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We extend the notion of the eigenstate thermalization hypothesis (ETH) to open quantum systems governed by
the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master equation. We present evidence that the eigenstates
of nonequilibrium steady-state (NESS) density matrices obey a generalization of ETH in boundary-driven
systems when the bulk Hamiltonian is nonintegrable, just as eigenstates of Gibbs density matrices are conjectured
to do in equilibrium. This generalized ETH, which we call NESS ETH, can be used to obtain representative
pure states that reproduce the expectation values of few-body operators in the NESS. The density matrices
of these representative pure states can be further interpreted as weak solutions of the GKLS master equation.
Additionally, we explore the validity and breakdown of NESS-ETH in the presence of symmetries, integrability,
and many-body localization in the bulk Hamiltonian.
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I. INTRODUCTION

An isolated ergodic or chaotic system tends, by definition,
to an equilibrium state at long times which is characterized
by the values of the conserved quantities. However, an in-
finite system with precisely specified conserved quantities
necessarily supports arbitrarily large subsystems where these
conserved quantities fluctuate—as they can be exchanged
with the the rest of the system. Equilibrium on the subsystems
thus implies the existence of a (grand-) canonical ensemble
which yields the same equilibrium expectation values.

For isolated quantum systems this argument leads us from a
pure state description of the system to a mixed state ensemble
description of the subsystem. Taking this to the extreme limit
where the pure state is a single many-body eigenstate, we
arrive at the conjectureknown as the eigenstate thermalization
hypothesis (ETH) which most elegantly states that the reduced
density matrix on small subsystems of an eigenstate is the
Gibbs state [1–4]. From the properties of the Gibbs ensembles
it then follows that the eigenstates must yield expectation
values that depend only on the value of intensive quantities
such as energy density and number density in order for this
identification to be consistent. But this logic can be now
run in reverse. Let us say we know that a system is exactly
described by the Gibbs state because it is entangled with a
bath. Then ETH implies that we can replace the Gibbs state
on the system by one of its strategically chosen eigenstates
which yields the desired expectation values. So now we can
go from the entangled system-bath description to a pure state
description [5].

The question we address in this paper is whether a sim-
ilar choice of description—between a density matrix and
a pure state—is possible for nonequilibrium steady states
(NESSs). The NESSs we have in mind are density matri-
ces ρss describing transport obtained as stationary solutions
to boundary driven Gorini-Kossakowski-Lindblad-Sudarshan

(GKLS) master equations [6,7]. Implicitly, the system of
interest is entangled with two families of baths which have
been integrated out. There is more than one way to model
the baths; for concreteness we have in mind that each family
consists of infinitely many copies of identical baths that have
interacted with the system in the so-called “repeat interactions
protocol.” [8–11]. The two families serve as sources and
sinks of the transport currents. We show that for steady states
in ergodic/chaotic systems one can trade the density-matrix
description for a pure state description of the system. These
representative pure states reproduce the mixed state expecta-
tion values of few-body operators in the large system limit.
Moreover they are weak solutions of the GKLS equation in the
sense that their GKLS time evolutions yield time-independent
expectation values of local operators in the infinite volume
limit. For systems which are integrable in the bulk we also
find weaker versions of some of these results.

In this work we build on two proximate developments. The
first are the studies of boundary driven GKLS steady states
by Prosen, Žnidarič, and co-workers, which have led to a
large set of results on their existence and properties [12–17].
Notable among these are the identification of quadratic [18]
and integrable GKLS systems [19–25] and of long-range
order and phase transitions out of equilibrium [26,27]. Closest
to our point of departure is their demonstration in Ref. [28]
that the spectrum of ρss exhibits Wigner-Dyson statistics
when a closed-form expression of ρss is not available, which
is believed to be the case when the bulk Hamiltonian is ergodic
[24,25]. The second proximate development is the extension
of the ETH idea to reduced density matrices in equilibrium,
including ground states of systems in Ref. [5]. Specifically
this paper argued that equilibrium reduced density matrices
in the ground state and in excited states could be replaced
by choosing “representative states” from among their eigen-
states for the purposes of computing the expectation values
of few-body operators. In this work we extend this idea to
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NESS density matrices and we will refer to the overarching
notion of trading density matrices for representative states
as the “nonequilibrium steady-state eigenstate thermalization
hypothesis” or NESS ETH as an efficient mnemonic even
though no thermalization is entailed outside the strictly equi-
librium context.

This is perhaps also a good point to note that the literature
on quantum NESSs does not always take the GKLS equation
as its point of departure—prima facie its simplifying assump-
tions do not have to hold in every quantum steady state. So the
generality of the NESS ETH we propose here for the full class
of NESSs requires investigation and we do not discuss this
here [29–35]. We also note recent work by Gullans and Huse
[36] which uses random circuits and interesting technology
into the study of nonequilibrium transport.

The paper is organized as follows. In Sec. II, we review the
GKLS master equation and the formalism to obtain the steady-
state density matrix for an open quantum system. In Sec. III,
we introduce NESS ETH in the eigenstates of ρss as a natural
generalization of ETH for the eigenstates of the Gibbs density
matrix in equilibrium. There we distinguish the existence of
a representative pure state for operators with the statement of
NESS-ETH in terms of the form of its matrix elements of local
operators in the energy eigenbasis. In Sec. IV, we show evi-
dence for the existence of a representative state as well as the
ETH predicted form of the diagonal matrix elements. There
we discuss the properties of eigenstates of ρss, and show that
the density matrices of the eigenstates are weak solutions to
the GKLS master equation. In Sec. V, we discuss the validity
of NESS-ETH in the eigenstates of ρss in the presence of
symmetries, integrability, and many-body localization, where
we show the apparent breakdown of NESS ETH in the last two
cases, up to subtleties we discuss. We conclude in Sec. VI with
open questions. The Appendixes consist of technical details
and a discussion on the construction of representative pure
states in (integrable) quadratic open quantum systems.

II. REVIEW OF THE GKLS MASTER EQUATION

A typical setup of an open quantum system governed by the
GKLS master equation involves two basic components: the
system S (for example, a spin chain) and the environment E .
The parts of the system that interact with the environment are
referred to as the contacts C, and the part that does not is the
bulk B. The GKLS master equation governs the evolution of
the bulk and the contacts (the system S = B ∪ C) after tracing
out the environment E . The equation reads [6,7,37]

dρ

dt
= L̂(ρ) ≡ −i[H, ρ]︸ ︷︷ ︸

L̂S (ρ)

+
∑

μ

(2LμρL†
μ − {L†

μLμ, ρ})

︸ ︷︷ ︸
L̂C (ρ)

, (1)

where ρ is the density matrix, H is the Hamiltonian of the
system, and {Lμ} is the set of “jump” operators that couple the
system S to the environment E . We will refer to L̂ in Eq. (1)
as the Lindbladian superoperator which is meant to invoke
the analogy to the Liouvillian superoperator in Hamiltonian
systems which is denoted here by L̂S . As this terminology is
not universally accepted in the literature, the reader is warned
not to confuse L̂ with the jump operators which are also

frequently called the Lindblad operators. The superoperator
defined by the jump operators L̂C is often referred to as the
dissipator and we will adopt that terminology as well. In
general the jump operators {Lμ} can have a support anywhere
in S. However in this work, we only consider one-dimensional
boundary-driven systems and the jump operators act only on
the contacts Cl and Cr that live on the left and right ends of
the chain, whereas the Hamiltonian acts on the entire system
S. Thus the dissipator L̂C in Eq. (1) can be split into two parts,

L̂C = L̂Cl + L̂Cr , (2)

where L̂Cl (respectively L̂Cr ) consist of the parts of L̂C that
involve jump operators that are supported on the left (respec-
tively right) end of the chain. The nonequilibrium steady state
(NESS) ρss of the system is obtained using

L̂(ρss) = 0, (3)

which is presumably also the infinite-time density matrix of
the system S in the absence of purely imaginary eigenvalues
of L̂ [38].

The physical parameters of the environment E such as
the inverse temperature β and the chemical potential μ are
encoded in the jump operators {Lμ}. The simplest prescription
for setting the temperature and chemical potential of the left
and right contacts is obtained using the following intuition
[14]. When the contacts are decoupled from the rest of the
system, the NESS has the following tensor product form:

ρss = ρCl ⊗ ρB ⊗ ρCr , (4)

where ρR is the density matrix of the region R, R ∈ {Cl , B,Cr}.
Thus, when a given (left or the right) contact is set to tem-
perature β, ρCζ

(ζ ∈ {l, r}) in Eq. (4) should be the Gibbs
density matrix, i.e., ρG|Cζ

(β ) = exp(−βHCζ
), where HCζ

is
the Hamiltonian restricted to the contact Cζ . In the case of
a particle-number conserving system, when a chemical poten-
tial μ is included in the bath, ρCζ

is given by the generalized
Gibbs density matrix ρGG|Cζ

(β,μ) = exp[−β(HCζ
− μNCζ

)],
where NCζ

is the number operator restricted to the contact Cζ .
We thus arrive at the condition [14]

L̂Cζ
(ρ) = 0 ⇐⇒ ρ =

{
ρG|Cζ

(
βζ

)
ρGG|Cζ

(βζ , μζ )
, ζ = l, r, (5)

where βl , μl and βr, μr are the inverse temperatures and the
chemical potentials of the left and right contacts respectively.
Once Eq. (5) is satisfied for the contacts, the original problem
can be viewed as the dynamics of an isolated system con-
nected to two reservoirs (on the left and the right), each at
their own temperature and chemical potentials.

Note that the above prescription for setting the temper-
atures and chemical potentials of the leads is by no means
unique. For example, another prescription involves examining
the case when the jump operators are chosen symmetrically
on the left and right ends of the chain. One could obtain the
required jump operators by imposing the condition that the
steady state in such a system (or its reduced density matrix
deep in the bulk) is a Gibbs reduced density matrix with the
required parameters. While different prescriptions generically
lead to different choices of jump operators, we do not expect
a drastic change in the properties of the system, at least when
the bulk Hamiltonian is ergodic [14].
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III. ETH AND ITS EXTENSION

We briefly review ETH in isolated quantum system and
motivate its extension to open quantum systems. ETH was
proposed as an explanation for thermalization in noninte-
grable isolated quantum systems [1–4,39]. In particular, the
matrix elements of few-body operators in the energy eigen-
states of a nonintegrable model are conjectured to be of the
form [4]

〈m|Ô|n〉 = Ō(E )δm,n + Rm,ne−S(E )/2 fO(E , ω), (6)

where Ô is a few-body operator, |m〉 and |n〉 are the energy
eigenstates with energies Em and En, E = (Em + En)/2, ω =
Em − En, Rm,n is a random variable with zero mean and unit
variance, and Ō(E ) is a smooth function of E . In Eq. (6),
S(E ) ∼ log D for states in the middle of the spectrum, where
D is the Hilbert space dimension. Thus, the standard devia-
tion of expectation values of operators in the eigenstates is
expected to scale as ∼1/

√
D for eigenstates in the middle of

the spectrum [40].
A consequence of ETH is that the expectation value of an

operator in a Gibbs state Z−1 exp (−βH ) can be replaced by
its expectation value in a particular eigenstate of H , which we
call the representative pure state [5]. This is a consequence of
the fact that

Z−1Tr(Ôe−βH ) ∼ Z−1
∫

dE g(E )e−βE Ō(E ) ∼ Ō(E∗), (7)

where g(E ) is the density of states, and we have used that
Ō(E ) in Eq. (6) is a smooth function of E as well as the fact
that g(E )e−βE peaks in a narrow energy window around E =
E∗. The latter is due to the fact that g(E ), by virtue of being
the density of states of a local operator (here Hss), is of the
form

g(E ) ∼ exp

(
− (E − Ec)2

2σ 2

)
. (8)

Here Ec is the energy of the center of the spectrum, and σ 2

scales with the bandwidth as a consequence of the central
limit theorem, i.e., σ 2 ≈ wN , where w is a constant. Thus
g(E ) exp(−βE ) peaks at

E∗(β ) ≈ Ec − βσ 2, (9)

and the energy density at the peak is

ε∗(β ) ≡ E∗

N
≈ εc − βw, (10)

where εc is the energy density of the center of the spectrum.
Thus, the eigenstates of H around energy density ε∗(β ) are
representative pure states of the Gibbs density matrix that
reproduce expectation values of few body operators. An easy
way to obtain the representative energy density ε∗ is given by
using the Hamiltonian H as the few-body operator. That is,

ε∗(β ) = Z−1Tr(He−βH )

N
. (11)

We now motivate the extension of ETH to open quantum
systems starting from the equilibrium case. In the following,
we only consider Hamiltonians without particle number or
spin conservation. The extension to particle number or spin
preserving Hamiltonians is straightforward.

A. Equilibrium

When the temperatures of the left and right baths are the
same (βl = βr = β), and the Hamiltonian on the system is
nonintegrable, we might expect that ρss is the Gibbs state on
the entire system [14], i.e.,

ρss = ρG(β ) = 1

Z
exp(−βH ). (12)

However, we note that Eq. (12) cannot be exactly true, as
explained in Appendix A. Despite this subtlety, we will refer
to this steady state with no currents flowing through the
system as equilibrium. The meaning of this term will be
more problematic when we allow the bulk Hamiltonian to be
integrable or many-body localized and we will discuss this
in Sec. V. Nevertheless, it is reasonable to expect that ρss in
equilibrium is of the form

ρss = e−Hss , (13)

where Hss is a local Hamiltonian which agrees with βH away
from the boundaries, up to the constant ln Z .

With this rewriting, ρss has the form of a Gibbs density ma-
trix with Hamiltonian Hss and β = 1. With Hss inheriting the
nonintegrability of H we expect that it will exhibit ETH. As a
consequence expectation values of few-body operators in ρss
can be reproduced by the expectation value in a representative
pure state, as illustrated in Eq. (7). Calling the eigenvalues of
Hss the pseudoenergies, we expect the pseudoenergy density
of the representative state to be ε∗ of Eq. (10) with β = 1.

B. Out of equilibrium

We now consider the situation away from equilibrium
(i.e., βl �= βr). Here, the steady state consists of heat (and
particle/spin currents if particle number/spin is conserved)
flowing from one end of the system to the other. If the bulk
Hamiltonian is ergodic, for small |βl − βr | (in the linear-
response regime), ρss should be close to the form that encodes
local equilibration [41,42],

ρss ≈ 1

Z
exp

(
−

N∑
i=1

βiHi − λ
βl − βr

2
J

)
, (14)

where J is the heat current operator, βi is a “local tempera-
ture,” and Hi is the piece of the Hamiltonian in the vicinity
of site i (H = ∑

i Hi). This form of ρss cannot be exact for
generic systems [43]. Among other things, it does not capture
the long-range correlations that are expected to exist away
from equilibrium [44]. Nevertheless we will draw inspiration
from this form wherein both H and J in Eq. (12) are sums
of local operators, and conclude that we again expect ρss to
have the form of Eq. (13), where Hss is a local Hamiltonian.
The reader may worry that we are ignoring the long-range
correlations we just invoked but the latter are a subtle effect
that decrease with system size [44] and we do not expect the
Hamiltonian modifications needed to capture them materially
to affect the conclusions we reach in this paper.

Given this intuition, we expect ETH to hold for the eigen-
states of Hss (and thus those of ρss) even out of equilibrium.
That is, we expect Eq. (6) to hold for all few-body operators,
{Em} being the pseudoenergies of eigenstates {|m〉} of ρss.
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The existence of ETH for Hss away from equilibrium has
a remarkable consequence: it enables a pure state description
of the nonequilibrium current carrying steady state. More pre-
cisely the expectation values of few-body operators in ρss can
be reproduced by their expectation values in an appropriate
window of eigenstates of ρss, which are chosen by the peak
in g(E ) exp(−E ) [see Eq. (7)], where E is the pseudoenergy
of eigenstates of ρss (energy of eigenstates of Hss) and g(E )
denotes its density of states.

Before we move on to testing NESS ETH, a few comments
are in order. The strong version of NESS ETH should imply
the form of Eq. (6) for both diagonal and off-diagonal matrix
elements of few-body operators in the eigenstates of ρss or
equivalently Hss at all locations in the spectrum except near
its edges. Given NESS ETH we can find a representative state
by picking its pseudoenergy ε∗ by setting β = 1 in Eqs. (10)
and (11):

ε∗ = Tr(Hsse−Hss )

N
. (15)

However, for the purposes of obtaining a representative state,
the eigenstates at other pseudoenergies, say in the middle of
the spectrum, are not relevant as β is not tunable—which is
different from the equilibrium case. Consequently we generi-
cally do not expect a 1/

√
D scaling of the standard deviation

of few-body operators in the eigenstates with pseudoenergy
ε∗. Further, to obtain a representative state, we really only
require that the fluctuations in operator expectation values
between nearby eigenstates decrease with increasing D, which
can in principle hold without the full set of eigenstates of
ρss satisfying the strong version of NESS ETH. However,
as we show in Sec. IV, NESS ETH [the form of the matrix
elements of Eq. (6)] appears to hold for eigenstates of ρss,
strengthening the case for existence of representative states.

IV. TESTING NESS ETH

We now numerically test NESS ETH away from equilib-
rium. In this paper we will only do so for the diagonal matrix
elements. Since ETH is a statement about generic systems, we
show our results for a fixed randomly picked set of parameters
in the Hamiltonian and the jump operators.

A. Model and methods

We first use a model with minimal symmetry, the
boundary-driven tilted Ising model [12]. The tilted Ising
model of N sites with open boundary conditions is given by
the Hamiltonian

H =
N−1∑
j=1

σ x
j σ

x
j+1 +

N∑
j=1

(
hσ z

j + gσ x
j

)
, (16)

which is known to be nonintegrable for generic values of the
fields h and g [45]. Since the model in Eq. (16) is inversion
symmetric, its energy levels show the Gaussian Orthogonal
Ensemble (GOE) statistics within each inversion symmetry
sector [12,45]. Furthermore, it does not conserve spin and thus
does not support a spin current. The heat current operator for

the tilted Ising model reads [12]

J ≡ h

N − 2

N−1∑
j=2

Jj = h

N − 2

N−1∑
j=2

σ
y
j

(
σ x

j+1 − σ x
j−1

)
. (17)

To drive the system away from equilibrium, we introduce
jump operators at the left and right ends that correspond to
different temperatures βl and βr , breaking inversion symmetry
as a result. For simplicity of numerical computations, we
choose the left and right contacts to be composed of one
physical site each. The jump operators {Lμ} for the required
temperatures can be obtained using the condition of Eq. (5),
and they read (see Appendix B)

L1 =
√



(l )
1 τ+

1 L2 =
√



(l )
2 τ−

1 ,

L3 =
√



(r)
1 τ+

N L4 =
√



(r)
2 τ−

N , (18)

where

τ±
j ≡ 1

2

[−σ z
j sin θ + (1 + cos θ )σ±

j − (1 − cos θ )σ∓
j

]
,

sin θ = g√
g2 + h2

, cos θ = h√
g2 + h2

. (19)

With this definition of jump operators, the inverse tempera-
tures read (see Appendix B)

βζ = − 1

2
√

h2 + g2
ln

(



(ζ )
1



(ζ )
2

)
, ζ = l, r. (20)

Even though the inverse temperature βζ in Eq. (20) only
depends on the ratio between 


(ζ )
1 and 


(ζ )
2 , the GKLS master

equation and hence ρss depends on the strength of each
of 


(ζ )
1 and 


(ζ )
2 . Indeed, setting the strengths of the jump

operators {Lμ} to be very large compared to the strength of
the Hamiltonian H results in a highly degenerate manifold of
approximate steady states (since ρss is then only constrained
by the boundary jump operators), which result in strong finite-
size effects. Throughout this work, we thus choose 


(l )
2 =



(r)
2 = 1 and use 


(l )
1 and 


(r)
1 to tune βl and βr .

To obtain ρss for the system we are studying, we exploit
the fact that ρss has an efficient matrix product operator
(MPO) representation [12,41]. While several methods have
been developed to study open quantum systems with tensor
networks [12,46,47], we use a variant of the time evolution
block decimation (TEBD) algorithm [48–50] starting with a
random initial density matrix ρ to obtain the matrix product
operator (MPO) representation of ρss. Details of the numerics
are given in Appendix C. We then obtain the 2N -dimensional
matrix representation of ρss, and diagonalize it to study its
eigenstates. This allows us to study the eigenstates of ρss for
much larger system sizes (easily up to N = 12 without any
symmetries) as opposed to naive exact diagonalization of the
Lindbladian [51].

B. Level statistics and entanglement entropy

We first test for level repulsion in the eigenstates of Hss.
As shown in Fig. 1(a), we find that away from equilibrium, the
pseudoenergy level spacings show gaussian unitary ensemble
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FIG. 1. (a) Distribution P(E ), where E = {En+1 − En}, where {En} are the sorted pseudoenergies of ρss. Note that this follows the
GUE distribution plotted in black. (b) Entanglement entropy of eigenstates of ρss. They scale as N for large systems, indicating a volume-law
behavior. The parameters used for the plot are (g, h, βl , βr, N ) = (0.5, −1.05, 0.1, 1.0, 12).

(GUE) statistics [52], as a consequence of the broken time-
reversal symmetry away from equilibrium. Indeed, if ρss has
the form of Eq. (14), the current operator breaks time-reversal
symmetry. The connection of the level statistics of ρss to the
integrability of the NESS was explored for several models in
Ref. [28]. There it was conjectured that the level statistics of
ρss follows GUE in generic cases when ρss does not have a
closed-form expression and exhibits Poisson level statistics in
integrable cases. Random matrix level statistics are necessary
but not sufficient for ETH to hold [53]. Hence the observation
of the level statistics predicted by random matrix theory is
suggestive but not dispositive in our search for an NESS
ETH for the eigenstates of ρss. Further support comes from
the entanglement entropy of the eigenstates of ρss shown in
Fig. 1(b) which exhibits a volume law similar to ones observed
in typical isolated nonintegrable systems [54].

C. Expectation values of operators

We now test the expectation values of few-body operators
in the eigenstates of ρss. We plot the expectation value and
its standard deviation of the current operator J [Fig. 2(a)],
an operator in the middle of the system σ z

N/2 [Fig. 2(b)],
a nonlocal two-site operator in the middle of the system
σ z

N/4σ
z
3N/4 [Fig. 2(c)], and an operator in the contacts σ z

1
[Fig. 2(d)]. The insets in Fig. 2 show the scaling of the
standard deviation with the Hilbert space dimension D for
pseudoenergy densities specified by pseudotemperatures βp =
1 (Tp = 1) and βp = 0 (T = ∞). As explained in the previous
section, the decay of the former is important for the existence
of a representative pure state and the 1/

√
D scaling of the

latter is important for NESS ETH of the form of Eq. (6) to hold
for eigenstates of ρss. As evident in Fig. 2, we find evidence
that the diagonal matrix elements of all these operators are of
the form of Eq. (6), along with the existence of representative
pure states. However, σ z

1 appears to show a larger standard
deviation and stronger finite-size effects as seen in Fig. 2(d),
although the scaling of the standard deviation appears to be

1/
√

D, consistent with the predictions of NESS ETH. We have
checked that only operators that have supports in the contacts
appear to show the larger standard deviation of the form in
Fig. 2(d), and not for operators that are in the bulk but close
to the contacts (for example σ z

2 in the present case).
We now focus on the representative pure state that re-

produces local properties of ρss. To verify that these indeed
represent ρss, we test certain physical properties of the eigen-
states. In particular, if the eigenstates carry current, the current
through one part of the bulk should be the same as the current
through another part, as is exactly true in ρss:

Tr(ρssJ ) = Tr(ρssJN/2). (21)

Thus, in the representative pure states, we expect that

〈n|J|n〉 ≈ 〈n|JN/2|n〉 ≈ Tr(ρssJN/2), (22)

with Eq. (22) being exactly true as N → ∞. Figure 3(a) plots
the expectation values and the standard deviation of (J − JN/2)
in the eigenstates of ρss, which we expect to be close to 0 for
states around pseudoenergy density ε∗. As seen in Fig. 3(a),
we indeed find that this is true for all eigenstates of ρss (not
just the representative pure state). Thus, all the eigenstates of
Hss (and thus ρss) carry a current. Note that the eigenstates of
Hss can carry a current even though Hss has open boundary
conditions because J is the current operator of H , not of Hss.

D. Weak solution of the GKLS equation

Since we have obtained a pure state that describes the local
properties of ρss, one might wonder if the representative state
(density matrix) is in some sense a solution of the GKLS
master equation. Of course, this cannot be true for any finite
system size N because of theorems that ensure the uniqueness
of ρss. However, the spectral gap  of the Lindbladian L̂
above the steady state vanishes as 1/Nδ for some δ > 0 in
all boundary-driven systems [15] which potentially allows the
existence of multiple asymptotically exact steady-state solu-
tions in the large-N limit. Such solutions would presumably
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FIG. 2. Expectation values and standard deviations of the operators (a) J , (b) σ z
N/2, (c) σ z

N/4σ
z
3N/4, (d) σ z

1 in the eigenstates of Hss as a
function of pseudoenergy. Main: The expectation values appear to converge to a smooth function of pseudoenergy with increasing system size,
which is the “microcanonical” (MC) value computed by averaging over an pseudoenergy window of E = 0.025. The expectation value in
ρss and the pseudoenergy density ε∗ of the representative state are denoted by the horizontal and vertical lines respectively. Inset: Standard
deviations of the operators as a function of the Hilbert space dimension. The scaling of 1/

√
D is denoted by the black dashed line. The standard

deviation appears to scales as ∼1/
√

D for eigenstates in the middle of the pseudoenergy spectrum (Tp = ∞), consistent with the predictions of
NESS ETH. The standard deviations around the eigenstates around the representative pseudoenergy (Tp = 1) also decay with increasing Hilbert
space dimension, although they show a scaling slower than 1/

√
D. The data are shown for the parameters (g, h, βl , βr ) = (0.5,−1.05, 0.1, 1).

be strong solutions in the sense that they would involve a spec-
ification of density matrices satisfying the GKLS equation.

We are not able to make sense of this idea at this time.
Instead, here we show the existence of what we term a weak
steady-state solution by studying the time dependence of
expectation values of local operators which are a special case
of few-body operators; we expect the result is true for the
larger class. That is, we compute

d〈O〉
dt

= d

dt
[Tr(ρO)] = Tr

(
dρ

dt
O

)
. (23)

Expectation values of operators in the steady state are by
definition time independent, which can be seen by setting
ρ = ρss in Eq. (23) (and using dρss/dt = 0). We can then
probe the expectation value of operators in eigenstates of ρss
by setting ρ = ρn ≡ |n〉〈n| in Eq. (23). Using Eqs. (23) and

(1) we obtain

Tr

(
dρn

dt
O

)
= 〈n|(i[H, O] + 2LμOL†

μ − {L†
μLμ, O})|n〉.

(24)
If |n〉 is indeed a representative pure state of ρss, we expect
Eq. (24) to vanish. In Fig. 3(b), we plot the quantity of Eq. (24)
with O = H for all the eigenstates |n〉 of ρss. Note that it
vanishes for |n〉 around the pseudoenergy density ε∗, showing
that ρn is a weak steady state solution of the GKLS master
equation, i.e., expectation values of local operators in ρn are
time independent in the limit N → ∞.

V. REGIMES OF VALIDITY

In the previous section we showed evidence for the ex-
istence of NESS ETH in the eigenstates of ρss in the
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FIG. 3. (a) 〈J − JN/2〉 and, inset, its standard deviation in the eigenstates of ρss. (b) d〈H〉
dt for 〈H〉 computed in the eigenstates of ρss.

Its vanishing at the representative pseudoenergy shows that ρn = |n〉〈n| is a weak solution of the GKLS master equation, where |n〉 is the
representative eigenstate. See caption of Fig. 2 for details on the labels and parameters used.

driven tilted Ising model as an example of a system with
a nonintegrable/chaotic Hamiltonian and just one conserved
quantity. We now move on to the exploration of NESS ETH
in ρss under less chaotic circumstances, such as the existence
of additional conservation laws/symmetries, integrability, and
localization. A convenient and well-studied model to explore
this physics is the driven XXZ model with a magnetic field,
given by the Hamiltonian [12,13,27,28,55–57]

HXXZ =
N−1∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + σ z

j σ
z
j+1

) +
N∑

j=1

h jσ
z
j ,

(25)
with the jump operators

L1 =
√


(1 − μ + μ̄)σ+
1 L2 =

√

(1 + μ − μ̄)σ−

1 ,

L3 =
√


(1 + μ + μ̄)σ+
N L4 =

√

(1 − μ − μ̄)σ−

N .

(26)

μ indicates the driving strength of the system (μ = 0 corre-
sponds to equilibrium) and μ̄ is the average chemical poten-
tial. To obtain ρss for this system, we use the same methods
as described in Sec. IV A.

A. Symmetries of ρss

We now address symmetries that appear in ρss, assuming
the existence of a unique steady state. When the steady state
is unique, any symmetry of the Lindbladian is a symmetry of
ρss [38]. That is, as shown in Appendix D,

U †HU = H, U †LμU =
∑

ν

ημνLν,
∑

μ

η∗
μνημσ = δνσ

⇒ U †ρssU = ρss. (27)

For example, the Hamiltonian of Eq. (25) has a U(1)
symmetry, where

U = exp(iφSz ), Sz =
N∑

j=1

σ z
j . (28)

Using U of Eq. (28), it is straightforward to verify that
Eq. (27) is satisfied for the Hamiltonian and jump operators
of Eqs. (25) and (26), and thus Sz is a conserved quantity
of ρss.

To obtain representative pure states in the presence of
symmetries, representative values of all other conserved quan-
tities need to be determined in addition to the representative
pseudoenergy ε∗. For example, in the presence of U(1) sym-
metry, in addition to Eq. (15), the total spin density of the
representative state is specified as

s∗ ≡ S∗
z

N
= Tr(Sze−Hss )

N
, (29)

where S∗
z is the Sz quantum number of the representative state.

Note that the eigenstate of ρss at pseudoenergy density ε∗
and total spin density s∗ is a true representative state only
if expectation values of local operators in states are smooth
functions of pseudoenergy density ε and total spin density
s. Since testing their smoothness with s is hard for the small
systems we work with, we ensure that s∗ ≈ 0 in all the cases
we explore so that representative states are always in the
Sz = 0 sector for these system sizes.

To test NESS ETH in the presence of symmetries, we
probe the Hamiltonian Eq. (25) with the jump operators of
Eq. (26) in a nonintegrable regime, i.e., in the presence of a
staggered magnetic field. Indeed, similar to the case for the
tilted Ising model in Sec. IV, we find that NESS ETH holds
for eigenstates within each quantum number sector of Sz. The
results for an operator in the bulk of the system in the sector
Sz = 0 is shown in Fig. 4(a).

Note that ρss could in principle have symmetries that
are not symmetries of the Lindbladian [38]. While few-qubit
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FIG. 4. The expectation value and standard deviation of an operator σ z
N/2 in the eigenstates of ρss when the bulk Hamiltonian is (a) an

XXZ model with a staggered magnetic field [hj = (−1) j × 0.5, nonintegrable], (b) an XXZ model without a magnetic field (hj = 0, Bethe-
ansatz integrable), (c) a maximally driven XXZ model without a magnetic field [(μ, μ̄, , hj ) = (1.0, 0.0, 0.54, 0.0), exactly solvable ρss],
(d) an XXZ model with a random magnetic field (hj ∈ [−10, 10], many-body localized). Unless otherwise mentioned, the data are shown for
parameters (, 
,μ, μ̄) = (0.5, 1, 0.5, 0.025) in the representative sector Sz = 0. See caption of Fig. 2 for details on the labels.

systems with such symmetries can be explicitly constructed,
we are not aware of any such examples in the context of
boundary-driven systems.

B. Integrable systems

We now consider open quantum systems where the bulk
Hamiltonian is integrable, and show that while the full NESS
ETH is violated, useful amounts of the structure still survive.
We begin by noting that unlike for nonintegrable systems, ρss
is now generally not close to the Gibbs state even when the left
and right contacts are the same due to the lack of ergodicity in
the bulk of the system [14,26,58]. Furthermore, the structure
of ρss depends on the exact structure jump operators on the
edge, not just its physical parameters [14]. Hence the status of
NESS ETH is not immediately apparent, even in equilibrium.
We discuss three cases in the following.

We start with the case where the bulk Hamiltonian is
noninteracting, for example the XX model with a magnetic

field [Eq. (25) with  = 0]. The XX model can be written as
a quadratic Hamiltonian in fermion operators after a Jordan-
Wigner transform [59]. The first subcase involves jump opera-
tors being linear in the fermion operators [which the operators
of Eq. (26) are after a Jordan-Wigner transform]. Then the
Lindbladian can be written as a “quadratic superoperator.”
Reference [18] obtained a general method to obtain ρss of
such systems, which we have summarized in Appendix E. As
shown in Eqs. (E22) and (E23), Hss defined in Eq. (13) can be
written as a quadratic Hamiltonian [60]. Thus, the eigenstates
of ρss do not generically satisfy NESS ETH, as expected
for noninteracting Hamiltonians, and the spectrum exhibits
Poisson statistics. However, as shown in Appendix F, certain
eigenstates do obey a version of “restricted NESS ETH” [5],
which allows the construction of representative pure states
of ρss for certain operators. The second subcase has jump
operators which are not linear in the fermion operators (for
example σ z

1 ). Here we find that Hss still exhibits Poisson
statistics. The standard deviations of typical operators show a
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1/
√

N decay typical of noninteracting fermion Hamiltonians,
presumably because Hss in this case is quadratic with small
quartic perturbations.

The second case involves setting  �= 0 and in the presence
of a uniform magnetic field (hj = h), whereupon the XXZ
model of Eq. (25) is integrable via the Bethe ansatz [61].
Consequently, the energy levels of the Hamiltonian show
Poisson level statistics, typical of integrable models [62].
However, the spectrum of Hss shows GUE level statistics for a
generic boundary driving of the XXZ model of Eq. (25) with
a uniform magnetic field, even though the bulk Hamiltonian
is integrable [28]. In Fig. 4(b) we show that operators in the
bulk of the system satisfy NESS ETH and the 1/

√
D scaling

of the standard deviation of expectation values of operators,
and representative pure states can be constructed.

The final case involves systems where ρss can be an-
alytically obtained in terms of a matrix product ansatz
[22,24,25,63]. An example is the maximally driven XXZ
model of Eq. (25) with μ = 1, μ̄ = 0 in Eq. (26). For a system
size of N , ρss can be written in terms of a matrix product op-
erator (MPO) of bond dimension (N/2 + 1)2 [see Eq. (13) of
Ref. [22]]. We find that the eigenvalues of Hss show Poisson
level statistics [28]. and its eigenstates do not satisfy NESS-
ETH. In Fig. 4(c), we show the expectation value of a local
operator and its standard deviation for this case. The existence
of representative pure states is not clear for the system size N
we are able to test, although certain operators exhibit a power
law in N decay of standard deviation, analogous to integrable
Hamiltonians [5,64]. Note that the connection between the
solvability of ρss and the solvability of its eigenstates is not
fully clear, although a variation of the algebraic Bethe ansatz
has been proposed to obtain eigenstates of ρss [23,25].

C. Localization

We briefly examine the case when the bulk Hamiltonian is
many-body localized (MBL) [65,66]. The XXZ Hamiltonian
of Eq. (25) in the presence of a disordered field h j chosen
uniformly from an interval [−W,W ] is known to be MBL for
W � Wc ≈ 3.5–4.5 [65,67–69]. We observe that ρss shows
Poisson level statistics for W = 10 for N = 12, indicating
that Hss could be MBL. Figure 4(d) shows the expectation
value of σ z

N/2 in the bulk of the system for W = 10, where we
clearly see the violation of NESS ETH, which also rules out
constructing representative states.

However, we observe that the disorder strength Wc required
for the Poisson level statistics of ρss strongly drifts with
system size, and we are not able to exclude the possibility
that the apparent MBL of Hss is a finite-size effect. We plan
to provide a more careful examination of the behavior of bulk
MBL systems under weak driving in future work.

VI. CONCLUDING REMARKS

We have conjectured and given evidence for a general-
ization of ETH for isolated quantum systems to nonequilib-
rium steady states in open quantum systems, which we call
the nonequilibrium steady-state eigenstate thermalization hy-
pothesis (NESS ETH). We focused on boundary-driven one-
dimensional systems described by GKLS master equations

with local chaotic Hamiltonians. For such systems we find
that the NESS density matrices ρss qualitatively resemble
equilibrium Gibbs density matrices in that (i) their level
statistics show random matrix behavior for nearby levels and
(ii) their eigenstates show smooth variation of the expectation
values of few-body operators with pseudoenergy density—the
energy of Hss defined in Eq. (13), per site. We showed that this
smooth dependence makes it possible to pick representative
pure states that reproduce the expectation values of few-body
operators computed with the starting density matrices ρss. We
further showed that the density matrices of such representative
states can be interpreted as weak solutions of the GKLS
master equation.

Some of these results continue to hold even when the
Hamiltonians are integrable. For example, as we show in
Appendix F, free fermion GKLS systems introduced by
Prosen exhibit a form of NESS ETH for operators in real
space similar to those for Hamiltonian systems albeit with
a 1/

√
N decrease in the fluctuations and Poisson statistics.

For systems with additional symmetries we find that NESS
ETH is valid within each quantum number sector. When the
bulk Hamiltonian is integrable, the level statistics is GUE or
Poisson depending on whether the choice of jump operators
allow an exact determination of ρss. NESS ETH is violated
in the latter case, although the construction of representative
states might be possible for certain operators. For an MBL
system we show that NESS ETH breaks down entirely.

In future work it would be useful to test NESS ETH
for a wider class of systems. It will also be interesting to
examine the behavior of off-diagonal matrix elements which
we have not touched in this work. Finally, it is tempting to
ask if the weak transport solutions presented herein can be
related to strong solutions in some other formalism—analogs
of scattering states in scattering theory.
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APPENDIX A: ON THE VALIDITY OF EQ. (12)

The Schmidt decomposition of ρG between the bulk B and
the contacts C reads (suppressing the β dependence)

ρG(β ) =
∑

α

λαρ (B)
α ⊗ ρ (C)

α , (A1)

where ρ (B)
α and ρ (C)

α are supported on the bulk and the contacts
respectively. If ρss = ρG(β ), it must satisfy the GKLS master
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equation of Eq. (1). Since L̂B(ρG) = 0, we obtain

L̂(ρG) = L̂B(ρG) + L̂C (ρG) = 0

⇒
∑

α

λαL̂C
(
ρ (B)

α ⊗ ρ (C)
α

) = 0

⇒
∑

α

λαρ (B)
α ⊗ L̂C

(
ρ (C)

α

) = 0

⇒ L̂C
(
ρ (C)

α

) = 0 ∀α, (A2)

where we have used that the set {ρ (B)
α }, by virtue of be-

ing the Schmidt vectors, is linearly independent. Since ρG

generally has a full rank over any Schmidt decomposition,
Eq. (A2) would imply L̂C (·) ≡ 0, which is a contradiction.
However, ρG is known to admit an efficient matrix product
operator (MPO) representation. Equivalently, the tails of the
distribution of the Schmidt values {λα} in Eq. (A1) fall off
exponentially. It is reasonable to expect that Eq. (12) holds
approximately, where Eq. (A2) need not hold for α’s for which
λα ≈ 0.

APPENDIX B: STRUCTURE OF JUMP OPERATORS

We start with Eq. (5), and with ρG(β ) defined as

ρG(β ) = Z−1 exp[−β(hσ x + gσ z )], (B1)

where {σα} are the Pauli matrices. For ease of calculation, we
write ρG(β ) as (dropping the β dependence)

ρG = Z−1 exp

[
−β

√
g2 + h2

(
h√

g2 + h2
σ z + g√

g2 + h2
σ z

)]

= Z−1 exp(−β
√

g2 + h2(σ z cos θ + σ x sin θ ))

≡ Z−1 exp(−βmτ z ), (B2)

and we’ve defined

cos θ ≡ h√
g2 + h2

, sin θ ≡ g√
g2 + h2

, m ≡
√

g2 + h2,

τ z ≡ σ z cos θ + σ x sin θ. (B3)

We choose the one-site jump operators

L1 =
√


1τ
+, L2 =

√

2τ

−. (B4)

With this choice of jump operators, we want to solve Eq. (5),
which reads

2∑
μ=1

(2LμρGL†
μ − L†

μLμρG − ρGL†
μLμ) = 0,

∑
α∈{+,−}


α (2ταe−βmτ z
(τα )† − (τα )†ταe−βmτ z

−e−βmτ z
(τα )†τα ) = 0. (B5)

It is straightforward to check that Eq. (B5) is true as long as

β = − 1

2m
ln

(

1


2

)
, (B6)

which is Eq. (20).
To express τα’s in terms of σα’s, note that

τ z = R†σ zR, (B7)

where we define R as

R = exp

(
i
θ

2
σ y

)
=

(
cos

(
θ
2

)
sin

(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)
)

. (B8)

Thus we obtain

τ± = R†σ±R = 1
2 [−σ z sin θ

+ (1 + cos θ )σ± − (1 − cos θ )σ∓]. (B9)

where we use the following definitions of the σ± matrices

σ+ = 1

2
(σ x + iσ y) =

(
0 1
0 0

)
,

(B10)

σ− = 1

2
(σ x − iσ y) =

(
0 0
1 0

)
.

APPENDIX C: TEBD WITH ONE-SITE JUMP OPERATORS

The steady-state density matrix ρss is obtained by simply
time evolving an initial density matrix using the GKLS master
equation until the steady state is reached. We represent the
density matrix as a pure state on a doubled Hilbert space H ⊗
H composed of two copies of the original Hilbert space and
use the standard TEBD algorithm to implement time evolution
[48]. A general density matrix ρ may always be purified by
introducing additional degrees of freedom,

|ρ〉 ≡
∑
nm

〈n|ρ|m〉|n〉A ⊗ |m〉B, (C1)

where {|n〉A} and {|n〉B} are a complete basis for each of the
two copies of the Hilbert space H, which we denote by HA and
HB respectively, which together form a complete basis for the
doubled Hilbert space HA ⊗ HB = H ⊗ H. In this language,
the Lindbladian acts as an operator as

L̂ = − i
(
HA − HT

B

)
+

∑
μ

(
2Lμ,AL∗

μ,B − L†
μ,ALμ,A − LT

μ,BL∗
μ,B

)
,

(C2)

where subscripts A and B indicate the operators acting on
the Hilbert space HA and HB. The GKLS master equation of
Eq. (1) is given by

d

dt
|ρ〉 = L̂|ρ〉, (C3)

which is solved for an initial condition |ρ(0)〉 by

|ρ(t )〉 = eL̂t |ρ(0)〉. (C4)

For a Hamiltonian H with two-site interaction terms, coupling
to a bath on the left and right edges via single-site jump op-
erators Lμ at either edge, we may decompose master equation
(1) as

L̂ = L̂even + L̂odd, (C5)

where L̂even(odd) are each composed of a sum of terms with
disjoint support. In our case, L̂even contains only terms from H
which couple between sites 2 j and 2 j + 1 on the N-site chain,
and if N is odd, it includes the terms from L̂Cr [see Eq. (2)]
which act on site N . L̂odd contains terms from H which couple
between sites 2 j + 1 and 2 j + 2, the terms in L̂Cl which have
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support on site 1, and provided N is even, the terms from L̂Cr

terms which act on site N . In this way, we write L̂even and L̂odd

that have distinct supports.
We then proceed by using the Suzuki-Trotter decomposi-

tion [48] for the time evolution by a small time step δt ,

eL̂δt ≈ eL̂evenδt eL̂oddδt + O(δt2). (C6)

The density matrix |ρ〉 is represented as a matrix product state
(MPS) with two physical indices per site (one each for the
Hilbert spaces HA and HB) whereas the Lindbladian L̂ is
represented as a matrix product operator (MPO) with two sets
of physical indices per site. The simulation begins with an
initial state |ρ(0)〉, which we choose to be the purified infinite-
temperature density matrix with an MPS bond dimension 1.
Using the standard TEBD algorithm, eL̂δt is applied to the
MPS, while keeping the bond dimension below 50. We begin
with an initial time step δt = 1. The entanglement entropy
of |ρ(t )〉 (with respect to a bipartition in the middle of the
system) is used to determine the convergence of the state, and
the time step is updated as δt → 0.9δt as |ρ(t )〉 converges.
The evolution of the state is evolved |ρ(t )〉 reaches a steady
state |ρss〉, at which point the full 2N -dimensional matrix
representation ρss can easily be obtained by contracting the
MPS for |ρss〉. We note that since the overall norm of the wave
function is preserved in the TEBD algorithm, the resulting
density matrix satisfies 〈ρss|ρss〉 = 1 rather than Tr(ρss) = 1,
and thus needs to be scaled by an overall factor to obtain the
normalized density matrix.

APPENDIX D: GENERAL SYMMETRIES OF ρss

In this Appendix, we provide a proof of Eq. (27). The
NESS is the fixed point of the GKLS master equation of
Eq. (1) [L̂(ρss) = 0], and thus

−i[H, ρss] +
∑

μ

(2LμρssL†
μ − {L†

μLμ, ρss}) = 0. (D1)

Using the conditions of Eq. (27), Eq. (D1) can be written as

− i[UHU †, ρss] +
∑
μ,ν,σ

η∗
μνημσ (2ULσU †ρssUL†

νU †

−{UL†
νLσU †, ρss}) = 0. (D2)

Left- and right-multiplying by U † and U respectively and
using the property of ημν in Eq. (27), we obtain

− i[H,U †ρssU ] +
∑

μ

(2LμU †ρssUL†
μ

−{L†
μLμ,U †ρssU }) = 0. (D3)

Provided the NESS is unique, Eq. (D3) implies

U †ρssU = ρss. (D4)

APPENDIX E: STRUCTURE OF ρss

IN QUADRATIC SYSTEMS

Here we review the structure of ρss in quadratic fermion
systems using the formalism developed in Ref. [18] and show
that Hss is also quadratic in such cases. Note that the same

result has appeared the literature in other contexts [70], we
include this section here for emphasis and completeness. For
a chain of N sites, we consider the Hamiltonian and jump
operators to be of the form

H =
2N∑

j,k=1

w jHjkwk,

(E1)

Lμ =
2N∑
j=1

lμ, jw j,

where {w j} are the Majorana fermions that obey the algebra

{w j,wk} = 2δ j,k, j, k = 1, 2, . . . , 2N. (E2)

To solve the GKLS equation of Eq. (1) with the operators of
Eq. (E1), we define a Fock space of operators {|P�α〉}, where

�α = (α1, α2, . . . , α2N ). (E3)

The operators {P�α} in this space read

P(α1,α2,...,α2N ) ≡ w
α1
1 w

α2
2 . . . w

α2N
2N , α j ∈ {0, 1}. (E4)

In this operator space, we define adjoint creation and an-
nihilation (super)operators {ĉ†

j } and {ĉ j} that “create” and
“annihilate” Majorana operators w j . That is, their actions read

ĉ†
j |P�α〉 = δα j ,0|w jP�α〉, ĉ j |P�α〉 = δα j ,1|w jP�α〉. (E5)

Furthermore, using Eqs. (E2) and (E5), we obtain that ĉ†
j and

ĉ j are fermion operators, i.e., they satisfy

{ĉ j, ĉ†
k} = δ j,k, {ĉ j, ĉk} = 0, j, k = 1, 2, . . . , 2N. (E6)

We further introduce Majorana superoperators that read

â2 j−1 = 1√
2

(ĉ j + ĉ†
j ), â2 j = i√

2
(ĉ j − ĉ†

j ), (E7)

such that

{âr, âs} = δr,s. (E8)

In terms of these Majorana superoperators, the Lindbladian
superoperator (for the even parity sector) can be written
as [18]

L̂ =
4N∑

j,k=1

Ajkâ j âk − A0, (E9)

where [18]

A2 j−1,2k−1 = −2iHjk − Mjk + Mk j, A2 j−1,2k = 2iMk j,

(E10)
A2 j,2k−1 = −2iMjk, A2 j,2k = −2iHjk + Mjk − Mk j,

where

Mjk =
∑

μ

lμ, j l
∗
μ,k, A0 = 2

2N∑
j=1

Mj j . (E11)

When diagonalized, the Lindbladian reads

L̂ = −2
2N∑
j=1

β j b̂
′
j b̂ j, (E12)
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where {b̂ j} and {b̂′
j} are the normal master modes (NMMs)

that read

b̂ j =
4N∑

k=1

v2 j−1,k âk, b̂ j =
4N∑

k=1

v2 j,k âk, (E13)

and obey fermion commutation relations

{b̂ j, b̂′
k} = δ j,k, {b̂ j, b̂k} = 0, j, k = 1, 2, . . . , 2N. (E14)

In Eq. (E13), {v j,k} are the elements of the matrix V that
satisfies

A = V T �V, (E15)

where

� =
2N⊕
j=1

(
0 β j

−β j 0

)
, (E16)

where {β j} is the set of eigenvalues of A arranged such that
Re β1 � Re β2 � · · · � Re β2N � 0. Note the eigenvalues
appear in pairs (β j,−β j ) because A is antisymmetric.

The NESS is then given by the “Bogoliubov” ground
state of the “superconducting” non-Hermitian system given
by Eq. (E9), and can be written as

|ρss〉 =
2N∏

k=1

b̂k|1〉. (E17)

Equations (E12) and (E14) then ensure that

L̂|ρss〉 = 0. (E18)

To obtain the operator form of ρss, we first express bk in terms
of ĉ j’s and ĉ†

j ’s as

b̂k =
2N∑
j=1

(
k j ĉ j + ϒk j ĉ
†
j ). (E19)

Since Eq. (E17) has the form of a BCS wave function, the
(unnormalized) NESS can be written as an exponential

|ρss〉 = exp

⎛
⎝−1

2

2N∑
i, j=1

Gi j ĉ
†
i ĉ†

j

⎞
⎠|1〉, (E20)

where, following the Appendix in Ref. [71], the “pairing
function” Gi j is given by the solution to the equation,

2N∑
k=1

(−
mkGkn + ϒmn) = 0. (E21)

Using Eqs. (E5) and (E6), the operator form of ρss can be
written as

ρss = exp

⎛
⎝−i

2N∑
i, j=1

Ki jwiw j

⎞
⎠, (E22)

and the NESS Hamiltonian Hss defined in Eq. (13) reads

Hss = i
2N∑

i, j=1

Ki jwiw j . (E23)

To obtain the matrix K in terms of G, we start with the
computation of the off-diagonal elements Ci j of the covariance
matrix of ρss, defined as

Ci j = 〈wiw j〉ss = Tr(ρsswiw j ). (E24)

First, we compute C assuming Eq. (E22). Since iK is an
antisymmetric matrix, it admits a spectral decomposition

iK = R�RT , (E25)

where RT R = 1 and � is a block-diagonal matrix that reads

� =
N⊕

l=1

(
0 iκl

−iκl 0

)
, (E26)

{κl} being the eigenvalues of iK . We then define Majorana
fermions {ηl} as

ηl =
2N∑

k=1

(RT )lkwk. (E27)

In terms of the η Majorana fermions, Hss of Eq. (E23) reads

Hss =
2N∑

k,l=1

�klηkηl = 2i
2N∑
l=1

κlη2l−1η2l , (E28)

where we have used Eqs. (E26) and (E27). Further defining
complex fermion operators dl and d†

l out of the η Majorana
fermions, we can write Hss and 〈d†

l dl〉ss as

Hss =
N∑

l=1

κl (2d†
l dl − 1), 〈d†

l dl〉ss = 1

eκl + 1
. (E29)

Further, we obtain

〈η2l−1η2l〉ss = −2i〈d†
l dl〉ss + i = i tanh

(κl

2

)
. (E30)

The covariance matrix element of Eq. (E24) can be written as

Ci j = 〈wiw j〉ss =
2N∑

k,l=1

RikR jl〈ηkηl〉ss

=
N∑

l=1

(Ri,2l−1Rj,2l − Ri,2l R j,2l−1)〈η2l−1η2l〉ss

=
N∑

l=1

(Ri,2l−1Rj,2l − Ri,2l R j,2l−1)i tanh
(κl

2

)

= i

[
R tanh

(
�

2

)
RT

]
i j

=
[

tanh

(
iK

2

)]
i j

. (E31)
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Now we compute Ci j using the superoperator formalism,
which can be written as

Ci j = 〈wiw j〉ss = 〈1|ĉiĉ j |ρss〉

= 〈1|ĉiĉ j exp

⎛
⎝−1

2

2N∑
i, j=1

Gi j ĉ
†
i ĉ†

j

⎞
⎠|1〉

= Gi j . (E32)

Thus, using Eqs. (E31) and (E32), the 2N × 2N matrices iK
and G can be shown to be related according to

iK = 2 arctanh(G)

= 2

(
G + G3

3
+ G5

5
+ G7

7
+ · · ·

)
. (E33)

APPENDIX F: RESTRICTED NESS ETH
IN QUADRATIC SYSTEMS

In this section, we show the existence of a restricted NESS
ETH in the eigenstates of ρss of quadratic systems, and the
construction of representative pure states for certain operators.
We work with the XY model with a magnetic field

HXY =
N−1∑
j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1

)
+

N∑
j=1

hσ z
j ,

(F1)
with the jump operators

L1 =
√



(l )
1 σ+

1 L2 =
√



(l )
2 σ−

1 ,

L3 =
√



(r)
1 σ+

N L4 =
√



(r)
2 σ−

N . (F2)

After a Jordan-Wigner transformation, in the Majorana lan-
guage, the XY Hamiltonian reads [18]

HXY = −i
N−1∑
j=1

(
1 + γ

2
w2 jw2 j+1 − 1 − γ

2
w2 j−1w2 j+1

)

− i
N∑

j=1

hw2 j−1w2 j, (F3)

and the corresponding jump operators are equivalent to [18]

L1 =
√



(l )
1

2
(w1 − iw2), L2 =

√



(l )
2

2
(w1 + iw2),

L3 =
√



(r)
1

2
(w2N−1 − iw2N ), L4 =

√



(r)
2

2
(w2N−1 + iw2N ).

(F4)

As described in Appendix E, Hss is quadratic in the Majorana
operators and can be obtained in terms of a “pairing function”
Gi j [see Eqs. (E23) and (E33)]. The eigenstates of ρss are then
the many-body eigenstates of Hss.

For quadratic Hamiltonians, a restricted version of ETH
is expected to hold in many-body states obtained by occu-
pying the single-particle levels according to the Fermi-Dirac
distribution [5]. That is, the probability pk (β ) of occupying a
single-particle level at energy Ek is

pk (β ) = 1

eβEk + 1
. (F5)

Indeed, as shown in Fig. 5, we find that in the many-body
eigenstate |ψ (β )〉 of Hss,

〈ψ (β )|O|ψ (β )〉 = f (β ) + O
(

1√
N

)
, (F6)

FIG. 5. Expectation values and standard deviations of the operators σ z
N/2 in the many-body eigenstates of ρss of the XY model whose

occupancies obey the Fermi-Dirac distribution with inverse pseudotemperature β. (a) ρss has exhibits short-range correlations (h = γ = 0.9).
(b) ρss exhibits long-range correlations (h = γ = 0.1). Main: The expectation value is a smooth function of β. The horizontal lines denote
the expectation values of the operators in ρss for various system sizes, which correspond to β = 1. Inset: Standard deviations decay as 1/

√
N

(denoted by the dotted line) for various β. The jump operators used are of the form of Eq. (F2) with (
(l )
1 , 


(l )
2 , 


(r)
1 , 


(r)
2 ) = (1, 0.6, 1, 0.3).
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where f (β ) is a smooth function of β, and O is a few-body
operator. For the construction of representative pure states, for
a bipartition of the system A and B with NA and NB spins such
that NB � NA, we require

TrB(|ψ (β )〉〈ψ (β )|) ≈ TrB(ρss). (F7)

Using the fact that ρss is a Gibbs state of Hss with β =
1, and |ψ (β )〉 are the many-body eigenstates of Hss, it is
easy to see that Eq. (F7) is true only if β ≈ 1 [72]. Thus,
as long as the standard deviation of operator expectation
values decay with N at β = 1, one should be able to find a
representative pure state. However, note that if an operator
Ôn is the occupation number of a single-particle eigenstate
(of energy En) of Hss, then 〈ψ (β )|Ô|ψ (β )〉 = 0, 1 whereas
Tr(ρssÔ) = 1/(eEn + 1), and thus the fluctuations are always
O(1) [5]. Nevertheless, for operators that are spread over
various occupation number operators (for example operators

local in real space), one can expect to find a representative
pure state. In Fig. 5, we plot f (β ) for various operators and
show the corresponding standard deviations in the inset for
various values of β. The standard deviations decay as 1/

√
N

at all temperatures (which correspond to different parts of the
many-body spectrum), typical of integrable systems [64].

Note that an interesting aspect of the XY model is the
existence of a phase where ρss carries long-range correlations
[26]. As shown in Fig. 4 of Ref. [26], correlations are long
ranged when 0 < h < 1 − γ 2, and short ranged otherwise. In
the long-range phase (0 < h < 1 − γ 2), the pairing function
Gi j of Eq. (E20) is no longer local. That is, lim|i− j|→∞ Gi j �=
0. As a consequence of Eqs. (E23) and (E33), Hss is a
nonlocal Hamiltonian in the long-range phase. Nevertheless,
as shown in Fig. 5(b), we find that the locality of Hss is
irrelevant to the restricted NESS ETH of ρss and to the con-
struction of representative states, although we observe larger
finite-size effects.
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