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Transient quantum isolation and critical behavior in the magnetization dynamics
of half-metallic manganites
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We combine time-resolved pump-probe magneto-optical Kerr effect and photoelectron spectroscopy experi-
ments supported by theoretical analysis to determine the relaxation dynamics of delocalized electrons in half-
metallic ferromagnetic manganite La1−xSrxMnO3. We observe that the half-metallic character of La1−xSrxMnO3

determines the timescale of both the electronic phase transition and the quenching of magnetization, revealing a
quantum isolation of the spin system in double-exchange ferromagnets extending up to hundreds of picoseconds.
We demonstrate the use of time-resolved hard x-ray photoelectron spectroscopy as a unique tool to single out the
evolution of strongly correlated electronic states across a second-order phase transition in a complex material.
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I. INTRODUCTION

The description of the competition between delocalization
and confinement of electrons in a solid is a fascinating chal-
lenge in condensed-matter physics [1,2], and it is deeply con-
nected with the electronic correlation effects that determine
the properties of strongly correlated materials.

Electron-electron interactions beyond the Hartree-Fock ex-
change give rise to numerous exotic behaviors such as, among
others, high-temperature superconductivity, half metallicity,
metal-insulator transitions, multiferroicity, and spin-charge
separation [1–6]. This is realized in condensed matter when
partially filled -d or -f bands are narrowed to the point at which
the mean-field “Fermi sea” approximation is no longer valid.

In perovskite transition-metal oxides (TMO), the band
originating from the 3d orbital of the transition metal is
split by the octahedral symmetry of the oxygen ligands in
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a t2g band, and in a narrow eg band. In the presence of
strong exchange interaction, next-to-nearest-neighbor interac-
tions between cations are determined by superexchange mech-
anisms, i.e., coupling through the nonmagnetic ligand anion.
Depending on the specific details of the electronic structure,
superexchange can favor ferromagnetic or antiferromagnetic
alignment, and tends to localize or delocalize carriers [2,7].

In manganites such as La1−xSrxMnO3 (LSMO), electronic
and transport properties are described by the superexchange
interaction called double exchange (DE) [3–5]. The mobility
of carriers is coupled to itinerant magnetism in a delicate
form: the energy of the crystal is lowered by delocalizing the
majority eg electrons between Mn sites determining metal-
licity [8,9]. This is the driving mechanism that favors spin
alignment, as Hund’s rule coupling produces parallel spin
alignment between eg and localized t2g electrons, resulting
in ferromagnetism with a net separation between spin-up
(eg↑, t2g↑) and spin-down (eg↓, t2g↓) bands, i.e., half-metallic
behavior [10–13].

Wide-band-gap half metals are ferromagnets of special
interest: half metallicity was described by de Groot et al.
[10], for materials having a metallic electronic density of
states (DOS) in one spin channel but a gap in the DOS for
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the other spin state, allowing 100% spin-polarized electrons
near the Fermi level, a highly desirable property in spintronics
materials.

In a DE system, therefore, the second-order transition from
paramagnetic to magnetically ordered phase is accompanied
by an electronic phase transition, as the density of states is
increased close to the Fermi level owing to the delocalization
of carriers [2–5].

A perspective in the investigation of complex, strongly
correlated systems is offered by the realization of studies
in the time domain, i.e., with stroboscopic methods after
ultrashort optical excitation. This method allows one to dis-
entangle relevant excitations in the solid: ultrafast optically
induced dynamics creates a “window of observation” by
producing the dynamical separation of spin, lattice, and
charge thermodynamic baths due to the different timescales
of their mutual interactions [14].

In ferromagnetic 3d metals a “femto-magnetism” regime
(<1 ps) has been proposed where competition between order
parameters follows the relative out-of-equilibrium timescales
[15]. Conversely, half metals present a “bottlenecked”
magnetization dynamics, as the phonon-assisted spin-flip
scattering mechanism described by Eliott and Yafet is sup-
pressed [16–20], and the demagnetization time can be three
orders of magnitude longer in comparison to a classic 3d
ferromagnet [19].

Although a number of studies have been reported on the
ultrafast dynamics of half-metallic systems [21–23], a clear
understanding of the interplay between localized and delocal-
ized electrons in the magnetization dynamics of DE systems
is lacking and a direct measurement of the electronic proper-
ties in the transient states with both chemical and magnetic
sensitivity has been rarely achieved.

To address these issues, we have performed pump-probe
experiments on a prototypical half metal: the optimally
strontium-doped lanthanum manganite La0.66Sr0.33MnO3,
for which the relatively large bandwidth suppresses po-
laronic self-trapping [3], making this system the clos-
est to the ideal DE ferromagnet. Here we combine two
complementary bulk-sensitive pump-probe techniques: time-
resolved magneto-optical Kerr effect (TR-MOKE) and Time-
Resolved HArd X-ray core-level PhotoElectron Spectroscopy
(TR-HAXPES).

These two techniques have been used to provide a twofold
perspective on the dynamical behavior of this material. With
TR-MOKE, we detect the evolution of the macroscopic mag-
netization, arising from localized t2g momenta. With TR-
HAXPES, we observe the specific evolution of the localiza-
tion/delocalization of the eg states. Combining optical meth-
ods relating to macroscopic observables with spectroscopic
information sensitive to the details of the electronic structure
proves to be a reliable method to approach correlated ma-
terials. A complete separation of the relevant timescales of
spin and charge systems is observed, and the magnetization
dynamics in LSMO can be described as a “transient quantum
isolation” of the spin system with respect to the charge degree
of freedom. The characteristic critical time for the collapse
of long-range magnetic order is obtained by means of TR-
MOKE and TR-HAXPES reveals that delocalized electrons
play an active role in the dynamics of the magnetization on a
timescale of 100 ps and above.

II. METHODS

A. Experimental details

Time-resolved and temperature-dependent HAXPES ex-
periments were performed at BL19LXU at SPring-8, Japan,
equipped with a SCIENTA R4000-10kV electron energy an-
alyzer at grazing incidence geometry (<4◦ angle between
the x-ray beam and the surface plane) and a spot size of
40 × 500 μm2 on the sample. The overall energy resolution
(analyzer+beamline) was kept below 500 meV at the selected
photon energy of 7.94 keV. At this energy, the inelastic
mean-free path of 2p electrons in LSMO is 8.6 ± 0.8 nm,
corresponding to a mean escape depth of 7.9 ± 0.8 nm [24].

A Ti:sapphire oscillator and a regenerative amplifier opti-
cal laser system were used for the pump-probe setup, with a
pulse energy of 0.6–4.0 mJ/pulse, a wavelength of 800 nm, a
duration of 100 fs (full width at half maximum) and a repeti-
tion rate of 1 kHz. For pump-probe HAXPES experiments the
so-called H mode of operation was used, consisting of a single
electron bunch (pulse width 50 ps) and a continuous bunch
train, e.g., 1 bunch+11/29−filling. Single bunch of H-mode
filling was selected by using an x-ray chopper with a repetition
rate of 1 kHz, with jitter error well below the pulse duration
(5 ps). The timing between synchrotron light and pump laser
pulse was monitored by a fast photodiode mounted at the
bottom of the sample manipulator.

MOKE experiments were performed in the longitudinal
MOKE configuration, with an 800-nm pump and a 400-nm
probe, to avoid optical bleaching effects and to maximize the
Kerr angle sensitivity. Two methods have been used: for the
highest accuracy, a balanced detection scheme was employed,
using a Wollaston prism; for rapid acquisition the crossed-
polarizers method was employed. All measurements were
performed at remanence, reversing the magnetization at every
delay. The ellipsometric analysis was performed measuring
both ellipticity and rotation, and evaluating the full complex
Kerr angle [25–27].

In both experiments, the same La0.67Sr0.33MnO3 sam-
ple was used. It was a 100 unit cells thick LSMO film
grown by reactive molecular-beam epitaxy on (LaAlO3)0.3

(Sr2TaAlO6)0.7 (LSAT), a transparent, insulating perovskitic
oxide. LSAT has a lattice mismatch below 0.3% with LSMO,
and the film can be therefore considered strain relaxed
throughout the thickness. In all pump-probe experiments, the
absorption length of the 800-nm pump is 40 nm, equal to the
thickness of the LSMO film, which can be considered uni-
formly excited. For more details about the experimental setup
and characterization of samples, see Supplemental Material
[28].

B. Calculation details

Modeling the electronic structure of strongly correlated
oxides requires methods beyond the classical Hartree-Fock
single Slater determinant. For the analysis of satellites in
photoemission, the configuration-interaction (CI) method is
generally used, where the ground state is obtained as a linear
combination of N-electron wave functions including low-
energy-excited configurations. The problem is then solved
by direct diagonalization on this basis. To reconstruct the
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photoemission process, the CI approach is combined with the
Anderson impurity model to treat the core hole produced by
photoemission. Given the short lifetime of the core hole the
inclusion of a single Mn atom and the surrounding oxygen
octahedron is sufficient to describe photoemission spectra of
LSMO. To reconstruct Mn 2p lines, the Mn 2p orbital, the Mn
3d and the O 2p have to be included.

Experimental observation of additional peaks appearing in
bulk sensitive photoemission spectra has required the intro-
duction of a further, highly hybridized state [29] called the
coherent state, which has recently been demonstrated to arise
from nonlocal (between different Mn sites) charge-transfer
processes [12].

We used three configurations as basis states: 2p5 3d4,
2p5 3d5L− and 2p5 3d5C− . The symbols represent respectively
the photoionized ground state, a charge-transfer excitation
from the ligand and one from the coherent state. The 2p5 label
represents the core-hole. In the latter excited configurations,
an electron is transferred to the TM ion 3d states (3d5), leaving
a hole in the ligand (L−) or coherent (C− ) states. In each configu-
ration, intra-atomic multiplet, spin-orbit effect, hybridization
between Mn 3d and O 2p states, on-site Coulomb repulsion,
and core-hole attractive potential are accounted for.

In presence of a coherent orientation of the magnetic
momenta, the variation of HAXPES lineshapes with oppo-
site circular polarizations of the primary photon is defined
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FIG. 1. Time-resolved magneto optical Kerr effect results. (a) Scheme of the pump-probe MOKE experimental setup. (b) Main panel:
Scheme of the temperature variation of the three sets of degrees of freedom. In a half-metallic system, the spin system thermalizes last, on
timescales much longer than electrons and lattice. Inset: Schematic representation of the three sets of degrees of freedom in a magnetic solid:
charges, spins, and lattice. In a half-metallic system, the direct spin-electron demagnetization channel is almost suppressed due to the absence
of available spin-flip processes. (c) Main panel: Relative reflectivity variation vs pump-probe delay measured below and above Tc = 335 K.
The dashed curve represents the dynamical reflectivity trace at 400 K scaled to match the amplitude of the initial step in the curve at 200 K.
The blue-shaded region highlights the variation of reflectivity induced by the DSWT, as described in the text. DSWT is absent above Tc,
confirming its magnetic origin. Inset: Finer time-step measurement performed at room temperature, showing the sharp increase and decay
of hot-carrier-induced reflectivity. (d) Normalized complex Kerr angle modulus |�| vs pump-probe delay, measured at 150 and 300 K. Each
curve is obtained as the modulus of the vector sum of independently recorded ellipticity and rotation traces, as sketched in the inset. While in
the grayed-out area the signal is still influenced by charge dynamics, a long timescale demagnetization is evident. A minimum is observed for
the 150 K curve.
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magnetic circular dichroism (MCD) and can be determined
by calculating the helicity-dependent spectral function. In the
calculations for XPS with right- and left circular polarized x
ray in Fig. 2, an unpolarized component is also included in
order to take into account that the degree of polarization of
the x ray is not 100% and the direction of the incident x ray is
not completely parallel to the z direction.

For more details about the specific choice of parameters for
the calculation, see the Supplemental Material, Sec. 9.

III. RESULTS

The results of optical experiments are shown in Figs. 1 and
2, tracing the time evolution of the macroscopic magnetization
of LSMO as a function of the pump-probe delay at various
initial sample temperatures. As depicted in Fig. 1(a), the
system is excited with an 800-nm pump pulse of 70-fs
duration and 2-mJ/cm2 fluence; the probe is of the same
duration, but has a wavelength of 400 nm. The dynamical
reflectivity curves [Fig. 1(c)], obtained concurrently with the
TR-MOKE measurement, show first a sharp increase, and
subsequently a decay to a first equilibrium value within 1.2
ps after the pump pulse [inset of Fig. 1(c)]. The equilibration
time results of 160 ± 70 fs as obtained by exponential fit
between the peak edge and the flattening at 1.2 ps. This rapid
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FIG. 2. Critical behavior of the magnetic dynamics. Inset: tem-
perature dependence of Kerr ellipticity dynamics. Curves follow
the color code (corresponding to different temperatures) depicted
in the bar at the right side. A minimum is reached around 250 ps
for lowest temperatures. As temperature increases, the minimum
shifts to larger delays moving out of the measurable interval. Main
panel: critical slow-down modeling. Filled circles are the result of
a batch fit of curves in the inset (same color code), representing the
characteristic time of ellipticity quench vs temperature. The results of
the fit, performed between 10 ps and the absolute minimum of each
ellipticity curve, are shown in the inset as gray solid lines for 163 and
305 K. The vertical error bars are given by the standard deviation of
the fit, hence error bars for temperatures close to Tc (vertical red line)
are larger due to a reduced absolute signal. The dashed line is the
fit of the power law, resulting in values of the critical exponent as
described in the text.

decay can be considered, in metallic samples, as a signature
of the thermalization of electrons with the lattice, pointing to
a hot-carrier character of the process [30].

In the topmost curve of Fig. 1(c), after the first 10 ps, a
slower increase of the reflectivity takes place and reaches its
maximum at about 200 ps, followed by a gradual decrease of
the reflectivity as the sample cools down at even longer times.
The observed long timescale of the reflectivity dynamics is
a peculiar trait of DE manganites (including LSMO [31,32]),
and involves a process called dynamical spectral weight trans-
fer (DSWT) representative of systems crossing a quantum
critical phase under optical excitation [32–34].

The comparison of reflectivity curves below and above the
Curie temperature Tc (Tc = 335 K in present case) reveals
the presence of DSWT, namely the pump-induced increase
in the reflectivity extending over long timescales, and disap-
pearing above Tc. As the DE ferromagnet is pushed towards a
higher resistivity phase with noncollinear core spin momenta,
spectral weight is removed from the Drude band in the optical
spectrum and higher energy transitions are enhanced [35],
inducing a variation of the refractive index and accordingly
of the reflectivity [31]. Reflectivity results shown in Fig. 1(c)
clearly identify a rearrangement of the electronic structure
in LSMO unfolding over several hundreds of picoseconds,
thus strongly influencing the mobility of electrons close to
Fermi energy over a long timescale, simultaneously with the
demagnetization process.

In the presence of such a complex rearrangement of the
electronic structure, indeed, the dynamics of the refraction
and absorption index make the connection between MOKE
signal and magnetization less straightforward [36]. We
applied two color, doubly modulated MOKE with Kerr angle
modulus reconstruction (see Supplemental Material, Sec. 2),
to reduce the effect of the rearrangement of spectral weight in
the optical spectrum [25–27]. The signal obtained in this way
describes reliably the long timescale dynamics, in the 10-ps
to 1-ns range.

In Fig. 1(d), one observes a minimum at a delay of around
200 ps in the curve measured at 150 K, corresponding to
a transient equilibrium between the magnetization and de-
magnetization. For larger pump-probe delays, heat dissipation
allows the sample to cool down and the curve takes an upward
turn pointing back to the maximum magnetization. The curve
measured at 300 K displays not only slower dynamics but also
a shift in the position of the minimum that moves outside the
accessible range of delay time. Such behavior, termed critical
slowing down, reflects the increase of characteristic time of
the magnetic fluctuations in proximity of a thermodynamic
phase transition [37–42]. It is a universal scaling law and
applies to a vast range of critical processes, including the
present case of a second-order ferromagnetic to paramagnetic
transition, and results in a continuous divergence following a
negative power law.

Temperature-dependent ellipticity measurements mirror-
ing the behavior of the magnetization (see Supplemental Ma-
terial, Sec. 2) have been performed (inset, Fig. 2), to monitor
the long timescale collapse of the magnetization over a wide
range of temperature. The characteristic time τsl is retrieved
for each temperature by fitting an exponential function to the
time evolution plotted in the inset of Fig. 2. The resulting
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τsl is plotted vs sample initial temperature in Fig. 2, which
shows that the studied temperature range can be divided into
a critical region (305–345 K) and a noncritical one (165–
305 K). In the noncritical region we observe a slow quench
of the magnetization, ranging from 74 ± 2 ps at 150 K to
186 ± 3 ps at 300 K, values compatible with a wide-gap
half-metallic systems [18].

After the rapid increase in temperature, the system starts
to cool by heat transfer through the substrate. Given that the
samples are thin films on insulating ceramics (LSAT), the heat
transport is so slow and so weakly temperature dependent that
it can be represented by a temperature-independent recovery
rate, not affecting the fitting of the decay constants.

In previous studies the timescales are found to be above
the nanoseconds, with no observable temperature dependence
[43,44]. We confirmed this by solving the heat equation in a
simple model of the LSMO/LSAT heterostructure, obtaining
negligible variations of the film cooling dynamics with differ-
ent initial temperatures (see Supplemental Material, Sec. 8).

In the vicinity of Tc the demagnetization process is slowed
down by the divergence of the spin-specific heat. This can
be modeled with the methods employed to analyze critical
behavior in proximity of a phase transition. In the critical re-
gion, we can estimate the characteristic time of the divergence,
applying the dynamical scaling theory [41,45], with

τ ∝ |T − Tc|−zν,

where ν is the correlation length exponent following the
definition that spatial correlation ∝ |T − Tc|−ν , and z is the
dynamical exponent. A power-law fit to the curve in Fig. 2 in
the range 305–330 K gives zν = 1.28 ± 0.16, in reasonable

agreement with zν = 1.35 ± 0.01 found theoretically for the
3D double-exchange ferromagnet, and in very good agree-
ment with the result of models accounting for long-range
order zv = 1.251 [28,42] (see also Supplemental Material,
Sec. 3).

This confirms that the critical slowing down observed at
higher temperatures arises from the divergence of the spin-
specific heat and suggests that the critical behavior of LSMO
is well described by the model of a three-dimensional ferro-
magnet in which DE is the dominant interaction.

We also measured the demagnetization dynamics at dif-
ferent fluences, and, as expected in a second-order phase
transition, we did not find a critical fluence (see Supplemental
Material, Sec. 6). In a half-metallic material, indeed, the
magnetic system has extremely long characteristic timescales.
With respect to these, the electronic and lattice system appear
to immediately equilibrate and to produce a sudden change in
temperature, which shifts the system along the M(T ) curve.
The temperature variation and the final temperature to which
the magnetic system is driven are the only parameters relevant
to the magnetic dynamics (see Supplemental Material, Sec. 7).

In the noncritical region in Fig. 2 (165 K < T < 305 K),
the intrinsic timescale is often attributed to the anisotropy
coupling of spin-lattice interaction [18–20]. The gap in the
minority states that characterizes a half-metallic material, in-
deed, provokes a strong suppression of any type of scattering
mechanism involving a spin flip in the final states, as it
would require sufficient energy to reach the minority states
above the gap. The strong coupling through phonon-assisted
Elliott-Yafet scattering is therefore suppressed, as is direct
electron-magnon interaction. Only second-order interactions
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involving spin flips in a virtual state can couple with the spin
system: inelastic spin-phonon coupling [20] and second-order
correlated electron-magnon interactions [45].

In the former picture, the lattice vibrations couple, via
spin-orbit interaction, to magnetic anisotropy and excite the
localized spin system. A rough estimate for τsl is customarily
obtained using the time-energy uncertainty relationship and
the typical energies of the interaction involved. Note, however,
that neglecting the quantum-mechanical details of the scatter-
ing process only allows one to define an approximate lower
boundary for τsl .

In our case, considering an anisotropy energy of 5–1 μeV
[46], τsl is estimated in the range of 800 ps–4 ns for T =
150−300 K. The observed increase of τsl vs temperature is
qualitatively in agreement with the temperature dependence
of the anisotropy constants [46]. Yet, the overall tendency
to overestimate this value implies that other processes are
simultaneously at play.

Of particular interest in this sense are second-order elec-
tron magnon interactions mechanism. Indeed, it has been
demonstrated that superposition of spin-up electron excita-
tions and virtual magnons (also called “spin-polaron pro-

cesses”) can produce the lowest-energy excitations for mi-
nority spins, allowing demagnetization on long timescales
Ref. [45]. These results indicate that, for temperatures below
the critical region, the demagnetization characteristic time(s)
is described by strongly suppressed electron-spin and spin-
lattice relaxation mechanisms.

As the magnetization dynamics detected by MOKE owes
its largest contribution to the localized t2g magnetic momenta,
we conclude that it describes a magnetic system close to a
Heisenberg ferromagnet, which undergoes transient quantum
isolation: No obvious single-particle high-energy process can
couple the excitation of the magnetic system with charge
excitations, giving rise to a long timescale demagnetization.

We now address the question whether or not the connection
of t2g ferromagnetic alignment with the emergent mobility of
the eg carriers breaks down at these timescales. In order to
probe the dynamics of the specific electronic structure, we
performed chemically and magnetically sensitive pump-probe
HAXPES experiments. HAXPES guarantees bulk sensitivity
(up to an integration depth of 10 nm [24]), removing un-
certainties arising from any surface effects [29,47–49]. Thus,
the HAXPES results can be directly compared with those of
MOKE in the present study.

The Mn 2p core-level spectrum of LSMO, as measured
at equilibrium by HAXPES, is shown in Fig. 3(a), where a
distinct satellite is present at a binding energy around 640 eV.
Such low-binding-energy satellites have been observed in
HAXPES spectra for many oxide systems: They are spectro-
scopic fingerprints of the strength of electron delocalization
and thus of the metallicity of the oxides [29,49–53].

The features of the Mn 2p spectrum can be disentangled
by the theoretical analysis shown in Fig. 3(b). The calculated
total Mn 2p spectrum with Mn3+ valence is obtained by
including three electronic configurations describing the final
states of Mn ions, namely 2p53d4, 2p53d5L− , and 2p53d5C− ,
corresponding, respectively, to the ground state 3d4, the
charge transfer from a ligand hole 3d5L− and the charge trans-

fer from hybridized states close to the Fermi energy, 3d5C− .

The 3d5C− component has a significant spectral weight at the

energies corresponding to the well-screened satellites.
Spectra are calculated with a V* value for hybridization

of 1.17 eV, corresponding to the best agreement with experi-
mental curves [49]. The main contribution to the low-binding-
energy structures arises from the initial 3d5C− configuration.
Note, however, that with V* being nonzero, both 3d4 and
3d5L− initial states can project intensity onto the 3d5C− final

state, yet their calculated contribution to the satellite intensity
is negligible [54,55].

To investigate the connection between the well-screened
features and the long-range magnetization, we measure the
polarization and temperature dependence of the Mn 2p core
level for LSMO, in analogy to investigations performed
on other complex materials [56–59]. Figure 4 shows
the comparison between the experimental and calculated
magnetic circular dichroism in HAXPES of the Mn 2p core
level. According to the photoemission selection rules, photons
with −1(+1) helicity, i.e., right (left) circularly polarized x
rays, create selectively spin-polarized core holes [60]. When
the valence electrons involved in the screening mechanism are
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FIG. 5. TR-HAXPES line-shape variation. (a) Sketch of the pump-probe HAXPES setup, with main values of the pump-probe scheme
and geometric parameters. (b) Evolution of the Mn 2p3/2 peak in LSMO after optical pumping with 800-nm, 100-fs IR laser at a fluence of
4 mJ/cm2, measured with a 50-ps synchrotron radiation probe at hv = 7940 eV varying the pump-probe delay. (c) Variation of the line shape
of the Mn 2p3/2 peak. The topmost curve shows the difference between static spectra measured at 150 and at 300 K, highlighting the shifts
of spectral weight observable in a quasistatic temperature variation. The other curves are obtained by subtraction of the line-shape “laser off”
from the one observed at each delay. At negative delays the absence of significant features confirms the full recovery of the initial state. At
time zero, the increase of spectral weight expected from quasistatic temperature changes at high binding energy is not yet present, while the
low-binding-energy structure is significantly reduced. On the timescales of the pulse duration (50 ps), the electronic structure is therefore in
a long-lived nonequilibrium condition. At positive delays (+100 ps, +300 ps), a higher temperature transient equilibrium is formed: spectral
weight changes are analogous to quasistatic line-shape variations. At long delays (1–3 ns) the differences slowly decrease.

also spin polarized with a spin parallel to the core-hole spin, a
large magnetic dichroism occurs in the photoemission as the
result of exchange interaction between the core and valence
states.

In Fig. 4 the Mn 2p satellites of LSMO show strong
magnetic circular dichroism. The regions around 639.5 and
651.5 eV of binding energy reflect a well-defined final state
with parallel spins in the core and valence states, displaying
the expected opposite dichroism for spin-orbit split 2p1/2 and
2p3/2 components [61,62]. Both the intensity of the Mn 2p
satellites and the magnitude of the dichroism decrease with
an increasing temperature [inset in Fig. 3(a) and differences
at T = 200 and 300 K in Fig. 4], thus reflecting the thermal
reduction of the magnetization (see also Supplemental Ma-
terial, Sec. 5) [49]. Model calculations reproduce accurately
the dichroic line shapes [60,63] when hybridization is finite
(solid curves in Fig. 4), allowing one to pin the strongly
spin-polarized character to the 3d5C− contribution.

The dichroic and temperature-dependent analysis of the
Mn 2p line shape, backed by a solid theoretical description
of the complex substructures of this doublet, allows one to
establish the low-binding-energy satellites as a precise probe
of the hybridization and spin state of delocalized carriers
responsible for the DE mechanism.

The pump-probe Mn 2p3/2 HAXPES results are presented
in Fig. 5(b) as a function of pump-probe delays (from −900 ps
to +3.1 ns), with a laser-off spectrum included for compari-
son (see also Supplemental Material, Sec. 4). Experimental
geometry is shown in Fig. 5(a). In panel 5(b) one notices
that the spectra measured at negative delays are identical to
the laser-off spectrum and, independent of the delay time, no
extra broadening or energy shifts are present: this excludes the
presence of space charge [64–66] and/or heat pile-up artifacts.
The coincidence of pump and probe pulses (zero delay) has
been determined self-consistently within the measurement as
the first delay at which a line-shape evolution is observed.

A significant reduction of the well-screened satellite peak
intensity is clearly observed within the first 100 ps after a
pump pulse, followed by a slow recovery at later times. Inten-
sity variations are also observed in the Mn 2p manifold cen-
tered at 644 eV of binding energy, as highlighted by Fig. 5(c).
The increase in spectral weight at high binding energies is
observed concomitantly to the decrease in the low-binding-
energy satellite also for quasistatic temperature variations.
However, the difference at 0-ps delay, while displaying a large
decrease at low binding energies, does not show an enhanced
high-binding-energy manifold. This, supported by the optical
evidence gathered previously, suggests that the electronic
structure evolves on timescales longer than the pulse duration
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(50 ps), and only after 100 ps a transient equilibrium is formed
at higher temperatures.

A summary of the pump-probe time dependence of the
well-screened satellite is presented in Fig. 6, where the rela-
tive area difference between the laser-off and laser-on spectra
in the energy range 638.5–640.5 eV is shown for different
delays. The top panels in Fig. 6 show the corresponding
Mn 2p3/2 line shapes at three delays, while the fits of the
satellite peaks highlight the intensity variation arising from
the delocalized carriers.

The amplitude and timescale of the evolution observed in
Fig. 6 are comparable to the ones observed in low-temperature
(150 K) TR-MOKE in Fig. 1. This, combined with the ob-
servation of nonequilibrium line shapes at short delays with
a long 50-ps probe pulse [see Fig. 5(c)], confirms that the
dynamics of the delocalized carriers takes place with the same
timescale of the macroscopic magnetic momentum, indicat-
ing an unbroken, coherent evolution of the DE electronic
structure.

We thus can connect the complementary measurement
techniques in a coherent picture. By optical infrared pumping
the electronic system is excited at short timescales and the hot
electron distribution relaxes very rapidly (few femtoseconds

to 1 ps) by transferring heat to the lattice. The magnetic relax-
ation, due to excitation of localized momenta, is dominated
by weak mechanisms, owing to the system half metallicity.
Such slow magnetic dynamics keeps the DE mechanism ac-
tive for long timescales, thus preventing the triggering of a
sharp metal-insulator transition. This is in contrast to what is
observed in other TMOs, where the metal-insulator transition
can be triggered even in the absence of a contemporary
variation of the associated order parameter [67,68].

In summary, we have performed combined pump-probe
optical and photoelectron experiments to study the magne-
tization dynamics in double-exchange half-metallic LSMO.
The ensemble of our results is consistent with the collapse
of the electronic hybridization over an extended timescale,
pointing to the transient quantum isolation of the spin system.
The DE mechanism tightly connects electronic delocalization
and magnetic interaction in LSMO; it therefore explains the
slow dynamics of the half metal, whose spectral features show
out-of-equilibrium configurations for delays up to hundreds of
picoseconds after optical excitation.

These results establish TR-HAXPES, in combination with
support techniques, as a powerful technique to explore the
dynamics of specific features of the electronic structure in
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complex materials. The upcoming development of brilliant
sources with high temporal resolution and high repetition rate
even in the hard x-ray range will allow us to explore the
dynamics at the timescales of electron-electron interactions
and thus shed light on the fascinating problems arising from
electronic correlation [69,70].
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