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Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft
pseudopotentials: The magnetic case
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We extend density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseu-
dopotentials to magnetic materials. Our approach is based on the application of the time-reversal operator to
the Sternheimer linear system and to its self-consistent solutions. Moreover, we discuss how to include in
the formalism the symmetry operations of the magnetic point group which require the time-reversal operator.
We validate our implementation by comparison with the frozen phonon method in fcc Ni and in a monatomic
ferromagnetic Pt wire.
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I. INTRODUCTION

Density functional perturbation theory (DFPT) is widely
used for the computation of the linear response properties of
solids, and in particular for the study of their lattice dynamics
[1]. Some years ago, one of us applied DFPT [2] to a scheme
based on plane waves and norm conserving (NC) or ultrasoft
(US) [3] pseudopotentials (PPs) that allow the introduction of
spin-orbit effects within a fully relativistic (FR) density func-
tional formalism and can be written in a form very similar to
the scalar relativistic (SR) one. However, the theory presented
in Ref. [2] was implemented only for time-reversal invariant
systems, and therefore applications that include spin-orbit so
far have been limited to nonmagnetic solids. [4]

In this work we extend this theory to the case of mag-
netic systems, by explicitly considering the presence of
an exchange-correlation magnetic field in the Hamiltonian.
DFPT equations in the presence of a magnetic field have
been recently written to calculate magnons with NC PPs
in Refs. [5,6]. In Ref. [5] the charge density induced by a
periodic perturbation was computed by using the response
to a perturbation at wave vector q and the response to a
perturbation at −q, while in Ref. [6] the problem at −q was
not solved, but the time-reversal operator was used to obtain a
second Sternheimer equation with a reversed magnetic field.
The two formulations are equivalent. We generalize the theory
of Ref. [6] to a phonon perturbation, avoiding the study of the
response at −q, and write it in a form applicable to both NC
and US PPs.

In the presence of a magnetic field, the solid is invariant
upon the symmetry operations of the magnetic space group.
Some of these operations require the time-reversal operator.
We discuss how to exploit these symmetries for the sym-
metrization of the induced charge and magnetization densities
and for the dynamical matrix.

Finally, we validate our method in ferromagnetic fcc Ni
first computing the phonon frequencies at the X point in the
Brillouin zone (BZ) by the frozen phonon method and com-
paring with DFPT results, and then by computing the phonon

dispersions. Moreover, we apply our method to a monatomic
ferromagnetic Pt nanowire and compare its vibrational prop-
erties when the magnetization is parallel or perpendicular to
the wire. Also for this case we compare the DFPT results to
the frozen phonon method for a phonon wave vector q = π/a
and q = π/2a, and then we compute by DFPT the phonon
dispersion in the one-dimensional (1D) BZ.

II. DFPT WITH FULLY RELATIVISTIC US PPs

In the density functional theory (DFT) with FR US PPs,
which accounts for spin-orbit effects, the minimization of the
total energy functional leads to the Kohn-Sham [7] equations
for the two-component spinor wave functions [2]:∑

σ ′
Hσσ ′ ∣∣�σ ′

i

〉 = εi

∑
σ ′

Sσσ ′ ∣∣�σ ′
i

〉
, (1)

where Sσσ ′
is the overlap matrix needed in the US scheme,

and the Hamiltonian Hσσ ′
is

Hσσ ′ = − 1
2∇2δσσ ′ + V σσ ′

KS . (2)

V σσ ′
KS is the total Kohn-Sham potential:

V σσ ′
KS = V σσ ′

NL +
∑
σ1σ2

∫
d3rV σ1σ2

LOC (r)Kσ1σ2
σσ ′ (r), (3)

where

Kσ1σ2
σσ ′ (r, r1, r2) = δ(r − r1) δ(r − r2) δσ1σ δσ2σ ′

+
∑
Imn

∑
m1n1

QI
mn(r) f σσ1

m1mβI
m(r1)

× f σ2σ
′

nn1
β∗I

n1
(r2), (4)

where I = {ρ, s′′}, while f σσ1
m1m, f σ2σ

′
nn1

, as well as the indices m,
n, m1, and n1 are defined in Eq. (5) of Ref. [2]. In particular,
in Eq. (3) V σσ ′

LOC = Veffδσσ ′ − μBBxc · σσσ ′
, and Veff = Vloc +

VH + Vxc is the sum of local, Hartree, and exchange and
correlation potential, and VNL is the bare nonlocal potential: in
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magnetic systems the spin, represented by the Pauli matrices,
is coupled to the exchange-correlation magnetic field Bxc, de-
fined as Bxc = −δExc/δm. This term breaks the time-reversal
symmetry: indeed, introducing the time-reversal operator T =
ıσyK, where K is the complex-conjugation operator and σy is
the Pauli matrix, the following relationship holds:

T H [Bxc]T † = H [−Bxc]. (5)

We first exploit the time-reversal operator to rewrite the
induced spin density. Following the notation of Ref. [2], we
consider both the metallic and the insulating case. The change
of the spin density induced by the variation of an external
parameter μ (Eq. (10) of Ref. [2]) may be written as

dnσσ ′
(r)

dμ
=

∑
i

∑
σ1σ2

[ 〈
�

σ1
i

∣∣ Kσσ ′
σ1σ2

(r)
∣∣	μ�

σ2
i

〉
+

∑
σ3σ4

〈(T �i )
σ1 | Tσ1σ3 Kσ ′σ

σ3σ4
(r) T †

σ4σ2

× |(T 	μ�i )
σ2〉 ] + 	μnσσ ′

(r).

(6)

	μnσσ ′
is defined as in the nonmagnetic case and corresponds

to the last two terms of Eq. (10) of Ref. [2].
The same idea can be applied to the second-order deriva-

tives of the total energy. Only the term d2E (2)
tot /dμdλ (Eq. (19)

of Ref. [2]) needs to be rewritten by using T :

d2E (2)
tot

dμdλ
=

∑
i

∑
σ1σ2

〈
�

σ1
i

∣∣∂V [B]σ1σ2
KS

∂λ
− εi

∂Sσ1σ2

∂λ

∣∣	μ�
σ2
i

〉
+

∑
i

∑
σ1σ2

〈(T �i )
σ1 |∂V [−B]σ1σ2

KS

∂λ

− εi
∂Sσ1σ2

∂λ
|(T 	μ�i

)σ2〉, (7)

while the other contributions can be kept in their original
form. Both Eqs. (6) and (7) contain two unknown terms,
namely |	μ�σ

i 〉 and |(T 	μ�i )σ 〉. The first can be computed
by means of the Sternheimer linear system (Eqs. (13) and
(14) of Ref. [2]), while the second is obtained by solving the
following linear system:∑

σ2

[H [−B]σ1σ2 − εiS
σ1σ2 ]|(T 	μ�i )

σ2〉

= −
∑
σ2σ3

�
†σ1σ2
c,i

[
dV [−B]σ2σ3

KS

dμ
− εi

∂Sσ2σ3

∂μ

]
|(T �i )

σ3〉, (8)

obtained by applying T to both sides of the Sternheimer
linear system (Eq. (13) of Ref. [2]) and using the fact that
T dV [B]

KS /dμ T † = dV [−B]
KS /dμ. In particular, here we intro-

duced the time-reversed projector on the conduction mani-
fold, namely �

†σ1σ2
c,i = ∑

σσ ′ Tσ1σ P†σσ ′
c,i T †

σ ′σ2
, similarly to what

was proposed in Ref. [6] for the calculation of magnons.
Equations (6), (7), and (8) are valid for the US PPs scheme,
the NC formulation can be obtained as a particular case
by writing Kσσ ′

σ1σ2
(r, r1, r2) = δ(r − r1) δ(r − r2) δσσ1 δσ ′σ2 and

Sσ1σ2 = δσ1σ2 . Moreover, the insulating case can be dealt with
by putting θ̃F,i = 1 if the state is occupied or 0 if the state is
empty (see Ref. [8] for the definition of θ̃F,i).

III. PHONONS IN PERIODIC SOLIDS

In this section we consider a phonon perturbation with a
wave vector q perturbing a periodic solid, for which the wave
functions �σ

i (r) may be written in the Bloch form �σ
kv (r) =

eık·ruσ
kv (r), where uσ

kv (r) is lattice periodic. Following the
discussion reported in Appendix A of Ref. [8], we introduce
the variation of the density and of the wave functions, induced
by a phonon perturbation uνs′β = 1/

√
Ms′Re(us′β (q)eıq·Rν ),

where Re indicates the real part, and define

dnσσ ′
(r)

dus′β (q)
=

∑
ν

eıq·Rν
dnσσ ′

(r)

duνs′β
, (9)∣∣	us′β (q)�σ

kv

〉 =
∑

ν

eıq·Rν
∣∣	uνs′β �σ

kv

〉
. (10)

Equation (6) then becomes

dnσσ ′
(r)

dus′β (q)
=

∑
kv

∑
σ1σ2

[ 〈
�

σ1
kv

∣∣ Kσσ ′
σ1σ2

(r)
∣∣	us′β (q)�

σ2
kv

〉
+

∑
σ3σ4

〈(T �−kv )σ1 | Tσ1σ3 Kσ ′σ
σ3σ4

(r)T †
σ4σ2

× |(T 	us′β (−q)�−kv )σ2〉
]

+ 	us′β (q)nσσ ′
(r).

(11)

In Eq. (11) the second term is identical to the first and is not
explicitly computed in time-reversal invariant systems. The
same holds for Eq. (14) below (for the dynamical matrix).
Instead, for magnetic systems the two terms must be com-
puted separately. In particular, the time-reversed response of
the wave functions can be computed by solving the linear
system Eq. (8), which becomes∑

σ2

[H [−B]σ1σ2 − ε−kvSσ1σ2 ] |(T 	us′β (−q)�−kv )σ2〉

= −
∑
σ2

�
†σ1σ2
c,−kv

[ ∣∣φus′β (q)[−B]σ2

T −kv

〉 + ∑
σ3

∑
σ4σ5

∫
d3r

× dV [−B]σ4σ5
H,xc (r)

dus′β (q)
Kσ4σ5

σ2σ3
(r) |(T �−kv )σ3〉

]
, (12)

where, similarly to Ref. [8] we defined∣∣φus′β (q)[−B]σ2

T −kv

〉
=

∑
σ3

(
∂V [−B]σ2σ3

KS

∂us′β (q)
− ε−kv

∂Sσ2σ3

∂us′β (q)

)
|(T �−kv )σ3〉 , (13)

in which ∂V [−B]σ2σ3
KS /∂us′β (q) and ∂Sσ2σ3/∂us′β (q) are defined

similarly to Eq. (10). The action of the time-reversal operator
on the linear system changes the sign of the exchange and
correlation magnetic field, which enters in the Hamiltonian, in

dV [B]σ4σ5
H,xc /dus′β (q) and in |φus′β (q)[B]σ2

kv
〉 through the third term

in Eq. (9) of Ref. [2]. We can then write the contribution to
the dynamical matrix coming from d2E (2)

tot /duμsαduνs′β in the
following way:

�
(2)
sα
s′β

(q) = 1

N

∑
kv

∑
σ

[〈
φ

usα (q)[B]σ
kv

∣∣	us′β (q)�σ
kv

〉
+ 〈

φ
usα (q)[−B]σ
T −kv

∣∣(T 	us′β (−q)�−kv )σ 〉], (14)
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while the other contributions may be kept in their original form, discussed in Ref. [8]. Here N is the number of cells in the solid.
Equation (11) may be further manipulated by writing explicitly Kσσ ′

σ1σ2
(r) [Eq. (4)]. Introducing the periodic parts of the Bloch

functions and of the responses of the wave functions, we obtain the periodic part of the induced spin density [indicated with a
tilde (∼)]:

˜dnσσ ′ (r)

dus′β (q)
=

∑
kv

[
u∗ σ

kv (r) ˜	us′β (q)uσ ′
kv (r) +

∑
σ1σ2

Uσ ′σ1 (T u−kv (r))∗ σ1 [T ˜	us′β (−q)u−kv (r)]σ2U †
σ2σ

]

+
∑
s′′m n

(
Q̃s′′q

mn (r)	us′β (q)ρs′′σσ ′
mn

) + ˜	us′β (q)nσσ ′
(r), (15)

where we defined the quantities Q̃s′′q
mn (r) and 	us′β (q)ρs′′σσ ′

mn as

Q̃s′′q
mn (r) = e−ıq·r ∑

ρ

eıq·Rρ QI
mn(r), (16)

	us′β (q)ρs′′σσ ′
mn =

∑
m1n1

∑
σ1σ2

∑
kv

(
β

∗ s′′m1σ1
kv

f σ1σ
m1m f σ ′σ2

nn1
	us′β (q)β

s′′n1σ2
kv

+
∑
σ ′′σ ′′′

β
∗ s′′m1σ1
T −kv

f σ1σ
′′

m1m Uσ ′′σ ′U †
σσ ′′′ f σ ′′′σ2

nn1
	us′β (−q)β

s′′n1σ2
T −kv

)
, (17)

where β
s′′m1σ1
T −kv

= e−ık·Rρ 〈βI
m1

|(T �−kv )σ1〉, 	us′β (−q)β
s′′n1σ2
T −kv

= e−ı(k+q)·Rρ 〈βI
n1

|(T 	us′β (−q)�−kv )σ2〉, and we used the fact that∑
σ3σ4

Tσ1σ3 Kσ ′σ
σ3σ4

(r)T †
σ4σ2

=
∑
σ ′′σ ′′′

Uσ ′σ ′′Kσ ′′σ ′′′
σ1σ2

U †
σ ′′′σ , (18)

where U = ıσy is the unitary part of the time-reversal operator. The induced charge and magnetization densities can be computed
from the induced spin density [Eq. (15)] as

d̃n(r)

dusα (q)
=

∑
σ

˜dnσσ (r)

dusα (q)
, (19)

d̃mβ (r)

dusα (q)
= μB

∑
σ σ ′

˜dnσσ ′ (r)

dusα (q)
σσσ ′

β . (20)

In particular, for the induced charge density we use the fact that
∑

σ U †
σ2σ

Uσσ1 = δσ1σ2 and for the induced magnetization density
the fact that

∑
σσ ′ U †

σ2σ
σ σσ ′

α Uσ ′σ1 = −σσ1σ2
α , so that the terms of the induced spin density that contain the time-reversed wave

functions are subtracted in Eq. (20).
The linear system (12) may be written in terms of lattice periodic functions:∑

σ2

(
H [−B]σ1σ2

k+q − ε−kvSσ1σ2
k+q

) |(T ˜	us′β (−q)u−kv )σ2〉

= −
∑
σ2

�
†σ1σ2,−k−q
c,−kv

[∣∣φ̃us′β (q)[−B]σ2

T −kv

〉 + ∑
σ3

d̃V
[−B]σ2σ3

H,xc

dus′β (q)

∣∣(T ukv )σ3
〉 + ∑

σ3

∑
s′′m1n1

3I
us′β (q)[−B]σ2σ3

s′′m1n1

∣∣̃βs′′
m1k+q

〉
β

s′′n1σ3
T −kv

]
, (21)

where we defined〈
r
∣∣̃βs′′

m1k+q

〉 = e−ı(k+q)·r ∑
ρ

eı(k+q)·Rρ βs′′
m1

(r − RI ), (22)

3I
us′β (q)[−B]σ2σ3

s′′m1n1
=

∑
mn

∑
σ4σ5

f σ2σ4
m1m f σ5σ3

nn1

∑
α

Aσ4σ5
α

3I
us′β (q)[−B]
s′′mnα ,

(23)

and

3I
us′β (q)[−B]
s′′mnα =

∫
Qγ (s′′ )

mn (r − ds′′ )
dC[−B]

α (r)

dus′β (q)
d3r, (24)

where α = 1, . . . , 4, A = (1, σx, σy, σz ), similarly to
Ref. [14] (1 is the 2 × 2 identity matrix), and C[B] =
(VH,xc,−μBBxc,x,−μBBxc,y,−μBBxc,z ).

IV. SYMMETRIZATION

We indicate with {S| f } the symmetry operations of the
space group of the crystal, where S is a rotation (proper or
improper) and f is a translation. In a magnetic crystal we
have to consider also the operations S such that {T S| f } is
a symmetry of the crystal.

Since, for a phonon perturbation, the charge (and mag-
netization) density response and the dynamical matrix are
computed at a given finite wave vector q, we use as symmetry
operations only those NS operations of the antiunitary small
space group of q, the subgroup of the antiunitary space group
of the crystal, which contains the symmetry operations {S| f }
such that

Sq = q + GS , (25)
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if {S| f } is a symmetry of the crystal, or

Sq = −q + GS , (26)

if {T S| f } is a symmetry of the crystal. Here GS is a reciprocal
lattice vector that might appear when q is at the zone border. In
order to distinguish the two cases we introduce a variable τ (S )
which may take the values τ = 0 or τ = 1 if Eq. (25) or (26)
holds, respectively. We compute the unsymmetrized induced

spin density by summing over the irreducible Brillouin Zone
(IBZ) in Eqs. (15) and (17), introducing a weight proportional
to the number of elements in the star of q. Then we calculate
the unsymmetrized induced charge and magnetization densi-

ties d̃n
NS

(r)/dus′β (q) and d̃m
NS
δ (r)/dus′β (q) using Eqs. (19)

and (20). Finally, the complete responses are obtained through
the following relationships:

˜dn(r)

dus′β (q)
= 1

NS

∑
{S| f }

Oτ (S )

[ ∑
γ

Sγ β

d̃n
NS

({S| f }r)

dus̄′γ (q)
eıGS−1 ·re−ıq·RS

s′

]
, (27)

˜dmδ (r)

dus′β (q)
= 1

NS

∑
{S| f }

(−1)τ (S )Oτ (S )

[ ∑
γ η

S̃−1
δη Sγ β

d̃m
NS
η ({S| f }r)

dus̄′γ (q)
eıGS−1 ·re−ıq·RS

s′

]
, (28)

where S̃ is the proper part of S, Oτ (S ) is the identity if τ (S ) =
0, or Oτ (S ) = K if τ (S ) = 1. Moreover, RS

s′ = Sds′ − d s̄′ ,
where ds′ identifies the position of the atom s′ with respect
to the origin of its primitive cell, while d s̄′ is obtained by
applying the rotation S to the atom s′ [{S| f }(Rν + ds′ ) =
Rν̄ + d s̄′ ]. Similarly, the dynamical matrix becomes

� sα
s′β

(q) = 1

NS

∑
{S| f }

Oτ (S )

[ ∑
γ δ Sγα Sδβ �NS

s̄γ
s̄′δ

(q)eıq·(RS
s −RS

s′ )

]
,

(29)

where �NS
s̄γ
s̄′δ

(q) is obtained summing over the IBZ in Eq. (14)

and including the terms coming from d2E (1)
tot /duμsαduνs′β ,

d2E (3)
tot /duμsαduνs′β , and d2E (4)

tot /duμsαduνs′β , defined in
Ref. [2].

V. APPLICATIONS

In this section we use the theory described above to com-
pute the phonon dispersions of ferromagnetic fcc Ni and of a
monatomic ferromagnetic Pt nanowire. We validate the theory
by comparing the phonon frequencies obtained by diagonal-
izing the dynamical matrix [Eq. (29)] with those obtained by
the frozen phonon method.

A. Computational details

First-principle calculations were performed within
the local density approximation (LDA) [9] and the
Perdew-Burke-Ernzerhof (PBE) [10] schemes, as
implemented in the Quantum ESPRESSO [11,12] and
thermo_pw [13] packages. The atoms are described
by FR US PPs [14], with 4s and 3d valence electrons
for Ni (PPs Ni.rel-pz-n-rrkjus_psl.0.1.UPF and
Ni.rel-pbe-n-rrkjus_psl.0.1.UPF from pslibrary
0.1) and with 6s and 5d valence electrons for Pt (PP
Pt.rel-pz-n-rrkjus_psl.1.0.0.UPF from pslibrary
1.0.0 [15,16]).

DFPT calculations on ferromagnetic fcc Ni are at the
theoretical LDA and PBE lattice constants a = 6.483 a.u. and
a = 6.658 a.u., which are 2.6% and 0.02% smaller than ex-
periment [17] (a = 6.659 a.u.), respectively. The pseudowave

functions (charge density) are expanded in a plane waves basis
set with a kinetic energy cutoff of 120 (600) Ry. The BZ
integrations were done using a shifted uniform Monkhorst-
Pack [18] k-point mesh of 28 × 28 × 28 points for the phonon
calculations at a single wave vector q. The same computa-
tional parameters, except the k-point mesh which has been re-
duced to 18 × 18 × 18 points, have been used for the phonon
dispersions. The dynamical matrices have been computed by
DFPT on a 6 × 6 × 6 q-point mesh, and Fourier interpolated
to obtain the complete dispersions. Phonon frequencies of fer-
romagnetic Ni with the frozen phonon method were calculated
with a simple cubic supercell with four Ni atoms. The kinetic
energy cutoffs used are the same as for the DFPT calculations,
while the BZ integrations were performed on a k-point mesh
of 24 × 24 × 24 points. The presence of a Fermi surface has
been dealt with by the Methfessel-Paxton smearing method
[19] with a smearing parameter σ = 0.02 Ry.

DFPT calculations on monatomic ferromagnetic Pt
nanowire were done at a stretched geometry with interatomic
distance d = 4.927 a.u. The wire replicas have been separated
by a vacuum space of 20 a.u. We have checked that by
increasing the vacuum space the computed frequencies do not
change more than 0.2 cm−1. The system has been studied
in a ferromagnetic configuration, with magnetization either
parallel or perpendicular to the wire. The kinetic energy cutoff
was 60 (400) Ry for the wave functions (charge density). The
k-point mesh is a shifted uniform Monkhorst-Pack mesh of
300 points. Frozen phonon calculations were performed with
supercells with two and four Pt atoms, and Monkhorst-Pack
meshes of 150 and 75 k points, respectively. The smearing
parameter was σ = 0.002 Ry.

B. Fcc Ni

We start our discussion from the computation of the
phonon frequencies of ferromagnetic fcc Ni with the magne-
tization along [001] (and with a magnitude that turns out to
be 0.62 μB per atom), and compare the DFPT and the frozen
phonon method at the Y and Z points. The results obtained are
reported in Table I. The frequencies of the transverse modes at
q = (0, 0, 2π/a) (Z) are degenerate with both methods, as a
consequence of the tetragonal magnetic symmetry [D4h(C4h)]:
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TABLE I. Computed FR LDA phonon frequencies at q =
(0, 2π/a, 0) and q = (0, 0, 2π/a) with DFPT and the frozen phonon
method for fcc Ni. The magnetization is oriented along the z axis.
The subscripts indicate the polarization of the phonon modes.

DFPT Frozen phonon
ν (cm−1) ν (cm−1)

T (0,1,0)
x 232.438 232.691 ± 0.006

T (0,1,0)
z 232.397 232.648 ± 0.006

T (0,0,1)
{xy} 232.433 232.688 ± 0.006

indeed both transverse modes have atomic displacements per-
pendicular to the magnetization. Instead, the transverse modes
at q = (0, 2π/a, 0) (Y ) show a small splitting of 0.04 cm−1.
The two modes are actually different because the atomic
displacements are either parallel or perpendicular to the mag-
netization. A frequency splitting arises as a consequence of
spin-orbit coupling. The DFPT and frozen phonon methods
agree within 0.3 cm−1. The DFPT and the frozen phonon
method predict the same splitting, which however is small
compared to the agreement of the absolute values of the
frequencies obtained with the two methods, hence it is not
possible to give an accurate quantitative prediction, but only
an order of magnitude. With the kinetic energy cutoffs and
k-point mesh used, the frequencies obtained are converged
within 5 × 10−3 cm−1, the same order of magnitude as the
error bar reported in Table I and due to the fit.

In Fig. 1 we show the complete phonon dispersion of fcc
Ni obtained by DFPT. Both LDA and PBE theoretical dis-
persions are shown, together with inelastic neutron scattering
data [20]. The agreement between the LDA result and the
experiment is poor, mainly because LDA underestimates the
lattice constant: the highest frequencies of the dispersion (e.g.,
at the X and L points) are about 30 cm−1 higher than the
experiment. On the other hand, the PBE phonon dispersions
are in excellent agreement with the experiment. Note however
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FIG. 1. Computed FR LDA (dashed lines) and PBE (solid lines)
phonon dispersions of ferromagnetic fcc Ni, compared to inelastic
neutron scattering data (solid diamonds). Phonon modes are classi-
fied using symmetry, but only the operations that do not require T
are used.

TABLE II. Computed FR LDA phonon frequencies at q = π/a
and q = π/2a with DFPT and the frozen phonon method for a
monatomic ferromagnetic Pt nanowire. The nanowire is oriented
along the z axis. Results are shown with both m ‖ x and m ‖ z. The
subscripts indicate the polarization of the phonon modes.

q m ‖ x m ‖ z

DFPT Frozen phonon DFPT Frozen phonon
ν (cm−1) ν (cm−1) ν (cm−1) ν (cm−1)

Tx 36.51 37.02 ± 0.03 45.71 46.10 ± 0.03
π/a Ty 37.00 37.34 ± 0.03 45.71 46.10 ± 0.03

L 113.98 114.21 ± 0.03 110.30 110.51 ± 0.03

Tx 25.1 25.5 ± 0.1 39.17 39.63 ± 0.03
π/2a Ty 32.1 31.8 ± 0.1 39.17 39.65 ± 0.03

L 54.2 53.8 ± 0.1 62.66 63.14 ± 0.03

that this agreement is slightly worsened by temperature effects
[21] not included in the present study.

C. Pt monatomic wire

In this section we consider a monatomic Pt nanowire,
a metal with ferromagnetic ordering. It has been shown
[22,23] that at its equilibrium geometry (atomic distance d =
4.441 a.u.) the system shows a colossal magnetic anisotropy,
since the preferred orientation of the magnetization is parallel
to the wire and the magnetization vanishes when forced to be
perpendicular to the wire. Instead, for stretched geometries
with atomic distance higher than 4.913 a.u. a nonzero magne-
tization perpendicular to the wire is allowed. Here we consider
a stretched geometry with d = 4.927 a.u. and compute the
phonon dispersions with both a magnetization parallel and
perpendicular to the wire. In the following the nanowire is
along the z direction. In Table II we compare the phonon
frequencies, at q = π/a and q = π/2a with m ‖ x and m ‖ z,
computed by the DFPT and with the frozen phonon method.
With a magnetization m ‖ z (m = 0.65 μB per atom), the
frequencies of the transverse modes are degenerate, while
with m ‖ x (m = 0.13 μB per atom) at q = π/a the two
transverse modes show a splitting of about 0.5 cm−1, which
is of the same order of magnitude as the overall agreement
of the two methods. At q = π/2a this splitting is about
7 cm−1, one order of magnitude larger than at q = π/a. In
both cases the polarization of the transverse mode with higher
frequency is perpendicular to the magnetization. As discussed
above for fcc Ni, the two transverse modes are not equivalent
due to the presence of the magnetization and of spin-orbit
coupling. Pt atoms are heavier than Ni and show a stronger
spin-orbit interaction: indeed, the splitting reported for Pt is
1–2 orders of magnitudes higher than in Ni. The DFPT and
frozen phonon results agree within 0.4 cm−1 on average. As
before, the error bars reported in Table II come from the linear
fit. With the kinetic energy cutoffs and the k-point mesh used
all the frequencies reported are converged within 0.03 cm−1.

In Fig. 2 we show the phonon branches along �-Z for a
ferromagnetic wire with magnetization parallel (left panel) or
perpendicular to the wire (right panel). The two dispersions
show evident differences: at q = π/a, the longitudinal mode
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FIG. 2. Computed FR LDA phonon dispersions of ferromagnetic
Pt nanowire. Left panel: Magnetization parallel to the wire. Right
panel: Magnetization perpendicular to the wire.

for the wire with m ‖ z is lower in frequency than for the
wire with m ‖ x, while the transverse modes are higher in
frequency. In the central part of the BZ, around q = π/2a,
the longitudinal mode of the wire with m ‖ z has a higher

frequency at the Kohn anomaly than the wire with m ‖ x,
while the transverse modes show a Kohn anomaly only for
m ‖ x. We remark that at the stretched geometry studied (d =
4.927 a.u.) the phonon modes are still stable, but the range
of atomic distances at which both modes are stable is quite
narrow.

VI. CONCLUSIONS

We extended the DFPT for lattice dynamics with FR NC
and US PPs to the magnetic case. We validated the theory
by comparing the DFPT to the frozen phonon method for
ferromagnetic fcc Ni and for a monatomic ferromagnetic Pt
nanowire. The agreement between the two methods is within
0.5 cm−1. For both systems, we computed by DFPT also
the complete phonon dispersions and discussed their features,
showing that magnetism together with spin-orbit coupling
may lift the degeneracy of some phonon modes. For our
systems these splittings range from 10−2 cm−1 (in Ni) to a
few cm−1 (in Pt nanowire).
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