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Linear-response description of superexchange-driven orbital ordering in K2CuF4
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We study the nature of orbital and magnetic order in the layered perovskite K2CuF4, and compare to the
case of the infinite-layer system KCuF3. To this end, we augment the local-density approximation + dynamical
mean-field theory technique with linear-response functions. We explain orbital and magnetic order, and their
evolution with increasing pressure. We show that both the tetragonal (εT) and the Jahn-Teller (εJT) crystal-field
splitting play a key role. We find that surprisingly, unlike in KCuF3, εT is comparable to, or even larger than,
εJT; in addition, εT is mostly determined by the layered structure itself and by the compression of the K cage,
rather than by the deformations of the CuF6 octahedra. Next, we study the nature of orbital order. We calculate
the superexchange transition temperature, finding TKK ∼ 300 K, a value close to the one for KCuF3. Thus, in
K2CuF4 as in KCuF3, TKK is too small to explain the existence of orbital order up to the melting temperature.
We show, however, that in the case of the layered perovskite, an additional superexchange mechanism is at work.
It is an orbital Zeeman term, ĥKK, and it is active also above TKK. We show that due to ĥKK, phases with different
types of ordering can coexist at temperatures below TKK. Similar effects are likely to play a role in other layered
correlated systems.
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I. INTRODUCTION

Orbitally ordered systems have for decades been at the cen-
ter of an intense debate. The key question concerns the micro-
scopic origin of orbital order and of the associated structural
distortions. Historically, two competing mechanisms have
been proposed, the purely electronic Kugel-Khomskii [1,2]
superexchange interaction and the electron-phonon driven
Jahn-Teller coupling [3].

For the classical textbook examples of orbitally ordered
materials, the infinite-layer systems KCuF3 and LaMnO3, we
have shown [4,5] that Kugel-Khomskii superexchange alone
yields transition temperatures TKK too small to justify the
existence of orbital order up to the melting temperature. A
static crystal field, arising from lattice distortions, is neces-
sary to explain the experimental data. In its presence, orbital
fluctuations are strongly suppressed [4–6], thus favoring an
orbitally ordered phase. Indeed, in this situation, the order
parameter, the orbital polarization p(T ), can remain large
at very high temperatures, even if the crystal-field splitting
is very small compared to the bandwidth [4,5]. The natural
conclusion seems to be that for T � TKK, the experimental
structural distortions, and thus the associated static crystal
field, can be explained via the electron-phonon Jahn-Teller
mechanism. Very recently, we have, however, shown that in
the case of KCuF3, not even this is correct. Only accounting
for the Born-Mayer repulsion, one can correctly describe
the experimentally observed increase of the distortions with
temperature or (chemical) pressure [7].

While this settles the case for KCuF3, one should not
forget that KCuF3 is an infinite-layered compound. Many
orbitally ordered systems have instead a layered structure

FIG. 1. Layered perovskite crystal structure of K2CuF4 [8–19].
Left: Bbcm ambient-pressure crystal, showing the antiferro “Jahn-
Teller”-like alternation of long and short CuF bonds of the CuF6

octahedra in the ab plane. Right: Ammm high-pressure structure with
ferro arrangement of long and short CuF bonds and compression
of the cubic K cage. For the Bbcm structure the conventional or-
thorhombic body-centered unit cell is rotated by 45◦ with respect to
the Ammm case, and it contains four instead of two formula units. In
the Bbcm case, two consecutive layers are shifted by (a + b + c)/2,
while in the Ammm case by (b + c)/2.
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(see, e.g., Fig. 1 for K2CuF4). Do the same conclusions apply
in those cases? Layered materials are qualitatively different
because, as shown in this paper, by symmetry, the structure
yields by itself not only a static tetragonal crystal field but
also a superexchange-induced orbital field. The latter could
suppress orbital fluctuations and favor orbital order at very
high temperatures, even without any actual phase transition.
In this work, we address this point, clarifying the nature and
the importance of these effects.

The system for which these effects can be best studied
is the charge transfer insulator K2CuF4. It belongs to the
Kn+1CunF3n+1 series [8–23], which includes KCuF3 as the
infinite-layer limit. This allows a direct comparison of all
effects and their strength. The single-layered K2CuF4 is a
rare example of a transparent orbitally ordered Heisenberg
ferromagnet [18,20] and has a Curie temperature TC ∼ 6 K.
It has been experimentally shown that in this system the
magnetic order changes from ferro- to antiferromagnetic by
increasing pressure, following a change in crystal structure
(Bbcm to Ammm) and orbital order [21]. The Bbcm and
Ammm crystal structures are compared in Fig. 1. In this
paper, we study superexchange effects and their interplay with
actual distortions in the two phases. We determine the actual
strength of the Kugel-Khomskii coupling for orbital ordering.
In addition, we clarify the role played by the superexchange
orbital Zeeman field. Finally, we emphasize the differences
in behavior between K2CuF4 and the infinite-layer compound
KCuF3.

The paper is organized as follows. In Sec. II we describe
the model used and the method of solution adopted. We study
the problem via the local-density approximation + dynami-
cal mean-field theory (LDA+DMFT) approach. In order to
calculate the strength of the superexchange couplings and the
associated transition temperature TKK we use two approaches.
The first was developed in Ref. [4] and has already been
used with success in a number of additional cases, e.g.,
Ref. [5] and Refs. [24–26]. It is based on the calculation
of the order parameter, the orbital polarization p(T ), as a
function of temperature and for decreasing distortions. This
allows us to study orbital ordering for specific q vectors.
The second approach is based on linear-response functions.
It allows us to compare competing types of ordering and
to better single-out the effects of the different terms of the
superexchange interaction. In Sec. III we present the results.
We show that TKK itself is close to the value for the infinite-
layer system KCuF3. We show furthermore that the orbital
Zeeman interaction ĥKK yields a finite orbital polarization
even for T > TKK. Although this orbital polarization is small
for K2CuF4, our results indicate that it could be larger in
other systems. Furthermore, we find that due to ĥKK, two
orbitally ordered phases can coexist for T < TKK. In Sec. IV
we draw our conclusions. In the appendices we give details
on the orbital field and the approach used for linear-response
function calculations.

II. MODEL AND METHOD

We use the local-density approximation plus dynamical
mean-field theory (LDA+DMFT) approach [27–31]. First we
calculate the electronic structure in the local-density approx-
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FIG. 2. Orbital-resolved spectral function (in states/Cu/

spin/eV) for the ambient-pressure Bbcm structure (left) and the
Ammm high-pressure structure (right) at 290 K for U = 7 eV and
J = 0.9 eV.

imation (LDA) via the full-potential linearized augmented
plane-wave method as implemented in the WIEN2k code
[32]. Then, via the maximally localized Wannier function
method [33,34] and eg projectors, we construct localized eg-
like Wannier functions centered at the Cu atoms, spanning
the eg bands. Using these Wannier orbitals we build the eg

Hubbard Hamiltonian

H = −
∑
ii′σ

∑
mm′

t i,i′
m,m′ c†

imσ ci′m′σ

+ 1

2

∑
iσσ ′

∑
mm′ pp′

Umm′ pp′c†
imσ c†

im′σ ′cip′σ ′cipσ , (1)

where cimσ (c†
imσ ) annihilates (creates) an electron at lattice

site i with spin σ ∈ {↑,↓} and orbital quantum number
m ∈ {x2−y2, 3z2−r2}. The one-electron terms −t i,i′

m,m′ yield
hopping integrals (i 	= i′) and the crystal-field matrix (i = i′).
All screened Coulomb parameters Umm′ pp′ can be expressed
in terms of U and J , the direct and exchange screened
Coulomb terms; for the latter, we adopt the values established
in previous works on similar compounds [4], U = 7 eV
and J = 0.9 eV. As quantum impurity solver we use the
generalized hybridization-expansion continuous-time quan-
tum Monte Carlo (CT-HYB QMC) method [35] in the im-
plementation presented in Ref. [24]; this solver, in the Krylov
version, can be used for systems of any symmetry. We perform
LDA+DMFT calculations for the experimental structure at
ambient and high pressure and for a number of idealized
structures obtained by progressively removing the distortions.
In Fig. 2 we show the orbital-resolved spectral functions for
the two experimental structures. For each of them we calculate
the temperature dependence of the order parameter, the orbital
polarization p(T ). The latter is defined as the difference
p(T ) = n1 − n2, where ni are the occupations of the natu-
ral orbitals, ordered such that n1 > n2. Thus 0 � p(T ) � 1,
where p(T ) = 0 in the paraorbital phase and p(T ) = 1 in the
fully orbitally ordered state.
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In addition, we calculate the local spin and orbital suscep-
tibilities [36]. The latter are given by

χ X̂ X̂
αα (τ ) = 〈T X̂α (τ )X̂α (0)〉 − 〈X̂α (0)〉〈X̂α (0)〉

with α = x, z and X̂ = Ŝ, Ô. Here Ŝα are spin and
Ôα orbital pseudospin operators. The spin operators
are defined as Ŝz = 1

2

∑
mσ λσ c†

mσ cmσ , with λσ = δσ,↑ −
δσ,↓, and Ŝx = 1

2

∑
m

∑
σ 	=σ ′ c†

mσ cmσ ′ . By analogy, the or-
bital pseudospin operators are defined respectively as
Ôz = 1

2

∑
mσ λmc†

mσ cmσ with λm = δm,x2−y2 − δm,3z2−r2 and
Ôx = 1

2

∑
σ

∑
m 	=m′ c†

mσ cm′σ .
In order to calculate the local susceptibilities we extend

our CT-HYB QMC solver to two-particle Green’s functions.
Depending on the case, we calculate the latter either in the
Legendre [37] or in the so-called intermediate representation
[38]. Simulations based on the latter are sizably faster. This
is because, in the intermediate representation, both the one-
and two-particle Green’s functions decay very quickly with
increasing polynomial order l . In typical cases, lmax, the max-
imum value of l needed in the intermediate representation,
can be about half of the corresponding value for the Legendre
representation.

With respect to the case of one-particle Green’s func-
tions, linear-response functions are computationally more
challenging. Using symmetries and massive parallelization
we can strongly reduce the actual computational time for
a fixed accuracy. Finally, we obtain the lattice susceptibili-
ties in the local-vertex approximation by solving the Bethe-
Salpeter equation. More details on the implementation of
the calculations of linear-response functions can be found in
the appendices. In all cases considered, at sufficiently high
temperature—not so high, however, that charge fluctuations
become important—we find that the static susceptibility be-
haves as the static mean-field susceptibility of a generalized
superexchange model; i.e., it has the form

χ X̂ X̂
αα (q; 0) ∼ μ2

X

kBT + 	X
αα (q)/μ2

X

,

where α = x, y, z indicates the direction and μX is the ef-
fective moment for the orbital (X̂ = Ô) and spin (X̂ =
Ŝ) susceptibility. This allows us to extract from the high-
temperature susceptibility the function 	X

αα (q), the effective
superexchange coupling for a given q vector, and thus to
study its momentum dependence and the possible instabilities
of a given system. We have already shown this explicitly in
Ref. [39] for the spin susceptibility of the weakly frustrated
system VOMoO4. In the specific cases discussed here, the
effective local moment takes the value μX ∼ 1/2 for both the
orbital and spin susceptibilities.

III. RESULTS

A. Orbital and spin order

Let us start from the experimental structure and discuss the
orbital order emerging from our LDA+DMFT calculations.
To this end, we diagonalize the DMFT occupation matrix and
calculate the orbital occupations and the associated orbital
order. At a given site, we define the lower-energy crystal-
field orbital as |θ̄〉 = cos θ

2 |3z2 − r2〉 + sin θ
2 |x2 − y2〉 and the

higher-energy orbital as |θ〉 = − sin θ
2 |3z2 − r2〉 + cos θ

2 |x2 −
y2〉. In the case of the Bbcm structure, the corresponding
crystal-field orbitals at a neighboring site in the xy plane can
be obtained via the transformation x ↔ y. In the case of the
Ammm high-pressure structure, the crystal-field orbital is the
same at all sites in a given plane. For all structures, we find
that at each site, the associated lowest-energy crystal-field
state is fully occupied even at very high temperature, i.e.,
p(T ) ∼ 1. This corresponds to antiferro orbital order in the
Bbcm structure and ferro orbital order in the Ammm structure,
in line with experiments.

We now consider in more detail the relative weight of
Jahn-Teller and tetragonal crystal-field splitting in determin-
ing the occupied states. Table I shows that surprisingly,
in the high-pressure phase (Ammm) the crystal-field matrix
has a dominant tetragonal term, εT = ε3z2−r2 − εx2−y2 = t i.i

0,0 −
t i,i
π,π ∼ 434 meV, while the off-diagonal Jahn-Teller splitting is

merely εJT = 2|t i,i
0,π | ∼ 178 meV, despite an appreciable dif-

ference between short and long CuF bonds. For the ambient-
pressure structure (Bbcm) we find a similar tetragonal split-
ting, εT = 460 meV, but a much larger Jahn-Teller splitting,
εJT = 500 meV. Thus, in the ambient-pressure case, the Jahn-
Teller and the tetragonal crystal-field splitting are, surpris-
ingly, comparable, unlike in the infinite-layer system KCuF3.
This is reflected in the angle θ defining the natural orbitals,
which is halfway between 180◦, the value expected from a
dominant tetragonal splitting with a hole in the |3z2 − r2〉
state, and 90◦, the value expected for a dominant off-diagonal
Jahn-Teller splitting. This is shown in Table I. Remarkably,
while the Jahn-Teller splitting is entirely or almost entirely
due to the deformation of the F6 octahedra, the tetragonal
splitting is not. As a matter of fact, it remains sizable even in
the case in which the octahedra are artificially made regular
(structures B2 and A2 in the table), so that all Cu-F bonds
are the same, while the K cage remains unchanged. This is
because of the joint effect of the layered structure and the
compression of the K cage along the c axis.

Based on these results, we then calculate the magnetic
exchange couplings. First we use second-order perturbation
theory and obtain the expression

	i,i′
SE ∼ 4

∣∣t i,i′
h,h

∣∣2
(U + εCF)

(U + εCF)2 − J2
−

∣∣t i,i′
f ,h

∣∣2 + ∣∣t i,i′
h, f

∣∣2

U + εCF − 3J

2J

U + εCF − J
.

Here tm̃,m̃′ with m̃ = h, f are the hopping integrals in the basis
{ f , h} of natural orbitals; | f 〉 is the filled and |h〉 the half-
filled orbital. The parameters appearing in this formula can
be obtained from Table I, where the corresponding values of
	i,i′

SE are also given. We find that the magnetic coupling in the
ab plane is ferromagnetic (	SE < 0) and isotropic at ambient
pressure, and switches to antiferromagnetic (	SE > 0) in the
short-axis direction under high pressure, when the system
changes space group to Ammm [15–17]. This is in excellent
agreement with experimental results [18].

We point out that this is a very strong test for our modeling
of K2CuF4. Indeed, the magnetic couplings are very sensitive
to small structural changes. For example, without Jahn-Teller
distortion (A1 and B1 cases in Table I) the couplings would
be in all cases antiferromagnetic, and for the high-pressure
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TABLE I. Hopping integrals t i,i′
m,m′ between site i′ and i ∼ i′ + lx + my + nz, in meV. The axes are defined as x = (a + b)/2, y = (−a +

b)/2, z = c for the Bbcm structure and as x = a, y = b, z = c for the Ammm structure. The orbitals m are labeled here as |π̄〉 = |x2 − y2〉
and |0̄〉 = |3z2 − r2〉. Results for Bbcm (Ammm) structures with artificially reduced distortions are labeled Bα (Aα). In particular, α = 1: no
Jahn-Teller distortion of the octahedra; α = 2: regular CuF6 octahedra. The magnetic superexchange couplings in the ab plane obtained from
second-order perturbation theory, 	i,i′

SE , are also given. The angle θ given in parentheses identifies for each structure the crystal-field state with
the lowest energy, the state labeled with |θ̄〉 in the main text. Due to the different stacking of the layers along ẑ (see Fig. 1 and its caption), the
Cu site symmetry is D4h for the B2 structure and D2h for the A2 structure.

lmn t i,i′
0,0 t i,i′

π,0 t i,i′
0,π t i,i′

π,π 	i,i′
SE t i,i′

0,0 t i,i′
π,0 t i,i′

0,π t i,i′
π,π 	i,i′

SE

Bbcm (θ = 132.6◦) Ammm (θ = 157.6◦)

000 −306 −250 −250 −766 −279 −89 −89 −713
100 −107 131 173 −217 −3.6 −149 206 206 −292 24
010 −107 −173 −131 −217 −3.6 −98 −157 −157 −272 −0.4

B1 (θ = 180◦) A1 (θ = 179.3◦)

000 −274 0 0 −691 −327 −3 −3 −802
100 −115 159 159 −224 4.3 −121 183 183 −280 4.4
010 −115 −159 −159 −224 4.3 −131 −184 −184 −280 5.2

B2 (θ = 180◦) A2 (θ = 175.6◦)

000 −252 0 0 −581 −317 −16 −16 −729
100 −93 144 144 −226 2.3 −114 177 177 −281 5.0
010 −93 −144 −144 −226 2.3 −127 −179 −179 −281 3.5

structure the couplings would be even almost isotropic. This
is mostly due to the changes in the actual occupied orbital.
The experimental magnetic structure can only be explained
when both tetragonal and Jahn-Teller distortions are taken into
account, as Table I shows.

Let us now go a step further and calculate the magnetic
superexchange couplings via linear-response theory. First
we calculate the spin susceptibility in the high-temperature
regime (not so high, however, that charge fluctuations play a
role), where it is described by

χ ŜŜ
zz (q; 0) ∼ μ2

S

kBT + 	s
zz(q)/μ2

S

.

In this regime we find that the effective magnetic moment,
which we obtain independently from the correlation function,
is μS ∼ 1/2. Next we extract from the formula above the
effective magnetic couplings 	s

zz(q) = 	s
xx(q) = 	s

yy(q) and
their q dependence. The results are shown in Fig. 3. The figure
shows that for the Bbcm structure the dominant magnetic
vector is q = 0 (ferromagnetic); the associated coupling is
	s

zz(0) ∼ 4	i,i+x
SE . Instead, for the Ammm structure, the ex-

change coupling is semi-one-dimensional, and the magnetic
vector is q = X (antiferromagnetic), while 	s

zz(0) ∼ 2	i,i+x
SE .

Linear-response calculations confirm that switching to struc-
ture B1 or A1 (no Jahn-Teller distortion of the octahedra)
reverses the sign of the magnetic couplings, which become
in both cases antiferromagnetic and almost isotropic. The
values we obtain from linear-response theory are close to
those from second-order perturbation theory given in Table I;
this indicates that longer-range terms and higher-perturbation
orders, in all the cases considered, only weakly change the
effective magnetic couplings. In Fig. 3 we show that this
effect is even stronger (i.e., it yields larger antiferromagnetic

couplings) if we, in addition, set the crystal field to zero (B1

and A1 panels). Finally, if the octahedra are artificially made
completely regular (B2 and A2 structures), while keeping the
cation cubic cage unmodified, the remaining changes are
small. This is again shown in Fig. 3.
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FIG. 3. Effective magnetic exchange couplings 	S
α,α (q), with

α = x, y, z, for the Bbcm structure (left) and the Ammm high-pressure
structure (right) for U = 7 eV and J = 0.9 eV, as obtained via linear-
response theory. For the Bbcm structure, the x and y axes are rotated
by π/4 with respect to the Ammm structure. This is shown in the two
upper panels, bottom surfaces. The special points are 	 = (0, 0, 0) =
0, 	1 = (2π, 2π, 2π ), 2X = (2π, 0, 0), R = (π, π, π ). On the op-
posite side of 2X is the point 2Y1 = (0, 2π, 2π ). All lattice constants
are set equal to 1 for simplicity. The expected magnetic-ordering
vector is the value of q for which the magnetic exchange coupling
	s

αα (q) is most negative. In the case of the idealized structures B1, B2

and A1, A2 (see text) the crystal field is set to zero.
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FIG. 4. Effective orbital exchange couplings 	o
xx for the Bbcm

structure (left) and the Ammm high-pressure structure (right)
for U = 7 eV and J = 0.9 eV. The special points are 	 =
(0, 0, 0), 	1 = (2π, 2π, 2π ), 2X = (2π, 0, 0), R = (π, π, π ). On
the opposite side of 2X is the point 2Y1 = (0, 2π, 2π ). The difference
between the x and y directions of the Ammm and Bbcm structures is
illustrated in Fig. 3, top panels. The crystal field is set to zero in all
cases.

B. Superexchange critical temperature TKK and orbital Zeeman
interaction ĥKK

Based on the success in describing and explaining mag-
netic and orbital order, in this section we study the orbital
superexchange couplings and the possible instabilities arising
from them. The results of linear-response theory calcula-
tions are shown in Figs. 4 and 5. They show that for the
experimental ambient-pressure structure (Bbcm), the favored
instability is at the 	 point. Such an ordering vector yields
a type of orbital order that has the same space group as the
experimental crystal. It corresponds approximately to |θ〉 =
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FIG. 5. Effective orbital exchange couplings 	o
zz for the Bbcm

structure (left) and the Ammm high-pressure structure (right)
for U = 7 eV and J = 0.9 eV. The special points are 	 =
(0, 0, 0), 	1 = (2π, 2π, 2π ), 2X = (2π, 0, 0), R = (π, π, π ). On
the opposite side of 2X is the point 2Y1 = (0, 2π, 2π ). The difference
between the x and y directions of the Ammm and Bbcm structures is
illustrated in Fig. 3, top panels. The crystal field is set to zero in all
cases.

|90◦〉, i.e., to hole orbitals close to |s2 − z2〉, where s is the
short CuF bond; short and long bonds alternate along x̂ and
ŷ. This has two reasons. First, for all q vectors, |	o

zz(q)| is
significantly smaller than |	o

xx(0)|, as may be seen comparing
the vertical scales of Figs. 4 and 5. Second, 	 is the q vector
for which the (dominant) exchange coupling 	o

xx(q) is most
negative. Figure 5 shows in addition that in the hypothetical
cases in which we could set 	o

xx(0) = 0, by itself, the 	o
zz(q)

coupling would favor the q = 2X ordering vector; this yields
an alternation of |3z2 − r2〉 and |x2 − y2〉 as hole orbitals,
a quite exotic orbitally ordered structure. At the 	 point,
instead, 	o

zz(q) > 0 (energy loss). This can lead to frustration.
The situation is more extreme for the Ammm structure.

Here both couplings 	o
zz(q) and 	o

xx(q) yield an energy loss
at the 	 point. Indeed, 	o

xx(q) favors instead antiferro or-
bital order with the same arrangement as in the ambient-
pressure structure case, despite the ferro orbital crystal field.
This can be seen from the fact that the most negative value
of 	o

xx(q) is at the R point of the Ammm Brillouin zone
in Fig. 4. The R point is also the ordering vector favored
by 	o

zz(q), as can be seen in Fig. 5. The ordering that
would emerge from 	o

zz(R) alone differs, however, from the
one favored by 	o

xx(R). Indeed 	o
zz(R) alone would yield

antiferro orbital order with the alternation of |3z2 − r2〉 and
|x2 − y2〉 hole orbitals. It has to be noticed that the effective
antiferro orbital couplings for the Ammm structure are all
small compared to the case of the Bbcm structure.

Finally, we point out a remarkable difference between
the magnetic superexchange couplings, shown in Fig. 3 and
discussed in Table I, and the orbital superexchange couplings
shown in Figs. 4 and 5. While the first—in particular in the
ferromagnetic case—are quite sensitive to even small struc-
tural distortions, the latter are rather robust and depend much
less on slight changes, as one can see by comparing the results
for the real Bbcm structure with those for the idealized B1 and
B2 unit cells, and the results for the real Ammm structure with
those for the idealized A1 and A2 unit cells.

These results rule out the intersite superexchange Kugel-
Khomskii coupling as the possible dominant mechanism de-
termining orbital order. This is in line with the conclusion we
have previously reached for infinite-layer perovskites [4,5,7].
For the high-pressure structure, we find that superexchange
would even predict a different orbital structure than experi-
mentally observed.

As we pointed out in the introduction, layered materials
are however different from their infinite-layer counterparts,
because layered tetragonal symmetry alone allows for a su-
perexchange term of the form

ĥKK =
∑

i

B̂KK
z Ôi

z.

For a e3
g tight-binding Hubbard model of a tetragonal layered

perovskite the operator B̂KK
z is given by (see Appendix A)

B̂KK
z = −Ni

	

2

∑
i′ 	=i

[
Ŝi · Ŝi′ − nini′

4

]ni′

2
,

where Ni is the number of neighbors coupled via superex-
change, 	 = 4t2/U , and the ni operator yields the occupation
of site i. Thus the term ĥKK acts as an effective orbital
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FIG. 6. Bbcm (ambient-pressure) structure. Left top panel, empty
circles: orbital polarization p(T ) for the experimental structure.
Left panels, filled circles: orbital polarization p(T ) in the absence
of crystal-field splitting. For B1 and B2, two different solutions
coexist (lighter/darker circles) between 150 K and 300 K. Left
panels, straight lines: linear fit of the inverse orbital susceptibility
1/χOO

αα (q; 0) at specific q points. Diamonds: q = 0. Triangles: q =
2X . Solid lines: α = x. Dashed lines: α = z. Right panels, filled
circles: angle θ defining the hole state in the absence of crystal-field
splitting. Two solutions with angles ±θ are equivalent. The black
line in the top right panel is the value of θ for the LDA ground
crystal-field state.

Zeeman interaction when ferromagnetic spin correlations are
negligible. For K2CuF4 the Curie temperature is very small,
and therefore ferromagnetic fluctuations are negligible in the
temperature range of interest here. In the infinite-layer limit
ĥKK is zero by symmetry.

In order to single out the effect of ĥKK, we calculate
the order parameter and the associated orbital polarization
as a function of the temperature. The results are shown in
Fig. 6 for the ambient-pressure structure and in Fig. 7 for the
high-pressure structure. In the ambient-pressure case, we find
that ĥKK generates an orbital polarization well above TKK ∼
300 K. The associated occupations correspond to a |x2 −
y2〉 hole state. Since ĥKK acts as a Zeeman interaction, the
orbital polarization is not associated with a phase transition.
Furthermore, in this specific case, the orbital Zeeman term
ĥKK does not favor the superexchange-driven orbital order
transition itself. In fact, it favors |θ = 0◦〉 as the hole state,
while the intersite superexchange couplings favor |θ = 90◦〉,
as we have seen above. Hence ĥKK, in general, effectively
reduces the actual transition temperature TKK, similarly to
what we found a static tetragonal crystal field does for man-
ganites [26]. When the temperature is lowered through TKK,
the actual superexchange phase transition takes place and the
hole moves to the |θ = 90◦〉 state. Two phases, one in which
the orbital polarization is small and the hole state is |θ〉 = |0◦〉,
and one in which the orbital polarization is large and the hole
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FIG. 7. Ammm (high-pressure) structure. Left top panel, empty
circles: orbital polarization p(T ) for the experimental structure.
Left panels, filled circles: orbital polarization p(T ) in the absence
of crystal-field splitting. Left panels, straight lines: linear fit of
the inverse orbital susceptibility 1/χOO

αα (q; 0) at specific q points.
Diamonds: q = 0. Pentagons: q = R. Solid lines: α = x. Dashed
lines: α = z. Right panels, filled circles: angle θ defining the hole
state in the absence of crystal-field splitting. The black line in the top
right panel is the value of θ for the LDA ground crystal-field state.

state is |θ〉 = |90◦〉, can also coexist, however. This is shown
in the lower panels of Fig. 6.

Even more remarkable are the results for the high-pressure
phase. Here the superexchange phase transition is not al-
lowed for q = 0, i.e., for the experimental structure, since
the superexchange interaction favors critical vectors other
than q = 0, as we have discussed previously. Hence, the
polarization induced by ĥKK continues to grow on lowering
the temperature, and reaches ∼0.5 at about 100 K. This yields
orbital order at low temperature, despite the fact that the
superexchange intersite coupling yields an energy loss, and
that there is no phase transition at all. The hole state is again
|x2 − y2〉. It is interesting to compare now with the hole state
for the experimental structure, including thus the actual crystal
field. The figure shows that |θ〉 ∼ |180◦〉. This is because the
tetragonal static crystal field εT is very large and, in addition,
the |x2 − y2〉 state is lower in energy than the |3z2 − r2〉 (see
Table I). Thus ĥKK actually competes with εT in the case of
K2CuF4. Its global effects are however small, as one can see
from the fact that in Figs. 6 and 7 the occupied state obtained
in DMFT is very close to the one obtained in LDA.

Thus, in K2CuF4, the term ĥKK induces an orbital po-
larization at temperature T � TKK. However, the effects of
ĥKK compete with those of the static crystal field; even in
its absence (εT = 0), the total orbital polarization is small in
the high-temperature regime. Our results therefore confirm for
the layered perovskite K2CuF4 the conclusions we already
have reached for the infinite-layer system KCuF3. Superex-
change (in all its contributions) is not sufficient alone to
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explain the presence of orbital order at very high temperatures.
Nevertheless, our work also shows where layered systems
are qualitatively different from infinite-layered compounds:
There are superexchange orbital Zeeman terms. In covalent
materials in which the hopping integrals are larger and the
Coulomb repulsion is smaller than in K2CuF4, these terms
should play an important role.

IV. CONCLUSION

We have calculated magnetic and orbital order in single-
layered K2CuF4, at ambient and high pressures. When we use
experimental structures, we find excellent agreement with ex-
periments. In particular, we can explain the change in orbital
order with pressure, and the associated change in magnetic
structure. Based on this success, we studied the role of su-
perexchange in determining orbital order. We have shown that
TKK, the superexchange transition temperature, is ∼300 K for
the ambient-pressure structure. This value is close to the one
we previously obtained for the infinite-layer system KCuF3.
By using linear-response calculations, we have shown that
for the Ammm phase, the superexchange-only orbital-ordering
vector is not compatible with the experimental structure. This
is remarkable by itself, since at ambient pressure, in most
orbitally ordered systems the opposite is true [40]; a situation
of this kind is only realized at high pressure. Furthermore,
we have shown that there is an additional superexchange-
based mechanism that can lead to orbital order. This is due
to the superexchange orbital Zeeman field, which is zero
in the infinite-layer limit. Such a mechanism results in a
finite orbital polarization above the superexchange transition
temperature TKK and can lead to coexisting phases below TKK.
This orbital Zeeman field, together with the static crystal field,
can give rise to orbital ordering also at temperature T > TKK.
For K2CuF4 we find, however, that the orbital Zeeman field
and the associated polarization is small at high temperature.
Furthermore the hole orbital corresponds to |x2 − y2〉. Thus
the orbital field cannot alone drive orbital ordering in K2CuF4

at high temperature. As in the case of the infinite-layered
material KCuF3, experimental results can only be explained
accounting for a static crystal field, determined by the actual
crystal-field distortions. Still, our results indicate the orbital
Zeeman field could play a larger role in more covalent layered
compounds, where the hopping integrals and the superex-
change couplings are larger.
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APPENDIX A: ORIGIN OF SUPEREXCHANGE-DRIVEN
ORBITAL ZEEMAN FIELD: A TOY MODEL

Here we discuss the origin of the superexchange-driven
orbital Zeeman field. We adopt as an example the case of an
ideal ABC3 perovskite with the e1

g configuration; we set J = 0

for keeping the discussion simple [41]. In the tight-binding
approximation, only hopping integrals between neighboring
B sites in the cubic perovskite structure play a role. The
hopping integral matrices along the (001) direction have, in
first approximation, the simple form

t i,i±ẑ
m,m′ ∼ t

(
1 0

0 0

)
,

where we ordered the orbital as |3z2 − r2〉 and |x2 − y2〉. Let
us consider at first only pairs of sites along the ẑ axis, chosen
as the quantization axis, and calculate the superexchange
Hamiltonian. In second-order perturbation theory in ĤT , for
the e1

g configuration we obtain the following superexchange
Hamiltonian [1,2]

Ĥ ẑ
KK ∼ 	

2

∑
ii′

[
Ŝi · Ŝi′ − nini′

4

][
Ôi

z − ni

2

][
Ôi′

z − ni′

2

]

+ 	

4

∑
ii′

[
Ôi

zÔ
i′
z − nini′

4

]
,

where 	 = 4t2/U > 0. For the e3
g configuration an analogous

expression can be found, with Ôz → −Ôz. The superexchange
Hamiltonian above contains the term

ĥẑ
KK = −	

2

∑
i

[
Ŝi · Ŝi′ − nini′

4

][ni′

2
Ôi

z + Ôi′
z

ni

2

]
,

which can become very weak in the presence of strong fer-
romagnetic correlations. The superexchange Hamiltonian has
the same form if we chose as the quantization axis x̂ or ŷ
instead of ẑ; to sum up all terms we have merely to rotate
back the quantization axis to ẑ. Hence, we have to make the
replacements

Ôi
z →︸︷︷︸

ẑ→x̂

− 1

2
Ôi

z −
√

3

2
Ôi

x,

Ôi
z →︸︷︷︸

ẑ→ŷ

− 1

2
Ôi

z +
√

3

2
Ôi

x.

For an infinite-layer system, after all contributions are
summed up, only terms quadratic in the spin and pseudospin
operators remain. For a layered structure, however, linear
terms do not fully cancel out.

APPENDIX B: CALCULATION OF THE SUSCEPTIBILITY
TENSOR

Here we give details on the calculation of the sus-
ceptibilities as implemented in our hybridization-expansion
continuous-time quantum Monte Carlo (CT-HYB QMC)
solver for dynamical mean-field theory (DMFT).

First we calculate the local susceptibility tensor χααα (τττ ) for
the DMFT quantum-impurity problem. It can be written as the
two-particle Green’s function tensor, Cααα (τττ ), minus its mean-
field component. More specifically

χααα (τττ ) =Cααα (τττ ) − Gα1ᾱ2 (τ1, τ̄2)Gα3ᾱ4 (τ3, τ̄4),
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with

Cααα (τττ ) = 〈
T cα1 (τ1)c†

ᾱ2
(τ̄2)cα3 (τ3)c†

ᾱ4
(τ̄4)

〉
,

Gα1ᾱ2 (τ1, τ̄2) = − 〈
T cα1 (τ1)c†

ᾱ2
(τ̄2)

〉
.

Here τττ = (τ1, τ̄2, τ3, τ̄4) and T is the time-ordering opera-
tor. In addition, ααα = (α1, ᾱ2, α3, ᾱ4), where α j = mjσ j i j are
collective orbital (mj), spin (σ j), and site (i j) indices; in the
expression above, the labels with (without) the bar on top
identify imaginary times and flavors for creation (destruction)
operators. The generalized local susceptibility tensor is calcu-
lated via CT-HYB QMC. To this end, we have extended the
implementation described in Ref. [24] to two-particle Green’s
functions. In CT-HYB QMC the partition function and the
one- or two-particle Green’s functions are expressed as series
expansions in even powers (or orders) of the hybridization.
The core of the calculation is the evaluation of the trace
over local (quantum impurity) variables. Depending on the
specific form of the Hamiltonian, for the calculation of the
local trace we use either the (very fast) segment or the (slower
but general) Krylov method. Instead of calculating directly
χααα (τττ ), we express it in a basis of orthogonal functions [37,38]
and evaluate those via the CT-HYB QMC approach. The
expansion coefficients take the form

χ l,l ′
ααα (ωm) =

∫ β

0
dτ23

∫ β

0
dτ12

∫ β

0
dτ34 e−iωmτ23

× f m
l (τ12)χααα (τ14, τ24, τ34, 0) f m

l ′ (τ34), (B1)

where ωm is a bosonic Matsubara frequency, while τi j = τi −
τ j , with τ14 = τ12 + τ23 + τ34, and τ24 = τ23 + τ34; in order
to write the tensor in the form given above, we used the
invariance of the trace under rotation of the operators as well
as the periodicity (antiperiodicity) of the susceptibility in the
bosonic (fermionic) imaginary-time variables. In this work
we used two families of functions f m

l (τ ). The first [37] is
defined as

f m
l (τ ) = e−iφm (τ )

{ √
2l + 1pl (x(τ )), τ > 0,

−(−1)m
√

2l + 1pl (x(τ + β )), τ < 0,

where pl (x(τ )) is an orthogonal Legendre polynomial of
degree l , with x(τ ) = 2τ/β − 1. The phase defining the gauge
is φm(τ ) = ωmτ/2 and does not depend on l; the factor
(−1)m in the second row ensures antiperiodicity for all values
of m. The second family of f m

l (τ ) is obtained replacing√
2l + 1pl (x(τ )) in the expression above with

√
2ul (x(τ ));

here ul (x(τ )) is calculated via the singular-value decompo-
sition of K (x(τ ); ω) = e−τω

1+e−βω , the kernel for the analytic con-
tinuation of the Green’s function [38]. The functions ul (x(τ ))
have, by construction, the same symmetry properties in τ

as the Legendre polynomials; namely they are symmetric
(antisymmetric) about β/2 for even (odd) l . The expansions
described here give a very compact representation of the one-
and two-particle Green’s function; the representation is even
more compact for the numerical functions ul (x(τ )). This is
shown in Fig. 8. The ul (x(τ )) are calculated once before the
QMC simulation starts, in order to reduce the simulation time.

The observables are obtained via Monte Carlo average
over the visited configurations c. In the segment approach,
the latter are parametrized via time lines (imaginary-time
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FIG. 8. K2CuF4, ambient-pressure structure, B2-structure param-
eter set. Convergence of the static local magnetic susceptibility χzz,
normalized to the atomic value, χat . Here lmax (horizontal axis) is the
maximum order of the polynomials included in the sum in Eq. (B2).
Dashed lines: Legendre polynomials pl (x). Full lines: ul (x) polyno-
mials, calculated with a cutoff parameter �max ∼ βU . Symbols of
decreasing size show results for decreasing temperatures, ranging
from ∼2300 to ∼380 K. The figure shows that ul polynomials
converge much faster than Legendre polynomials; the difference in
convergence speed increases on lowering the temperature. This can
considerably speed-up calculations.

intervals [0, β )), occupied by a number of creators and an-
nihilators, which in turn define segments on the time lines.
The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines. In the Krylov
approach, we use the insertion and removal of pairs of creation
and annihilation operators as basic Monte Carlo updates. In
addition, we shift operators in time, introduce global moves
(exchange the configurations of blocks) and insertion or dele-
tion of two pairs of creation and annihilation operators. For
a given configuration we can evaluate the elements of the
susceptibility tensor as follows:〈

χ l,l ′
ααα (ωm)

〉
c
= 〈

C l,l ′
ααα (ωm)

〉
c
− βδm,0

〈
Gl

α1ᾱ2

〉
c

〈
Gl ′

α3ᾱ4

〉
c
,

where

〈
Cl,l ′

ααα (ωm)
〉
c = 1

β

Nb∑
bb′dd ′

nb∑
i

nd∑
j

nb′∑
i′

nd ′∑
j′

W ll ′mααα
d j,bi,d ′ j′,b′i′ ,

W ll ′mααα
d j,bi,d ′ j′,b′i′ = f m

l (τd j − τ̄bi ) f m
l ′ (τd ′ j′ − τ̄b′i′ )

× (
wdb

ji wd ′b′
j′i′ − wd ′b

j′i wdb′
ji′

)
e−iωm (τ̄bi−τd ′ j′ )

× δα1,αd j δᾱ2,ᾱbiδα3,αd ′ j′ δᾱ4,ᾱb′ i′ ,

and

〈
Gl

α1ᾱ2

〉
c
= − 1

β

Nb∑
b

nb∑
i j

f 0
l (τb j − τ̄bi )w

bb
ji δα1,αb j δᾱ2,ᾱbi .

Here wdb
ji = δb,d M (nb)

b j,bi, where the matrix M (nb) = [F (nb)]−1

is the inverse of the hybridization function matrix F (nb) for
expansion order nb. The imaginary times τbi and τ̄bi all vary in
the interval [0, β ). The expression of 〈Cl,l ′

ααα (ωm)〉c given above
accounts for symmetries in order to reduce the computation
time. The letters b and d label the Nb blocks decoupled by
symmetry; in the cases discussed here, e.g., the σ =↑ and
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σ =↓ blocks are decoupled. Further optimization is obtained
exploiting, when possible, symmetries in l, l ′, in order to
reduce the number of coefficients to compute and/or the error
bars. For the Hamiltonians considered in this paper, time-
reversal and pair-exchange symmetries yield

χ l,l ′
α1ᾱ2α3ᾱ4

(ωm) = χ l ′,l
α4ᾱ3α2ᾱ1

(ωm),

χ l,l ′
α1ᾱ2α3ᾱ4

(ωm) =
[
χ l ′,l

α3ᾱ4α1ᾱ2
(ωm)

]∗
,

where we used [χ l,l ′
α1ᾱ2α3ᾱ4

(ωm)]∗ = χ l ′,l
α4ᾱ3α2ᾱ1

(−ωm).
Once we obtained the local susceptibility tensor, in order

to calculate χααα (q; ωm), we solve the Bethe-Salpeter equation
in the local vertex approximation. Here the first step consists
of rewriting the bubble term χ0;n,n′

ααα (q; ωm), where νn and ν ′
n

are fermionic Matsubara frequencies, in the chosen basis of
functions. We do this via the transformation

χ0;l,l ′
ααα (q; ωm) = (−1)l ′+m+1

∑
nn′

[
T m

nl

]∗
χ0;n,n′

ααα (q; ωm)T m
n′l ′ ,

where

T m
nl = 1

β

∫ β

0
dτeiνnτ f m

l (τ )

and

χ0;n,n′
ααα (q; ωm) = − βδn,n′δσ1σ4δσ2σ3

× 1

Nk

∑
k

Gα1ᾱ4 (k; νn)Gα3ᾱ2 (k+q; νn+ωm).

Next, to obtain the q-dependent susceptibility we solve the set
of matrix equations

[χ (q; ωm)−1]N,N ′ = [χ0(q; ωm)−1]N,N ′ + [	(ωm)]N,N ′,

[	(ωm)]N,N ′ = [χ (ωm)−1]N,N ′ − [χ0(ωm)−1]N,N ′,

[χ0(ωm)]N,N ′ = 1

Nq

∑
q

[χ0(q; ωm)]N,N ′,

with N = α1l, ᾱ2l and N ′ = α3l ′, ᾱ4l ′. In the last step, the
components of the physical two-particle Green’s function
tensor are obtained as follows:

χααα (q; ωm) = 1

β2

∑
ll ′

f −m
l (0+)χ l,l ′

ααα (q; ωm) f −m
l ′ (0+), (B2)

using the orthogonality properties of the polynomials. The
convergence with increasing maximum polynomial order in-
cluded in the sum, lmax, is shown in Fig. 8. The coefficients
χ l,l ′

ααα (q; ωm) entering in this sum typically decay quickly
with l, l ′, much faster than the corresponding coefficients in
the Matsubara representation, χn,n′

ααα (q; ωm). This speeds up
the calculations considerably. In addition, to increase accu-
racy, we calculate via Eq. (B2) the difference χ l,l ′

ααα (q; ωm) −
χ0;l,l ′

ααα (q; ωm), which decays even faster, and add only at the
end the value χ0

ααα (q; ωm) calculated with very high precision
via Matsubara sums. The static susceptibilities calculated in
this paper are obtained by setting ωm = 0 in the general
formulas given in this Appendix.
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