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Magnetovortical and thermoelectric transport in tilted Weyl metals
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We investigate how tilting affects the off-diagonal, dissipationless response of a pair of chirally imbalanced
Weyl cones to various external perturbations. The pair of chirally imbalanced Weyl cones can be described as
a chiral electron fluid, that can flow with a velocity field that contains vorticity. Upon applying an external
magnetic field, we obtain the so-called magnetovortical linear-response matrix that relates electric and heat
currents to the magnetic field (chiral magnetic effect) and the vorticity (chiral vortical effect). We show how
this response matrix becomes anisotropic upon tilting the cones and determine its nonanalytic long-wavelength
behavior, as well as the corresponding ac response. In addition, we discuss how the tilt dependence of the
electronic (or density-density) susceptibility introduces anisotropy in the dispersion relation of the soundlike
excitations in the fluid of chiral fermions, which are known as chiral magnetic waves. In the case of an externally
applied electric field and a temperature gradient, we find a Hall-like response in the electric and heat current
density that is perpendicular to both the tilting direction and the perturbations. As the tilting direction forms a
time-reversal symmetry breaking vector, a nonzero (heat) orbital magnetization manifests itself. We calculate the
magnetization currents microscopically and elucidate how to subtract these contributions to obtain the transport
currents.
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I. INTRODUCTION

The most important symmetry principle of particle physics
is Lorentz invariance. Indeed, requiring invariance under
Lorentz transformations yields a powerful restriction on
which equations are eligible to describe the particles we
encounter in Nature. For instance, it was Lorentz invariance,
together with the wish for a counterpart to the Schrödinger
equation that was first order in time derivatives, that allowed
Paul Dirac to derive his famous equation describing massive
spin-1/2 particles in 1928 [1]. The price that Dirac had to
pay for finding an equation that obeyed these two require-
ments was that the spin-1/2 particle had to be described in
terms of a four-component spinor, instead of the expected
two-component wave function. It was only one year later
when Hermann Weyl realized that Dirac’s equation simplified
greatly when considering massless spin-1/2 particles [2].
Instead of one equation involving a four-component spinor,
Weyl obtained two decoupled equations, each for a two-
component spinor with a definite chirality. Weyl fermions
were, at least theoretically, born.

Contrastingly, not even translational symmetry is fully
preserved in the presence of the atomic lattice out of which
any ordinary solid is built up. Invariance under the even
bigger Lorentz group thus seems too much to ask for in
condensed matter. However, in certain cases, Lorentz invari-
ance can emerge at low energies in solid-state materials. One
example of such a case occurs in the recently discovered
Weyl semimetals [3–9]. These materials host quasiparticles in
their low-energy band structure that obey the aforementioned
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Weyl equation. This leads to a conical dispersion relation
just like the light cone for massless particles known from
particle physics, albeit with the speed of light replaced by the,
typically much smaller, Fermi velocity.

These so-called Weyl cones are topological: depending on
the chirality of the cone, they acts as a sink or drain of Berry
curvature in momentum space [10]. Only when the distance
in energy-momentum space between two Weyl nodes with
opposite chirality becomes zero, the monopoles annihilate,
yielding a doubly degenerate Dirac cone. Reversely, a pair
[11] of nondegenerate Weyl cones can emerge from a dou-
bly degenerate Dirac cone in two distinct ways. Breaking
time-reversal symmetry yields two Weyl cones separated in
momentum space, whereas breaking of inversion symmetry
yields two Weyl cones separated in energy space [12,13].

Interestingly, the emergent Lorentz symmetry in Weyl
semimetals is not enforced by any crystal symmetries and
thus generically it will be broken. The simplest way for
this to happen is when the cones are tilted [14,15]. This is
achieved mathematically by adding a term to the low-energy
Hamiltonian that is proportional to the unit matrix in spin
space and linear in momentum. Cones that are only slightly
tilted are referred to as type-I Weyl cones, whereas cones that
are tipped over are called type-II Weyl cones [16,17]. The
existence of such tilted Weyl cones raises many interesting
questions. For instance, we can ask how the diagonal optical
response to an electric field is altered by the tilt [18,19],
how the magnetoconductivity depends on the tilt [20], how
the renormalization-group flow equations change [21], what
happens to the Landau level structure [22], how do tilted
Weyl cones respond to disorder [23,24], and finally we can
even show that vertex corrections due to Coulomb interactions
naturally tilt the cone in the presence of a magnetic field [25].
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In this paper, we discuss how tilting the cones affects
the electric and thermal transport of a Weyl metal. More
specifically, we focus on the off-diagonal, dissipationless
transport. It is important to note that the tilting direction of the
Weyl cones forms another time-reversal symmetry breaking
vector, besides the displacement vector in momentum space
connecting the two Weyl cones. The thermoelectric response
driven by an external electric field E and a thermal gradient
∇T therefore contains a Hall part, describing currents that
are perpendicular to the tilting direction [26–28]. Besides
this novel thermoelectric response, we show that the mag-
netovortical response to an externally applied magnetic field
B and a vorticity ω = (∇ × v)/2, due to the fermion fluid
flowing with a spatial velocity profile v, becomes anisotropic
due to the tilting of the cones. Furthermore, we discuss the
nonanalytic frequency-momentum behavior of the various
transport coefficients in detail.

This paper is organized as follows. We introduce the min-
imal model for a chirally imbalanced Weyl metal with tilted
cones in Sec. II. Subsequently we discuss the magnetovortical
and thermoelectric response of a material that is described by
such a Hamiltonian and give a summary of the main results
we have obtained. The rest of the paper is devoted to a more
in-depth discussion of the various properties of the transport
coefficients. We explain how to use linear-response theory to
calculate the transport coefficients due to the perturbations
B, E, ∇T , and ω in Sec. III. Next, we calculate and dis-
cuss the tilt-dependent, anisotropic magnetovortical effects in
Sec. IV in three different regimes: the long-wavelength limit
(Sec. IV A), the static and homogeneous limits (Sec. IV B),
and finally the ac frequency response (Sec. IV C). In Sec. V,
we obtain the thermoelectric response due to tilted cones by
explicitly calculating the magnetization contributions to the
currents and subtracting them. Finally, we discuss our results
in Sec. VI.

II. DISSIPATIONLESS TRANSPORT

In this section, we start by introducing a minimal model
for a chirally imbalanced Weyl metal with tilted cones. Sub-
sequently, we discuss the magnetovortical and thermoelectric
response and highlight what changes upon tilting the cones,
thereby summarizing the main results of the rest of the paper.

A. Model for tilted Weyl cones

We consider a doped time-reversal symmetry breaking
Weyl metal. Because we focus on the off-diagonal response
due to the tilting of the cones, we do not take an explicit
separation between the Weyl nodes into account. Then, the
simplest continuum two-band, grand-canonical Hamiltonian
describing a tilted Weyl cone with chirality χ = ± and
isotropic1 Fermi velocity vF is given by

Hχ (k) = χ h̄vF k · σ + (h̄vF k · tχ − μχ )σ 0, (1)

1In principle, there can be different Fermi velocities in all three
directions. This anisotropy can however always be transformed away
by an appropriate scaling of the momenta.

FIG. 1. Schematic depiction of a pair of tilted Weyl cones with
negative (positive) chirality in blue (red) and corresponding chemical
potential μ− (μ+). The chiral imbalance is μ5 = (μ+ − μ−)/2 and
the nodes are separated by an energy difference �E . In this paper, we
mostly discuss the case �E = 0. (a) Inversion-symmetry breaking
tilt: Weyl cones are tilted by the same amount in one direction.
(b) Inversion-symmetry retaining tilt: Weyl cones are tilted by the
same amount in opposite directions. Note that we defined the tilting
direction such that the associated energy contribution in Eq. (1)
increases for momenta in the direction of the tilt.

with σμ = (12, σ ) the four-vector of Pauli matrices and μ± ≡
μ ± μ5 the chemical potential of the Weyl node with chirality
±, in terms of the chemical potential μ ≡ (μ+ + μ−)/2 and
the chiral, or axial, chemical potential μ5 ≡ (μ+ − μ−)/2.
Note that we have defined the chemical potentials with re-
spect to the energy of the corresponding Weyl node, which
in general are different. In what follows, however, we will
consider mostly the case that the energy difference between
the Weyl nodes �E = 0. In addition, we note that a typical
experimental value for the Fermi velocity is vF � c/300 �
106 m/s, with c the speed of light.

The tilting direction of each cone is indicated by tχ in
Eq. (1). For simplicity, we take 0 � |tχ | = t < 1, meaning
that we consider type-I Weyl cones that are tilted by the
same amount. The latter requirement is easily generalized if
necessary. Next to the magnitude, each cone can also have
a different tilting direction. Indeed, tχ = χt is the inversion-
symmetric case and tχ = t when inversion symmetry is bro-
ken. Physically, the inversion-symmetric case corresponds to
the situation where the two Weyl cones are tilted in opposite
directions by exactly the same amount. This is pictorially
displayed in Fig. 1. For later reference, we note that the
eigenvalues of the Hamiltonian in Eq. (1) are given by

εnχk − μχ = nh̄vF |k| + h̄vF k · tχ − μχ, (2)

with n = ± indicating the conduction (+) and valence (−)
band, respectively.

The presence of a chiral imbalance μ+ �= μ− (for �E =
0), is a nonequilibrium property. One way to generate a chiral
imbalance is by irrediating a Weyl semimetal with circularly
polarized light, thereby transferring chirality from the light
to the electrons [29]. Another way is to apply strain to the
Weyl semimetal [30]. We instead focus on the possibility
to pump charge from one cone to the other by applying
nonorthogonal electric and magnetic fields, which we discuss
in the next section. Whatever the pumping mechanism is, it
will be counterbalanced by an intervalley scattering time τ5

that inevitably is present. In the end, a steady state develops,
which we took as a starting point in Eq. (1).
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B. Magnetovortical response

An interesting property of the quantum theory of Weyl
fermions is that the amount of left-handed and right-handed
Weyl fermions is not separately conserved when subjected
to externally applied magnetic and electric fields that are
nonorthogonal. In vacuum this leads to an interesting para-
dox: particles of one chirality seem to disappear, whereas
particles with the opposite chirality appear out of nothing.
This phenomenon is called the chiral anomaly and it is
proportional to E · B [31,32]. In a condensed-matter system
hosting Weyl cones, the explanation of the chiral anomaly is
straightforward. Namely, in a band structure the Weyl cones
always come in pairs that are connected via the rest of the
band structure [11]. Applying external electric and magnetic
fields will subsequently transfer population from one cone to
the other, thereby converting the quasiparticles from one type
of chirality into the other. The result is a chiral imbalance,
which is signaled by a distinct chemical potential μ± for the
cone with chirality ±, which we already used in Eq. (1).

It is exactly this chiral imbalance that gives rise to
interesting transport properties in the presence of an external
magnetic field B and a vorticity ω = (∇ × v)/2 due to
a nonzero local velocity v of the fermion fluid [33]. The
vorticity ω is quantized in superfluids and superconductors,
but we consider it here as a classical quantity that can
be assigned to a flowing fermion fluid. Interestingly,
very recently the electrons in graphene have been shown
experimentally to act as a viscous fluid that flows with a
velocity profile that contains vorticity [34]. In addition, the
quark-gluon plasma produced at the Large Hadron Collider is
surmised to contain vorticity as well [35].

The most famous of these magnetovortical effects is the
chiral magnetic effect (CME) [13,36–38], which constitutes
an electric current density in the direction of an externally
applied magnetic field: 〈Je〉 = σ CMEB. The coupled magne-
tovortical response for the electric and energy current densi-
ties 〈Je〉 and 〈Jε〉 is neatly summarized in the response matrix

(〈Je〉
〈Jε〉

)
=

(
σ CME σ CVE

σ CME
ε σ CVE

ε

)(
B

2ω/v2
F

)
, (3)

with σ CVE, σ CME
ε , and σ CVE

ε the linear-response transport co-
efficients of the magnetovortical effects (CME/CVE) [39,40].
This response matrix clarifies why the magnetovortical re-
sponse is dissipationless. The pseudovectors B and ω are odd
under time reversal, just like the electric and energy current
densities. The real part of the corresponding conductivities
is therefore necessarily even under time reversal, signaling
that the conductivities cannot be due to dissipation and hence
warrant the name dissipationless.

The response matrix in Eq. (3) is written in terms of
the electric and energy current density. In condensed matter,
however, the natural reference energy for the carriers of charge
and energy is the chemical potential. It is therefore customary
to define the heat current density

〈JQ〉 ≡
∑
χ=±

[〈
Jχ

ε

〉 + μχ

e

〈
Jχ

e

〉]
, (4)

with −e the electron charge and Jχ
e,ε the currents per cone.

The associated response matrix reads(〈Je〉
〈JQ〉

)
=

(
σ CME σ CVE

σ CME
Q σ CVE

Q

)(
B

2ω/v2
F

)
, (5)

with

σ CME
Q ≡

∑
χ=±

[
σ CME

ε,χ + μχ

e
σ CME

χ

]
, (6a)

σ CVE
Q ≡

∑
χ=±

[
σ CVE

ε,χ + μχ

e
σ CVE

χ

]
, (6b)

where we used σ CME
ε = ∑

χ=± σ CME
ε,χ and likewise for the

other conductivities. All magnetovortical effects are only
nonzero in the presence of a nonzero chiral imbalance and the
off-diagonal elements of Eq. (5) also require a nonzero chem-
ical potential, as we show later. There is a similar response
matrix for the axial currents [41], which are defined as the
difference between, instead of the sum of, the currents coming
from the separate Weyl cones. In this case the corresponding
transport coefficients all require a nonzero chemical potential
μ and the off-diagonal components in Eq. (5) again require
a nonzero chiral imbalance μ5 as well. We, however, do not
pursue this direction here, although our methods can easily be
used in this case as well because the response is diagonal in
the chirality [42].

We instead investigate how the magnetovortical transport
changes upon tilting the cones. Due to the fact that the tilting
direction breaks rotational symmetry, the response matrix
from Eq. (5) is generalized to(〈

Ji
e

〉〈
Ji

Q

〉
)

=
(

σ CME
i j σ CVE

i j

σ CME
Q,i j σ CVE

Q,i j

)(
B j

2ω j/v2
F

)
. (7)

As it turns out the chiral magnetic conductivities remain
isotropic, i.e., σ CME

i j = σ CMEδi j and σ CME
Q,i j = σ CME

Q δi j , which
is a property that is ultimately enforced by the chiral
anomaly. The vortical conductivities, on the other hand, be-
come anisotropic and can be decomposed in a transverse and
longitudinal parts with respect to the tilting direction t̂ i = t i/t
as follows:

σ CVE
i j = σ CVE

⊥ (δi j − t̂it̂ j ) + σ CVE
‖ t̂it̂ j, (8)

and analogous expressions hold for the chiral vortical heat or
energy conductivities.

We calculate all the magnetovortical transport coefficients
in Sec. IV in the long-wavelength limit and in addition ob-
tain their frequency dependence. For the static and homoge-
neous limit, we summarize all results obtained in Table I. In
Sec. IV B, we comprehensively discuss all results presented
there and give physical arguments to clarify them.

C. Thermoelectric transport

As alluded to before, Weyl cones also respond interestingly
in the presence of an electric field E and a temperature
gradient ∇T , even in the absence of a chiral imbalance. In the
case of a time-reversal symmetry breaking Weyl semimetal
with two Weyl cones separated in momentum space, there is a
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topological off-diagonal response. Most famously, for non-
tilted Weyl cones the associated intrinsic topological anoma-
lous Hall effect (AHE) is given by [12]

〈Je〉 = e2

4π2h̄
�k × E, (9)

with �k the momentum-space separation between the Weyl
nodes. Furthermore, the breaking of time-reversal symmetry
allows for a topological thermal Hall effect (THE), which is
the flow of a transverse heat current as a response to a temper-
ature gradient in the absence of an electric current [43], i.e.,

〈JQ〉 = −k2
BT

12h̄
�k × ∇T . (10)

Due to the existence of thermoelectricity, we may also expect
a transverse electric current due to a temperature gradient.
Such an anomalous Nernst effect (ANE) is however absent in
a simple, linear continuum model of the Weyl cones [44], but
present in a more realistic two-band model [45]. Furthermore,
we note that besides the intrinsic, topological contributions
presented in Eqs. (9) and (10), extrinsic contributions due
to skew and side-jump scattering of electrons off impurities
may also be present [46]. From now on, however, we only
consider the intrinsic, nontopological contributions to the
thermoelectric response coefficients.

What happens to the thermoelectric response upon tilting
the cones? Firstly, the transport coefficients are renormalized
by the tilt [18,45]. Secondly, the tilt introduces another time-
reversal symmetry-breaking vector, thereby allowing for a dif-
ferent contribution to the anomalous Hall effect [27,28,47,48]
in Eq. (9), and to the thermal Hall effect [26] in Eq. (10).
Additionally, the anomalous Nernst effect becomes nonzero,
even in a linear model [26,49–51]. The off-diagonal, explicitly
tilt-dependent part of the response matrix for the total electric
and heat current densities can then be written as(〈Je〉

〈JQ〉
)

=
(

σ AHE αANET

αANET κ̄THET

)(
t × E

t × ∇T/T

)
, (11)

with t the tilting direction. Onsager reciprocity forces the
off-diagonal elements of the response matrix to be the same,
so σ ANE

Q ≡ αANET . In Eq. (11), we have defined the anoma-
lous Nernst conductivity as by Niu et al. [52]. The anoma-
lous Nernst coefficient can, however, also be defined as the
steady-state constant of proportionality between the voltage
difference due to the redistribution of charge caused by
an applied temperature gradient in a sample without leads.
The anomalous Nernst coefficient is then given by ϑANE ≡
−αANE/σ AHE.

Thermal conductivity is defined as a heat current in the
absence of a charge current, i.e., 〈JQ〉 = κTHEt × ∇T |〈Je〉=0.
In this manner, the thermal Hall coefficient is found from
Eq. (11) to be

κTHE = κ̄THE − T (αANE)2

σ AHE
, (12)

where we only took off-diagonal contributions into account.
In principle, the linear-response coefficients σ AHE, αANE, and
κ̄THE can be calculated by extracting from the off-diagonal
part of the appropriate current-current correlators the contri-
bution that is proportional to t . However, when calculating

the thermal transport coefficients αANE and κ̄THE a problem
arises: they contain terms that are dependent on the chemical
potential μ, but independent of the temperature T . From the
response matrix in Eq. (11) it is clear that such a term renders
the zero-temperature limit ill-defined. The physical explana-
tion is that tilting the cones generates a nonzero magnetization
density M in the direction of the tilt t . Such a magnetization
density in turn yields a circulating current of the form ∇ × M,
that gives a contribution to the transport coefficients coming
from the Kubo formulas, but is unobservable with a transport
measurement [52–54]. In order to calculate the transport
current that can be measured in experiment, this superfluous
term should therefore be subtracted. How this can be achieved
is discussed in Sec. V A.

Having discussed the most important differences that occur
in the magnetovortical and thermoelectric response due to
tilting the Weyl cones, we now turn to a more in-depth
discussion of how to calculate all the corresponding transport
coefficients.

III. LINEAR-RESPONSE THEORY

In this section, we set up the linear-response theory neces-
sary to derive all the transport coefficients that we discussed
in the previous sections. Note that for sufficiently strong mag-
netic fields, the Weyl nodes are gapped out and the value of the
critical magnetic field depends on its angle with the vector �k
that separates the Weyl nodes [55–57]. Within linear response
the magnetic field is small compared to the separation |�k|
between the Weyl nodes in momentum space, i.e.,

√
e|B|/h̄ 


|�k|. The Weyl nodes are therefore not gapped out by the
magnetic field in this regime. For a typical value of |�k| �
0.03 Å

−1
[4,55], linear response is valid when the magnitude

of the magnetic field is |B| 
 60 T. This is, however, an
estimate of the order of magnitude and the details of the
critical value of the magnetic field are ultimately determined
by the band structure of the material of interest [57].

We start by writing the action corresponding to the Hamil-
tonian Eq. (1) and giving the corresponding Green’s function
or propagator. We proceed by deriving the electric, momen-
tum and energy currents using the Hamiltonian and the cor-
responding action. Subsequently, we discuss how these three
currents give rise to nine different current-current correlation
functions, of which six are relevant for the response matrices
in Eqs. (3), (5), and (11) we set out to calculate. Finally, we
derive and give explicit expressions for the antisymmetric part
of the current-current correlation functions and discuss how
they can be appropriately decomposed. In what follows, we
take h̄ ≡ 1 and vF ≡ 1, only reinstating vF in our final results.

A. Electronic action and Green’s functions

For calculational purposes it is convenient to combine the
two copies of the Hamiltonian from Eq. (1) for the two cones
with opposite chirality into a Dirac-like action in terms of the
four-component spinor ψ , i.e.,

S0[ψ, ψ̄] =
∫

d4x ψ̄[−i�μ∂μ − μγ 0 − μ5γ
0γ 5]ψ, (13)
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where γ μ are the usual gamma matrices,2 ψ̄ = ψ†γ 0 and
�μ ≡ γ μ + γ 0tμ with tμ = (0, t ) in the inversion-symmetry
breaking case and �μ ≡ γ μ + γ 0γ 5tμ in the inversion-
symmetric case. The Feynman propagator defined by Eq. (13)
is given in momentum space by

SF (k) ≡ i(kμ�μ − μγ 0 − μ5γ
0γ 5)−1

= i

(
G−(k) 0

0 G+(k)

)
γ 0, (14)

where we used the four-vector notation kμ = (ω, k) and in-
troduced the propagator G±(k) for a single cone with chirality
±. The Matsubara Green’s function associated with the latter
is given by

Gχ (iωn, k) = 1

2

∑
u=±

σ 0 + χuk̂ · σ

iωn + μχ − εuχk
, (15)

in terms of the fermionic Matsubara frequencies ωn = (2n +
1)π/β with β ≡ 1/kBT and k̂ = k/|k|.

B. Electric current, energy current, and momentum density

In order to calculate the coupled response matrices of the
Weyl cones, we need to couple the electrons (i) to an external
gauge field Aμ, (ii) to a temperature gradient ∇T , and (iii) to
the vorticity ω. The first of these three is achieved by applying
the minimal-coupling procedure ∂μψ → ∂μψ + ieAμψ to the
action in Eq. (13). This yields a coupling of the form Jμ

e Aμ,
with Jμ

e ≡ eψ̄�μψ the electric current density in terms of the
previously defined tilt-dependent vertex �μ.

Secondly, we couple the fermions to a temperature gradi-
ent. This was pioneered by Luttinger [58] using a fictitious
gravitational potential. Assuming a homogeneous temperature
T , perturbed by small spatial variations δT (x), the tempera-
ture profile can be written as

T (x, t ) = T + δT (x)e−iωt . (16)

Such an inhomogeneous temperature can be shown to act as
a perturbation on the Minkowski metric ημν [59]. In linear
response, the modified metric gμν is found to be

ds2 = ημνdxμdxν − 2
e−iωt

iω

∂ jT

T
dx jdt, (17)

such that the change in metric is δg j0 = −e−iωt∂ jT/iωT .
Such metric fluctuations couple to the energy-momentum
tensor T μν in the action as δgμνT μν , meaning that they act
as a source for the energy-momentum tensor. The off-diagonal
part of the metric in Eq. (17) thus couples to the energy current
density Jμ

ε ≡ T μ0, which is defined by the conservation law of
energy, i.e.,

∂0T 00 + ∂ jT
j0 ≡ ∂tE + ∇ · Jε = 0, (18)

with E the canonical energy density. Physically, the energy
current density is simply given by the Hermitian, symmetrized

2For the gamma matrices, we use the representation γ 0 = iσ y ⊗ 12,
γ j = σ x ⊗ σ j and γ 5 = −σ z ⊗ 12, such that they obey a Clifford
algebra {γ μ, γ ν} = 2ημν , with ημν = diag(−,+, +, +) the mostly
plus Minkowski metric.

expression of energy times the velocity. Using the action from
Eq. (13), we find

T μ0 = i

2
[∂ jψ̄� jγ 0�μψ − ψ̄�μγ 0� j∂ jψ], (19)

which depends on the tilt via �μ. Note that we can also write
an expression for T μ0 in terms of only temporal derivatives
by imposing the equations of motion. Our expression for T μ0

obeys the conservation law Eq. (18) with the canonical en-
ergy density E (x) ≡ T 00. Similarly, we could derive the heat
current density JQ by using the grand-canonical Hamiltonian
density, that follows from Eq. (13), in the conservation law in
Eq. (18).

Finally, we consider how to include a vorticity ω =
(∇ × v)/2. Giving the electron fluid a nonzero velocity v

is achieved by performing a Galilean transformation on the
Hamiltonian Eq. (1): Hχ (k) → Hχ (k) − k · v. Alternatively,
to make the connection with the previous discussion, we can
consider the velocity to be a perturbation on the metric, i.e.,
δg0i = vi. This part of the metric then couples to the momen-
tum density Ji

p ≡ T 0i, which obeys the conservation law

∂0T 0i + ∂ j�
ji = 0, (20)

with � ji = i[ψ̄� j∂ iψ − ∂ iψ̄� jψ]/2 the stress tensor. The
momentum density is given explicitly by

Jμ
p = T 0μ = i

2
[ψ̄γ 0∂μψ − ∂μψ̄γ 0ψ], (21)

from which the total (center-of-mass) momentum follows by
averaging the spatial part over the whole space, i.e.,∫

dx J p(x) =
∑

k

ψ
†
k kψk, (22)

as expected. As can be seen from Eqs. (19) and (21), the
energy-momentum tensor is not manifestly symmetric, which
we discuss in more depth later on. In principle, it can be made
symmetric by adding suitable boundary terms to the action.
We, however, refrain from doing so because Eqs. (19) and
(21) are the physical, conserved currents that are determined
by the equations of motion for the Dirac field and the
conservation laws in Eqs. (18) and (20).

C. Current-current response functions and their decomposition

Having obtained the coupling between the fermions and
the external perturbations, we can integrate out the fermions
to arrive at the effective action for the external perturbations.
This effective action is quadratic in the external gauge field
Aμ and the fluctuation of the metric δgμν . The electric (en-
ergy) current now follows in linear response from taking the
functional derivative of the effective action with respect to the
gauge field (metric fluctuation), leading to〈
Jμ

a (q)
〉 = �μν

ae (q)Aν (q) + �μν
ap (q)δg0ν (q) + �μν

aε (q)δgν0(q),

(23)

with a ∈ {e, ε}. Note that in a similar manner we can compute
the expectation value of the momentum density 〈Jμ

p (q)〉, in
which case the index a would be a “p.” We focus here,
however, on the experimentally more accessible electric and
heat current densities.
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To ensure causality the response functions �
μν

ab (q) are
understood to be retarded. They can generically be written as

i�μν

ab (q) ≡ −
∫

d4(x − y)
〈
Jμ

a (x)Jν
b (y)

〉
e−iqμ(x−y)μ

=
∫

d4kTr
[
�μ

a (k, q)SF (k + q)�ν
b(k, q)SF (k)

]
, (24)

where we omitted disconnected contributions and contri-
butions from the (energy) magnetization, to which we
return later. The electric, momentum, and energy vertices are
given by

�μ
e = e�μ, (25a)

�μ
p (k, q) = − 1

2 (2kμ + qμ)γ 0, (25b)

�μ
ε (k, q) = 1

2 (k j + q j )�
jγ 0�μ + 1

2 k j�
μγ 0� j . (25c)

From the vertices and Eq. (24), it follows that �μν
εe (q) =

�νμ
eε (−q), and similarly for other mixed current-current cor-

relators.
The response matrices from Eqs. (3), (5), and (11) can

now be derived by focusing on the antisymmetric part of
the current-current response functions. Writing out the depen-
dence on q and t explicitly, their antisymmetric part is given
by �k

ab(ω, q; t ) ≡ εi jk�
i j
ab(ω, q; t )/2. This antisymmetric part

is a vector itself that is spanned by [27] t and q. We can
therefore decompose the relevant current-current response
functions as follows:

i�k
ee(ω, q; t ) = σ CMEqk + σ AHEωt k, (26a)

i�k
εe(ω, q; t ) = σ CME

ε qk + αANE
ε T ωt k, (26b)

i�k
εε(ω, q; t ) = Cεεqk + κ̄THE

ε T ωt k, (26c)

i�k
ep(ω, q; t ) = σ CVE

‖ qk + 2(σ CVE
⊥ − σ CVE

‖ )(q · t̂ )t̂ k, (26d)

i�k
εp(ω, q; t ) = σ CVE

ε,‖ qk + 2(σ CVE
ε,⊥ − σ CVE

ε,‖ )(q · t̂ )t̂ k, (26e)

where all transport coefficients are a function of ω and q. A
few remarks are in order about these decompositions.

(1) In principle, there could be terms proportional to (q ×
t )k present in the decompositions as well. For a, b ∈ {e, ε}
we have �k

ab(ω, q; t ) = −�k
ab(ω,−q; −t ), meaning that such

terms are not allowed. The other two correlators do not obey
this symmetry and such terms are thus allowed. However, they
can be shown to vanish in the long-wavelength limit and we
therefore do not consider them here.

(2) The last two decompositions do not contain a term
proportional to ωt k like the first three because i�k

ep(ω, 0; t ) =
i�k

εp(ω, 0; t ) = 0.
(3) The first two decompositions do not contain a term

proportional to (q · t̂ )t̂ k because such a term would violate the
residual invariance under time-independent gauge transforma-
tions that are consistent with our gauge choice A0 = 0, which
we use throughout this paper.

(4) The term proportional to Cεε is of no interest to us
because it yields zero upon contracting it with εi jkq jT/iω to
compute the energy current.

Using the decompositions in Eqs. (26a)–(26e), the result-
ing current densities can easily be derived in linear response
from Eq. (23). As the magnetic field is given in momentum

space by Bi = iεi jkq jAk and the velocity can be written in
terms of the vorticity as vi = εi jkω jxk , we find, for instance,
for the magnetovortical response in the electric current density

〈
Ji

e

〉 = �i j
eeA j + �i j

epv
j

= σ CMEBi + 2σ CVE
‖ ωi − 2εi jk (σ CVE

⊥ − σ CVE
‖ )t̂ l t̂ k∂ lv j

= σ CMEBi + 2σ CVE
⊥ (δi j − t̂ it̂ j )ω j + 2σ CVE

‖ t̂ it̂ jω j . (27)

Similarly, σ CVE
Q,⊥ and σ CVE

Q,‖ can be derived such that the full
magnetovortical response matrix from Eq. (5) is obtained once
all coefficients in the decompositions in Eqs. (26a), (26d), and
(26e) have been calculated.

Using the same procedure we can derive the thermoelec-
tric response matric in Eq. (11) from the decompositions in
Eqs. (26a), (26b), and (26c). However, as explained in the pre-
vious section, the coefficients αANE

ε and κ̄THE
ε do not yet con-

stitute the actual anomalous Nernst and thermal Hall transport
coefficients. To obtain αANE and κ̄THE we need to consider
the response of the heat current and not the energy current. In
order to calculate the transport coefficients associated with the
heat current, we need to obtain the current-current correlators
〈Ji

Q(x)J j
b (y)〉 with b ∈ {e, p}. Using Eq. (4) the corresponding

response functions �
i j
Qb(q) are given by linear combinations

of the decompositions in Eqs. (26a)–(26e), i.e.,

�
i j
Qb(q) = �

i j
εb(q) +

∑
χ=±

μχ

e
�

i j,χ
eb (q), (28)

where �
i j,χ
eb (q) is the contribution of the cone with chirality χ

to �
i j
eb(q).

Besides making this linear combination, for the thermo-
electric coefficients we also need to subtract the superfluous
contribution coming from the rotating currents due to the
electric and heat orbital magnetizations Morb

e and Morb
Q , respec-

tively. We show in Sec. V A how these contributions naturally
occur as diamagnetic-like contributions to the effective action
and compute them explicitly.

D. Explicit expressions for the current-current
response functions

As an example, let us consider the computation of
i�k

ep(ω, q; t ) in some more detail. All other current-current
correlators can be computed in a similar manner, albeit in
terms of lengthier expressions. Upon restricting to spatial
indices and going from real to imaginary time, we find, using
Eq. (24) and the vertices in Eqs. (25a) and (25b),

i�i j
ep(iωb, q; t ) = − ie

2β

∑
χ,iωn

χ

∫
k

(2k j + q j )Tr
[(

σ i + χt i
χ

)
× Gχ (iωn + iωb, k + q)Gχ (iωn, k)

]
, (29)

with iωb an external bosonic Matsubara frequency and
∫

k ≡∫
d3k/(2π )3. Substituting the Matsubara Green’s function

from Eq. (15), we perform the trace and Matsubara sum
[60] and Wick rotate back to real frequencies to find for the

045114-6



MAGNETOVORTICAL AND THERMOELECTRIC TRANSPORT … PHYSICAL REVIEW B 100, 045114 (2019)

retarded current-current correlator

i�i j
ep(ω, q; t ) = − ie

4

∑
χ,u,v=±

u
∫

k

Nχ
uv (ω, q, t, k)

|k + q|

× [
ivχ (q × k̂)i + uv|k + q|k̂i + ki

+ qi + v(|k| + k̂ · q)t i
χ

]
(2k j + q j ), (30)

where we defined the function [38]

Nχ
uv (ω, q, t, k) ≡ NF(εvχk − μχ ) − NF(εuχk+q − μχ )

ω+ + εvχk − εuχk+q

= vNF(vεvχk − vμχ ) − uNF(uεuχk+q − uμχ )

ω+ + εvχk − εuχk+q

+
1
2 (u − v)

ω+ + εvχk − εuχk+q
,

with NF(x) ≡ (eβx + 1)−1 the Fermi-Dirac distribution and
εnχk the dispersion relation defined in Eq. (2). In the second
step, we used the identity NF(x) = 1 − NF(−x), such that
the terms proportional to (u − v)/2 explicitly represent the
contribution from the Dirac sea that yields an ultraviolet
divergence when integrated in Eq. (30) over all k. For the first
term in Eq. (30), which is proportional to χ , this divergence
is exactly canceled upon carrying out the sum over the two
cones. In fact, the first term proportional to χ in Eq. (30) is
the only one of interest to us, because the other terms do not
contribute to the antisymmetric part of the current-current
correlation function in the long-wavelength limit. This can be
shown by realizing that

Nχ
uv (ω, q, t, k) = Nχ

uv (ω,−q,−t,−k)

= [
Nχ

vu(−ω,−q, t, k + q)
]∗

. (31)

Using these relations to explicitly symmetrize the integrand in
Eq. (30) and subsequently going to the long-wavelength limit
shows that the last four terms do not contribute in this limit.
Therefore we focus on the antisymmetric part of the first term
in Eq. (30). In the end, we can write the remaining result as

i�k
ab(ω, q; t )

= 1

4

∑
χ,u,v=±

χ

∫
k

Nχ
uv (ω, q, t, k) f k,uv

ab (q, tχ , k), (32)

with

f k,uv
ep (q, t, k) = euv(2k + q) · (q kk − k qk )

2|k||k + q| . (33)

In a similar fashion, we obtain f k,uv
ab (q, t, k) for the other

current-current correlators. As they are rather lengthy, we
present them in Appendix A. The most important point to note
is that f k,uv

ee (q, t, k), f k,uv
eε (q, t, k), and f k,uv

εe (q, t, k) contain
terms that do not vanish at q = 0. It is exactly these terms
that lead to σ AHE, αANE

ε , and κ̄THE
ε in the decompositions in

Eqs. (26a), (26b), and (26c).
Now that we have explained how to obtain and decompose

the relevant current-current correlation function, we use them
in the next section to calculate the magnetovortical response
in several cases of interest.

IV. ANISOTROPIC MAGNETOVORTICAL TRANSPORT

In order to calculate the magnetovortical effects, we thus
need to calculate the contributions in Eqs. (26a)–(26e) that
are linear in qk . From, e.g., Eq. (33) we see that the current-
current response functions contain terms in their integrands
that are already explicitly proportional to qk , but also terms
proportional to kk . The latter types of term give, upon inte-
gration, terms proportional to qk and t k . By forming linear
combinations of the projections of �k

ab(ω, q; t ) onto qk and t k

we can extract the part that is proportional to qk . For instance,

σ CME(ω, q) =
[ |t|2qk − (q · t )tk
|q|2|t|2 − (q · t )2

]
i�k

ee(ω, q; t ), (34)

and similarly for the other transport coefficients. We will
calculate the magnetovortical transport coefficients both in the
long-wavelength limit and compute their frequency depen-
dence, starting with the former. It turns out that the magne-
tovortical transport coefficients are invariant under t → −t in
the static and homogeneous limits. The same is true for the
frequency-dependent conductivities. It thus does not matter
in these cases if we consider inversion-symmetry breaking or
retaining tilt. We therefore focus on the inversion-symmetry
breaking case and use tχ = t in this section.

A. Long-wavelength limit

It is well-known that the long-wavelength limit of current-
current response functions depends on the order of limits [61].
Therefore we expand the expressions for the current-current
response functions for small |q| and ω, but keep the fraction
x ≡ ω/vF |q| fixed, such that x → 0 corresponds to the static
limit and x → ∞ to the homogeneous, or transport limit.
Using this procedure on Nχ

uv (ω, q, t, k) yields a Fermi sea (in-
terband) contribution when uv = −1, i.e., at T = 0, we find

Nχ
−+(ω, q, t, k) ≈

[
1 − ω

2vF |k| + q · t
2|k| − k · q

2|k|2
]

× NF(ε+χk − μχ )

2vF |k| , (35)

from which N+−(ω, q, t, k) follows by using Eq. (31). When
u = v = +1 we find a Fermi surface (intraband) contribution
given by

Nχ
++(ω, q, t, k)

|q|→0= − (q̂ · t + k̂ · q̂)N ′
F(ε+χk − μχ )

ω/vF |q| − q̂ · t − k̂ · q̂
, (36)

with N ′
F(x) the derivative of the Fermi-Dirac distribution. We

thus observe that in the homogeneous limit this last term does
not contribute, whereas in the static limit, it does contribute.
Finally, we note that at T = 0 the term with u, v = − yields
zero.

Armed with these expansions we calculate the magne-
tovortical response in the long-wavelength limit. Using the
coordinate system illustrated in Fig. 2, we find for the chiral
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FIG. 2. Coordinate system used to calculate the tilt-dependent
magnetovortical transport coefficients in the long-wavelength limit.
We choose the coordinate system such that the vector q (depicted
in red) lies along the z axis and the vector t (depicted in blue) in
the xz plane. Therefore k · q = |k||q| cos θ , q · t = qt‖ and k · t =
k(t⊥ cos ϕ sin θ + t‖ cos θ ) with ϕ ∈ [0, 2π ) and θ ∈ [0, π ].

magnetic conductivities

σ CME(ω/vF |q|) = e2μ5

2π2
(1 − t2)W (ω/vF |q|; t ), (37a)

σ CME
ε (ω/vF |q|) = −eμμ5

2π2
[2(1 − t2)W (ω/vF |q|; t ) − 1],

(37b)

and similar, but lengthier, expressions for the vortical ef-
fects. The function W (ω/vF |q|; t ) is given explicitly in
Appendix A. In general it depends on the angle between q and
t , but in the static and homogeneous limits, it reduces to an
angle-independent result given by

W (ω/vF |q|; t ) =
{

(1 − t2)−1 for ω/vF |q| → 0,

l (t ) for ω/vF |q| → ∞,
(38)

in terms of the function, cf. Fig. 3,

l (t ) ≡ 1

2t3
ln

(
1 + t

1 − t

)
− 1

t2

t→0= 1

3
. (39)

To illustrate its angle-dependence, we show a polar plot of the
function W (ω/vF |q|; t ) in Fig. 4.

FIG. 3. Plot of the function l (t ) from Eq. (39). It goes to the
constant value of 1/3 for small t (indicated by the dashed black line)
and diverges when t → 1, which signals the Lifshitz transition from
a type-I to a type-II Weyl cone.

FIG. 4. Polar plot of the function W (x; t ) from Eq. (38) for t =
7/10. The radial coordinate is x = ω/vF q and the angle ϑ is defined
by q · t = |q||t| cos ϑ . The homogeneous limit is obtained for large
radii and becomes angle-independent. Likewise, the static limit is
reached for vanishing radii and also becomes angle-independent.

The fact that in the long-wavelength limit the transport
properties depend on the tilting direction in a nontrivial way,
is of importance for, for instance, the phenomenon of chiral
magnetic waves [62,63]. These are massless sound-like exci-
tations in a fluid of chiral fermions. To understand how such
excitations occur, we consider local fluctuations of the number
densities δn± pertaining to the cone with chirality ±. Assum-
ing the fluctuations to be small, we may write δμ± = δn±/χ±

nn
in the current due to the chiral magnetic effect, with χ±

nn =
∂n±/∂μ± the corresponding susceptibilities. Considering the
case of zero electric field, there is no chiral anomaly and we
find from current conservation that(

∂t ± eBz

4π2χ±
nn

∂z

)
δn± = 0, (40)

where we took for simplicity a magnetic field in the z di-
rection. If the susceptibilities were constant and isotropic,
the dispersion relations following from Eq. (40) would read
ω±

q = ±v±
CMWqz, with v±

CMW = eBz/4π2χ±
nn. The suscepti-

bilities, however, are anisotropic due to the tilting of the
cones and in addition have a nontrivial frequency and wave-
number dependence. From the density-density response func-
tion �00

ee (ω, q; t )/e2, we find for the susceptibilities

χχ
nn(ω, q; t ) = −1

2

∑
u,v=±

∫
k

(
1 + uv

|k|2 + k · q
|k||k + q|

)

× Nχ
uv (ω, q, t, k)

|q|→0=
∫

k

(k̂ · q̂ + q̂ · t )N ′
F(ε+χk − μχ )

ω/vF |q| − q̂ · t − k̂ · q̂
, (41)

where we used Eq. (36) and reinstated vF . The remaining inte-
gral can be performed exactly by using the coordinate system
of Fig. 2 and yields an analytical result, cf. Appendix A, in
terms of the function W (x; t ). At zero frequency the obtained
expression reduces to

χ±
nn(0, 0; t ) = μ2

±
2π2(1 − t2)2v3

F

= ∂n±
∂μ±

, (42)

as it should. Fourier transforming Eq. (40) and using the result
for χ±

nn(0, 0; 0) to make the resulting equation dimensionless,
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FIG. 5. (a) Plot of the chiral magnetic wave velocity (for a positive chirality) as a function of the dimensionless parameter eBzv
2
F /μ2

+.
The black dashed line indicates the result obtained by using the static-limit result for the susceptibility, which simply yields a linear function
with a slope of 1/2. The (from top to bottom) first and second curve give the highly damped and less-damped solutions at t = 0, obtained by
including the wave-number and frequency dependence of the susceptibility in the long-wavelength limit. The last three plots show the least
damped solution for several values of t and B · t = 0. (b) Plot of the chiral magnetic wave velocity as a function of the angle ϑ between the
magnetic field and the tilting direction. Here, we took eBzv

2
F /μ2

+ = 0.65 and show the angle-dependence for several values of t . For small t ,
the velocity goes to a nonzero value and becomes angle-independent, whereas for t → 1 its magnitude goes to zero.

we find

2

(
ω

vF qz

)
χ±

nn(ω, q; t )

χ±
nn(0, 0; 0)

= ±eBzv
2
F

μ2±
, (43)

from which the dispersion relation ωq can be found by solving
the equation self-consistently. In our discussion we focus on
the wave that propagates in the direction of the magnetic field,
which corresponds to the plus sign in Eq. (43). To find the
dispersion relation, we resort to numerics. For t = 0, there
are two solutions: one with a relatively high velocity that is
highly damped and another solution with a lower velocity
and corresponding lower damping. At a critical value for the
dimensionless parameter eBzv

2
F /μ2

+ these two solutions meet
and above this value there are no solutions with a real part. We
plot these solutions as a function of eBzv

2
F /μ2

+ in Fig. 5(a),
together with the result that is obtained by simply using
the static-limit result for χ+

nn(ω, q; t ). This plot shows that it
is a rather good approximation to neglect the wave-number
dependence of the susceptibility, as only for relatively large
values of eBzv

2
F /μ2

+ the solutions start to deviate. In addition,
we note that the expression for the susceptibility itself in
Eq. (41) is only valid for weak magnetic fields.

The situation changes drastically upon tilting the cones.
Firstly, the tilt renormalizes the magnitude of the suscep-
tibility in Eq. (41). As can be seen most clearly from the
static-limit result in Eq. (42), the susceptibility becomes
ever larger as t → 1, signaling the Lifschitz transition from
a type-I to a type-II Weyl cone. From Eq. (43), we see that
this causes the velocity of the (least-damped) chiral wave
to become significantly smaller as t increases. We illustrate
this behavior in Fig. 5(a). Another interesting consequence of
tilting the cones is the fact that the dispersion relation becomes
dependent on the angle ϑ between the magnetic field and
the tilting direction. This is what we illustrate in Fig. 5(b)
for one value of the dimensionless parameter eBzv

2
F /μ2

+ and
several values of t . From the figure we observe again that
as t grows, the velocity of the chiral magnetic wave goes to
zero. Moreover, Fig. 5(b) shows that there is a quantitative
difference between the case in which B is pointing in the same
direction as t (ϑ = 0) and the case in which they are pointing

in opposite directions (ϑ = π ). This is not surprising as the
tilt breaks rotational invariance and introduces a preferred
direction, which is also observable in Fig. 4.

To conclude this discussion of the anisotropic chiral mag-
netic wave, it is important to remark that in a material with
a nonzero density of electrons, the dispersion of the chiral
magnetic wave will inevitably be pushed up to the plasma
frequency due to the fact that these chiral magnetic waves
necessarily involve charge density fluctuations [64–66]. A
way around this is by considering not a single pair but rather
two pairs of Weyl cones, yielding a total of four cones. We can
then tune the chemical potentials such that the total chemical
potential is zero, whereas the two pairs of cones have opposite
chiral chemical potential. In this scenario, one of the chiral
magnetic wave remains gapless because it does not involve
fluctuations of the charge density.

B. Static and homogeneous limits

Having studied the tilt-induced anisotropic behavior in the
long-wavelength limit, we now specialize to two special cases
of the long-wavelength limit: the static and the homogeneous
limits. We summarize the results obtained for the various
current-current correlators in the static and homogenous limit
in Table I and proceed by discussing the results presented in
this table in detail.

The first thing to note from Table I is that the transport
coefficients are nonzero in the static limit. In the case of the
chiral magnetic conductivity this initially led to the believe
that this constituted an equilibrium magnetic-field-driven
current [12], which appears to be unphysical as there can be no
currents in equilibrium due to the Kohn theorem. The solution
to this conundrum lies in the fact that the results in Table I
only hold for an energy difference �E = 0 between the
Weyl nodes [67,68]. Taking �E into account amounts to the
replacement μ5 → μ5 + �E/2, leading to the vanishing of
the currents in equilibrium since the system is in equilibrium
when 2μ5 = −�E .

Secondly, we note that our results for the vortical ef-
fects differ in the static and homogeneous limit from earlier
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TABLE I. Table summarizing the results for the magnetovortical conductivities in the static and homogeneous limit. Note that the chiral
magnetic conductivity has equal longitudinal and transverse parts in both limits, meaning that it is isotropic. All results presented here are at
T = 0 and for equal tilt of both cones. As all the tilt-dependend functions used here are invariant under t → −t , these results hold for both
inversion-symmetry breaking and inversion-symmetry retaining tilts.

static limit homogeneous limit

conductivity type correlator units t �= 0 t = 0 t �= 0 t = 0

σ CME isotropic i�k
ee

e2μ5
2π2 1 1 (1 − t2)l (t ) 1/3

σ CME
ε isotropic i�k

εe
eμμ5
2π2 −1 −1 1 − 2(1 − t2)l (t ) 1/3

σ CME
Q isotropic i�k

Qe
eμμ5
2π2 1 1 1 1

σ CVE
‖ longitudinal i�k

ep
eμμ5
2π2 − 1

(1−t2 )2 −1 − 1
2

(
1

1−t2 − l (t )
) −1/3

σ CVE
⊥ transversal i�k

ep
eμμ5
2π2 − 2−t2

2(1−t2 )2 −1 − 1
4

(
1

1−t2 + l (t )
) −1/3

σ CVE
ε,‖ longitudinal i�k

εp
μ5(3μ2+μ2

5 )

6π2
1

(1−t2 )2 1 1
4

(
1−3t2

(1−t2 )2 − 3l (t )
)

0

σ CVE
ε,⊥ transversal i�k

εp
μ5(3μ2+μ2

5 )

6π2
2−t2

2(1−t2 )2 1 − 1
8

(
1+t2

(1−t2 )2 − 3l (t )
)

0

σ CVE
Q,‖ longitudinal i�k

Qp
μ5(3μ2+μ2

5 )

6π2 − 1
2(1−t2 )2 −1/2 − 1

2(1−t2 )2 −1/2

σ CVE
Q,⊥ transversal i�k

Qp
μ5(3μ2+μ2

5 )

6π2 − 2−t2

4(1−t2 )2 −1/2 − 2−t2

4(1−t2 )2 −1/2

obtained results for t = 0 by Landsteiner et al. [33,41]. The
reason is that the authors of these references use a different
set of currents. We derived the momentum density in Eq. (21)
and energy current in Eq. (19) directly from the conservation
laws that they obey and the equations of motion of the Dirac
field. Landsteiner et al., instead, use the symmetrized energy-
momentum tensor as the energy current. This coincides with
(Ji

p + Ji
ε )/2 in our definitions. Due to this symmetric defini-

tion they find that the chiral vortical conductivity σ CVE and
chiral magnetic energy conductivity σ CME

ε are the same in
the static limit. In Table II, we show that upon taking the
appropriate linear combinations, our results coincide at t = 0
in both the static and the homogeneous limit with those of
Landsteiner et al.

TABLE II. Table displaying the results from Landsteiner et al.
for the chiral magnetic, chiral vortical and chiral vortical energy
conductivity in the static and homogeneous limit [73]. We have
t = 0 and T = 0 here. We reproduce these results by using the
symmetrized energy-momentum tensor, resulting in the linear com-
bination i(�k

eε + �k
ep)/2 for the chiral vortical conductivity and

i(�k
εε + 2�k

εp)/4 for the chiral vortical energy conductivity. The
latter does not contain a contribution from �k

pp because its antisym-
metric part vanishes. Note that with the symmetric definition of the
energy-momentum tensor the chiral magnetic energy conductivity
and chiral vortical conductivity necessarily coincide.

Result Ref. [73] units stat. lim. hom. lim.

CME e2μ5/2π 2 1 1/3

CME-ε eμμ5/2π 2 −1 0

CVE eμμ5/2π 2 −1 0

CVE-ε μ5(3μ2+μ2
5 )/2π 2 1/3 0

Thirdly, it is interesting to note that the chiral magnetic
conductivities are universal in the static limit, i.e., they do not
dependent on the tilt of the Weyl cones. The other magne-
tovortical effects are, however, not universal in the static limit.
The former can be understood by considering the Landau
levels originating from a tilted Weyl cone. For a magnetic field
in the z direction, the dispersion relation of the chiral lowest
Landau level is given by [69]

Eχ

0 (kz ) = χvF
(
tz −

√
1 − t2

x − t2
y

)
kz, (44)

under the assumption t2
x + t2

y + t2
z < 1. The lowest Landau

level is thus still dispersing along the direction of the magnetic
field, albeit with a renormalized slope. The higher Landau
levels originating from the conduction and valence band each
yield a zero net current and the Landau level degeneracy
eB/2π is not affected by the tilt. We can therefore obtain
the charge current in the static limit from a one-dimensional
integral along the kz direction, i.e.,

〈Je〉 = −e2B
2π

∑
χ,u=±

∫ ∞

0

dkz

2π

dEχ

0 (kz )

dkz
NF(Eχ

0 (kz ) − uμχ )

= e2B
4π2

∑
χ,u=±

χu
∫ ∞

0
dε NF(ε − uμχ ) = e2μ5

2π2
B, (45)

which yields a universal answer because the density of states
exactly cancels the slope of the lowest Landau level that
determines the velocity. This also explains why the chiral
magnetic energy current density is universal. Indeed, doing
a similar calculation as in Eq. (45), we find

〈Jε〉 = − eB
4π2

∑
χ,u=±

χ

∫ ∞

0
dε εNF(ε − uμχ )

= −eμμ5

2π2
B, (46)
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which reproduces the corresponding result in Table I. The
overall minus sign in Eq. (46) as compared to Eq. (45) is due
to the fact that the energy and charge current density differ by
a factor of −e. The previous argument likewise clarifies why
the chiral vortical conductivity σ CVE and the chiral vortical
energy conductivity σ CVE

ε depend in the same way on the tilt
and only differ a factor of −e in the static limit.

Another convenient framework to understand the univer-
sality of the chiral magnetic conductivities, as well as the
nonuniversality and angle dependence of the chiral vorti-
cal conductivity, is the semiclassical chiral kinetic theory
[70–72]. In kinetic theory the semiclassical equation of mo-
tion for the velocity of a wave packet in the band n attains a
correction in the direction of the magnetic field when the band
has a nonzero Berry curvature [46]. This so-called anomalous
velocity results in the following simple expression for the
chiral magnetic current density, i.e.,

〈Je〉 = −e2
∑

n,χ=±

∫
k
[�nχ (k) · ∂kεnχk]NF(εnχk − μχ )B, (47)

where the Berry curvature �nχ (k) is given by

�nχ (k) ≡ ∇k × 〈unχk|i∇k|unχk〉 = − nχk
2|k|3 , (48)

in terms of the Bloch states |unχk〉 associated with Eq. (1).
Performing the integral in Eq. (47) then simply yields the
universal result in Eq. (45). Note that the divergence due to
the Dirac sea cancels because of the sum over chiralities.

For the vortical conductivity a similar argument holds. By
comparing the minimally coupled Hamiltonian corresponding
to Eq. (1), i.e., Hχ (k + eA), to the Hamiltonian Hχ (k) − k ·
v, it becomes clear that in the isotropic case the velocity v acts
as an effective vector potential given by Aeff = −εnχkv/ev2

F .
Taking the rotation on both sides of this relation results in
a vorticity that can be described by an effective magnetic
field Beff = −2εnχkω/ev2

F . In the case of an isotropic single-
particle energy, simply substituting this effective magnetic
field into Eq. (47) yields

〈Je〉 = 2e

v2
F

∑
n,χ=±

∫
k
[�nχ (k) · ∂kεnχk]εnχkNF(εnχk − μχ )ω

= −eμμ5

2π2

2ω

v2
F

, (49)

where again the Dirac sea canceled due to the sum over chi-
ralities. The only question that remains to be answered is how
the relation Aeff = −εnχkv/ev2

F changes when the dispersion
relation is modified by a tilting of the cones. It is clear that in
this case the effective gauge field and velocity can be decom-
posed into components pointing along and perpendicular to
the tilting direction. This ultimately leads to a chiral vortical
conductivity that has a longitudinal and transverse component,
as can also be seen in Table I. Unfortunately, we have not
yet been able to find a simple argument for the appropriate
effective magnetic field to reproduce the tilt-dependent longi-
tudinal and transversal chiral vortical conductivities obtained
from the Kubo formula.

Finally, we note that the results presented in Table I have
all been calculated at T = 0 because the integrals otherwise

cannot be performed exactly for nonzero tilt. In the case of
zero tilt, the transport coefficients can be calculated exactly
at T �= 0 in the static and homogeneous limit. The result is
that σ CME, σ CME

ε , and σ CVE
e do not change at nonzero temper-

ature, whereas σ CVE
ε attains an additional term proportional

to T 2 that can be attributed to the mixed gauge-gravitational
anomaly [33,67]. It stands to reason that similar behavior
will be found when doing a numerical calculation at nonzero
temperature that includes tilt of the cones.

C. Alternating-current response

Having discussed the long-wavelength response in detail,
we now turn our attention to the ac magnetovortical response.
In order to obtain the non-zero-frequency response of the
chiral magnetovortical effects, we extract the parts of the
current-current correlators that are proportional to qk and
subsequently evaluate the rest in the local limit q = 0 while
keeping ω nonzero. In this limit, the contribution from the
Fermi surface (intraband) vanishes, as can be seen from
Eq. (36), and only the Fermi sea (interband) contribution
remains. Note that upon taking the zero-frequency limit in the
ac conductivities we obtain in this section, the answers reduce
to the homogeneous-limit results presented in Table I.

We start with the frequency dependence of the chiral
magnetic effect. Using the procedure outlined above, we find

σ CME(ω) = −2e2v3
F

∑
χ=±

χ

∫
k

ϑ (μχ − ε+χk)

(ω+)2 − 4v2
F |k|2

×
[

1 + k̂ · t + 4v2
F

|k|2 − (k · t̂ )2

(ω+)2 − 4v2
F |k|2

]
. (50)

The first term in this expression is proportional to [(ω+)2 −
v2

F |k|2]−1, which can be split into two first-order poles. The
second term, however, contains second-order poles. These
appear due to the fact that the electric charge current-current
correlator, as can be seen from Eq. (24), is not automatically
proportional to qk after performing the trace. To obtain the
part that is linear in the external wave number, the propagator
SF (k + q) has to be expanded in q, thereby yielding an
additional propagator in the integrand. The chiral magnetic
conductivity is thus obtained from the trace over three prop-
agators, which is in fact a triangle diagram. This explains the
occurence of double poles in Eq. (50). The chiral vortical
conductivities, contrastingly, are already linear in qk , as can be
seen from, e.g., Eq. (33), and therefore in this case no expan-
sion of the propagator is necessary. The vortical conductivities
therefore only contain single poles and are not due to a triangle
diagram, but rather the more conventional bubble diagram.

Although the integral in Eq. (50) can be performed analyt-
ically for nonzero tilt, it is illustrative to first consider the case
of zero tilt, for which we find for the real and imaginary parts
of the chiral magnetic conductivity [38,73]:

Re[σ CME(ω)] =
∑

χ,u=±

χe2μχ

12π2

μχ

2μχ − uω
, (51a)

Im[σ CME(ω)] =
∑

χ,u=±

χe2ω2

48π
uδ(ω − 2uμχ ), (51b)
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FIG. 6. Schematic representation of the optical absorption pro-
cesses (i.e., with q = 0) that are allowed in a pair of tilted Weyl
cones (the tilt is chosen in the opposite direction of the momentum
direction that defines the cones here). The orange arrows indicate
the border of the frequency ranges defined by wmin/max and the green
arrows transitions that are allowed within such a frequency range.
The grey arrows indicate processes from deep in the Dirac sea that
in principle are allowed, but destructively interfere upon subtracting
the contributions from both cones.

which displays resonances around ω = ±2μχ . Physically, this
is due to the creation of an electron-hole pair by the excitation
of a valence electron to the conduction band. Because of
Pauli blocking this is for a single cone only possible when
the externally applied frequency ω obeys |ω| > 2μ+. Upon
subtracting the contributions from both cones, however, the
transitions from deep in the Dirac sea, i.e., for |ω| > 2μ+
when μ+ > μ−, destructively interfere. The fact that the
imaginary part in Eq. (51b) contains delta functions, instead
of the more conventional heaviside step functions, is precisely
due to the fact that Eq. (50) contains second-order poles,
so that the answer is proportional to the derivative of these
heaviside functions instead.

Tilting the cones yields four frequency intervals, rather
than the four single frequencies ω = ±2μχ , given by

ωmin(μχ ) ≡ 2μχ

1 + t
< ω <

2μχ

1 − t
≡ ωmax(μχ ), (52)

and similarly for negative ω. In what follows we always use
values for μ± and t such that ωmin(μ+) > ωmax(μ−). We thus
expect the imaginary part of the chiral magnetic conductivity
to be nonzero and finite within the two intervals defined
by Eq. (52). Additionally, the real part should still show a
resonance, albeit less pronounced than in Eq. (51a). In Fig. 6,
we present a graphical illustration of the allowed excitation
processes for a pair of tilted cones.

We perform the integral in Eq. (50) by choosing spherical
coordinates (ϕ, θ, k) along the direction of t , such that k · t =
kt cos θ . This renders the integral over ϕ trivial. The integral
over k can be written as an integral over the energy by employ-
ing the changes of variables y = cos θ and ε = (1 + ty)vF k.
The double integral can then be written as a product of an
integral over y and one over ε. The former integral is easily
performed, whereas the latter can be performed analytically
only at T = 0 for nonzero frequencies. Doing so, we find for

the tilt and frequency-dependent chiral magnetic conductivity

σ CME(ω) = −
∑
χ=±

χe2μχ (1 − t2)

16π2t3

[
2t − L1(ω)

+ (1 − t2)ω2 + 4μχ
2

4ωμχ

L2(ω)

]
, (53)

where we defined the functions [28]

L1(ω) = ln

(
(ω+)2 − ω2

max

(ω+)2 − ω2
min

)
, (54a)

L2(ω) = ln

(
(ω+ − ωmax)(ω+ + ωmin)

(ω+ + ωmax)(ω+ − ωmin)

)
, (54b)

L3(ω) = ln

(
1 − ω2

min

(ω+)2

)
+ ln

(
1 − ω2

max

(ω+)2

)
, (54c)

and omitted the dependence of ωmin/max on the chemical
potential for brevity.

We plot the real and imaginary part of σ CME(ω) as a
function of ω/μ− in Fig. 7. For a tilt of t = 3/10, we observe
the expected behavior in Fig. 7(a): in between ωmin(μ±) and
ωmax(μ±) the chiral magnetic conductivity has an imaginary
part, whereas the real part has a resonance that is broader and
less steep than for the zero-tilt case. It is interesting to note
that the imaginary part goes to zero exactly at ωmin(μ±) and
ωmax(μ±) and is zero in between ωmax(μ−) and ωmin(μ+).
The reason can be deduced from Eq. (53): both the function
L1(ω) and L2(ω) contribute to the imaginary part, but exactly
at ωmin(μχ ) and ωmax(μχ ) the function multiplying L2(ω)
becomes equal to 1, thereby canceling the contribution from
L1(ω), which simply comes with a factor of minus one. Hence,
tilting the cone renders the chiral magnetic conductivity
nonzero and finite, even around ω = ±2μχ . In Fig. 7(b), we
show that upon decreasing the tilt to t = 3/100, a very narrow
resonance reappears. Clearly the results of (51) are reproduced
as t goes to zero.

It is also interesting to note that a very similar calculation
for the anomalous Hall effect shows that

σ AHE(ω) = σ CME(ω)

vF (1 − t2)
, (55)

which only holds if we do not take the topological contribution
due to the separation between the Weyl nodes into account
and if the cones are tilted in the same direction. As the
chiral magnetic conductivity remains nonzero when t → 0,
the above equation seems to imply that the anomalous Hall
conductivity also remains nonzero in this limit. However,
the anomalous Hall current density does vanish because we
defined it proportional to t : JAHE(ω, q) = σ AHE(ω, q)t × E.

We now turn to the frequency dependence of the vortical
effects. Following the same procedure, we find for instance
for the electric charge current-momentum density correlator

i�k
ep(ω, q; t ) ≈ evF ql

4

∑
χ=±

χ

∫
k
ϑ (μχ − ε+χk)[δkl − k̂k k̂l ]

×
[

1

ω+ − 2vF |k| − 1

ω+ + 2vF |k|
]
. (56)
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FIG. 7. Plots of the chiral magnetic conductivity from Eq. (53) as a function of ω/μ−, normalized on e2μ−/4π 2, and for μ+/μ− = 3. In
(a), we used t = 3/10 to illustrate the tilt dependence and in (b) t = 5/100 to illustrate the convergence to the tilt-independent result from
Eqs. (51a) and (51b). In (a) it is clear that the imaginary part is only nonzero between 2μχ/(1 ± t ), which is indicated by the vertical dashed
lines in both figures. The limiting value for ω/μ− → 0 is given by (μ+/μ− − 1)(1 − t2)l (t ) and is indicated by the horizontal dashed line in
both figures.

From this expression we firstly observe one important differ-
ence with the chiral magnetic conductivity that we already
alluded to before: there are no double poles present. We there-
fore expect a nonzero imaginary part in between ωmax(μ−)
and ωmin(μ+). Furthermore, from Eq. (56) it becomes clear
that the vortical conductivity is anisotropic. The reason is
that the integral over the term proportional to k̂k k̂l can either
yield a contribution proportional to δkl , or a contribution
proportional to t̂ k t̂ l , because these are the only symmetric
tensors left after taking |q| → 0.

The longitudinal and transverse vortical conductivities can
also be expressed in terms of the functions Li(ω) defined
in (54) and we list the explicit, but lengthy expressions in
Appendix B. Here, we instead plot the frequency dependence
of the longitudinal and transversal chiral vortical conductivity
and chiral vortical energy conductivity in Fig. 8 for t = 6/10
in (a) and (c) and for t = 3/100 in (b) and (d). As expected,
we observe a nonzero imaginary part on the whole frequency
range defined by ωmin(μ−) < ω < ωmax(μ+). In addition,
both the real and imaginary parts of the longitudinal conduc-
tivities are always larger than the transverse counterparts. This
can be understood from the integrand in Eq. (56), which con-
tains the transverse projection operator δkl − k̂k k̂l . Because of
the relative minus sign in this operator, the contribution of
the term proportional to k̂l k̂k to the transverse conductivity
is negative.

Furthermore, from Fig. 8(d), we note that in the limit of
small tilt, the chiral vortical energy conductivity displays a
resonance similar to the one for the chiral magnetic effect
in Fig. 7(b). Its magnitude, however, is significantly smaller
and upon taking the tilt to zero the chiral vortical energy
conductivity vanishes. This is consistent with the result ob-
tained in the homogeneous limit in Table I. On the other hand,
the small-tilt behavior of the chiral vortical conductivity in
Fig. 8(b) is rather different. We observe that for small tilt
it saturates to two peaks around ω = 2μ±, with a nonzero
imaginary part in between. Upon inspecting the frequency
behavior of the chiral magnetic energy conductivity, we find
exactly the same behavior, but with an opposite sign. Adding

both contributions, which is equivalent to using a symmetrized
version of the energy-momentum tensor, thus yields zero for
all frequencies, except at ω = 0. This result is consistent with
previous work by Landsteiner et al. [73]. These authors use
the symmetric energy-momentum tensor, a combination of
Ward identities and rotational symmetry to show that only
at ω = 0 there is a nonzero vortical response in the electric
current. Physically, this means that all interband transitions
are forbidden in their case. The situation in our case is
different for two reasons: (1) we use a different set of currents
and (2) rotational symmetry is broken by the tilting of the
cones. We therefore have nontrivial frequency dependence for
the magnetovortical conductivities.

Before we turn our attention to the thermoelectric transport
of tilted Weyl cones, let us summarize the main findings of
this section. We started by calculating the long-wavelength re-
sponse of the magnetovortical conductivities. The anisotropy
introduced by the tilting of the cones led to an anisotropic
velocity of the chiral magnetic waves. Subsequently we con-
sidered two specific cases of the long-wavelength limit: the
static and the homogeneous limits, and listed all magne-
tovortical conductivities in Table I. We found that the chiral
magnetic conductivities remains isotropic, whereas the vor-
tical conductivities attain a transverse and longitudinal part.
Moreover, the chiral magnetic conductivities turned out to be
tilt-independent, or universal, in the static limit, which we
managed to explain based on exact quantum and semiclassical
arguments. Finally, we focused on the ac magnetovortical
response, finding rather different behavior for the vortical and
magnetic conductivities. We explained how this ultimately is
due to the fact that the chiral magnetic effect is determined by
a triangle diagram, whereas the chiral vortical conductivities
follow from a bubble diagram.

V. ELECTRONIC AND THERMAL TRANSPORT

We now turn to the coupled off-diagonal thermoelectric
transport from tilted Weyl cones as described by Eq. (11).
Some of the results we discuss have already been presented
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FIG. 8. In (a) and (b), we plot the anisotropic chiral vortical conductivity, normalized on −eμ2
−/4π 2 and in (c) and (d), the anisotropic

chiral vortical energy conductivity, normalized on μ3
−/4π 2, both as a function of ω/μ−. In (a), we plot both σ CVE

⊥ and σ CVE
‖ for t = 6/10 and

μ+/μ− = 3. The vertical dashed lines indicate the positions of ωmin(μ±) and ωmax(μ±). The horizontal dashed lines indicate the zero-frequency
limiting values, given by the values listed in Table I, multiplied by an additional factor of (μ2

+/μ2
− − 1) for the chiral vortical conductivity

and a factor of (μ3
+/μ3

− − 1) for the chiral vortical energy conductivity, both of which are due to the normalization used in these plots. In (b),
we plot only σ CVE

‖ for t = 3/100 because the difference with σ CVE
⊥ is very small. In (c) and (d), we do the same for the chiral vortical energy

conductivity.

by Bardarson et al. [26]. These authors circumvent the
need to subtract the superfluous contributions coming from
unobservable, circulating currents of the form ∇ × Morb

e/Q, with
Morb

e (Morb
Q ) the electric (heat) orbital magnetization density.

In order to do this, they first calculate the anomalous Hall
conductivity σ AHE, which does not require any subtractions.
Subsequently they use the Mott relation and Wiedemann-
Franz law to calculate αANE and kTHE from σ AHE.

Instead, we discuss here how these orbital magnetizations
arise naturally as diamagnetic-like terms when performing
linear response theory in the presence of a temperature gra-
dient. We then calculate Morb

e and Morb
Q microscopically and

explicitly subtract them from the currents coming from the
Kubo formula to yield the transport currents [45]. Finally,
we discuss how the answers for the transport coefficients
differ when considering inversion-symmetric or inversion-
symmetry breaking tilt and discuss the consequences of a
nonzero chiral chemical potential μ5.

A. Magnetization contributions

To see that magnetization contributions occur as
diamagnetic-like terms when performing linear-response
theory in the presence of a temperature gradient, consider

an imaginary time action that contains a coupling between
the electric current density Ji

e(x, τ ) and an external vector
potential Ai(x, τ ), i.e.,

Scoup. =
∫

dx
∫ h̄β

0
dτAi(x, τ )Ji

e(x, τ ), (57)

with β = 1/kBT in terms of the temperature T . Performing
linear-response theory with this action shows that the first
order contribution to the effective action for the gauge po-
tential vanishes, because in equilibrium 〈Ji

e(x, τ )〉0 = 0. The
contribution at second order, on the other hand, is nonzero and
yields the current-current response functions we discussed in
Sec. III C.

The situation changes if we now include temperature vari-
ations by writing T (x) = T + δT (x). This causes the upper
boundary of the integral over imaginary time in Eq. (57)
to depend on the position. We can remove this position-
dependence from the integration boundary by introducing a
new imaginary time coordinate with the transformation τ →
τ/(1 + δT (x)/T ). Assuming small temperature variations,
we find

Scoup. �
∫

dx
∫ h̄β

0
dτ

(
1 − δT (x)

T

)
Ai(x, τ )Ji

e(x, τ ), (58)
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where we expanded in δT (x)/T . Writing δT (x) = x j∂ jT (x)
and using from Eq. (17) that δg j0 = −e−iωτ ∂ jT/iωT , we can
write the second term in Eq. (58) as

δScoup. �
∫

dx
∫ h̄β

0
dτAi(x, τ )Ji

e(x, τ )x jδġ j0(x, τ ), (59)

where the dot on δgj0 denotes an imaginary time derivative.
If we now use Eq. (59) to calculate the effective action of the
gauge field in linear-response theory, we obtain a quadratic
contribution already at first order. This diamagnetic-like term
exactly constitutes a contribution due to the orbital magnetiza-
tion, as can be seen from the definition for the magnetization
density due to a current density Je(x), i.e.,

Morb
e = 1

2V

∫
dx 〈x × Je(x)〉0, (60)

which implies that 〈Ji
e(x, τ )x j〉0 ∝ εi jkMorb

e,k . A similar line of
reasoning can be followed when starting from an action like
Eq. (57) with the coupling Ji

εδgi0. We find

δScoup. �
∫

dx
∫ h̄β

0
dτ δgi0(x, τ )Ji

ε(x, τ )x jδġ j0(x, τ ), (61)

which can be recognized as a contribution coming from the
so-called energy magnetization density, that is defined by
replacing the electric current density in Eq. (62) by the energy
current density, i.e.,

Morb
ε = 1

2V

∫
dx 〈x × Jε(x)〉0. (62)

As we only considered the contributions to the currents due to
the current-current correlators in Sec. III C, we need to add the
diamagnetic-like contributions coming from the (heat) orbital
magnetization. These contributions are only nonzero in the
case of broken time-reversal symmetry. In our case, this is pro-
vided for by the tilting direction t . As we shall see, the mag-
netization densities point in the opposite direction of the tilt.

B. Orbital magnetization due to tilted cones

A convenient way to calculate the (heat) orbital magnetiza-
tion is by expressing them in terms of Bloch wave functions
[74]. This follows from the semiclassical theory of Bloch
electron dynamics, in which electrons can be described as
wave packets that are constructed by forming a superposition
of the Bloch states of a band [46]. Such a wave packet has a
nonzero spread in real space, such that it can rotate around its
center of mass, leading to an orbital magnetic moment. For
a band with Bloch wave function |unk〉 and energy εnk, the
orbital magnetic moment is given by em(1)

n (k), with [75]

m(p)
n (k) = − i

2
〈∂kunk| × (H(k) − εnk)p|∂kunk〉. (63)

An explicit calculation for the two-band model from Eq. (1)
yields for a cone with chirality χ : em(1)

nχ (k) = −evF χk/2|k|2.
Similar to the way in which microscopic spins add up to
form a macroscopic magnetization of a material, the or-
bital magnetic moment contributes to the macroscopic orbital
magnetization Morb

e . However, besides the contribution of
the orbital magnetic moment, there is also a contribution
from the center-of-mass motion of the wave packet. The

total temperature-dependent orbital magnetization density can
therefore be expressed as [46]

Morb
e =

∑
n,χ=±

∫
k

[
em(1)

nχ (k)NF(εnχk − μχ ) + ekBT �nχ (k)

× ln(1 + e−β(εnχk−μχ ) )
]
, (64)

In this expression, the first term is simply a thermodynamic
average over the orbital magnetic moments and thus ulti-
mately due to the self-rotation of the wave packet, whereas
the second term is due to the center-of-mass motion of the
wave packet.

Recall that the Weyl nodes in our model are located at the
same position in momentum space, because we are interested
in intrinsic contributions to the various conductivities, as op-
posed to topological contributions. Therefore the only vector
that contributes to Morb

e is the tilting direction t , such that we
can write Morb

e = Morb
e t . We perform the integral in Eq. (64)

by going to spherical coordinates and subtract the Dirac sea,
yielding

Morb
e = − e

8π2vF

∑
χ=±

χtχ
(1 − t2)t

[
μχ

2 + π2k2
BT 2

3

]

≡
∑
χ=±

Morb
e,χ . (65)

In a completely similar fashion we calculate the circulating
contribution in the heat current. Analogously to the electric
orbital magnetization, the heat orbital magnetization can be
expressed as [54]

Morb
Q =

∑
n,χ=±

∫
k
�nχ (k)

∫ εnχk−μχ

0
dx xNF(x)

−
∫

k

[
(εnχk−μχ )m(1)

nχ (k)+m(2)
nχ (k)/4

]
NF(εnχk − μχ ).

(66)

Using Eq. (63), we find m(2)
nχ (k) = nχv2

F k/|k|. Again writing
Morb

Q = Morb
Q t we then find for the finite contribution to the

heat orbital magnetization density

Morb
Q = −

∑
χ=±

χμχ

[
(2 − t2)μχ

2 + t2π2k2
BT 2

]
24π2(1 − t2)2vF

≡
∑
χ=±

Morb
Q,χ . (67)

The heat orbital magnetization MQ leads to a circulating heat
current of the form JQ = ∇ × MQ. This can only be observed
if the heat current is measured locally, which is very hard
experimentally. The local orbital magnetization is in principle
more easily accessible experimentally. Nevertheless, in this
paper we focus in both cases on the total transport currents,
which are obtained after subtracting the contribution of the
orbital magnetizations.

Now that we have explicitly calculated the diamagnetic-
like orbital magnetization contributions due to the tilting of
the cones, we calculate the contributions to the current coming
from the current-current response functions.
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C. Electric, energy, and mixed current-current correlators

We start by considering the current-current response func-
tions �k

ee(ω, q; t ), �k
eε(ω, q; t ), and �k

εε(ω, q; t ) that de-
scribe the linear response of the electric and energy current
densities. Once we have the corresponding transport coef-
ficients, the response for the electric and heat current den-
sity can then be obtained by using the relation 〈JQ〉 =∑

χ=± [〈Jχ
ε 〉 + (μχ/e)〈Jχ

e 〉].
In the local, i.e., q = 0, limit, we find using Eq. (32)

together with Eqs. (A2)–(A4),

i�k
ab(ω+, 0; t )

2ωv2
F

=
∑

χ,u=±
χ

∫
k

hk
ab(k, tχ )NF(uεuχk + uμχ )

(ω+)2 − 4v2
F |k|2 ,

(68)
with hk

ee(k, t ) = e2k̂k , hk
eε(k, t ) = −evF (k · t )k̂k , and

hk
εε(k, t ) = v2

F (k · t )2k̂k . The integrals above have to be
proportional to t , as there is no other vector left. The
anomalous Hall conductivity thus follows from σ AHE(ω) =
i�k

ee(ω+, 0; t )tk/ωt2. Similarly we define αANE
ε (ω) ≡

i�k
eε(ω+, 0; t )tk/ωt2 and κ̄THE

ε (ω) = i�k
εε(ω+, 0; t )tk/ωt2,

where the subscript ‘ε’ refers to the fact that these
linear-response coefficients are for the coupled electric and
energy current response and do not contain the magnetization
subtractions yet.

To obtain the coefficients σ AHE, αANE
ε , and κ̄THE

ε , we
simplify the remaining integral by again choosing spherical
coordinates along the direction of t like we did to obtain
Eq. (53). The angular integrals are then easily performed,
whereas the integral over |k| can only be performed analyt-
ically in two specific cases: (1) at T = 0 for all ω and (2) at
ω = 0 for all T . Here, we focus on the second case because
we have only obtained the magnetizations at zero frequency
in the previous section. Defining the integrals

In(μχ ) ≡
∫ ∞

0
dε εn−1[NF(ε + μχ ) + (−1)nNF(ε − μχ )]

(69)
and

Jn(t ) ≡
∫ 1

−1
dy

yn

(1 + ty)n
, (70)

we find for the anomalous Hall conductivity

σ AHE =
∑
χ=±

χe2tχ
8π2t2vF

J1(t )I1(μχ )

= e2l (t )

4π2vF

∑
χ=±

χμχ tχ
t

≡
∑
χ=±

σ AHE
χ . (71)

Furthermore we find for αANE
ε

αANE
ε =

∑
χ=±

eχtχ
8π2T tvF

J2(t )I2(μχ )

=
∑
χ=±

eχtχ
8π2vF T t

[
1

1 − t2
− 2l (t )

][
μχ

2 + π2k2
BT 2

3

]

≡
∑
χ=±

αANE
ε,χ , (72)

and finally for κ̄THE
ε

κ̄THE
ε =

∑
χ=±

χtχ
8π2T vF

J3(t )I3(μχ )

=
∑
χ=±

χtχμχ

(
μχ

2 + π2k2
BT 2

)
4π2vF T t

[
l (t ) − 1 − 2t2

3(1 − t2)2

]

≡
∑
χ=±

κ̄THE
ε,χ . (73)

Upon performing the sum over the two cones with opposite
chirality, we find for the anomalous Hall effect e2μ5l (t )/2π2

in the case of inversion-symmetry breaking tilt (tχ = t) and
e2μl (t )/2π2 when inversion symmetry is retained (tχ = χt).
Furthermore, we note that the anomalous Nernst conductivity
is only dependent on temperature in the case of inversion-
symmetric tilt. The term proportional to μχ

2 in the expression
for the anomalous Nernst effect is ill-defined in the low-
temperature limit and should be compensated for when we
subtract the orbital magnetization density.

D. Thermoelectric transport coefficients by subtraction

Now that we have obtained explicit expressions for the
orbital magnetizations, we can compute the transport coeffi-
cients. For the anomalous Nernst effect, we find

αANET =
∑
χ=±

[
αANE

ε,χ T + μχ

e
σ AHE

χ + Morb
e,χ

]

= −ek2
BT 2l (t )

12vF h̄2

∑
χ=±

χtχ
t

, (74)

where we reinstated h̄. For small t , this result coincides with
results obtained elsewhere [26]. Due to the subtraction of the
orbital magnetization the anomalous Nernst coefficient is now
well-behaved in the limit T → 0. Additionally, we note that in
the case of a tilt that breaks inversion symmetry, i.e., tχ = t ,
the contributions from the two cones with opposite chirality
subtract, yielding zero. In the case of inversion-symmetry
preserving tilt and no chiral imbalance, it is easy to see from
Eqs. (71) and (74) that the Mott-like rule

αANE = −π2k2
BT

3e

dσ AHE(μ)

dμ
, (75)

which was derived by Niu et al., is satisfied [52]. Note that
there is a relative sign in Eq. (75) because we have defined the
anomalous Nernst current as 〈Je〉 = αANEt × ∇T , i.e., with
the same overall sign as the anomalous Hall current 〈Je〉 =
σ AHEt × E.

Similarly, we compute the coefficient κ̄THE by combining
the results from the current-current correlators and the heat
orbital magnetization, finding

κ̄THET =
∑
χ=±

[
κχT + 2

μχ

e
αχT + μχ

2

e2
σ AHE

χ + 2Morb
Q,χ

]

= l (t )k2
BT 2

12vF h̄2

∑
χ=±

χμχ tχ
t

, (76)
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where we also reinstated h̄. From the expression above it
is clear that κ̄THE is only nonzero within our simple model
when either inversion symmetry is broken and there is a chiral
imbalance μ5, or when inversion symmetry is retained and
there is a nonzero chemical potential μ. In the latter case we
find for the thermal Hall coefficient from Eq. (12),

κTHE = l (t )μk2
BT

6vF h̄2

[
1 − 1

3

k2
BT 2

μ2

]
. (77)

In the low-temperature limit kBT/μ 
 1 the second term
is negligible and κTHE reduces to previously obtained re-
sults [26]. Additionally, we observe that in this limit the
Wiedemann-Franz law

κTHE = π2k2
B

3e2
T σ AHE, (78)

for the off-diagonal transport coefficients, is obeyed.

VI. CONCLUSION AND DISCUSSION

In this paper, we have investigated the off-diagonal linear
response of a pair of tilted Weyl cones, when subjected to
a temperature gradient, electric field, magnetic field, and
vorticity. We focused on the electronic contributions to the
electric and heat current densities and neglected contributions
from, e.g., phonons. As the off-diagonal response is inher-
ently dissipationless, we considered a clean system without
disorder. In addition, we neglected the influence of Coulomb
interactions among the Weyl fermions. Finally, to preserve
clarity, we concentrated on the tilt dependence and did not
take the well-known topological contribution to the anoma-
lous Hall and thermal Hall effect into account by taking the
momentum-space separation between the Weyl nodes equal to
zero. Under these assumptions, we performed linear-response
theory and calculated the appropriate current-current response
functions. As the off-diagonal response is determined by their
antisymmetric part, we explicitly showed how this part of
the current-current response functions can be decomposed in
terms of the tilting direction and the external wave number.

In the case of the chiral magnetic conductivities, we found
that the response remains isotropic when considering tilted
cones. In the static limit, these conductivities even remain
universal, which can be attributed to the chiral anomaly. In
the homogeneous or transport limit, on the other hand, the
conductivities are renormalized. The situation turned out to
be very different for the vortical conductivities: these are
generically anisotropic and can be decomposed into a com-
ponent longitudinal and transverse to the tilting direction. The
corresponding longitudinal and transverse chiral vortical con-
ductivities have different values in the static and homogeneous
limit as well, but are always tilt-dependent and thus never
universal.

To verify our results coming from the Kubo formalism,
we used a combination of exact quantum and semiclassical
arguments, thereby explaining the universality of the chiral
magnetic conductivities. In the case of the anisotropic vortical
conductivities we argued that already simple integrals over the
anomalous velocity due to a nonzero Berry curvature, neces-
sarily become anisotropic when including a tilting direction.
We were, however, not able to simply explain the appropriate

expressions for the effective magnetic field due to vorticity in
the case of nonzero tilt and plan to investigate this in future
work.

Moreover, we calculated the magnetovortical transport co-
efficients and the susceptibility not only in the static and
homogeneous limits, but also in the more general long-
wavelength limit. This turned out to be another source of
anisotropy, as the results depend on the angle between the
tilting direction and the external wave number. To illustrate the
effect of this anisotropy we computed the dispersion relation
of the chiral magnetic wave using the long-wavelength result
for the susceptibility. Interestingly, we found that there is a
significant dependence of the chiral wave velocity on the angle
between the external magnetic field and the tilting direction.
Next to this angle-dependence, we showed that the wave
becomes soft when the tilt of the cone becomes too large,
signaling the Lifshitz transition from a type-I to a type-II
Weyl cone. For zero tilt, however, we found that using simply
the static-limit result for the susceptibility is a rather good
approximation.

In addition, we showed that also the frequency dependence
of the chiral magnetic and the chiral vortical conductivities is
very different indeed. The ac chiral magnetic conductivity is
unusual in the sense that at zero tilt, its imaginary part is given
by delta functions centered around ω = ±2μ±. Ultimately
this is due to the fact that in order to obtain the part of the
electric current-current response function that is linear in the
external wave number, we needed to expand a propagator,
thereby turning the bubble diagram into a triangle diagram.
For a nonzero tilt, however, the imaginary part attains a finite
height and width. The behavior of the ac vortical conductiv-
ities was rather different, as the appurtenant current-current
response functions were already linear in the external wave
number. The imaginary part is therefore determined by the
more usual Heaviside step functions and is finite both for zero
and nonzero tilt.

In the last part of this paper, we concentrated on the off-
diagonal thermoelectric transport and elucidated how mag-
netization contributions to the current occur as diamagnetic-
like contributions. Subsequently, we obtained the contribution
from the magnetization explicitly by performing a micro-
scopic calculation. As it turns out, the magnetizations are al-
ways pointing in the opposite direction of the tilting direction.
Having obtained the magnetizations explicitly, we subtracted
them to find the transport linear-response coefficients. We
found it an illustrative exercise to do this explicitly and it
would be interesting to investigate how this scheme can be
extended to nonzero frequencies. An important difference
with the magnetovortical coefficients turned out to be that
the thermoelectric coefficients are odd functions of the tilting
direction, whereas the former are even functions of the tilting
direction. The magnetovortical coefficients therefore do not
depend on whether the tilt breaks inversion symmetry or not.
Contrastingly, in the case of the thermoelectric coefficients,
the anomalous Hall and thermal Hall effect are only nonzero
in the case of broken inversion symmetry if there is a chiral
imbalance. The anomalous Nernst effect is only nonzero when
inversion symmetry is retained.

It is insightful to estimate the size of some of the conduc-
tivities, and corresponding conductances, that we calculated
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in this paper. By virtue of the chiral anomaly [76], a chiral
imbalance on the order of μ5 � 10 meV can be achieved by
applying a magnetic field of 1 mT and an electric field of 104

V/m. If we then consider the chiral magnetic effect in the
homogeneous limit with Weyl cones that are not tilted, we
find a resulting current density |JCME|t=0 � 6 × 104 A/m2.
Alternatively, the corresponding dimensionless conductance
for a cubic Weyl semimetal of volume L3 is given by
GCME/G0 = hLσ CME/2vF e2 � (8 × 105 m−1)L, with G0 =
2e2/h the conductance quantum. Using the results of Table I,
we find that upon tilting the cones to the value t = 7/10, the
current density and conductance decrease by approximately
25%. This drop in conductance, if measured, could serve
as a way to verify the band-structure details deduced from
ARPES-measurements. Similarly, considering two cones that
are tilted by the same amount t = 7/10 in the same direction,

we estimate from Eq. (71) the current density coming from
the anomalous Hall effect to be |JAHE|t=7/10 � 6 × 105 A/m2.
The corresponding dimensionless conductance is given by
GAHE/G0 = hLσ AHE/2e2 � (1 × 106 m−1)L.

Finally, for future research, it would interesting to investi-
gate the influence of disorder and Coulomb interactions on
the magnetovortical conductivities, which has already been
explored for the chiral magnetic conductivity [77].
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APPENDIX A: EXPLICIT EXPRESSIONS

In this Appendix, we give some explicit expressions that were too lengthy to put in the main text. We start with the functions
f k,uv
ab (q, t, k) that we used in Eq. (32). For f k,uv

εp (q, t, k) and f k,uv
ee (q, t, k), the full dependence on q is tractable. They are

given by

f k,uv
εp (q, t, k) = − [u|k| + v|k + q| + 2uv(k · t ) + uv(q · t )](2k + q) · (q kk − k qk )

4|k||k + q| , (A1)

f k,uv
ee (q, t, k) = 2e2

[(
u

|k + q| − v

|k|
)

kk + u
qk

|k + q| + uv
(k · t )qk − (q · t )kk

|k||k + q|
]
. (A2)

The leading-order expressions for f k,uv
εe (q, t, k) and f k,uv

εε (q, t, k) are given by

f k,uv
εe (q, t, k) = −e

[
2

(
u

|k + q| − v

|k|
)

(k · t )kk + (3u + v)(k̂ · t )qk − 2v(q · t )k̂k + (1 + uv)qk − 2uv(k̂ · q)k̂k

− 2uv(k̂ · t )(q · t )k̂k + 2uv(k̂ · t )2qk

]
+ O(|q|2), (A3)

f k,uv
εε (q, t, k) = −2

(
u

|k + q| − v

|k|
)

(k · t )2kk + (1 + uv)[(k · t )qk − (q · t )kk] − 2uv(k̂ · t )2(q · t )kk

+ (u + v)(|k|qk + (k · q)k̂k ) + 2(2u + v)(k̂ · t )2|k|qk − 4v(k · t )(q · t )k̂k − 4uv(k̂ · q)(k̂ · t )kk

+ 2uv|k|(k̂ · t )3qk + O(|q|2). (A4)

From these expressions it becomes clear which terms contribute to the thermoelectric transport coefficients. Indeed, the first
two terms in f k,uv

ee (q, t, k), f k,uv
εe (q, t, k), and f k,uv

εε (q, t, k) are the only terms that are nonzero when |q| = 0. An expansion of
Nχ

uv (ω, q, t, k) with uv = −1 for small |q| gives a term proportional to ω, as can be seen in Eq. (35), thereby leading to the terms
proportional to ωt k in Eqs. (26a)–(26c).

Furthermore, the function W (x; t ) that we used in the expressions for the chiral magnetic conductivities Eqs. (37b) and (37a),
is defined by

W (x; t ) ≡ 1 − (x − t‖)2

Z (x; t )2

[
1 + x

2
Y (x; t )

]
=

{
(1 − t2)−1 for x → 0,

l (t ) for x → ∞,
(A5)

in terms of

Y (x; t ) ≡ 1

Z (x; t )
ln

(
[x − t‖ − 1][1 − t‖ + t‖x − t2(1 + x − t‖) + (1 − t‖)Z (x; t )]

[x − t‖ + 1][1 + t‖ + t‖x − t2(1 − x − t‖) + (1 + t‖)Z (x; t )]

)
, (A6a)

Z (x; t ) ≡
√

1 + 2t‖x − t2
‖ − t2 + t2(x − t‖)2. (A6b)
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Finally, the explicit expression for the susceptibility in the long-wavelength limit from Eq. (41) can also be expressed in terms
of W (x; t ) in the following way:

χ±
nn(x, 0; t ) = μ2

±
4π2v3

F Z (x; t )2

[
t2
‖ − t2

1 − t2
+

(
2 + t2 − 3t2

‖ + 2x2

1 − (x − t‖)2

)
W (x; t )

]
. (A7)

Two useful limiting cases for χ±
nn(x, 0; t ) are

lim
x→0

χ±
nn(x, 0; t ) = μ2

±
2π2(1 − t2)2v3

F

, (A8)

which we used in Eq. (42), and

lim
t→0

χ±
nn(x, 0; t ) = μ2

±
2π2v3

F

[
1 − x

2
ln

(
x + 1

x − 1

)]
. (A9)

APPENDIX B: FREQUENCY DEPENDENCE MAGNETOVORTICAL CONDUCTIVITIES

Below we list the full frequency dependence of the chiral magnetic and chiral vortical conductivities. They can all be expressed
in terms of the functions Li(ω) defined in Eqs. (54a)–(54c). We find

σ CVE
‖ (ω) = −

∑
χ=±

χμχ
2

48π2t3

[
(2 + t2)t

1 − t2
− (1 + 3t2)ω2 + 12μχ

2

16μχ
2

L1(ω) + 3(1 + t2)ω2 + 4μχ
2

8ωμχ

L2(ω) + ω2t3

4μχ
2

L3(ω)

]
, (B1)

σ CVE
⊥ (ω) =

∑
χ=±

χμχ
2

96π2t3

[
(2 − 5t2)t

1 − t2
− (1 − 9t2)ω2 + 12μχ

2

16μχ
2

L1(ω) + 3(1 − 3t2)ω2 + 4μχ
2

8ωμχ

L2(ω) − ω2t3

2μχ
2

L3(ω)

]
, (B2)

σ CVE
ε,‖ (ω) = −

∑
χ=±

χμχ
3

64π2t3

[
(3t4 + 14t2 − 9)t

3(1 − t2)2
− (1 + 3t2)tω2

4μχ
2

+ (1 + t2)ω2 + 4μχ
2

4μχ
2

L1(ω)

− (1 + 2t2 − 3t4)ω4 + 8(3 + t2)ω2μχ
2 + 16μχ

4

32ωμχ
3

L2(ω)

]
, (B3)

σ CVE
ε,⊥ (ω) = −

∑
χ=±

χμχ
3

128π2t3

[
(9 − 14t2 + 13t4)t

3(1 − t2)2
+ (1 − 5t2)tω2

4μχ
2

− (1 − 3t2)ω2 + 4μχ
2

4μχ
2

L1(ω)

+ (1 − 6t2 + 5t4)ω4 + 24(1 − t2)ω2μχ
2 + 16μχ

4

32ωμχ
3

L2(ω)

]
, (B4)

σ CME
ε (ω) = −

∑
χ=±

χμχ
2(1 − t2)

24π2t3

[
(t2 − 4)t

1 − t2
+ ω2 + 12μχ

2

8μχ
2

L1(ω) − 3ω2 + 4μχ
2

4ωμχ

L2(ω) − ω2t3

8μχ
2

L3(ω)

]
. (B5)
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