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Ajesh Kumar and Andrew C. Potter
Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

(Received 5 May 2019; published 15 July 2019)

Fractons are particles that cannot move in one or more directions without paying energy proportional to their
displacement. Here we introduce the concept of symmetry-enforced fractonicity, in which particles are fractons
in the presence of a global symmetry, but are free to move in its absence. A simple example is dislocation
defects in a two-dimensional crystal, which are restricted to move only along their Burgers vector due to particle
number conservation. Utilizing a recently developed dual rank-2 tensor gauge description of elasticity, we show
that accounting for the symmetry-enforced one-dimensional nature of dislocation motion dramatically alters
the structure of quantum crystal melting phase transitions. We show that, at zero temperature, sufficiently strong
quantum fluctuations of the crystal lattice favor the formation of a supersolid phase that spontaneously breaks the
symmetry enforcing fractonicity of defects. The defects can then condense to drive the crystal into a supernematic
phase via a phase transition in the (2 + 1)-dimensional XY universality class to drive a melting phase transition
of the crystal to a nematic phase. This scenario contrasts the standard Halperin-Nelson scenario for thermal
melting of two-dimensional solids in which dislocations can proliferate via a single continuous thermal phase
transition. We comment on the application of these results to other scenarios such as vortex lattice melting at
a magnetic field induced superconductor-insulator transition, and quantum melting of charge-density waves of
stripes in a metal.
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I. INTRODUCTION

Condensation of topological defects plays a crucial role
in the thermal and quantum melting of symmetry breaking
orders in low dimensional systems. Famous examples include
the destruction of two-dimensional (2D) superfluids or easy-
plane magnets by vortex proliferation (the BKT transition
[1–3]). The critical properties of these transitions are captured
by the 2D XY universality class at finite temperature, and
extend to a related zero-temperature quantum phase transition
that is in the three-dimensional (3D) XY universality class,
with the extra dimension encoding the quantum dynamics and
fluctuations of the vortices.

The melting of 2D crystalline solids provides another clas-
sic example of destruction of order by topological defects. At
nonzero temperature, 2D crystals exhibit dislocation defects,
whose thermal proliferation can drive a continuous melting
transition into a nematic or hexatic phase in which continuous
translation symmetry is restored, but rotational symmetry
breaking persists. As described by textbook Halperin-Nelson
theory [4–6], this thermal dislocation-induced melting is es-
sentially the same as the vortex condensation in a superfluid,
with the minor distinction that the dislocations come in two
flavors distinguished by different Burgers vectors. In the
spirit of the vortex melting of superfluids, an analogous zero-
temperature quantum melting transition in the 3D XY univer-
sality class was hypothesized, and invoked in various theories
of melting of electronic crystals such as charge- and spin-
density waves [7,8], and stripes in high-temperature cuprate
superconducting compounds [9–14] and neutral atomic
crystals [15].

However, whereas the thermal 2D solid melting transition
occurs via the entropic proliferation of defect configurations,

a putative zero-temperature quantum dislocation condensation
transition must occur via the virtual (tunneling) dynamics of
dislocations. Here the analogy between vortices and disloca-
tions breaks down, due to strong symmetry constraints that re-
strict the dynamics of dislocations. Namely, while dislocations
may freely move (or “glide”) along their Burgers vector, they
cannot “climb” perpendicular to this direction without adding
or removing particles from the system. This so-called “glide
constraint” has previously been noted in the literature [16–18],
but, as we will argue, its consequences for quantum crystal
melting have not been fully appreciated. Specifically, in an
insulating crystal made of particles with a conserved number,
changing the particle number costs a nonzero amount of
energy, and cannot occur at zero temperature. Similarly, since
the condensation of dislocations also requires a condensation
of these symmetry-forbidden climb events, producing a quan-
tum superposition of states with different particle numbers,
i.e., a dislocation condensate, is necessarily accompanied by
superfluid order.

In other words, a direct quantum melting transition via dis-
location condensation would necessarily involve simultaneous
restoration of translation symmetry and breaking of particle-
number conservation. In the conventional Landau paradigm
of phase transitions, a direct transition between two unrelated
symmetry breaking patterns is generically not possible, and
requires either fine tuning or the emergence of exotic decon-
fined particles and gauge fields [19,20]. Therefore, conven-
tional wisdom would dictate that the climb constraint forbids a
continuous (second order) phase transition driven by quantum
dislocation condensation.

To address this point, we construct an effective field theory
of dislocations, utilizing a dual description of the elastic
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fluctuations of the crystal [21], which was recently and el-
egantly reformulated as a higher rank gauge theory [22]. In
the latter formulation, the dual gauge charges are disclina-
tions that cannot move without exciting a finite number of
additional excitations per unit displacement [23,24], and thus
at zero temperature are immobile objects, dubbed “fractons”
[25].

The gauge charges of this theory are disclinations (ori-
entational defects), and are completely immobile fractonic
objects. The dislocations of the crystal appear in this dual
description as dipoles of the gauge charge, and are not inher-
ently fractonic. Namely, in the absence of any symmetries,
they can move in any direction without producing additional
excitations. However, we will show that the glide constraint
dictates that, in the presence of U (1) particle-number conser-
vation symmetry, the dislocations cannot hop perpendicular
to their Burgers vector without producing excitations with
a net U (1) charge. In a charge insulating crystal, these are
gapped and hence the symmetry forces the dislocations to be
1D subdimensional fracton particles. We dub this phenomena:
symmetry-enforced fractonicity.

This symmetry-enforced fractonicity rules out the exis-
tence of an insulating nematic phase, as condensation of dis-
locations inevitably produces condensation of particle num-
ber, i.e., producing a superfluid. Moreover, it implies that a
conventional, continuous quantum phase transition between
a charge-insulating crystal and any noninsulating nematic
or hexatic phase is fundamentally forbidden. Instead, we
show that, rather than directly melting the crystal, quantum
fluctuations of the crystal can instead drive condensation of
the underlying particles to produce a supersolid phase with
coexisting superfluid and crystalline orders. In this supersolid,
the superfluid condensate alleviates the symmetry-enforced
fractonicity, and frees the dislocations to move in any direc-
tion. As quantum fluctuations of the crystal order are further
increased, it is then possible to follow a quantum analog of the
Halperin-Nelson theory, in which the supersolid directly tran-
sitions into a supernematic or superhexatic, before ultimately
condensing the disclination defects to completely restore the
translation symmetry and arrive at a superfluid phase.

After describing this sequence of transitions using the
dual higher-rank gauge theory language, we next explore
the consequences for these ideas to other types of crystals.
We first adapt these ideas to the quantum melting of vortex
lattices in superfluids or superconductors. Finally, we explore
the consequences of symmetry-enforced fractonicity in the
quantum melting of 2D charge-density waves or “stripes” in a
metal, where our analysis suggests that quantum fluctuations
of stripe dislocations can favor pairing and superconductivity.

Before embarking on the main subject of this paper, we
briefly comment on the relation of our results to those pre-
viously obtained in the literature. Having mapped (2 + 1)-
dimensional elasticity theory to a higher rank tensor gauge
theory, Pretko and Radzihovsky [22] describe the Halperin-
Nelson sequence of melting transitions in the gauge theory
language, and further predict the possibility of a supersolid
phase at zero temperature, which agrees with our analysis.
We work out the zero temperature phase diagram of the dual
gauge theory, and show that quantum melting occurs through
an intermediate supersolid phase. We also discuss the finite

temperature phase diagram in Sec. III D, and in particular,
recover the Halperin-Nelson melting scenario.

A dual gauge-theory of elasticity was first formulated in
works by Zaanen et al. [21] reviewed in Ref. [26], which then
studied quantum melting transitions of a 2D crystal. These
works consider the glide constraint, and also identify that a
dislocation condensate has coexisting nematic and superfluid
order. However, these works primarily neglect the role of
excitations with nonzero particle number (interstitials and
vacancies), and their role in the origins of the superfluid.
Moreover, they posit that a 2D crystal can melt via a single
continuous transition to a smectic superfluid in the 3D XY
universality class. In contrast, we explicitly incorporate inter-
stitials and their coupling to the dislocation motion, and find
that the onset of a superfluid of interstitials and vacancies,
and hence the resulting alleviation of the symmetry-enforced
fractonicity of the dislocations, is crucial for the disordering
of crystalline order, and argue that the quantum nematic phase
is likely preceded by an intermediate supersolid phase.

There are also previous works studying thermal vortex-
line lattice melting in 3D [17,27]. Building on the work of
Marchetti and Nelson [27], where they describe the melting
by an unbinding transition of dislocation loops, Marchetti and
Radzihovsky [17] incorporate the coupling of the climb mo-
tion of dislocation loops out of their glide plane to interstitials
and vacancies. They also argue that melting of a vortex solid
to a vortex hexatic phase would require an intermediate vortex
supersolid phase if the transitions are continuous, in agree-
ment with our discussion on (2 + 1)-dimensional quantum
vortex lattice melting in Sec. IV.

Looking beyond elasticity, our definition of symmetry-
enforced fractonicity is conceptually related to recently pro-
posed ideas of fractal-symmetry protected topological phases
[28]. In contrast, here we will consider only ordinary global
symmetries, rather than a more exotic infinite number of
symmetries defined on different fractal-geometry subsystems.

II. SYMMETRY-ENFORCED FRACTONICITY

We first investigate the quantum melting of a 2D solid
formed by a crystal of bosonic atoms with a conserved
number. To formulate an effective field theory description
of symmetry-enforced fractonicity of dislocations, we begin
with the standard theory of elastic fluctuations of a crystal
in terms of a displacement field ui(r, τ ) that describes the
displacement the i ∈ {x, y} direction of the atom located from
its equilibrium position �r, at imaginary time τ (this Euclidean
time coordinate is related to the real time by the usual Wick
rotation: τ = it). Here we adopt a continuum description, ob-
tained by coarse graining on a length scale that includes many
unit cells of the underlying crystal lattice. In this limit we may
approximate the discrete atomic density by continuous density
and current fields:

jμ(x) =
(−iρ

j

)
≈ (−i)

(
ρ0(1 − ∇ · u)

∂τ ui

)
+ O(∇2u). (1)

Here xμ = (τ�r ) is the Euclidean space-time coordinate, and

ρ0 is the average density of particles in the crystal.
For smooth elastic fluctuations of atomic displacements
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FIG. 1. Dislocations motion. (a) The dislocation shown with
Burgers vector �b is described by a dipole of gauge charges with
dipole moment perpendicular to �b, in the dual gauge theory. (b) and
(c) The climb (glide) motion of the dislocation corresponds to the
motion of the dipole parallel (perpendicular) to its dipole moment,
and requires the addition of a diagonal (off-diagonal) quadrupole
moment.

us, these currents satisfy the continuity equation: ∂μ jμ =
i[∂τ (∇ · us) − ∇ · (∂τ us)] = 0.

Dislocations arise as singular configurations with non-
trivial circulation of u:

∮
∂iu jd�i = 2πb j , where b j is the

jth component of the dislocation’s Burgers vector, and the
integral is taken along any path that encircles the dislocation.
Equivalently, we may characterize the μ ∈ {τ, x, y} compo-
nent of the dislocation current with Burgers vector component
i of unit length by

Jd
μ,i = εμνλ

2π
∂ν (∂λui ), (2)

where εμνλ is the fully antisymmetric unit tensor with space-
time indices.

In the presence of a generic dislocation motion, the particle
number current is actually not conserved. Instead, one finds

∂μ jμ = 2πρ0εi jJ
d
i, j, (3)

where εi j is the antisymmetric unit tensor with spatial indices.
Equivalently, to move a dislocation by one lattice spacing
perpendicular to its Burgers vector, one must add or remove
a unit of charge to the system, as illustrated in Fig. 1. In a
charge-insulating crystal (i.e., one which is not a supersolid or
a more exotic compressible quantum liquid state), changing
the charge density requires adding energy, and hence each
climbing step requires producing gapped charge excitations,
preventing the climb motion. Instead, dislocations may only

glide along their Burgers vector, and become subdimensional
fractonic objects that can move only along one-dimensional
submanifolds of the 2D system.

As remarked above, in order to disorder the crystal in a
continuous quantum phase transition to a nematic or hexatic
phase, one must dynamically condense the dislocations—a
process that is hampered by their symmetry-enforced frac-
tonic nature. The dislocation motion is further inhibited by
the long-range interactions between dislocations, mediated
by elastic deformations of the crystal and grow logarithmi-
cally in the distance between dislocations. In fact, for purely
one-dimensional (1D) systems, it is impossible for particles
with such long-range interactions to condense [29], but rather
they always develop an interaction induced mass or form an
incompressible crystal.

This observation naturally raises the suspicion that it may
be fundamentally impossible for the dislocations to condense
in a continuous quantum phase transition. However, the dis-
location system is not directly equivalent to a decoupled set
of pure 1D systems, and requires further analysis. Namely,
while each dislocation is confined to move along a 1D line,
dislocations along different 1D lines interact via elastic fluc-
tuations of the crystal. To analyze the resulting system, we
develop an effective field theory for dislocations built on
previously developed dual theories of elasticity [22,26]. In
the following section we briefly review the elegant rank-2
gauge theory formulation of the dual elasticity [22], and then
incorporate dislocation fields in a manner consistent with the
global number or charge conservation of the underlying atoms
forming the crystal.

A. Review: Rank-2 dual gauge theory description of elasticity

To analyze the possibility of a quantum melting transition
driven by condensation of fractonic dislocations, we employ
a dual rank-2 gauge theory description of the elastic fluctu-
ations developed in Ref. [22], building on previous work of
Zaanen et al. [21]. We will then generalize these theories
to include gauge-charged (disclinations) and gauge-dipolar
(dislocations) matter.

The construction of the dual theory starts from the contin-
uum description of elastic fluctuations of the atomic displace-
ment vector field ui(x) with Lagrangian density:

Lel. = 1
2 [(∂τ ui )

2 + Ci jkl∂iu j∂kul ], (4)

where Ci jkl is the rank-4 elasticity tensor, which is symmetric
in arguments i j and kl . Following standard duality trans-
formation, we introduce Hubbard-Stratonovich fields πi (the
lattice momentum) and σi j , where σi j (the symmetric stress
tensor):

S =
∫

dτd2x

[
1

2
C−1

i jklσi jσkl + 1

2
πiπi + iσi j∂iu j − iπi∂τ ui

]
.

(5)

Separating the displacement field into u = us + ud , a smooth
(s) part and a singular defect (d) part that accounts for topo-
logical defects, and integrating out the smooth field constrains
the fields πi and σi j to obey the momentum-conservation
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continuity equation

∂τπi − ∂ jσi j = 0. (6)

An intriguing analogy to electrodynamics arises upon rewrit-
ing the stress tensor in terms of a rank-2 electric field, and the
momentum in terms of its corresponding magnetic field bi:

ei j = εikε jlC̃
−1
klmnσmn,

bi = εi jπ j, (7)

where εi j is the unit antisymmetric tensor with two spatial in-
dices, and C̃i jkl = εiaε jbεkcεldCabcd . In terms of these variables
the constraint equation becomes a Faraday-type “law”

∂τ bi + ε jkC̃iklm∂ jelm = 0. (8)

This constraint can be solved, at the expense of introducing
a gauge redundancy, by expressing ei j and bi in terms of a
symmetric rank-2 tensor gauge field ai j and a scalar potential
a0, such that Eq. (8) is automatically satisfied:

ei j = C̃−1
i jkl (∂τ akl + ∂k∂l a0),

bi = −ε jk∂ jaki. (9)

The physical fields are invariant under gauge transformations
of the form

ai j → ai j + ∂i∂ jξ, a0 → a0 + ∂τ ξ . (10)

Writing the action (5) in terms of ei j and bi, gives

S =
∫

dτd2x

[
1

2
ei jC̃i jkl ekl + 1

2
bibi − ρca0 − Ji jai j

]
, (11)

where ρc is the gauge-charge (disclination) density, and Ji j

is the tensor of disclination currents [30], and a0 acts as
a Lagrange multiplier to enforce the following Gauss’s law
constraint:

∂i∂ jei j = ρc. (12)

Using the definition of the disclination density in the above
constraint, one obtains a mapping between the electric field
tensor and the strain tensor:

ei j = 1
2εikε jl (∂kul + ∂l uk ). (13)

In addition to conservation of the total charge, the Gauss’s
law constraint (12) also implies conservation of the total
dipole moment, which has the striking consequence that the
charges in the theory are immobile fractons [22,30,31]. The
result is a dual tensor gauge theory coupled to fractonic matter.
The dipoles, in this case, are bound pairs of disclinations,
which are dislocations.

The U (1) symmetry-enforced fractonic nature of disloca-
tions is captured by the following conservation law, obtained
using the Gauss’s law (12):∫

d2x(ρx2 − 2eii ) = const. (14)

Using the duality mapping (13), one obtains eii ≈ �n, where
�n is the change in the particle density. Therefore, in a charge
insulating crystal, the sum of the diagonal components of
the quadrupole moment is conserved, forbidding the motion
of dipoles along the direction of their dipole moment, as

illustrated in Fig. 1. The dipole moment is perpendicular to the
Burgers vector of the corresponding dislocation, and hence we
obtain the 1D particle property of dislocations.

B. Effective theory of dislocations

Having reviewed the dual higher-rank gauge theory de-
scription of phonon fluctuations, we now turn to developing
an effective field theory for topological defects in the elastic
medium, i.e., to incorporate matter into the dual gauge theory.
To this end, we will need to identify the leading relevant oper-
ators describing the dynamics of dislocations that are invariant
under the rank-2 gauge structure, and carefully consider their
transformation properties under the global U (1) symmetry
associated with the conserved number of the underlying parti-
cles forming the crystal.

1. Gauge charges (disclinations)

The fundamental gauge charges of the dual elastic theory
are disclinations (defects in the orientational order of the
crystal). We can introduce a field ψc for these gauge-charged
fields, which transforms under the rank-2 gauge transforma-
tions [Eq. (10)] as

ψc(�r, τ ) → eiξ (�r,τ )ψc(�r, τ ). (15)

As previously remarked, the higher-rank gauge structure im-
plies that both the gauge-charge and gauge-dipole moment
of the defect matter fields are conserved. Consequently, all
gauge invariant operators have vanishing charge and dipole
moments. The lowest-order moment operators are those that
add gauge quadrupoles of the matter fields, such as

Qxy(r, τ ) = ψc(r)ψ†
c (r + dx̂)ψc[r + d (x̂ + ŷ)]ψ†

c (r + dŷ)

× e−i
∫ x+d

x dx1
∫ y+d

y dy1 axy (x1,y1,τ )
,

Qxx(r, τ ) = ψc(r + dx̂)[ψ†
c (r)]2ψc(r − dx̂)

× e−i
∫ x+d

x dx1
∫ x+x1

x−x1
dx2 axx (x2,y,τ )

,

Qyy(r, τ ) = ψc(r + dŷ)[ψ†
c (r)]2ψc(r − dŷ)

× e−i
∫ y+d

y dy1
∫ y+y1

y−y1
dy2 ayy (x,y2,τ )

, (16)

where d is the lattice spacing.
In a system where the number of particles that form the

crystal is a conserved quantity, it is crucial to consider the
physical charge quantum numbers of these quadrupolar op-
erators, i.e., their transformation properties under the U (1)
symmetry associated with the particle number conservation.
From the previous section we have seen that that dislocation
climb by one lattice spacing requires adding or removing
one particle. In the gauge theory, a dislocation is a dipolar
composite of two opposite gauge charges that are displaced
by distance �d equal to a lattice spacing. The climb motion
then corresponds to changing moving the gauge-dipole one
lattice spacing along its dipole moment. This is precisely the
effect of the quadrupolar operators Qxx and Qyy [see Fig. 1(b)].
Therefore, under a U (1) rotation that transforms unit-
charged operators by χ , these gauge-quadrupole operators
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must likewise transform:

Qxx/yy −→
U (1)χ

e−iχ Qxx/yy,

Qxy −→
U (1)χ

Qxy. (17)

Using Eq. (16), this transformation then implies that the
disclination field transforms as

ψc(r, τ )−→
U (1)χ

eir2χ/2d2
ψc (r,τ ). (18)

Therefore the operators Qxx and Qyy cannot appear alone in
the action of any U (1)-symmetric theory. Instead, the minimal
action for the gauge charges (disclinations) in a number-
conserving system is

Lc = ψ†
c (i∂τ − a0)ψc + λxyQxy(r, τ ) + Vc(|ψc|2), (19)

where Vc is a potential for the disclinations, and λxy is a
nonuniversal parameter.

2. Gauge dipoles (dislocations)

Though disclinations are the elementary gauge-charged
objects, in a crystalline solid phase, they are not only fully
immobile, but also linearly confined [30]. Consequently, they
do not play a role in the low-energy physics of a continu-
ous melting transition. In contrast, dislocations have a much
weaker logarithmic-in-distance interaction (like vortices in a
superfluid), which makes them important near the thermal
melting transition. In the dual description, dislocations are
dipolar composites of the fundamental gauge charges. Let
us denote the dislocation field with gauge-dipole moment
d by ψd, which corresponds to the field of a dislocation
with Burgers vector bi = εi jd j . Since the Burgers vector is
quantized to an integer multiple of lattice spacings, the ele-
mentary dislocation dipole moment |d| is equal to the lattice
spacing d .

Viewing the dislocation field as a tightly bound pair of op-
posite unit gauge charges separated by unit distance in the ith
direction, one can deduce its gauge-transformation properties
from those of the elementary charge fields, Eq. (10):

ψd(r, τ ) → ei[ξ (r+d,τ )−ξ (r,τ )]ψd(r, τ ) ≈ eid·∇ξ (r,τ )ψd(r, τ ),

(20)

where the last line holds in the continuum limit where we
coarse grain our distance scale on lengths much bigger than
the underlying lattice spacing.

Gauge-invariant operators that move gauge-dipolar parti-
cles (dislocations) from space-time point x = (r, τ ) → x′ =
(r′, τ ′) are Wilson lines of the form

Wd(x′, x) = ψ
†
d (x′)ei

∫ x′
x (diai j d� j+d·∇a0d�0 )ψd(x). (21)

Taking the limit of infinitesimal length Wilson lines, we see
that gauge invariant terms in a continuum dislocation field
theory will involve covariant derivatives of the form

Diψd = (∂i − id ja ji )ψd,

Dτψd = (∂τ − id · ∇a0)ψd. (22)

To examine the particle-number quantum numbers of the
climb operator, consider a U (1) transformation that rotates
unit-charged fields by phase χ . We know that the dislocation

climb operator adds a particle to the system and will likewise
acquire a phase under this U (1) rotation. In the gauge descrip-
tion, this dislocation climb operator, hops a dipolar particle
by a unit lattice spacing along its dipole moment, and must
therefore transform as

Oclimb,d(r) =ψ
†
d (r + d, τ )eidiai j d j ψd(r, τ )

−→
U (1)χ

e−iχ Oclimb,d. (23)

In a charge-conserving system, such charged operators
cannot appear on their own in the effective theory, but rather
can only enter in charge-neutral composites (perhaps in-
volving other charged fields). Assembling these ingredients,
the minimal form of the low-energy effective dislocation
field theory compatible with gauge invariance and charge
conservation is

Ldis. =
∑

d

ψ
†
dDτψd + 1

2md

∣∣�⊥d
i j D jψd

∣∣2 + Vd (|ψd|2)

+ Ld
oct., (24)

where the d-sum ranges over different elemental lattice vec-
tors, and Ld

oct. hops a diagonal gauge quadrupole along d, or
in other words, adds the corresponding gauge octupole, and

�
⊥d
i j = (δi j − d̂id̂ j ) (25)

is a projection onto the direction perpendicular to the gauge-
dipole moment. Crucially, the spatial derivative term omits
gradients along the gauge-dipole direction (enforced by
the projector �⊥d ), which would correspond to the U (1)-
forbidden climb motion, and Vd is a (generally nonlinear)
effective Ginzburg-Landau-type potential for the dislocations.
However, Ld

oct. corresponds to a pair of dislocation climb
motions opposite to each other, or equivalently, the hopping
of a crystal particle, and therefore, respects the global U (1)
symmetry. On the lattice, it takes the following form:

Ld
oct. = thop

∑
d′

O†
climb,d(r + d′)Oclimb,d(r) + H.c.

In the continuum limit, this gives second derivative terms, as
shown below in Eq. (27).

For large quantum fluctuations of the atomic positions,
dislocations become important and Vd can develop a minimum
at a nonzero value of |ρd |. It is then useful to decompose the
dislocation field into amplitude and phase components:

ψd = √
ρdeiφd . (26)

Integrating out massive fluctuations in the amplitude produces

Ldis. =
∑

d

ρd

2

[
(∂τφd − d · ∇a0)2

+ 1

2md

(
�

⊥d
i j (∂ jφd − dkak j )

)2

+ thop

∑
d′

(d̂id
′
j∂i∂ jφd − did

′
k∂kai j d̂ j )

2

]
, (27)

where the absence of a linear time-derivative term is guar-
anteed by the zero net density of dislocations in the system
(due to inversion symmetry, which implies a particle-hole
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FIG. 2. Schematic phase diagram. At zero temperature, the frac-
tonic nature of the topological defects of the crystal leads to a de-
parture from the classical Halperin-Nelson thermal melting scenario.
We obtain a sequence of disordering phase transitions preceded
by the onset of superfluidity of interstitials and vacancies, marked
in blue. At finite temperature, thermal fluctuations cause the long-
range order of the superfluid to change to quasi-long-range order,
and subsequently, to short-range order via a BKT transition at the
boundary of the blue region.

symmetry for dislocations). For future reference, we note that
the transformation of the dislocation phase field φd under
U (1) rotations by angle χ is

φd(r, τ )−→
U (1)χ

φd (r,τ )+ d·r
d2 χ. (28)

Having constructed effective field theories for the topolog-
ical defects of the crystal, we can now study the melting phase
transitions driven by their condensation. First, we consider the
theory of dislocations (27) and study their condensation while
disclinations remain gapped. For an ordinary, unconstrained
(2 + 1)-dimensional XY model (where the dislocations have
an isotropic kinetic energy), there would be two distinct
phases. For small ρd , the phase fluctuations would be large,
producing a gapped state with massive dislocations. Whereas,
for large ρd , the phase fluctuations become stiff, producing
long-range phase order. We will now see that the presence of
the dynamical glide constraint alters this scenario by requiring
the onset of a superfluid of vacancies and interstitials in order
for the dislocation condensation to occur.

III. QUANTUM MELTING VIA A SUPERSOLID

In this section we show that quantum fluctuations in the
crystal can actually favor the formation of an intermediate
supersolid phase characterized by coexisting superfluid and
crystalline orders. In this supersolid phase, the particle num-
ber symmetry is spontaneously broken, freeing the disloca-
tions and enabling them to both glide and climb. This enables
a cascade of continuous quantum disordering transitions from
solid to supersolid, to supernematic, and finally to an isotropic
superfluid, as shown in the schematic phase diagram in Fig. 2.

To construct an effective field theory description for this
scenario, we first introduce a Ginzburg-Landau action for the

superfluid order parameter �sf:

Lsf = �
†
sfi∂τ�sf + 1

2ms
|∇�sf|2 + r

2
|�sf|2 + u

4!
|�sf|4, (29)

where, in a mean-field treatment, r > 0 would correspond to
an insulator, and r < 0 to an ordered superfluid.

Noting that under U (1) phase rotations, �sf −→
U (1)χ

eiχ�sf, we

see that the minimal gauge invariant and number conserving
coupling between the the dislocation climb operators and the
superfluid order parameter takes the form

Lsf-dis. = γ�sf

∑
d

Oclimb,d + H.c., (30)

which describes a process in which the dislocation climbs by
removing an atom from the superfluid condensate to conserve
the total particle number. We will first examine the backaction
of the dislocation fields on the superfluid action, where we will
see that the quantum fluctuations of the crystal can actually
favor the formation of superfluid order. Subsequently, we will
analyze the effective action for dislocations in the resulting
supersolid phase.

A. Crystal fluctuation induced supersolidity

Consider the above theory when the dislocations are
gapped, but close to a continuous condensation transition.
Integrating out the dislocation fields, produces a renormal-
ized effective potential for the superfluid: r → reff = r −
1
2γ 2

∫
d3x〈O†

climb,d(x)Oclimb,d(0)〉. Since the dislocations are
massive, the two point functions of the climb operator decay
exponentially producing

reff = r − Cγ 2
∫

d3x
e−x/ξd

xp
, (31)

where C is a constant and p is the exponent at the critical
point. Close to the critical point, the above integral is ∼ξ

3−p
d ,

which diverges at the critical point for p � 3, and is finite
for p > 3. Hence, for p � 3, r necessarily gets renormalized
to a negative value at a sufficiently large ξd and hence the
system develops superfluid order before the condensation of
the dislocations. In this case, the assumption of a single dis-
location condensation transition fails, and instead is preceded
by a supersolid phase.

If, instead, p > 3, r only gets shifted by a finite constant
at the critical point, and in particular, can still remain posi-
tive, meaning that the system remains charge insulating. In
the dislocation condensed phase (nematic phase), the climb
operator ∼eidi∂iφd−diai j d j is long-range ordered, and there-
fore, the system has coexisting superfluid order. This leads
to the possibility of a continuous phase transition at which
the U (1) number conservation symmetry is spontaneously
broken and the broken translation symmetry of the crystal is
simultaneously restored. Such a scenario requires fine tuning
in the Ginzburg-Landau-Wilson theory of phase transitions,
where the generic possibilities are either a first order phase
transition or a pair of separate second order phase transitions
corresponding to the two independent symmetries. This sug-
gests that a conventional scenario for the quantum melting
transition would have p < 3. We note in passing, that such
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a Landau forbidden transition is a characteristic feature of de-
confined critical points, which exhibit emergent fractionalized
excitations and gauge degrees of freedom at criticality [19,20].

Whether such an exotic scenario could arise for quantum
crystal melting is intriguing, but we leave the computation of
the exponent p for future work (e.g., this question could be
addressed by quantum Monte Carlo sampling of dislocation
worldlines), and subsequently focus on the more conventional
scenario of p < 3, where crystal melting can continuously
occur only via an intermediate superfluid region.

In such a fluctuation-induced superfluid with large but
finite ξd , the dislocations are still massive and the crystalline
order remains intact. Therefore, the resulting phase is a su-
persolid with both spontaneous breaking of particle number
conservation and translation symmetries. Denoting the phase
of the ordered superfluid as ϕs (�sf ∼ √

ρseiϕs ), the effective
action of the supersolid phase is

Lss =Lel. + Lsf + Ldis. + Lsf-dis.,

Lel. = 1
2

(
b2

i + ei jC̃i jkl ekl
)
, Lsf = ρs

2
(∂μϕs)2,

Ldis. = ρd

2

∑
d

(∂τφd − di∂ia0)2

− ρd

2md

∑
d

cos
(
�

⊥d
i j εil (∂ jφd − dkak j )dl

)
,

Lsf-dis. = − ρ
‖
d

∑
d

cos(di∂iφd − diai jd j − ϕs), (32)

where ρ
‖
d = γ

√
ρs, and the last term represents the superfluid

assisted climb motion of the dislocations, and for simplicity
of notation we have used a Lorentz invariant action for the
superfluid phase fluctuations. Here we have not included the
particle hopping term Ld

oct., in Ldis., as it is less relevant
compared to the superfluid-climb coupling term.

In the absence of singular vortex configurations in the
superfluid phase, we may simply absorb the smooth phase
field ϕs into the dual rank-2 gauge field ai j by a suitable
gauge transformation. The resulting action has anisotropic,
but nonzero kinetic energy for dislocations in both directions,
i.e., the superfluid alleviates the glide constraint and converts
dislocations from fractons to ordinary mobile defects. We
refer to the dislocations as defects rather than particles, since
they still have logarithmic in distance interactions due to
the elastic fluctuations, so strictly speaking they are weakly
confined.

B. Supersolid to supernematic transition

With the symmetry-enforced fracton constraint lifted, the
crystalline order of the supersolid phase may melt by a
continuous quantum phase transitions in which dislocations
condense. This transition falls in the 3D XY universality class,
and produces a supernematic phase with both coexisting su-
perfluid and orientational-symmetry breaking (but translation
symmetry preserving) nematic order. We next examine the
low-energy Goldstone mode excitations of the supernematic
phase. The results we obtain agree, where they coincide, with
the well-known properties of general nematic superfluids, and
have been previously obtained for the rank-1 U (1) gauge

field description in Ref. [21]. However, we reformulate these
results in the rank-2 gauge description.

The supersolid phase contains three types of Goldstone
modes: a superfluid phase mode associated with the bro-
ken particle-number conservation, and two acoustic phonon
branches associated with the broken x- and y-translation sym-
metries. In the dual description, these two phonon branches
correspond to the two photon branches of the rank-2 gauge
field. Whereas, the superfluid phase mode remains essentially
unchanged across the supersolid to supernematic transition,
the elastic Goldstone modes are altered. Namely, the su-
pernematic breaks only a single spatial symmetry (rotation),
and hence we expect only a single elastic Goldstone mode,
associated with long-wavelength fluctuations of the nematic
director. In the dual theory, this arises via a Higgs mechanism
in which one of the two photon branches acquires a mass due
to coupling with the dislocation (gauge-dipole) condensate.

To see how this arises, we examine the low-energy effective
theory of the supernematic phase, starting from Eq. (32). To
simplify the analysis, let us specialize to the square lattice,
choose a diagonal elastic tensor Ci j,kl = cδikδ jl , and rescale
ai j and C to absorb factors of the gauge-dipole moment
d , choose ρd = ρ

‖
d , and pick units in which md = 1. While

these choices simplify the analysis, they will not change the
general structure of universal features (such as number and
character of Goldstone modes). We will choose to work in the
axial gauge, where a0 = 0. Since vortices in the dislocation
phase are suppressed by the dislocation condensate, we can
expand the cosine terms in Eq. (32) to quadratic order in their
arguments. The resulting action reads

Lsn = ρs

2
(∂μϕs)2 + 1

2

(
e2

i j + b2
i

) + ρd

2
(∂τφi )

2

+ ρd

2
(∂iφ j − ai j − δi jd

−1ϕs)2. (33)

Since the interesting change in the collective mode struc-
ture occurs in the elastic sector, let us freeze the superfluid
phase by fixing ϕs = 0 and examine the remaining equations
of motion for a and φ (written in terms of a real time
coordinate t = −iτ ):

∂2
t axx = ∂2

y axx − ∂x∂yaxy + ρd (∂xφx − axx ),

∂2
t ayy = ∂2

x ayy − ∂x∂yaxy + ρd (∂yφy − ayy),

2∂2
t axy = ∇2axy − ∂x∂y(axx + ayy)

+ ρd (∂xφy + ∂yφx − 2axy),(
∂2

t − ∇2
)
φi = − ∂ ja ji. (34)

Consider excitations with frequency ω and wave-vector
q = qxx̂. In the absence of a dislocation condensate ρd = 0,
there would be two propagating photon modes, with either
ayy �= 0 (a longitudinal phonon) or axy �= 0 (a transverse
phonon). With nonzero ρd , the equation of motion for ayy

becomes [ω2 − (q2
x + ρd )]ayy = 0, i.e., the photon branch

corresponding to the longitudinal phonon of the supersolid
acquires a Higgs mass.

In contrast, the off-diagonal components of axy and the
dislocation phase φy are coupled, as described by their mo-
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mentum space equations of motion:(
ω2 − q2

x

)
φy = iqxaxy,(

2ω2 − q2
x

)
axy = − ρd (iqxφy − 2axy). (35)

Solving these coupled equations, one finds two branches

of modes with dispersions: ω2
± = 3q2

x +2ρd ±(q2
x +2ρd )

4 . The ω+
branch is gapped for all momenta, but the ω− branch contains
gapless Goldstone modes with dispersion: ω = 1√

2
|qx|.

We next verify that this Goldstone mode indeed corre-
sponds to fluctuations of the rotation breaking order. First
note that the fluctuations of axy and φy do not produce any
compression of the crystal atoms. Namely, the local change
in density of the crystal is −∇ · u, in terms of the displace-
ment fields, or equivalently

∑
i eii ∼ iω(axx + ayy), which

vanishes for this gapless mode. Second, we can compute
the distortion of the local bond-angle θb = 1

2εi j∂iu j , asso-
ciated with this Goldstone mode. To translate this quantity
into the dual gauge field variables, we again decompose the
displacement field into smooth and defect parts: θb = θ

(s)
b +

θ
(d )
b = 1

2εi j∂i(u
(s)
j + u(d )

j ). Note that the elastic contributions

to the bond angle can be written as ∂τ θ
(s)
b = 1

2∂ibi, and the

dislocation contribution is θ
(d )
b = ∫

d2r′ ρd
i εi j (r−r) j

|r−r′ |2 . Writing the

dislocation density ρd
i = ρd (∂tφi ) (in the axial gauge with

a0 = 0), and inserting the above solution to q ∼ x̂ Goldstone
mode, one finds that the Fourier components of the bond angle
associated with the elastic Goldstone mode are θb ∼ iρd

ω
axy.

Together, these observations confirm that the elastic Gold-
stone mode of the supernematic phase is indeed a rotational
mode as expected.

C. Supernematic to superfluid transition

In the supernematic phase the disclinations are no longer
immobile fractons. Instead, the disclinations can freely hop
without creating further excitations, and have only logarithmic
in distance interactions, and thus are weakly confined (since
the diagonal components of the rank-2 gauge field, which me-
diated linear-in-distance interactions in the crystalline phases
[30] acquire a Higgs mass). As the quantum fluctuations in the
nematic order are further increased, these disclination defects
can become important at low energies and eventually can
condense to destroy the nematic order and restore rotational
invariance.

To describe the disclination condensation process in
the effective dual elastic theory, we should consider the
disclination field ψc with action Eq. (19). Note that
disclination/antidisclination pairs displaced by a single lattice
spacing are gauge dipoles, and can freely convert into dis-
locations, which have the same gauge-dipolar structure. This
coupling is described by a term

Lc−d [ψc, ψd ] = −γc−d

∑
d

ψd(r, τ )ψ†
c (r + d, τ )

×ψc(r, τ ) + H.c. (36)

In the supernematic phase, the dislocations are con-
densed, i.e., effectively 〈ψd〉 �= 0. To describe this, it
is useful to introduce phase variables ψc = √

ρceiφc and
ψd = √

ρd eiφd . In the dislocation condensed phase, φd is

approximately constant, which we can set to 0, and the gauge
charge-dipole coupling term becomes effectively Lc−d ≈
−γc−d

√
ρdρc

∑
d cos (d · ∇φc). This takes the form of an

effective “‘hopping” -type kinetic energy for the disclinations.
Hence we see that the disclinations, which were immobile
fractons in the crystal, may now hop by absorbing dislocations
from the dislocation condensate.

To analyze the properties of this in the dual gauge de-
scription, let us write down the full effective action for elastic
fluctuations, defects, and superfluid degrees of freedom in the
phase-only approximation:

Lc ≈ ρc

2
(∂τφc − a0)2 + ρc

2mc
(∂i∂ jφc − ai j − d−2ϕsδi j )

2,

Ldis. ≈
∑

d

ρd

2
(∂τφd − d · ∇a0)2 + ρd

2md

[(
�

⊥d
i j (∂ jφd

− dkak j )
)2 + (d̂ · ∇φd − d̂iai jd j − d−1ϕs)2

]
,

Lss. = 1

2
b2 + 1

2
eC̃e + ρs

2
(∂μϕs)2. (37)

Writing the dislocation-disclination coupling as Lc−d ∼
−∑

d cos (φd − d · ∇φc), we see that in the phase where both
dislocations and disclinations are condensed, these terms lock
d · ∇φc = φd, forcing the two components of the dislocation
phase fields φi to be gradients of a single scalar φc.

In this case, we can perform a gauge transformation ai j →
ai j + ∂i∂ jφc and a0 → a0 + ∂τφc to remove the disclination
phase field from the action, analogous to the familiar unitary
gauge for superconductors. The resulting action in this unitary
gauge is

Lc + Ld ≈ ρc

2
a2

0 + ρcm−1
c + ρd m−1

d

2
(ai j − d−2ϕsδi j )

2,

(38)

so that all the components of the rank-2 gauge structure
acquire Higgs masses that lock a0 = axy = 0 and axx = ayy =
ϕsd−2. The only remaining excitation is the superfluid phase
mode, signaling that the crystalline order has been completely
disordered by the defect condensation, restoring full trans-
lation and rotation symmetry, and resulting in an isotropic
superfluid. We summarize the sequence of quantum melting
phase transitions in Table I.

D. Finite temperature crossover

At zero temperature we have seen that the melting of a
crystal to a nematic phase is accompanied by a superfluid
of vacancies and interstitials, where the dislocations lose
their subdimensional property. However, one must recover
the classical Halperin-Nelson scenario at finite temperature
where there is a continuous phase transition from the crystal
to the nematic phase. To examine how this works, we must
consider the effects of thermal fluctuations.

A detailed discussion of the finite temperature physics of
fractonic matter was presented in Ref. [32]. The basic point is
that fractons are only prevented from moving at zero temper-
ature, where each forbidden move requires exciting additional
gapped fracton excitations. However, nonzero temperature
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TABLE I. Summary of the zero-temperature phases, gapless modes propagating along the x direction, and the nature of the topological
defects. The photon modes ayy and axy acquire Higgs masses when the dislocations and the disclinations are condensed, respectively, and ϕs is
the Goldstone mode corresponding to the condensation of the bosons that constitute the lattice.

Phase Gapless modes Dislocations Disclinations

Solid axy, ayy 1D fractons, gapped 0D fractons, gapped
Supersolid axy, ayy, ϕs unconstrained, gapped 0D fractons, gapped
Supernematic axy, ϕs unconstrained, condensed unconstrained, gapped
Superfluid ϕs unconstrained, condensed unconstrained, condensed

excites a finite density of fractons, which can be absorbed or
emitted to allow the forbidden motion.

Here a similar scenario holds for symmetry-enforced frac-
tons, with the distinction that it is a thermally excited gas
of mobile charged particles that liberate the dislocations at
nonzero temperature, as opposed to a thermal self-liberation
of inherently fractonic particles. Specifically, for energy gap
� to charged-particle excitations of the crystal, nonzero tem-
perature will produce a thermal gas of noncrystalline parti-
cles of density ρT ∼ e−�/T . Dislocations can then climb by
absorbing or emitting particles into this thermal gas. Since
thermally excited particles are required to assist these climb-
direction “hops” processes, their amplitude will be propor-
tional to ρT , and hence will also display the same activated
temperature dependence. A second distinction from the 3D
thermal liberation of intrinsic fractons described in Ref. [32],
is that thermal screening of 3D fractons results in weaker
power-law interactions, and whereas the dislocations continue
to exhibit logarithmic confinement, up until a BKT transition,
as described by the Halperin-Nelson theory.

We note that, for temperatures T � �, there will be
very few excited charged particles to assist the dislocation
climb, and the dynamics of the dislocations will be highly
anisotropic, such that the climb motion is thermally frozen
out in the limit of T → 0. For T � �, the anisotropy is less
pronounced, and the classical Halperin-Nelson scenario can
take over.

Finally, a possible alternative is that of a single first order
phase transition between the solid and liquid (at nonzero
temperature) or between the solid and superfluid at zero
temperature.

IV. VORTEX LATTICE MELTING

The above discussion focused on the case where the
underlying crystal arose from bosonic atoms with a con-
served number. However, these principles have implications
for other types of crystals. As an example, we next consider
the quantum melting of a 2D vortex lattice of a superfluid
or superconductor, where the objects forming the crystal
are collective topological defects of a different order. This
scenario is closely related to the one discussed above through
boson-vortex duality, though there will be some phenomeno-
logical differences due to the absence of time-reversal
symmetry due to the magnetic field required to produce the
vortex lattice state.

Starting from a superfluid (superconductor) state, a vortex
lattice can be induced by externally breaking time-reversal
symmetry by applying a net rotation (or external magnetic

field), respectively. Again denoting the displacement field
of the vortex positions by �u, the low-energy effective field
theory for this state can be constructed by performing standard
boson-vortex duality, in terms of a vortex field ψv minimally
coupled to an emergent U (1) gauge field αμ whose flux is 2π

times the density of the particles forming the superfluid. The
resulting effective theory is

L = Lv[ψv, α] + Lel.[u] + Lα[α, A],

Lv = ψ̄v (−i∂τ −μ−α0)ψv+ 1

2mv

|(∇ − i�α)ψv|2+V (|ψv|2),

Lel. = i

2
εi jui∂τ u j + 1

2Ci jkl∂iu j∂kul + α0∇ · u + α · ∂τ u,

Lα = (εμνλ∂ναλ)2

4κ2
+ iεμνλαμ∂νAλ

2π
, (39)

where μ is a chemical potential for the vortices, produced by
the external time-reversal breaking field that induced the vor-
tex lattice, mv is the effective mass of the vortex excitations,
and V (· · · ) is an effective potential for the vortex excitations
(additional vortices beyond those already present in the vortex
lattice are gapped excitations of the vortex liquid). In the last
line, κ is the gauge coupling of the emergent gauge field
α (here, for simplicity, we have written a Lorentz invariant
form, though such a symmetry will not naturally be present
in the theory, deviations from this form will not alter the
subsequent discussion). For vortex lattices in a superfluid
or superconductor respectively, A is either: (i) an external
(i.e., nondynamical or “background”) electromagnetic poten-
tial field (for the superfluid) or (ii) the vector potential of a
fluctuating magnetic field (for the superconductor).

A. Phonons and dual elasticity theory

The absence of time-reversal symmetry dramatically alters
the phonon spectrum of the vortex solid compared to an ordi-
nary crystal. Formally, this enables the single time derivative
term in Lel., which is ordinarily forbidden, but now dominates
the usual (∂τ u)2 form at low energies. Consequently, instead
of distinct longitudinal and transverse branches of acoustic
phonons, the vortex lattice exhibits a single phonon mode
that is a mixture of compression and rotation, and which
has a nonrelativistic ω ∼ q2 dispersion. We note that other
magnetoelastic systems, for example phonons of a skyrmion
crystal, are described by an identical magnetoelastic theory
[33]:

Lm.el.[u] = i

2
εi jui∂τ u j + 1

2
Ci jkl∂iu j∂kul . (40)
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Starting from the time-reversal asymmetric elasticity ac-
tion, we can derive a dual field theory for the vortex crystal
phonons, following analogous steps to those of Ref. [22],
which has been independently obtained by Zhai et al. [34].
We first introduce Hubbard-Stratonovich fields πi and σi j to
produce an action that is linear in u:

Lm.el.[u, π, σ ] = i

2
εi jπi∂τπ j + iπi∂τ ui

+ 1

2
σi jC

−1
i jklσkl − iσi j∂iu j . (41)

The first term marks the chief departure from the time-reversal
invariant action. In particular, varying with respect to πi, we
see that πi ≈ εi ju j . This implies that the original translation
symmetry of the underlying elastic action: ui → ui + δi, for
any constant vector δi, will require invariance under πi →
πi + εi jδ j .

Next, decomposing the displacement field into smooth (s)
and singular defect (d) parts: u = us + ud , and integrating out
the smooth fluctuations enforces the constraint of Eq. (6) of
the main text, which can again be solved by introducing a
rank-2 gauge structure identical to that explained in Ref. [22]
and above.

The resulting dual elasticity action reads

Ldual[a] = i

2
biεi j∂τ b j + 1

2
ei jC̃i jkl ekl . (42)

The b2 term, present in the time-reversal symmetric case, is
notably absent. Instead, the dual magnetic field term contains
a linear time derivative of b, such that the dual-photon ai j ex-
hibits the ω ∼ q2 dispersion expected of the magnetophonons.
In fact, the above-noted πi → πi + εi jδ j invariance of the
action, which was a consequence of the underlying translation
symmetry, manifests as a bi → bi − δi invariance of the dual
action. Therefore, translational invariance forbids any terms
involving b without derivatives, preventing the nominally
more relevant b2 terms from appearing, and enforcing the
correct quadratic phonon (dual-photon) dispersion.

B. Constraints on melting transitions

The key feature of the above description is that the vortex
number becomes the charge of the dual gauge field αμ and is
hence conserved. Physically, this vortex number conservation
arises since no local fluctuation of the superconductor can
change the global vorticity. In the dual elasticity theory, this
again means that the dislocation climb terms must couple to a
field with compensating gauge-charge under α, such as

Lclimb = �
(
ei(d∂xφx−d2axx ) + ei(d∂yφy−d2ayy )

)
ψv + H.c., (43)

where � is some nonuniversal coupling constant. Hence,
as with the previous analysis, it is not possible to directly
condense the dislocations without condensing the vortices, to
destroy the underlying superfluid or superconducting state.

Simply condensing the vortices on top of the background
vortex lattice would produce an insulating state, still with
translation symmetry breaking crystalline order. The disloca-
tions of this insulating crystal state that descends from the
phase-disordered vortex lattice are no longer constrained to
glide by the vortex-number conservation. However, this does

not mean that they are free to move. To see this, note that
the flux of the dual gauge field α is locked to the particle
number: ∇ × α = 2πρ, so that the vortices are forced to
admit a finite gauge-flux density. To accommodate this gauge
flux, the vortex condensate cannot be spatially homogeneous,
but must itself have a lattice of dual-vortex defects. In the
original particle language this dual-vortex lattice is simply
a crystal of the particles. As we have seen in the previous
section, dislocations of this crystal are symmetry-enforced
fractons that cannot climb, due to particle number conser-
vation. Hence, by condensing the vortices, we have gone
from a vortex lattice whose dislocations cannot climb due to
the topological vortex-number conservation, to an ordinary
insulating crystal whose dislocations cannot climb due to
particle-number conservation.

V. CHARGE-DENSITY WAVE MELTING IN A METAL

Before concluding, we turn our attention to electronic
2D crystals such as charge-density waves (CDW), and stripe
phases of high-temperature cuprate superconductors [35–37],
or other strongly correlated compounds [38]; the related situ-
ation where the 2D crystal forms in an electronic system due
to interactions.

Electron-electron interactions in a metal can produce spon-
taneous charge-density wave (CDW) order at wave-vector Q
that may or may not be commensurate with the underlying
ionic lattice, and which are sometimes accompanied by spin-
density wave (SDW) order. A controlled theory of the onset
CDW or SDW remains challenging, since the critical fluctua-
tions of the DW order are strongly coupled to the continuum
of gapless particle-hole excitations of the Fermi surface
[39–41]. We will not attempt to address this challenging
situation, and instead examine the constraints placed by the
symmetry-enforced fractonic nature of its dislocation defects,
and comment on open issues for future work.

Suppose we can tune a parameter in the system, such as
doping or pressure, that tends to destroy the CDW order. Then,
as the quantum fluctuations in the CDW order increase, they
will favor dislocation motion. However, as the glide constraint
dictates, dislocations cannot climb without absorbing elec-
trons from the Fermi surface into the CDW order.

Naively, the minimal such process would be for a dis-
location to climb enough to absorb a single electron from
near the Fermi surface. This process would be forbidden in
a time-reversal invariant system, since the electron carries a
spin-1/2. It could conceivably occur in a spin-density wave
system where time-reversal symmetry is absent. However,
in the above field theory formulation the dislocation climb
operator is a bosonic field, and hence cannot couple directly
to a single electron creation or annihilation operator (which
would correspond to an unphysical nonlocal conversion of
fermions to bosons). It remains an open question whether this
statistical obstruction is fundamental, or whether it is possible
to modify the dislocation description in such a way to convert
the climb operator to a fermion object.

To simplify our discussion, we will instead focus on a
time-reversal invariant CDW state, in which case dislocations
can only climb by adding or removing spin-singlet pairs
of electrons. We can then revisit the above analysis of the
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previous sections, but replacing the role of the bosonic super-
fluid order parameter �sf by a Cooper pairing field �Cp which
is a charge-2e, spin-singlet operator, producing a coupling of
the form

Lclimb = �
(
e2i(d∂xφx−d2axx ) + e2i(d∂yφy−d2ayy )

)
�Cp + c.c.,

�Cp(�r, τ ) =
∑

k

eiq·r�k,q(τ )ck+q/2,↑c−k+q/2,↓. (44)

Here the pairing parameter �k,q can encode any symmetry
allowed pairing (e.g., s wave, d wave, etc.).

Then, by analogy to the bosonic quantum melting story
presented above, we see that the quantum fluctuations in
the CDW metal favor the formation of a superconducting
electron-pair condensate in order to alleviate the glide con-
straint and allow the crystal defects to climb, following
which, they could condense to melt the CDW metal to a
nematic metal (note that more detailed microscopic input is
needed to decide which pairing symmetry would be most
favorable) [42]. This scenario is reminiscent of the notion of
competing orders [37] in high-temperature superconductors,
and the symmetry-enforced fracton concepts could potentially
provide a useful new perspective on these complex materials.

VI. DISCUSSION

To summarize, we have introduced the notion of
symmetry-enforced fractonicity, where in the presence of a
global symmetry, certain point particles or defects cannot
move along certain directions without exciting gapped ex-
citations that carry nontrivial quantum numbers under that
symmetry. We have shown that dislocations of (2 + 1)-
dimensional insulating solids are a simple example of this
concept. Moreover, our analysis shows that the symmetry-
enforced subdimensional nature of dislocations dramatically
alters the critical properties of quantum melting transitions
from what was conjectured in previous literature [21,26].

Namely, by developing a dual higher-rank gauge theory
description of these symmetry-enforced fractonic defects, we
have shown that they can condense to drive a continuous
quantum phase transition from a crystal to a nematic phase
only when the subdimensional constraint on them is lifted
through the onset of a superfluid of vacancies and interstitials.
In retrospect, hints of this result were evident from more gen-
eral considerations. Namely, the symmetry-enforced fractonic
nature of dislocations mean that any dislocation condensate
must also spontaneously break the U (1) symmetry associated
with number conservation. Therefore, a direct transition from
crystal to nematic must simultaneously restore translation
symmetry and break number conservation. In a conventional
Ginzburg-Landau-Wilson framework, it is generically not
possible to go between two phases with completely different
symmetry breaking patterns without fine tuning. Instead, the
transition is generically first order, or splits into a pair of
separate second order transitions. In other contexts, more
exotic deconfined critical points can arise, in which such a
Landau-forbidden change of symmetry can occur in a direct
continuous quantum phase transition [19]. It would be intrigu-
ing to consider whether a possible deconfined critical scenario
could apply to quantum melting of a solid to a supernematic.

However, at this point we do not have a concrete scenario
for such an exotic transition. Even if such a phase transition
existed, its critical exponents would be dramatically different
than the conventional (2 + 1)-dimensional XY universality
class conjectured in previous works [21,26].

It would also be potentially interesting to investigate the
applicability of the concept of global symmetry-enforced
fractonicity in other contexts, including (3 + 1)-dimensional
crystals [43], or true fracton “topological phases” in which the
subdimensional objects are deconfined particles with possible
anyonic behavior and exponential in system-size ground-
state degeneracy [44–47], rather than confined defects of a
symmetry-breaking phase.

Note added. Recently we became aware of a related work
by M. Pretko and L. Radzihovsky [48] on closely related
subject matter.

ACKNOWLEDGMENTS

We thank M. Pretko and P. T. Dumitrescu for insight-
ful conversations. This work was supported by NSF DMR-
1653007.

APPENDIX: COUPLING OF STRIPE DISLOCATIONS TO A
FERMI SURFACE OF ELECTRONIC EXCITATIONS

In this Appendix we consider possible couplings of
phonons and dislocations of an incommensurate CDW with
the reconstructed Fermi surface. We will find that the crystal
excitations have only irrelevant couplings to the low-energy
particle-hole continuum of electronic excitations, and hence
can be neglected in the analysis of dislocation condensation.

Since the fermionic fluctuations have vanishing rank-2
gauge charge, they cannot couple directly to the dual gauge
field ai j , but rather only to its field strengths bi and ei j . These
couplings contain derivatives that make them irrelevant at
low energies. Intuitively, this reflects the familiar fact that the
dual photons described Goldstone modes of broken translation
symmetry, which quite generally decouple from other low-
energy excitations [49].

The low energy effective field theory of the Fermi
surface is

L =
∫

dϕ ψ†
ϕ[−ivF (ϕ) · ∇]ψϕ, (A1)

where ϕ denotes the angle in momentum space (here we
assume a single sheet for the reconstructed Fermi sur-
face for notational simplicity), vF is the Fermi velocity
normal to the Fermi surface at angle ϕ, and ψϕ (r) =∫ kF (ϕ)+�

kF (ϕ)−�
dk(ϕ)e−ikF (ϕ)·rψk(ϕ) is the low-energy fermion field

near the Fermi surface at angle ϕ, where � is a UV cutoff that
is less than the Fermi wavelength.

The low-energy modes of the Fermi surface are shape
fluctuations described by operators

M[ f ] =
∫

dϕ f (ϕ)ψ†
ϕψϕ, (A2)

where f is some real-valued function of the Fermi-surface
angle ϕ. The minimal coupling between the dislocation cur-
rents and the low-energy modes of the Fermi surface would
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be of the form λJd
μ,iM[ f ], where M[ f ] has the right spatial

symmetries to couple to the Jμ,i. In a Hertz-Millis type
analysis [50,51], integrating out the electronic fluctuations
would produce a Landau damping term ∼λ2 |ω|

q |Jd
μ,i(q, ω)|2.

If we write Jd
μ,i ∼ εiμν∂νθi this term only produces interac-

tions of the form ∼λ2ωq|θi(ω, q)|2. These interactions are
less relevant than the long-range dislocation interactions in-
duced by the gauge coupling g, and are not expected to
alter the analysis presented in the main text for a bosonic
crystal.
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