j+1,2

)
. (44)

We can also show that these two operators satisfy the follow-
ing commutation relations:[

�̂±, Ĵ (1)
∓1

] =
√

2Ĵ (1)
0 (45)

and [
�̂z, Ĵ (1)

±1

] = ±Ĵ (1)
±1 . (46)

Note that to derive these commutation relations, we have
not assumed any condition for the lattice system such as
the bipartite lattice. This is in sharp contrast to the case of
the η-pairing operators for the Hubbard model where the
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(a)

(b)

FIG. 11. Time evolution of (a) the electron-electron pair struc-
ture factor P(q = 0, t ) and (b) the excitonic (i.e., electron-hole pair)
structure factor NX (q = 0, t ) for the 1D EFKM with different band-
widths (th = |t (1)

h | > |t (2)
h |) at half filling. The results are calculated

by the ED method for L = 16 at U = 8th under PBC. We set D =
0.75th, 0.65th, 0.6th, and 0.55th for t (2)

h /t (1)
h = −1.0, −0.9, −0.8,

and −0.7, respectively, in which N1 = 12 and N2 = 4. The vector
potential A(t ) is adopted with A0 = 0.4, ωp = 7th, σp = 2/th, and
t0 = 10/th. The vertical dashed lines indicate t0.

lattice must be bipartite to satisfy the similar commutation
relations [41].

From the commutation relations in Eqs. (41), (42), (45),
and (46), we can now immediately conclude that Ĵ (1)

q with q =
0, ±1 is a rank-one tensor operator in terms of the �-pairing
operators. In particular, the current operator Ĵ (1)

0 = Ĵ is a rank-
one tensor operator with q = 0. Therefore, according to the
Wigner-Eckart theorem [61], we have the following selection
rule:

〈�′,�′
z| Ĵ (1)

0 |�,�z〉 ∝
(

� 1 �′

�z 0 −�′
z

)
(47)

with the 3 j-symbol, where |�,�z〉 is the simultaneous eigen-
state of �̂ and �̂z. Since �′

z = �z = 0 at half filling, the
selection rule becomes

〈�′,�′
z = 0| Ĵ (1)

0 |�,�z = 0〉 
= 0 (48)

only for

�′ = � ± 1. (49)

Based on this selection rule, the photoexcited processes
in Figs. 5 and 10 are understood as follows. In the small-A0

limit, the external perturbation given in Eq. (18) is expressed

as A(t )Ĵ [57], where Ĵ is the current operator defined above.
Therefore, according to the selection rule in Eq. (49), in
the linear response regime the photoinduced state |	(t )〉 can
contain the eigenstates |ψm〉 with � = 1 and the eigenenergies
at εm − ε0 ∼ U , assuming that ωp is tuned around U . This
explains the good agreement between the optical spectrum
χJJ (ω) and P(q=0, t ) found in Figs. 4(c) and 9(c). In the
second order, the photoinduced state |	(t )〉 can contain the
eigenstates |ψm〉 with � = 2 at εm − ε0 ∼ 2U , as well as � =
0 at εm − ε0 ∼ 0 and 2U . Applying the same argument for
higher orders, the eigenstates |ψm〉 with even larger � values
acquire in the transient period a finite overlap | 〈ψm|	(t )〉 |2
with the photoinduced state |	(t )〉. Considering all orders,
eventually, the distribution of eigenstates |ψm〉 in the photoin-
duced state |	(t )〉 forms a “tower of states” [41], in which
the eigenstates |ψm〉 with � even (odd) are excited at the
excitation energy around εm − ε0 ∼ even (odd) integer × U .
In other words, the eigenstates |ψm〉 with � even (odd) are ab-
sent in the photoinduced state |	(t )〉 at the excitation energy
around εm − ε0 ∼ odd (even) integer × U . This is indeed in
good qualitative accordance with the numerical results in
Figs. 5(a) and 10(b).

D. Different bandwidth

So far, we have assumed that t (1)
h = −t (2)

h . However, when
the valence and conduction bands have different bandwidths,
i.e., t (1)

h 
= −t (2)
h , the commutation relations with respect to the

�-pairing operators are broken because [Ĥ0, �̂
±] 
= 0. Here,

we investigate the electron-electron pair correlations in the
photoexcited state when the internal SU(2) structure is broken
in the EFKM.

Figure 11 shows the time evolution of the electron-electron
pair structure factor P(q = 0, t ) and the excitonic structure
factor NX (q = 0, t ) for the photoexcited state |	(t )〉 with
different values of t (2)

h /t (1)
h in the 1D EFKM. Although the

FIG. 12. The onsite electron-electron pair correlation function
P( j, t ) in the photoexcited state at (a) t = 12.5/th and (b) t =
30/th indicated by arrows in Fig. 11(a). The results are for the
1D EFKM with U = 8th in L = 16 at half filling. We set D =
0.75th, 0.65th, 0.6th, and 0.55th for t (2)

h /t (1)
h = −1.0, −0.9, −0.8,

and −0.7, respectively, in which N1 = 12 and N2 = 4. The vector
potential A(t ) is adopted with A0 = 0.4, ωp = 7th, σp = 2/th, and
t0 = 10/th.
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internal SU(2) structure with respect to the �-pairing oper-
ators is broken when t (1)

h 
= −t (2)
h , we find the enhancement

of the electron-electron pair correlations (see also Fig. 12).
Note that P(q = 0, t ) is no longer conserved after the pulse
irradiation when t (1)

h 
= −t (2)
h because of [Ĥ0, �̂

+�̂−] 
= 0.
With decreasing |t (2)

h /t (1)
h |, P(q = 0, t ) is more suppressed

after the pulse irradiation. However, as shown in Fig. 12, the
onsite electron-electron pair correlations in the photoexcited
state are still robust specially in the transient period.

V. CONCLUSION

We have investigated the photoinduced electron-electron
pairing in the half-filled EFKM with the direct-gap-type band
structure. By employing the time-dependent ED method, we
have shown the enhancement of the onsite electron-electron
pair correlations with the corresponding pair structure factor
exhibiting a sharp peak at q = 0 in the photoexcited state,
while the initial ground state excitonic (i.e., electron-hole
pair) correlations are strongly suppressed. We have shown that
there exists the internal SU(2) structure with respect to the
�-pairing operators in the EFKM Ĥ with the direct-gap-type
band structure, i.e., t (1)

h = −t (2)
h , and therefore any eigenstate

of Ĥ can be simultaneously the eigenstate of the �-pairing
operators, characterizing the number of � pairs. The analysis
for the distribution of the eigenstates of Ĥ in the photoexcited
state reveals that the photoexcited state captures nonzero
weight of the eigenstates of Ĥ that possess a finite number of
� pairs. This is the essential reason for the enhancement of the
onsite electron-electron pair correlations in the photoexcited
state.

The internal SU(2) relations with respect to the �-pairing
operators are preserved even for the EFKM on nonbipartite
lattices such as the triangular lattice, in which the onsite
electron-electron pairing with momentum q = 0 can also
be photoinduced in the EFKM with the direct-type band
structure, i.e., t (1)

h = −t (2)
h . This is in sharp contrast to the

photoinduced η pairing in the repulsive Hubbard model, for
which the bipartite lattices are required to preserve the internal
SU(2) structure with respect to the η-pairing operators. We
have also shown that the photoinduced states still display
the robust onsite electron-electron pairing correlations even
when the internal SU(2) structure is broken by setting the
different bandwidths of the valence and conduction bands, i.e.,
t (1)
h 
= −t (2)

h , as long as |t (1)
h /t (2)

h | is close to one. Although we
have shown the enhancement of the electron-electron pair cor-
relation in the relatively small finite size clusters that can be
treated by the ED method, we expect the similar enhancement
even in larger clusters. This is simply because the previous
matrix-product state calculations for the 1D Hubbard model
have clearly found the photoinduced enhancement of the η-
pairing correlation in larger clusters [41]. However, we should
also note that in order for the photoinduced state to exhibit the
long-range superconducting order, i.e., the electron-electron
pair structure factor P(q = 0)/L being finite in the thermo-
dynamic limit, the �-pairing state with � proportional to the
system size L has to be photoexcited [e.g., see Eq. (38)].

The recent experimental observation of photoinduced su-
perconductivity and increase of superconducting transition

temperature in some of high-Tc cuprates [62–64] and alkali-
doped fullerenes [65,66] has stimulated extensive theoretical
studies of light induced superconductivity [67–73]. The main
focus in these theoretical studies is a photoinduced state with
physical properties that is already present in the corresponding
equilibrium phases. In contrast, the enhancement of electron-
electron pair correlations found in our study cannot be simply
explained by a dynamical transition that is induced by effec-
tively varying the model parameters because there is no region
in the ground state phase diagram of the EFKM showing large
electron-electron pairing correlations even away from half
filling. Therefore, our finding is distinct from the previous the-
oretical studies and provides a new insight into photoinduced
phenomena.

In this paper, we have focused on the time-dependent cor-
relation functions. However, the time-dependent dynamical
spectra such as the time-resolved optical conductivity [49,57],
angle-resolved photoemission spectroscopy [74–76], and res-
onant inelastic x-ray scattering [77] might provide deeper
understanding of a photoinduced state. Moreover, the EFKM
considered in this paper is the spinless model. The realistic
models for possible excitonic materials should have the spin
degrees of freedom, and thus our theory has to be extended
to a spinful model such as the two-band Hubbard model
[78–81]. Furthermore, the importance of the electron-phonon
coupling has been pointed out in the excitonic candidate
materials TiSe2 and Ta2NiSe5 [82–84]. Therefore, in order
to understand the pump-probe experiments reported recently
in these materials, the phonon degrees of freedom are also
important in the theory. These are intriguing extensions of the
present study in the future.
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APPENDIX: PHOTOINDUCED η PAIRING IN EFKM

In this Appendix, we discuss the electron-electron pairing
in the EFKM Ĥ with the indirect-gap-type band structure [42].
First, we introduce the interorbital η̂-pairing operators defined
as

η̂+
j = (−1) j ĉ†

j,2ĉ†
j,1, η̂−

j = (−1) j ĉ j,1ĉ j,2 (A1)

and

η̂z
j = 1

2 (n̂ j,1 + n̂ j,2 − 1), (A2)

which satisfy the SU(2) commutation relations, i.e.,

[η̂+
j , η̂−

j ] = 2η̂z
j, (A3)

[η̂z
j, η̂±

j ] = ±η̂±
j . (A4)

The total η̂ operators, η̂± = ∑
j η̂

±
j and η̂z = ∑

j η̂
z
j , also

satisfy the SU(2) commutation relations.
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The important property of the η-pairing operators is

[Ĥ0, η̂
+] =

∑
k

[ε1(k) + ε2(π − k)]ĉ†
π−k,2ĉ†

k,1, (A5)

where Ĥ0 = ∑
k,α εα (k)c†

k,α
ck,α and π = (π, · · · , π ). For the

d-dimensional cubic lattice, for example, ε2(π − k) = −ε2(k)
and therefore the commutation relation becomes

[Ĥ0, η̂
+] = −2

(
t (1)
h − t (2)

h

) ∑
τ,k

cos(kτ ) ĉ†
π−k,2ĉ†

k,1. (A6)

Note that this commutation relation cannot be satisfied in
the triangular lattice because ε2(π − k) 
= −ε2(k). This is in
sharp contrast to the case of the �-pairing operators, for
which the corresponding commutation relation in Eq. (15) is
satisfied even for the EFKM in nonbipartite lattices such as
the triangular lattice. A similar relation is also satisfied for
η̂−. Thus, in the d-dimensional bipartite cubic lattice, we have
the relation [Ĥ0, η̂

±] = 0 when t (1)
h = t (2)

h . We can also show
that [ĤU , η̂±] = ±U η̂±. Therefore, we obtain the following
relation:

[Ĥ, η̂±] = ±U η̂± (A7)

for the EFKM when ε2(π − k) = −ε1(k). It is easily shown
that the same commutation relations are satisfied more gen-
erally for the EFKM in any bipartite lattice, including the
honeycomb lattice, as long as t (1)

h = t (2)
h . Notice that these re-

lations are essentially the same as those found in the Hubbard
model [43,45]. This is understood simply because the EFKM
is exactly the same as the Hubbard model with the Zeeman
term when t (1)

h = t (2)
h .

Consequently, introducing

η̂2 = 1
2 (η̂+η̂− + η̂−η̂+) + η̂2

z , (A8)

we have

[Ĥ, η̂2] = [Ĥ, η̂z] = 0 (A9)

(a) (b)

FIG. 13. (a) Time evolution of the onsite electron-electron pair
correlation function P( j, t ) and (b) P( j, t ) at t = 0 (blue circles) and
t = 30/th (orange squares). The results are for the 1D EFKM under
PBC with t (1)

h = t (2)
h = th, U = 8th, and D = 0.75th in L = 16, for

which N1 = 12 and N2 = 4. We set A0 = 0.4, ωp = 7th, σp = 2/th,
and t0 = 10/th for the vector potential A(t ) defined in Eq. (19).

for the EFKM with t (1)
h = t (2)

h in the bipartite lattice. Thus,
any eigenstate of Ĥ is also the eigenstate of η̂2 and η̂z with the
eigenvalues η(η + 1) and ηz, respectively. We therefore expect
that the density-wave-like pair correlations are enhanced by
the pulse irradiation [41].

Figure 13(a) shows the time evolution of the real-space
electron-electron pair correlation function P( j, t ) in the 1D
EFKM with t (1)

h = t (2)
h = th. P( j, t ) at j = 0 corresponding to

the double occupancy nd (t ) is enhanced by pulse irradiation.
P( j 
=0, t ) is also enhanced significantly by the pulse irradia-
tion, similar to Fig. 3(a), but now oscillates with the opposite
phases between odd and even sites. As shown in Fig. 13(b),
the pair correlation after the pulse irradiation extends to longer
distances over the cluster, as compared to that of the initial
state before the pulse irradiation. It is also clear that the sign
of P( j, t ) alternates between neighboring sites and we confirm
that P( j, t ) in Fig. 13(b) is consistent with (−1) jP( j, t ) in
Fig. 3(b). Therefore, in the indirect-gap-type band system, the
η-pairing correlation is enhanced by the pulse irradiation.
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