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Floquet systems with Hall effect: Topological properties and phase transitions
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We study the quantum topological properties of Floquet (time-periodic) systems exhibiting Hall effects due
to perpendicular magnetic and electric fields. The systems are charged particles periodically kicked by a one-
dimensional cosine potential in the presence of such fields, where the magnetic field is perpendicular also to the
kicking direction. We consider parameter values including small kicking strength, which enables the quantum
evolution to be described by effective Floquet Hamiltonians. We also assume the semiclassical regime of a small
scaled Planck constant. In the case of an electric field parallel to the kicking direction, one observes, as the
electric-field strength is varied, a series of topological phase transitions, causing changes in the Chern numbers
of quasienergy (QE) bands. These transitions are due to band degeneracies which, in an initial wide range of
electric-field strengths, are shown to occur when the energy of the classical separatrix is approximately equal
to the average QE of the degenerating bands. For larger electric-field strengths, the degeneracies reflect changes
in the classical phase-space structure. In the case of an electric field not parallel to the kicking direction and
satisfying some resonance conditions, we show that the topological properties of the QE bands are characterized
by universal (electric-field independent) Chern numbers. These same numbers also characterize the QE band
spectrum in the first case, at the end of the basic electric-field interval where the topological phase transitions
take place. The two cases above are known to exhibit significantly different dynamical rates, both classical and
quantum. This is well reflected by the different topological properties in the two cases.
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I. INTRODUCTION

The topological characterization of band spectra was
initiated in the pioneering paper by Thouless, Kohmoto,
Nightingale, and den Nijs (TKNN) [1] for the static (time-
independent) system of two-dimensional (2D) Bloch electrons
perpendicular to a uniform magnetic field. TKNN showed
that in the framework of linear-response theory the Hall
conductance of this system, for “rational” magnetic fields and
with the Fermi energy in a gap, is quantized as σe2/h, where
the integer σ is the sum of the Chern numbers associated
with the occupied magnetic bands below the gap. TKNN also
derived a Diophantine equation determining the values of σ

for a particular 2D periodic potential under the assumption
that the coupling between different Landau levels can be
neglected. Later on [2,3], it was shown that the Diophantine
equation is just a result of magnetic translational invariance
and thus it holds under conditions much more general than
those assumed by TKNN, in particular also in the presence
of Landau-level coupling [4]. It was also found that a large
class of one-dimensional (1D) quasiperiodic systems exhibits
universal Chern numbers uniquely determined by the Dio-
phantine equation [5,6].

If the quantum system is not static but time periodic, one
has a Floquet system for which energy spectra are replaced
by quasienergy (QE) ones. The first works showing that QE
band spectra can have a nontrivial topological characterization
by nonzero Chern numbers considered the so-called kicked-
Harper model (KHM) as a simple but typical system [7–12].
The KHM is exactly equivalent to the system of periodically
kicked charged particles in a uniform magnetic field for some

parameter values [13]. In a semiclassical regime of the KHM,
zero or nonzero values of the Chern number of a QE band are
usually associated with QE eigenstates that are localized or
extended in phase space, respectively [7,10,12].

More recently [14–19], there has been a considerable new
interest in the topological properties of Floquet systems, es-
pecially in the context of in-gap edge states and Floquet topo-
logical insulators [14,15,18]. We mention here, in particular,
an exact quantum-transport meaning for the Chern numbers of
a class of Floquet systems depending periodically on a phase
parameter α [16–19]. For these systems, the Chern number of
a QE band determines the change in the mean momentum of a
state in the band when α is adiabatically varied by one period
(2π ) [16]. These systems, like the KHM, exhibit translational
invariance in a phase space which allows one to derive a
Diophantine equation for the Chern numbers of both these
systems [19] and the KHM [10]. This equation is analogous
to that for the TKNN static system, with the magnetic trans-
lational invariance being essentially a translational invariance
in a phase space [3].

In this paper, we study the topological properties of a
different class of Floquet systems having phase-space transla-
tional invariance. These systems are described by the general
quantum Hamiltonian

Ĥ = �̂2

2me
+ eE · r̂ + κV (x̂, t ), (1)

where me and −e are the effective mass and charge of an
electron, �̂ = p̂ + eB × r̂/(2c) is the kinetic momentum for
a uniform magnetic field B in the z direction, E is a uniform
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electric field in the (x, y) plane, and κV (x̂, t ) is a 1D potential
of strength κ , periodic in both x and t with period 2π and
T , respectively. We shall assume, in most of this paper, that
V (x̂, t ) is the “kicking” potential in Eq. (7) below, with the
time dependence given by a periodic delta function. The
system (1), with this time dependence and with E in the y
direction, is the “kicked Hall system” (KHS), introduced in its
classical version and studied in Ref. [20]. Quantum properties
of the KHS were investigated in Ref. [21]. For the KHS, the
perpendicular B and E fields lead to a Hall current in the
kicking (x) direction which, for small κ , was found to cause
a significant suppression of classical and quantum dynamical
rates [20,21] relative to these rates in the case of E = 0 [22]
(see also the end of Sec. II C). As shown in Sec. II B, the latter
case is essentially equivalent to that of nonzero E in the x
direction. Similarly, the system for Ex = 0, Ey �= 0, i.e., the
KHS, is equivalent to the general system with Ex, Ey �= 0.

Our results hold in the semiclassical regime of a small
scaled Planck constant. We shall also assume small κ , so that
the quantum evolution and QE spectra can be approximately
described by effective Floquet Hamiltonians corresponding to
static systems. We then show that the dynamical difference
above between the cases of Ey �= 0 and Ey = 0 is clearly
reflected in the topological properties in the two cases. In
the case of Ey = 0 (E in the x direction), we observe, as Ex

is varied, a series of topological phase transitions causing
changes in the Chern numbers of QE bands. These transitions
are due to band degeneracies which, in an initial wide range
of Ex, are shown to occur when the energy of the classical
separatrix is approximately equal to the average QE of the
degenerating bands. For larger Ex, the degeneracies reflect
significant changes in the classical phase-space structure. In
the case of nonzero Ey satisfying some resonance conditions,
we show that the topological properties of the QE bands for
sufficiently small κ are characterized by universal (electric-
field independent) Chern numbers. These same numbers also
characterize the QE bands in the case above of Ey = 0, at
the end of the basic interval of Ex where the topological
phase transitions take place. Our analysis uses, among other
things, a Diophantine equation for the system following from
the phase-space translational invariance of the basic evolution
operator.

The paper is organized as follows. In Sec. II, we express
the system (1) in natural variables and present the basic
evolution operator in some time period in cases of Ey �= 0 and
Ey = 0. The leading terms in an expansion of the effective
Hamiltonian for small κ are written in these cases. In Sec. III,
we present relevant facts about QE bands, Chern numbers, and
Diophantine equations for systems with translational invari-
ance in a phase space. In Sec. IV, we study the topological
properties of the system (1) in a semiclassical regime in the
cases of Ey = 0 and Ey �= 0. As Ex is varied, topological phase
transitions are shown to occur for Ey = 0 but not for nonzero
Ey satisfying some resonance conditions. In Sec. V, we ex-
amine how the topological phase transitions occurring for
Ey = 0 are manifested in the case that the small scaled Planck
constant takes irrational values or rational values different
from those assumed in Sec. IV. A summary and conclusions
are presented in Sec. VI. Several technical details are given in
the Appendices.

II. SYSTEMS IN NATURAL VARIABLES

A. Hamiltonians

Without loss of generality, we choose units such that me =
e = 1 in Eq. (1). Let us express (1) in the two natural degrees
of freedom in a magnetic field [23], given by the indepen-
dent pairs of conjugate variables (x̂c, ŷc) (coordinates of the
cyclotron-orbit center) and (û = −�̂x/ω, v̂ = �̂y/ω), where
ω = B/c is the cyclotron angular velocity. We can still choose
units such that also ω = 1; one then has the commutation
relations [23]

[û, v̂] = [x̂c, ŷc] = ih̄,
(2)

[û, x̂c] = [v̂, x̂c] = [û, ŷc] = [v̂, ŷc] = 0,

where h̄ denotes a scaled Planck constant in the above units
(such that me = e = ω = 1). From simple geometry, one has
x̂ = x̂c + v̂ and ŷ = ŷc + û. The Hamiltonian (1) then assumes
the form

Ĥ = 1
2 (û2 + v̂2) + Ex(x̂c + v̂) + Ey(ŷc + û) + κV (x̂c + v̂, t ).

(3)

We note that the first term on the right-hand side of Eq. (3) de-
scribes a harmonic oscillator in the conjugate variables (û, v̂).
Equation (3) can be simplified by defining û′ = û + Ey and
v̂′ = v̂ + Ex. After neglecting insignificant constants −E2

x /2
and −E2

y /2 and redenoting (û′, v̂′) by (û, v̂), we get

Ĥ = 1
2 (û2 + v̂2) + Exx̂c + Eyŷc + κV (x̂c − Ex + v̂, t ). (4)

From Eqs. (2) and (4) and the Heisenberg equation, one has
dx̂c/dt = i[Ĥ, x̂c]/h̄ = Ey and, for small κ � 1, dŷc/dt =
i[Ĥ, ŷc]/h̄ = −Ex + O(κ ); thus,

x̂c(t ) = x̂c(0) + Eyt, (5)

ŷc(t ) = ŷc(0) − Ext + O(κ ). (6)

Equations (5) and (6) express an approximate Hall effect for
small κ , i.e., a motion of the cyclotron orbit center (x̂c, ŷc)
with an almost constant velocity (Ey,−Ex ) perpendicular to
both B and E. However, the Hall effect for x̂c, i.e., Eq. (5), is
an exact one. In particular, for Ey = 0, x̂c is an exact constant
of the motion.

B. Basic evolution operator

For the sake of simplicity and definiteness, we shall make
from now on some assumptions about the system (4), besides
the assumption of small κ . First, we assume that the potential
V (x̂, t ) has the simple periodic dependence −cos(x̂) on x̂ and
that its periodic dependence on t has a very broad frequency
spectrum, so that this dependence can be approximated by a
periodic delta function. Thus, V (x̂, t ) is a “kicking” potential:

V (x̂, t ) = − cos(x̂)
∞∑

s=−∞
δ(t − sT ). (7)

Second, we assume resonance conditions satisfied by the
parameters γ = ωT = T and η = EyT :

γ = ωT = π

2
, η = EyT = 2π

w

�
, (8)

where (w, �) are coprime integers.
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The evolution of a quantum state |�(t )〉 in one time period
T , say from t = −0 (i.e., t infinitesimally close from the left to
t = 0) to t = T − 0, is determined by the evolution operator
Û , Û |�(−0)〉 = |�(T − 0)〉. An expression for Û is given
in Appendix A [see Eq. (A1)]; this expression generalizes
that in special cases considered in previous works [21,22]
(see also below). Under the resonance condition γ = π/2 in
Eq. (8), one cyclotron period equals 4T , so that this resonance
is realized in four kicking periods. The resonance condition on
η in Eq. (8) means that the variable x̂c(t ) in Eq. (5) will cover
an integer number w of 2π spatial periods of the potential
(7) after a minimal time �T . Thus, the two resonances will
both be realized after a minimal time rT , where r = lcm(4, �),
the least common multiple of (4, �). The basic evolution
operator is then Û r . As shown in Appendix A, one has, up
to nonrelevant terms,

Û r =
r∏

j=1

exp[iμ cos(xc − Ex − jη + v̂ j )]. (9)

Here μ = κ/h̄, xc is an arbitrary constant (an eigenvalue
of x̂c), and the factors in the product are arranged from
left to right in order of increasing j after defining v̂1 = û,
v̂2 = −v̂, v̂3 = −û, and v̂4 = v̂, with v̂ j being periodic in j
with period 4. In particular, for Ey = 0 (η = 0 = 2π0/1) with
r = 4, Eq. (9) reduces to

Û 4 = exp[iμ cos(xc − Ex + û)] exp[iμ cos(xc − Ex − v̂)]

× exp[iμ cos(xc − Ex − û)] exp[iμ cos(xc − Ex + v̂)].

(10)

Since xc appears just as an additive constant to Ex in Eqs. (9)
and (10), the case of Ex = 0 for all xc is clearly equivalent to
the case of xc = 0 for all Ex. Thus, the latter case for Ey = 0 is
essentially the same as that of the system without electric field
(E = 0) for all xc. The quantum-dynamical properties of the
latter system were studied in Ref. [22]. We shall be mainly
interested in the dependence on Ex, so that we shall choose
from now on xc = 0 and consider all Ex.

C. Effective Hamiltonians and dynamics

Being unitary, the evolution operator (9) can be formally
expressed as exp[−iμĤ (e)], where Ĥ (e) is a Hermitian op-
erator called the effective Hamiltonian. We present here the
relevant results about Ĥ (e). The main lines of the derivation
of these results, similar to those in Refs. [21,22], are given
in Appendix A. In general, Ĥ (e) can be formally expanded as
follows:

Ĥ (e)(û, v̂) =
∞∑
ı=0

εıĤ (e)
ı (û, v̂), (11)

where

ε = μ sin(π h̄s) = κ

2

sin(π h̄s)

π h̄s
(12)

and h̄s = h̄/(2π ). Like the evolution operators (9) and
(10), the effective Hamiltonian (11) and all its coefficients
Ĥ (e)

ı (û, v̂) are translationally invariant in the (u, v) phase
space with a 2π × 2π unit cell. Let us write the first two terms

in the expansion (11) in different cases, choosing xc = 0 as
explained at the end of Sec. II B. In the case of the operator
(10) (η = 0, r = 4), one has

Ĥ (e)
0 (û, v̂) = −2 cos(Ex )[cos(û) + cos(v̂)], (13)

Ĥ (e)
1 (û, v̂) = − cos(û + v̂) + cos(2Ex ) cos(û − v̂)

− sin(2Ex ) sin(û + v̂). (14)

In the case of the operator (9), we shall restrict our attention
to generic values of r = lcm(4, �) > 8, i.e., the special values
of r = 4, 8 will not be considered. We find, for r > 8,

Ĥ (e)
0 (û, v̂) = 0, (15)

Ĥ (e)
1 (û, v̂) = − r

8 cos(η)
[cos(û + v̂) + cos(û − v̂)]. (16)

One should note that, unlike Eqs. (13) and (14), Eqs. (15) and
(16) are completely independent of Ex. We also remark that
for Ex = π/2 Eqs. (13) and (14) coincide, up to a constant
factor, with Eqs. (15) and (16). In Appendix B, we give a
direct derivation of the classical analogs of Eqs. (13) and (14)
[see Eq. (B5), which includes also the second-order classical
term H (e)

2 (u, v)].
The results above have significant implications for the

dynamics of the system for small κ . In the case of η �= 0
and r = lcm(4, �) > 8, with Eqs. (15) and (16), the leading
term in the effective Hamiltonian (11) is of order ε or κ [see
Eq. (12)]. For η = 0, on the other hand, with Eqs. (13) and
(14), the leading term is of order O(1). As a consequence,
for η �= 0, the quantum evolution of expectation values is
much slower than that in the case of η = 0 [21]. This is a
quantum analog of the “superweak-chaos” phenomenon in the
corresponding classical systems [20]: For η �= 0, the chaotic
diffusion is much slower than that for η = 0.

III. QE BANDS AND CHERN NUMBERS

We present here relevant known facts [10,21,22] about the
exact QE bands and eigenstates of phase-space translationally
invariant evolution operators, such as (9), and the associated
topological Chern numbers. QEs are the phases E determining
the eigenvalues exp(−iE ) of the basic evolution operator (9):
Û r |�E 〉 = exp(−iE )|�E 〉. Alternatively, E/μ can be viewed
as an “energy” eigenvalue of the static effective Hamiltonian
(11). Clearly, Û r or Ĥ (e)(û, v̂) commute with translations
by 2π in û and v̂. Since [û, v̂] = ih̄ = 2π ih̄s, one has û =
2π ih̄sd/dv and v̂ = −2π ih̄sd/du, so that the translations
above are given by the operators D̂0 = exp(iv̂/h̄s) and D̂1 =
exp(−iû/h̄s). In general, the latter operators do not commute.
However, for rational h̄s = q/p, where q and p are coprime
integers, the operators

D̂1 = exp(−iû/h̄s), D̂2 = D̂q
0 = exp(ipv̂) (17)

commute and, of course, they commute also with Û r or
Ĥ (e)(û, v̂). The simultaneous eigenstates of D̂1, D̂2, and
Û r or Ĥ (e)(û, v̂) in the v representation can be written as
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[10,21,22,24]

〈v|�b,k〉 =
p−1∑
d=0

φb(d; k)
∞∑

l=−∞
eilk1/q+id (2π l/p−k2 )

× δ(v − k2 + 2π l/p). (18)

Here the index b = 1, . . . , p labels p QE bands Eb(k), where
k = (k1, k2) is a Bloch wave vector ranging in the Brillouin
zone (BZ)

0 � k1 < 2πq/p, 0 � k2 < 2π/p, (19)

and Vb(k) = {φb(d; k)}p−1
d=0 (b = 1, . . . , p) are p independent

column vectors of coefficients. These are eigenvectors of a
p×p unitary matrix M̂(k) with eigenvalues exp[−iEb(k)].
The latter matrix is periodic in k in a second Brillouin zone
(BZ1)

0 � k1 < 2π, 0 � k2 < 2π/p. (20)

Let us assume isolated or nondegenerate QE bands, i.e.,
the p QE eigenvalues at any fixed k are all different,
exp[−iEb(k)] �= exp[−iEb′ (k)] for b �= b′. Then, the Bloch
eigenstates (18) must be periodic in the BZ (19) up to phase
factors that may depend on b and on k. Because of the
single valuedness of |�b,k〉 in k, the total phase change
of |�b,k〉 when going around the boundary of the BZ (19)
counterclockwise must be an integer multiple of 2π . This
integer, which we denote by −σb, is a Chern integer, a
topological characteristic of band b. Similarly, the total phase
change of Vb(k) when going around the boundary of BZ1 (20)
counterclockwise must be 2πμb, where μb is a second Chern
integer. Assuming Vb(k) to be normalized, one can write

μb = 1

2π i

∮
BZ1

V†
b(k)

dVb(k)

dk
· dk

=
∫∫

BZ1
dk

∑
b′ �=b

Im

⎧⎨
⎩

V†
b(k) dM̂†(k)

dk1
Vb′V†

b′ (k) dM̂(k)
dk2

Vb

π |exp[−iEb′ (k)] − exp[−iEb(k)|2

⎫⎬
⎭,

(21)

where Im denotes the imaginary part and M̂(k) is the p × p
matrix defined above; the sum over b′ �= b in the second line
of Eq. (21) (following from the first line by use of Stoke’s
theorem) is Berry’s curvature.

The two integers σb and μb are connected by the Diophan-
tine equation

pσb + qμb = 1. (22)

Derivations of Eq. (22) for both static and Floquet systems
are based on phase-space translational invariance and can be
found in Refs. [2,3,10,19,25] (see, in particular, the recent de-
tailed derivations in Refs. [19,25]). After μb is calculated from
Eq. (21), σb is determined from Eq. (22). Being associated
with the eigenvectors Vb(k) of a periodic matrix M̂(k), the
Chern numbers μb satisfy the sum rule

∑p
b=1 μb = 0 [26,27].

The latter sum and Eq. (22) imply then that

p∑
b=1

σb = 1. (23)

The Chern number σb is a topological invariant that can
change only at band degeneracies. In consistency with
Eqs. (22) and (23), the Chern numbers of two neighboring
bands b and b + 1, which degenerate at some parameter
values, can change only as follows:

σb → σb − lq, σb+1 → σb+1 + lq, (24)

where l is some integer; clearly, σb + σb+1 is preserved un-
der the changes (24). Such changes are topological phase
transitions.

IV. TOPOLOGICAL PROPERTIES OF QE BANDS AND
PHASE TRANSITIONS IN A SEMICLASSICAL REGIME

In this section, we study the quantum topological proper-
ties of the QE bands of the system (1) and possible topological
phase transitions occurring under variation of Ex. We shall
focus on a semiclassical regime of small rational h̄s = q/p in
order to establish a useful correspondence between quantum
and classical features. This correspondence can be established
in the simplest way in the “pure” case [28] of q = 1, i.e., h̄s =
1/p, with sufficiently large p. In fact, while the operators (9)
and (10) appear to exhibit a 2π × 2π unit cell of periodicity
in the (u, v) phase space, like their classical counterparts (see
Appendix B), the relevant commuting translations (17) define
a 2πq × 2π unit cell. The latter unit cell coincides with the
classical one only for q = 1. We shall therefore assume h̄s =
1/p and also odd p, since for even p there may occur band
degeneracies for many parameter values. In the next section,
we shall explain how our results can be generalized to q > 1.

A. Case of η = 0, first Ex subinterval

We consider here the case of η = 0, with the evolution op-
erator given by Eq. (10) (xc = 0). Since this operator is invari-
ant under the two transformations Ex → Ex + π, û → û +
π, v̂ → v̂ + π and Ex → −Ex, û → −û, v̂ → −v̂, the QE
spectrum is periodic in Ex with period π and has also inversion
symmetry around Ex = 0. Therefore, one can restrict Ex to
the interval 0 � Ex � π/2. There are two basically different
subintervals of this interval to be examined. The first one is
0 � Ex � 0.982π/2. Figure 1 shows, in three successive parts
of this subinterval, the QE bands and their Chern numbers
σb, calculated as mentioned in Sec. III, for h̄s = 1/11 and a
small value of κ . We see that all bands have σb = 0 with the
exception of one band with σb = 1. The latter band is the cen-
tral one (b = 6) for Ex � 0.918π/2 [Figs. 1(a) and 1(b)]. This
is consistent with the fact that for sufficiently small Ex and
κ the effective Hamiltonian (11) for η = 0 is approximately
given by Eq. (13), which is a Harper Hamiltonian [29]. The
Chern numbers for this Hamiltonian were derived by TKNN
[1] in the context of Bloch electrons in a magnetic field: For
h̄s = q/p (corresponding to p/q magnetic flux quanta per unit
cell), the total Chern number of the lowest b bands, σ (b) =∑b

b′=1 σb′ , is uniquely determined by the Diophantine equa-
tion [corresponding to the sum of Eq. (22) over the b bands]

pσ (b) + qμ(b) = b, (25)

where the integer μ(b) = ∑b
b′=1 μb′ satisfies |μ(b)| � p/2

[1], except for b = p/2 in the case of p even, where there
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FIG. 1. QE bands Eb(k) vs 2Ex/π for the evolution operator (10)
(xc = 0), with k covering the BZ (20), in the case of κ ≈ 0.057
and h̄s = 1/11 (μ = κ/h̄ = 0.1); the yellow (light gray) and pink
(gray) regions indicate bands with Chern number σb = 0 and 1,
respectively. Three domains of 2Ex/π are shown. (a) 0 � 2Ex/π <

0.9. Here all the 11 bands (labeled by b = 1, . . . , 11 in order from
bottom to top) have σb = 0, except for the central band (b = 6) with
σb = 1. (b) 0.9 � 2Ex/π < 0.978, showing bands b = 5, . . . , 11.
Here two band degeneracies (indicated by vertical black segments)
occur between bands b and b + 1 for b = 6 (at 2Ex/π ≈ 0.9186) and
b = 7 (at 2Ex/π ≈ 0.9696). At each degeneracy, the Chern numbers
(σb, σb+1) change from (1,0) to (0,1). (c) 0.978 � 2Ex/π < 0.982,
showing bands b = 8, . . . , 11. Here three band degeneracies occur
between bands b and b + 1 for b = 8 (at 2Ex/π ≈ 0.9783), b = 9
(at 2Ex/π ≈ 0.981), and b = 10 (at 2Ex/π ≈ 0.9817). The Chern
numbers change as in (b). The red line in all plots is E = μH (e)

sep ,
where H (e)

sep is the classical separatrix energy (28).

is no gap. For q = 1 and p odd, Eq. (25) gives σ (b) = 0
for b � (p − 1)/2 and σ (b) = 1 for b > (p − 1)/2, in
accordance with the values above of σb for Ex � 0.918π/2.

As Ex is increased, however, the effective Hamiltonian
(11) for η = 0 [with Eqs. (13) and (14)] starts to deviate
considerably from the Harper Hamiltonian. As we see in
Figs. 1(b) and 1(c) for Ex � 0.9186π/2, there occur five
band degeneracies at some k between bands b and b + 1,
b = 6, . . . , 10, at the values of Ex indicated in the caption
of Fig. 1. At each degeneracy, the Chern numbers (σb, σb+1)
change from (1,0) to (0,1) (topological phase transitions);
these changes of σb correspond to l = 1 in Eq. (24) for q = 1.
The value of σb = 1 is then transferred from the central band
b = 6 to the highest band, b = 11.

To understand these phenomena, we use the approximation
of the system by its effective Hamiltonian, Eqs. (11)–(14),
which reduces in the classical limit of h̄ → 0 to

H (e)(u, v) ≈ −2 cos(Ex )[(cos(u) + cos(v)]

− κ

2
[cos(u + v) + cos(2Ex ) cos(u − v)

− sin(2Ex ) sin(u + v)]. (26)

We plot in Fig. 2, for the same values of (κ, h̄s) as in Fig. 1 and
for some representative values of Ex, the closed orbits of the
classical system (26) satisfying the semiclassical quantization
conditions∮

v du = 2π h̄(l + 1/2) = 4π2h̄s(l + 1/2) (27)

for integer l . There are precisely p − 1 = 10 closed orbits
satisfying Eq. (27), divided into two groups (see Fig. 2). One
group of orbits encircles the stable fixed point at (u, v) =
(0, 0) while the second group encircles the stable fixed point
at (u, v) = (π, π ). The two groups are separated by the sep-
aratrix orbit connecting the unstable fixed points at (u, v) =
(0, π ) and (u, v) = (π, 0) [as well as the equivalent points
(u, v) = (2π, π ) and (u, v) = (π, 2π ) in the 2π × 2π unit
cell]. Together with the separatrix, one has p = 11 orbits.
We also plot in Fig. 2 the p exact QE bands and the QE
semiclassical levels E = μH (e) of all these orbits, where H (e)

is the classical energy (26) under condition (27), except for the
separatrix for which no semiclassical condition is imposed.
The QE level corresponding to the separatrix is E = μH (e)

sep,
where H (e)

sep is just the classical separatrix energy, calculated at
the end of Appendix B:

H (e)
sep = κ sin2(Ex ) + O(κ3). (28)

The QE level E = μH (e)
sep is plotted in Fig. 1 versus Ex. We see

from Figs. 1 and 2 that the separatrix always corresponds to
the QE band with σb = 1 while the closed orbits correspond
to the QE bands with σb = 0. This could be expected from
the fact that the separatrix orbit is not contractible to a point,
since it extends over all a torus, i.e., the 2π × 2π unit cell
of periodicity, in both the u and v directions. On the other
hand, all other orbits are localized inside the unit cell and are
therefore contractible to a point. This topological difference
between the separatrix and the other orbits is expressed by the
nonzero value of σb = 1 for the separatrix band, in contrast
with σb = 0 for the other bands. We see from Fig. 1 that μH (e)

sep
varies over the QE spectrum from the central band b = (p +
1)/2 = 6 to the highest band b = p = 11. Also, when μH (e)

sep is
in between bands b and b + 1, b � 6, it is always close to the
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FIG. 2. Left diagrams: QE bands of the evolution operator (10)
for xc = 0 [yellow (light gray) regions] and their semiclassical-level
approximations (blue dotted lines) for κ ≈ 0.057, h̄s = 1/11, and
(a) Ex = 0, (b) Ex = 0.96π/2 [after the first degeneracy in Fig. 1(b)],
and (c) Ex = 0.975π/2 [after the second degeneracy in Fig. 1(b)].
The red solid line is E = μH (e)

sep , where H (e)
sep is the classical separatrix

energy (28). Right diagrams: Classical phase spaces of the effective
Hamiltonian (26) for the same parameter values as above. The
red solid line is the separatrix and the blue dotted lines are the
classical orbits corresponding to the levels in the left diagrams. As
Ex is increased, the area of the separatrix region and the number of
orbits inside this region (corresponding to the bands/levels above the
separatrix band) decrease.

degeneracy point between these two bands. All this explains
the (p − 1)/2 = 5 topological phase transitions occurring in
the Ex domains of Fig. 1.

B. Case of η = 0, second Ex subinterval

We now examine the continuation of the QE bands above
to the subinterval 0.982 < 2Ex/π � 1, shown again in three
parts in Fig. 3. This subinterval is basically different from that

0.982 0.984 0.986 0.988 0.99

2

3
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6

E

×10-3

(a)

0.99 0.992 0.994 0.996 0.998
-1

0

1

2

3

E

×10-3

(b)

0.9999 0.999999

-2

-1

0

E

×10-3

(c)

1

2Ex/π

-4.26

-4.22

×10-3

(d)

FIG. 3. Continuation of Fig. 1 to the subinterval
0.982 < 2Ex/π � 1; here there appear also bands with Chern
number σb = −1 (black regions). (a) 0.982 < 2Ex/π � 0.99,
showing bands b = 6, . . . , 11. Band degeneracies occur at
2Ex/π ≈ 0.9828 (bands b = 9, 10) and at 2Ex/π ≈ 0.9858
(bands b = 7, 8). (b) 0.99 < 2Ex/π � 0.9999, showing
bands b = 4, . . . , 9. Degeneracies between bands b = 5, 6
occur at 2Ex/π ≈ 0.9901, 0.9906, 0.9943, 0.9957, 0.9991.
(c) 0.9999 < 2Ex/π � 0.999999, showing bands b = 3, . . . , 7.
A degeneracy between bands b = 3, 4 occurs at 2Ex/π ≈ 0.99996.
(d) 0.999999 < 2Ex/π � 1, showing bands b = 1, 2 which
degenerate at 2Ex/π ≈ 0.9999997.

considered in Sec. IV A (Fig. 1) in that a significant change in
the classical phase-space structure occurs for 2Ex/π � 0.982
(see details in Appendix B 3). In particular, the form of the
separatrix completely changes [compare the separatrices in
Figs. 2 (right diagrams), 7(a), and 7(b) with those in Figs. 7(g)

045107-6



FLOQUET SYSTEMS WITH HALL EFFECT: TOPOLOGICAL … PHYSICAL REVIEW B 100, 045107 (2019)

and 7(h)]. The metamorphosis in the separatrix shape indeed
occurs near 2Ex/π ≈ 0.982 [see Figs. 7(c), 7(d) 7(e), and
7(f)].

Figure 3(a) shows that, due to a degeneracy of bands b = 9
and 10 at 2Ex/π ≈ 0.9828, (σ9, σ10) change from (0,0) to
(1,−1). As Ex is increased, band b = 10 (σ10 = −1) ap-
proaches band b = 11 (σ11 = 1) and these two bands then
form a two-band cluster with total Chern number σ10,11 = 0.
This cluster persists up to the final value of 2Exπ = 1.
Similarly, after the degeneracy of bands b = 7 and 8 at
2Ex/π ≈ 0.9858, the band b = 8 (σ8 = −1) approaches band
b = 9 (σ9 = 1), forming a two-band cluster with σ8,9 = 0 [see
Figs. 3(a) and 3(b)], which again persists up to 2Exπ = 1.
Other two-band clusters, corresponding to the two pairs of
bands (b, b + 1) (b = 1, 3) with (σb = 1, σb+1 = −1), are
formed for 2Exπ very close to 1 [see Figs. 3(c) and 3(d)].
Finally, consider the three bands b = 5, 6, 7. After the last
(third) degeneracy in Fig. 3(b), at 2Ex/π ≈ 0.9991, (σ5, σ6)
change from (0,0) to (1,−1). As shown in Figs. 3(b) and 3(c),
these two bands remain relatively close to band b = 7 with
σ7 = 1 up to 2Exπ = 1. The three bands b = 5, 6, 7 then form
a three-band cluster with total Chern number σ5,6,7 = 1.

The classical-quantum correspondence in the case of band
clusters is clearly exhibited using the concept of band Husimi
distribution (BHD) [12]. The BHD of a cluster of N adjacent
bands, b, b + 1, . . . , b + N − 1, is defined in the (u, v) phase
space by

Pb,N (u, v) = 1

N |BZ|
b+N−1∑

b′=b

∫
dk|〈u, v|�b′,k〉|2, (29)

where |BZ| = 4π2q/p2 is the area of the BZ (19) and
〈u, v|�b,k〉 is the coherent-state representation of the QE band
eigenstates (18).

Examples of BHDs for some of the band clusters
considered above are shown in Fig. 4 for the maximal value
of 2Ex/π = 1, where we plot also the classical separatrix
which is clearly very different from the separatrix in the first
Ex subinterval in Fig. 2. We see from Fig. 4 that the BHD
for the two-band cluster of b = 10, 11 [Fig. 4(a)] and the
two-band cluster of b = 1, 2 [Fig. 4(c)] is concentrated on
localized states inside or outside the separatrix regions. This
is consistent with the fact that the two two-band clusters
are both associated with a total Chern number equal to zero
(see above). On the other hand, the BHD for the three-band
cluster of b = 5, 6, 7 [Fig. 4(b)] is concentrated on the
separatrix, mainly on the four hyperbolic fixed points. This
is consistent with the nonzero total Chern number σ5,6,7 = 1
for this cluster. The formation of band clusters with total
Chern numbers as above, for 2Ex/π approaching 1, will be
understood in the next section.

C. Case of η �= 0

We now consider the case of electric fields having a
nonzero component Ey satisfying the resonance conditions (8)
with r = lcm(4, �) > 8. In this case, the lowest terms of the
effective Hamiltonian are given by Eqs. (15) and (16). These
terms coincide, up to a constant factor, with those for η = 0
and Ex = π/2 [see Eqs. (13) and (14)], a case considered in
Sec. IV B.

0

2π

v

(a)

0

2π

v

(b)

0 2π
u

0

2π

v

(c)

FIG. 4. Density plots of BHDs (29) for some band clusters con-
sidered in the text (darker regions correspond to higher values of the
BHD) at the maximal value of 2Ex/π = 1 (see also Fig. 3). (a) Two-
band cluster of b = 10, 11. (b) Three-band cluster of b = 5, 6, 7.
(c) Two-band cluster of b = 1, 2. The red solid lines in all plots define
the classical separatrix for 2Ex/π = 1 [see also Fig. 7(h)].

Figure 5 shows the QE bands of the exact evolution op-
erator (9) as functions of 2Ex/π for η/(2π ) = 2/3 (r = 12)
and several values of μ = κ/h̄ and h̄s. As expected from
Eqs. (15) and (16), that are independent of Ex, the bands
exhibit approximately this independence. These bands also
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FIG. 5. QE bands as functions of 2Ex/π for η/(2π ) = 2/3 and
(a) μ = 0.04, h̄s = 1/5; (b) μ = 0.005, h̄s = 1/7; and (c) μ = 0.07,
h̄s = 1/6. The Chern numbers of the bands are indicated by the
colors as in Figs. 1 and 3. In all cases, one can see three band clusters,
with the central one consisting of one band (a), three bands (b), and
two bands (c).

form three clusters in all the cases of Fig. 5. We now explain
the reason for the formation of these clusters, as well as those
for η = 0 and Ex close to π/2 in Sec. IV B.

To first order in the expansion (11), with Eqs. (15) and (16),
the effective Hamiltonian is

Ĥ (e)(û, v̂) ≈ − εr

8 cos(η)
[cos(û′) + cos(v̂′)], (30)

after defining the new quantum variables û′ = û + v̂ and
v̂′ = û − v̂. These variables satisfy [û′, v̂′] = 2π ih̄′

s, where
h̄′

s = 2h̄s. The meaning of the latter relation is as follows.
The Hamiltonian (30) is 2π periodic in both variables (û′, v̂′).
This periodicity corresponds, in the original variables (û, v̂),
to a periodicity with a square unit cell defined by the vectors
π (1, 1) and π (−1, 1). The area of this unit cell is 2π2, half of
the unit-cell area 4π2 of the general Hamiltonian (11). Thus,
the effective Planck constant h̄′

s is twice the ordinary one h̄s.
The approximate periodicity with the new unit cell above is
evident from Fig. 4. Also, the classical separatrix in these
figures corresponds to the “energy surface” H (e)(u, v) = 0
[20], where H (e)(u, v) is the classical limit h̄s → 0 [with
ε → κ/2 in Eq. (12)] of the Hamiltonian (30). In the original
variables,

H (e)(u, v) ≈ − κr

8 cos(η)
cos(u) cos(v), (31)

so that H (e)(u, v) = 0 corresponds to the four lines u = π/2,

3π/2 and v = π/2, 3π/2. These lines define indeed a first
approximation of the separatrix in Fig. 4.

Now, the quantum Hamiltonian (30) is the Harper one
[29], the energy bands of which have Chern numbers uniquely
determined by the TKNN Eq. (25). Specifically, in the case of
h̄s = 1/p with p odd, one has h̄′

s = 2h̄s = q′/p′ with q′ = 2
and p′ = p. Using Eq. (25) for the primed quantities, we
get for q′ = 2 that σ ′

b = σ ′(b) − σ ′(b − 1) can take only the
values σ ′

b = ±1. These are, indeed, the values of the Chern
numbers for 2Ex/π = 1 in Fig. 3.

Next, it is known that for q′ > 1 (in particular, q′ = 2)
the energy bands of Harper-like Hamiltonians generally form
band clusters [28,30]. Consider the case of q′/p′ very close to
q̄/p̄, p′ 
 p̄. Let σ̄b be the Chern numbers of the p̄ bands for
h̄s = q̄/p̄. From the results in Ref. [30], a band b for h̄s = q̄/p̄
will “split” into a cluster of Nb bands for h̄s = q′/p′, where

Nb = p′σ̄b + q′μ̄b, (32)

and μ̄b is the integer satisfying the Diophantine equation
p̄σ̄b + q̄μ̄b = 1. Also, the total Chern number of the cluster
is equal to σ̄b.

Let us apply these results to the case above of h̄′
s = 2/p′,

choosing q̄/p̄ = 1/p̄, where p′ and p̄ are odd integers. For
h̄s = 1/p̄, the Chern numbers of the p̄ bands are zero except
that of the central band, b = ( p̄ + 1)/2, with σ̄b = 1 (see
first paragraph of Sec. IV A). Then, μ̄b = 1 except for b =
( p̄ + 1)/2, with μ̄b = 1 − p̄. This implies, from Eq. (32) with
q′ = 2, that each σ̄b = 0 band will split into a cluster of two
bands for h̄s = h̄′

s; these bands must have Chern numbers
σ ′

b = 1,−1 since these are the only possible values of σ ′
b

for q′ = 2 (see above) and since the total Chern number of
the cluster must be equal to σ̄b = 0. Similarly, we find that
the central band b = ( p̄ + 1)/2, with σ̄b = 1, will split into a
cluster of Nb = p′ + 2 − 2 p̄ with total Chern number equal to
1; thus, in this cluster there must be (p′ + 3)/2 − p̄ bands with
σ ′

b = 1 and (p′ + 1)/2 − p̄ bands with σ ′
b = −1. For example,

in the case of p = p′ = 11 with h̄′
s = 2/11, we have p̄ = 5, so

that the central cluster will consist of Nb = 3 bands, two with
σ ′

b = 1 and one with σ ′
b = −1. This is in perfect accordance

with the numerical observations in Sec. IV B. In the same way,
one can verify that the band clusters and Chern numbers for
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p = 5 and 7 (both with p̄ = 3 band clusters) are as shown in
Figs. 5(a) and 5(b).

Finally, consider the case of p even, p = 2 p̄, and assume
for simplicity that p̄ is odd [as in the example of Fig. 5(c), with
p = 6 and p̄ = 3]. Then, h̄′

s = 1/p̄, so that the spectrum of the
Harper Hamiltonian (30) will consist of p̄ bands, with the cen-
tral band b = ( p̄ + 1)/2 having σ̄b = 1 and μ̄b = 1 − p̄; all
other bands have σ̄b = 0 and μ̄b = 1. This and Eq. (32) (with
p′ = p and q′ = 2) imply that each band b will correspond, for
h̄s = 1/p, to a cluster of two bands, the total Chern number of
which is equal to σ̄b, in accordance with Fig. 5(c). However,
the Chern numbers of the two bands cannot be determined
in this case from general considerations. In fact, they may
assume general values summing to σ̄b, as shown in Fig. 5(c).

V. CASE OF η = 0 FOR q > 1 AND
THE IRRATIONAL LIMIT

In Secs. IV A and IV B, we considered the case of η =
0 for h̄s = 1/p (q = 1) and we have shown that topologi-
cal phase transitions occur as Ex is varied. Here we shall
consider the case of η = 0 for h̄s = q/p (q > 1), including
the irrational limit of q, p → ∞. We shall examine how
the topological phase transitions occurring for h̄s = 1/p are
manifested in the case of rational or irrational values of h̄s

that are sufficiently close to 1/p.
We start from the Diophantine equation (25) for the total

Chern number σ (b) of the lowest b bands and divide this
equation by p. We then take the limit of q, p → ∞ of
irrational h̄s, choosing the lowest b bands (b → ∞) to be
those below some fixed gap. Denoting b/p in this limit by
ζ , 0 < ζ < 1, we obtain

σ + h̄sμ = ζ , (33)

where σ = σ (b → ∞) and μ = μ(b → ∞) are integers, so
that ζ must be irrational like h̄s. Clearly, Eq. (33) can have
only one solution (σ,μ) at fixed ζ (see note [31]), where ζ

characterizes the fixed gap. This means that if this gap closes
and reopens under variation of some parameters, the value
of σ will not change, i.e., no topological phase transitions
can occur for irrational h̄s. It is plausible to assume that this
will hold to some extent also for rational values of h̄s = q/p
(q > 1) that are sufficiently close to some irrational h̄s. We
show below that this is indeed the case already for q = 2 and
we explain how this is compatible with the topological phase
transitions occurring for h̄s = 1/p.

Consider the example of the irrational value h̄s = 1/(5 +
�) with � = (

√
5 − 1)/2 being the inverse of the golden mean.

Expressing � as a continued fraction, one gets the series of
rational approximants of h̄s: 1/5, 2/11, 3/17, . . .. Figure 6(a)
shows QE bands for h̄s = 1/5 and μ = 0.1 in an interval of
2Ex/π where the first band degeneracy occurs, between bands
b = 3 and 4 at 2Ex/π ≈ 0.9135. As a consequence of this
degeneracy, the Chern number of band b = 3 (b = 4) changes
from 1 (0) to 0 (1).

Figure 6(b) shows QE bands for h̄s = 2/11 and μ = 0.1
in the same interval of 2Ex/π and in the same QE range
as in Fig. 6(a). There are 11 bands which “split” from the
five bands for h̄s = 1/5. The 11 bands have alternating Chern
numbers σb = (−1)b+1, b = 1, . . . , 11. Now, one should ob-
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FIG. 6. QE bands as functions of 2Ex/π for μ = 0.1 and (a) h̄s =
1/5 and (b) h̄s = 2/11. The Chern numbers of the bands are indicated
by the colors as in Figs. 1 and 3. One can see in (b) five band
clusters (specified in the text), where band b = 7 (indicated by a
small vertical arrow) is associated with the third cluster for small
2Ex/π but it is more naturally associated with the fourth cluster for
sufficiently large 2Ex/π .

serve the following. For small 2Ex/π ≈ 0.84, the 11 bands
can be grouped into five clusters, C1, C2, C3, C4, and C5,
formed by bands b = (1, 2), (3,4), (5,6,7), (8,9), and (10,11),
respectively. The cluster Cj , j = 1, . . . , 5 splits from band
j for h̄s = 1/5 and its total Chern number is equal to the
Chern number of this band j. Next, one can see from Fig. 6(b)
that as 2Ex/π increases band b = 7 in cluster C3 approaches
cluster C4 and is then naturally associated to C4 rather than
to C3. Thus, the total Chern number of C3 (C4) changes from
1 (0) to 0 (1), in accordance with the changes above for the
corresponding bands in the case of h̄s = 1/5. Unlike the latter
case, however, the changes of the Chern numbers of clusters
occur not due to degeneracies between clusters but due to the
transfer of a band from one cluster to a neighboring one.

We found that the latter scenario holds for almost all Ex

except for small Ex intervals [E (1)
x , E (2)

x ] where the Chern
numbers of two clusters change due to a degeneracy between
them at Ex = E (1)

x but this change is canceled due to a de-
generacy at Ex = E (2)

x . Also, degeneracies between bands in
the same cluster can occur but the changes in the band Chern
numbers (which keep fixed the total Chern number of the clus-
ter) usually occur only in small Ex intervals. These changes
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within a cluster can be again explained, in the framework of
the next rational approximant (h̄s = 3/17), by the transfer of
a band from one cluster to another without any degeneracy
between the two clusters. In this way, one can understand the
absence of degeneracies and topological phase transitions in
the irrational limit, as shown above.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have performed a first study of the
topological properties of a class of Floquet systems basically
different from other such systems considered in previous
works. This class of systems are described by the quantum
Hamiltonian (1) with the time-periodic kicking potential (7)
and under the resonance conditions (8). The unique feature
of these systems is the presence of a Hall effect due to
perpendicular magnetic (B) and electric (E) fields, where B
is perpendicular also to the kicking (x) direction and E is in
the (x, y) plane. These systems are a Floquet version of the
static systems in Refs. [32,33], in which the time-periodic
1D potential in Eq. (1) is replaced by a time-independent 2D
periodic potential. The finite value of E in these static systems
replaces the infinitesimal one in the linear-response theory
used by TKNN [1]. However, while the quantum dynamics of
these systems was extensively investigated in Refs. [32,33],
their topological properties were not studied.

In the case that E has a nonzero component Ey [η �= 0 in
Eq. (8)], there is a nonzero component of the Hall velocity in
the kicking direction. It is then known [20,21] that the latter
component causes, for small kicking strength κ , a significant
reduction of classical and quantum dynamical rates relative
to the case of Ey = 0 or η = 0. This is because for η �= 0 the
leading term in the effective-Hamiltonian expansion (11) is of
order ε or κ while for η = 0 the leading term is of order O(1)
(see Sec. II C).

We have shown that this dynamical difference between the
cases of η = 0 and η �= 0 for small κ has a clear manifestation
in the topological properties of the system in the two cases.
For η = 0, the dependence of the leading term (13) on Ex

causes the QE bands to be Ex dependent and thus to exhibit
topological phase transitions as Ex is varied (see Figs. 1 and
3). As explained at the end of Sec. II B, this case of η = 0
(Ey = 0) is essentially the same as that of the system without
electric field (E = 0) for all xc; the quantum-dynamical prop-
erties of the latter system were studied in Ref. [22]. Thus, the
topological properties and phase transitions for η = 0 as Ex is
varied are practically those of the E = 0 system as functions
of xc.

On the other hand, the system for η �= 0 and r =
lcm(4, �) > 8 [with � defined by Eq. (8)] is topologically
different from any Floquet system considered until now. This
is because in this case the leading term (16) does not depend
on Ex, so that for sufficiently small κ the QE bands are almost
independent of Ex and no topological phase transitions occur
by varying Ex (see Fig. 5). The QE bands are then associated
with universal values σb = ±1 of the Chern numbers [see
Figs. 5(a) and 5(b)], as determined from the Diophantine
equations. These Chern numbers are also exhibited in the case
of η = 0 for Ex = π/2 since in this case the leading terms

(13) and (14) coincide, up to a constant factor, with the terms
(15) and (16).

Since the system (1) with the potential (7) is essentially
equivalent to a modulated kicked harmonic oscillator [see
Eq. (4) with Eq. (5)], this system may be experimentally
realizable as it was done for the ordinary quantum kicked
harmonic oscillator using either atom-optics methods with
Bose-Einstein condensates [34] or paraxial-optics methods
with light beams [35].

In future works, we plan to study the topological phase
transitions in our system as κ is increased. These transitions
are expected to occur also in the case of η �= 0. We also plan to
investigate possible quantum-transport meanings of the Chern
numbers in different cases.

APPENDIX A

We present here the main lines of the derivation of results
in Sec. II (see also Refs. [21,22]).

1. Basic evolution operator

Let us write (û2 + v̂2)/2 = h̄(â†â + 1/2) in Eq. (4), where
â = (v̂ − iû)/

√
2h̄. In the case of the potential (7), the one-

period evolution operator from t = −0 to T − 0 is given by

Û = Ûγ Û ′
x̂c,ŷc

exp [iμ cos(x̂c − Ex + v̂)], (A1)

where Ûγ = exp [−iγ (â†a + 1/2)] (γ = ωT = T ), Û ′
x̂c,ŷc

=
exp[−i(ExT x̂c + ηŷc)/h̄] (η = EyT ), and μ = κ/h̄. The op-
erator Ûγ is a rotation by angle γ in the (u, v) phase
plane: Ûγ f (â†, â)Û −1

γ = f (â†e−iγ , âeiγ ), for arbitrary func-
tion f (â†, â) [36]. In the case assumed in this paper,
i.e., γ = π/2, this is a clockwise rotation by π/2: v →
u → −v → −u → v; thus, one has Û 4

γ = −1. Also, from
[x̂c, ŷc] = ih̄, one has ŷc = −ih̄d/dxc, so that exp(−iηŷc/h̄) =
exp(−ηd/dxc), a translation of x̂c by −η. Using then all the
other commutation relations (2) and restricting our attention
to wave functions depending only on the (u, v) degree of
freedom and not on (yc, xc), we find that the basic evolution
operator Û r [r = lcm(n = 4, �)] is given by the right-hand
side of Eq. (9), after omitting nonrelevant terms including
Û ′

x̂c,ŷc
and some constant phase factors.

2. Effective Hamiltonian

The effective Hamiltonian Ĥ (e), giving the basic evolution
operator (9) as Û r = exp[−iμĤ (e)], is calculated as follows.
Assuming xc = 0, as explained at the end of Sec. II B, let

Ô j = iμ cos(−Ex − jη + v̂ j )

= i
μ

2
{exp[−i(Ex + jη)] exp(iv̂ j ) + c.c.}. (A2)

Now, given two operators Â and B̂, one has [37]

exp(Â) exp(B̂) = exp
(
Â + B̂ + 1

2 [Â, B̂] + 1
12 [Â, [Â, B̂]]

+ 1
12 [[Â, B̂], B̂] + . . .

)
, (A3)

involving a series of repeated commutators on the right-hand
side. Equation (A3) can be applied to derive systematically an
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expansion for Ĥ (e). From the definition of v̂ j after Eq. (9),
we see that [v̂ j, v̂ j+1] = −ih̄. Therefore, the commutator
[Ô j, Ô j+1] of two adjacent operators (A2) will be a linear
combination of commutators of the form

[eig1v̂ j , eig2 v̂ j+1 ] = 2i sin(g1g2π h̄s)ei(g1 v̂ j+g2 v̂ j+1 ) (A4)

for g1, g2 = ±1, after using Eq. (A3) with [v̂ j, v̂ j+1] = −ih̄
and denoting h̄s = h̄/(2π ). More generally, for integers g1,
g2, g3, and g4,

[ei(g1û+g2 v̂), ei(g3 û+g4 v̂)]

= 2i sin[(g2g3 − g1g4)π h̄s]e
i(g1+g3 )û+i(g2+g4 )v̂. (A5)

We also note that for nonzero integer a one has

sin(aπ h̄s) = J (a; h̄s) sin(π h̄s), (A6)

where the function J (a; h̄s) does not vanish for integer h̄s. It is
then easy to see that Eqs. (A3)–(A6) imply the expansion (11)
with Eq. (12) and

Ĥ (e)
0 = −

r∑
j=1

cos(Ex + jη − v̂ j ). (A7)

The ıth term in the expansion (11), ı � 1, is a linear com-
bination of (repeated) commutators, each involving ı + 1
operators (A2); for example, [Â, [Â, B̂]] in Eq. (A3) involves
three operators. Thus, for ı = 1, we get

εĤ (e)
1 = i

2μ

r∑
j=1

r∑
j′= j

[Ô j, Ô j′ ]. (A8)

Consider first the case of the operator (9) for η = 0 and
r = 4, i.e., the operator (10). In this case, from the definition
of v̂ j , the sum in Eq. (A7) can be straightforwardly performed,
giving Eq. (13). Next, using Eqs. (12), (A2), and (A4) and the
fact that the commutator [v̂ j, v̂ j′ ] is nonzero only for ( j, j′) =
(1, 2), (1,4), (2,3), and (3,4), one obtains from Eq. (A8) the
result in Eq. (14).

In the case of the operator (9) for η �= 0 and r > 4, let us
write r = lcm(4, �) = 4�′, where the integer �′ > 1. Clearly,
one has 4/� = n′/�′, where n′ and �′ are relatively prime.
Then, from Eq. (A7),

Ĥ (e)
0 = 1

2

r∑
j=1

ei(Ex+ jη)e−iv̂ j + c.c.

= 1

2
eiEx

4∑
n̄=1

�′−1∑
l=0

ei[(4l+n̄)η−v̂4l+n̄] + c.c.

= 1

2
eiEx

4∑
n̄=1

ei(n̄η−v̂n̄ ) e2π ikn′ − 1

e2π ikn′/�′ − 1
+ c.c., (A9)

where we used the periodicity of v̂ j with period n = 4 and
the fact that 4η = 2πkn′/�′ to perform the sum over l . The
latter is a geometric sum, equal to the ratio in the last line
of Eq. (A9). Clearly, this ratio is identically zero for �′ > 1,
giving Eq. (15).

Finally, to get Eq. (16), let Ŝ j, j′ = − sin(Ex + jη − v̂ j′ ).
Then, using again the periodicity of v̂ j with period 4, the sum

over j′ in Eq. (A8) can be written as

r∑
j′= j

Ô j′ = iμ

2 sin(2η)

r∑
j′= j

(Ŝ j′+2, j′ − Ŝ j′−2, j′ )

= iμ

2 sin(2η)

⎛
⎝ r∑

j′= j

Ŝ j′+2, j′ −
r−4∑

j′= j−4

Ŝ j′+2, j′+4

⎞
⎠

= iμ

2 sin(2η)

(
3∑

n̄=0

Ŝr−n̄+2,r−n̄ −
4∑

n̄=1

Ŝ j−n̄+2, j−n̄

)
.

(A10)

Substituting Eq. (A10) into Eq. (A8), one finds that the first
sum in the last expression of Eq. (A10) does not contribute
since it is independent of j and then one can use

∑r
j=1 Ô j = 0

as in Eq. (A9). Concerning the second sum, only the terms of
n̄ = 1 and 3 contribute to Eq. (A8) by definition of v̂ j . Then,
using Eq. (A4), we obtain, after some straightforward algebra,

Ĥ (e)
1 = 1

2 sin(2η)

⎧⎨
⎩

r∑
j=1

sin(v̂ j − v̂ j+1 − η)

−
r∑

j=1

cos[2Ex + (2 j + 1)η] sin(v̂ j − v̂ j+1)

⎫⎬
⎭.

(A11)

The second sum in Eq. (A11) vanishes for �′ > 2 since it
contains a geometric sum similar to that in Eq. (A9). Thus,
for �′ > 2 or r > 8, only the first sum in Eq. (A11) contributes
and this can be easily shown to give Eq. (16).

APPENDIX B

In this Appendix, we consider several properties of the
classical analog of the quantum system (3) under the condi-
tions (8) with η = 0. Some known results will be summarized
and other ones will be derived in detail.

1. Basic classical map

We summarize here and in the next section some results in
Ref. [20]. The commutation relations (2) are replaced, clas-
sically, by the corresponding Poisson brackets, [ , ]/(ih̄) →
{ , }. If H is the classical analog of the quantum Hamiltonian
(4) for η = 0 (Ey = 0), one has the Hamilton equation ẋc =
−∂H/∂yc = 0, meaning that xc is a constant of the motion.
As mentioned in Sec. II A, we can choose this constant to
be xc = 0, without loss of generality. Then, for the conjugate
pair (u, v), the Hamiltonian H with the potential (7) can be
regarded as that of a harmonic oscillator periodically kicked
by the potential −κ cos(Ex − v). The Hamilton equations
u̇ = ∂H/∂v and v̇ = −∂H/∂u can be explicitly written and,
after integrating them in one time period from t = sT − 0 to
(s + 1)T − 0, one obtains the one-period Poincaré map for the
variables us = u(t = sT − 0) and vs = v(t = sT − 0):

Mγ : zs+1 = [zs − κ sin(Ex − vs)]e−iγ , (B1)
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where zs = us + ivs and γ = ωT = T . Assuming the condi-
tion (8) for γ = π/2, we obtain the fourth iterate of the map
(B1):

M4
γ : zs+4 = zs − κ

3∑
j=0

sin(Ex − vs+ j )i
j . (B2)

The map (B2) is the smallest iterate of the map (B1) that is
a near-identity map for small κ . In addition, the map (B2)
is translationally invariant in the (u, v) phase space with a
2π × 2π unit cell (the “fundamental domain”). One may
consider (B2) as the basic map of the system, analogous to
the evolution operator (10) (for xc = 0).

2. Classical effective Hamiltonian

Now we introduce a classical effective Hamiltonian H (e) as
follows. From the basic map (B2) with s = 0, one has

z4 − z0

κ
= −

3∑
j=0

sin(Ex − v j )i
j . (B3)

By regarding the small value of κ as a small time step �t , the
left-hand side of Eq. (B3) gives an approximation of a time
derivative ż of z = u + iv. If the right-hand side of Eq. (B3)
is written as ∂H (e)/∂v − i∂H (e)/∂u, a trajectory z of the basic
map is approximately given by the solution of a Hamiltonian
flow. An expansion of H (e) in powers of κ , that is consistent
with the quantum expansion (11) in powers of ε [Eq. (12)] in
the classical limit of h̄ → 0 (ε → κ/2), is

H (e)(u, v) =
∞∑
ı=0

(κ

2

)ı

H (e)
ı (u, v). (B4)

The first terms of Eq. (B4) can be explicitly derived as
explained below:

H (e)
0 (u, v) = −2 cos(Ex )[cos(u) + cos(v)],

H (e)
1 (u, v) = − cos(u + v) + cos(2Ex ) cos(u − v)

− sin(2Ex ) sin(u + v),

H (e)
2 (u, v) = cos(Ex )[cos(u) + cos(v)]

+ sin(Ex ) cos(2Ex )[sin(u) + sin(v)]

− cos(Ex ) cos(2Ex )[cos(2u) cos(v)

+ cos(u) cos(2v)]

− 1
2 sin(Ex )[sin(u − 2v) − sin(2u − v)

+ sin(2u + v) + sin(u + 2v)]. (B5)

The first two terms in Eq. (B5) coincide with the classical
limits of Eqs. (13) and (14). Let us explain how Eqs. (B5)
are derived. Equation (B3) can be written as

(u4 − u0) + i(v4 − v0)

κ
= δu(u0, v0) + iδv(u0, u4, v0),

(B6)

where

δu(u, v) = sin(v − Ex )

+ sin{v+Ex − κ sin[u + κ sin(v − Ex ) + Ex]},
δv(u, ũ, v) = − sin(ũ − Ex )

− sin[u + κ sin(v − Ex ) + Ex]. (B7)

We evaluate the right-hand side of Eq. (B6) at the
middle point, i.e., ū ≡ (u4 + u0)/2 and v̄ ≡ (v4 + v0)/2.
From Eq. (B6), one can write u4, u0, and v0 as u4 =
ū + κδu(u0, v0)/2, u0 = ū − κδu(u0, v0)/2, and v0 = v̄ −
κδv(u0, u4, v0)/2. Using these three equations, one can de-
termine self-consistently, after lengthy but straightforward
calculations, δu(u0, v0) and δv(u0, u4, v0) as functions of ū
and v̄, at each order of κ . After denoting ū and v̄ as u
and v, respectively, one finally finds that the right-hand side
of Eq. (B6) can be written as ∂H (e)/∂v − i∂H (e)/∂u with
H (e) given by Eqs. (B5). Note that, for Ex = π/2, H (e)

0 in
Eq. (B5) vanishes and then H (e)

1 is the leading term. This
fact is connected with the drastic changes of the phase-space
structure as Ex is varied (see details below).

3. Topological changes of the separatrix and
the phase-space structure

We present here, for the convenience of the reader, a very
detailed derivation of results in Ref. [38]. A separatrix of
the basic map (B2) is an orbit connecting unstable fixed
points of the map, i.e., points (u0, v0) satisfying u4 = u0 and
v4 = v0 and unstable under small perturbations (δu0, δv0).
For example, the “diamond” separatrix in Fig. 2 is the red
line connecting the unstable fixed points at the “corners.”
We show that the number and positions of the unstable fixed
points change as Ex is varied, leading to topological changes
of the separatrix and the phase-space structure. Let us derive
expressions for the exact positions of the fixed points. From
Eq. (B6), the conditions u4 = u0 = u and v4 = v0 = v imply
that δu(u, v) = 0 and δv(u, u, v) = 0. Using Eqs. (B7), one
then gets

sin
[
u + κ

2
sin(v − Ex )

]
cos

[
Ex + κ

2
sin(v − Ex )

]
= 0,

(B8)

sin
[
v + κ

2
sin(u − Ex )

]
cos

[
Ex + κ

2
sin(u − Ex )

]
= 0.

(B9)

Equation (B8) is satisfied under one of two possible
conditions:

u + κ

2
sin(v − Ex ) = m1π, (B10)

Ex + κ

2
sin(v − Ex ) = (2m2 + 1)

π

2
, (B11)

where m1 and m2 are integers. For Eq. (B9), one has two
similar conditions:

v + κ

2
sin(u − Ex ) = m3π, (B12)

Ex + κ

2
sin(u − Ex ) = (2m4 + 1)

π

2
, (B13)
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with integers m3 and m4. Due to the 2π -translational invari-
ance in u and v, one can restrict both m1 and m3 to 0 or 1 for
small κ .

For 0 � Ex < E∗
x , where E∗

x = (π − κ )/2, Eqs. (B11) and
(B13) do not have any solution for u and v, so that the fixed
points come only from Eqs. (B10) and (B12). These equa-
tions give two stable fixed points S1 and S2 for (m1, m3) =
(0, 0) and (m1, m3) = (1, 1), respectively, and two unstable
ones U1 and U2 for (m1, m3) = (1, 0) and (m1, m3) = (0, 1),
respectively. The (linear) stability or instability of a fixed
point is determined from the map (B2) by its linear-stability
(derivative) matrix DM4

γ evaluated at that point. The point is
stable if Tr(DM4

γ ) < 2 and is unstable if Tr(DM4
γ ) > 2. The

positions of the four points above are

PS1 = (d1(Ex; κ ), d1(Ex; κ )), (B14)

PS2 = (π + d1(Ex; −κ ), π + d1(Ex; −κ )), (B15)

PU1 = (π − d2(Ex; −κ ), 2π − d2(Ex; κ )) (B16)

[PU2 is the mirror-symmetric point of PU1 relative to the line
u = v], where d1 and d2 satisfy

d1(Ex; κ ) + κ

2
sin[d1(Ex; κ ) − Ex] = 0, (B17)

d2(Ex; κ ) + κ

2
sin

[κ

2
sin [d2(Ex; κ ) + Ex] − Ex

]
= 0.

(B18)

The quantities d1 and d2 are generally small since their
leading term in κ is (κ/2) sin(Ex ); in particular, d1(0; κ ) =
d2(0; ±κ ) = 0. The unstable fixed points U1 and U2, as well
as the equivalent points by translational invariance, are con-
nected by the diamond separatrix [see Figs. 2, 7(a), and 7(b)].

At Ex = E∗
x = (π − κ )/2, four stable fixed points S(±)

3 and
S(±)

4 and four unstable fixed points U (±,±) born at the same
point P∗ = (π − κ/2, π − κ/2). More precisely, S(±)

3 , S(±)
4 ,

and U (±,±) emerge, respectively, as solutions of Eqs. (B10)
and (B13) with (m1, m4) = (1, 0), Eqs. (B11) and (B12) with
(m2, m3) = (0, 1), and Eqs. (B11) and (B13) with (m2, m4) =
(0, 0). The positions of these points are

PS(±)
3

= (π + d+(ξ ; κ ), d̃±(ξ ; κ )), (B19)

PU (±,±) = (π + d±(ξ ; κ ), π + d±(ξ ; κ )) (B20)

[PS(±)
4

are the mirror-symmetric points of PS(±)
3

relative to the
line u = v]. Here ξ is introduced as

Ex = π/2 − ξκ/2, (B21)

and four functions d± and d̃± are defined by

d±(ξ ; κ ) = −ξ
κ

2
± arccos(ξ ), (B22)

d̃±(ξ ; κ ) = −ξ
κ

2
± arccos

[
2

κ
arccos(ξ ) − ξ

]
mod(2π ).

(B23)

Note that d̃± in Eq. (B23) is real only in the interval 1 � ξ �
ξ ′, corresponding to E∗

x � Ex � E ′
x by Eq. (B21), where E ′

x

(a) (e) (i)

(ii)

(b) (f) (i)

(ii)

(c) (i)

(ii)

(g)

(d) (i)

(ii)

(h)

FIG. 7. Phase spaces of the basic map (B2) in the fundamental
domain 0 � u, v < 2π for κ = 0.05712 and several values of 2Ex/π .
Shown are separatrices (red solid lines) and stable fixed points (small
black open circles). (a) 2Ex/π = 0. (b) 2Ex/π = 0.98. (c) 2Ex/π =
0.98182. (d) 2Ex/π = 0.98182806174. (e) 2Ex/π = 0.981829. (f)
2Ex/π = 0.98184. (g) 2Ex/π = 0.983. (h) 2Ex/π = 1. For (c)–(f),
magnified plots are shown in the insets covering the regions (i)
3 � u � 3.25, 0 � v < 2π and (ii) 3 � u, v � 3.25. The separatrix
changes from the diamond type (a, b) to the cross one (g, h) by
the topological changes of the phase space successively occurring
when Ex is varied between Ex = E∗

x and E ′
x (2E∗

x /π = 0.981818 . . .

and 2E ′
x/π = 0.981848 . . .), as shown in plots (c)–(f). See text for

details.

satisfies

E ′
x + κ

2
sin

(
E ′

x − κ

2

)
= π

2
. (B24)

One has the expansion E ′
x = E∗

x + κ3/4 + · · · . Therefore,
within the short interval E∗

x � Ex � E ′
x there exist six stable

(unstable) fixed points, i.e., S1, S2, S(±)
3 , and S(±)

4 (U1, U2, and
U (±,±)) in the fundamental domain.

As Ex is slightly increased beyond E∗
x , the points S(±)

3 ,
S(±)

4 , and U (±,±) leave the point P∗ above and form a “cross”
separatrix inside the diamond one [see Fig. 7(c) and insets].
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As S(+)
3 (S(−)

3 ) leaves P∗, it moves down (up) quickly along
the line u = π . Also, S(+)

4 (S(−)
4 ) moves right (left) quickly

along the line v = π . Then, the cross separatrix expands.
At some value of Ex, the cross separatrix merges with the
diamond one [formed by S1, S2, U1, and U2; see Fig. 7(d)
and insets]. Immediately after this merging, the diamond
separatrix disappears. After that, the cross separatrix extends
over the whole fundamental domain and islands appear in-
side the separatrix, with “corners” at the points U1 and U2

[see Fig. 7(e) and insets]. As Ex approaches E ′
x, both S(±)

3

(S(±)
4 ) get close to U1 (U2) and the islands above shrink

[see Fig. 7(f) and insets]. At Ex = E ′
x, S(±)

3 (S(±)
4 ) finally

merge with U1 (U2) at P′ = (π + κ/2, 3π/2 + E ′
x ) [this can

be checked by using, for S(±)
3 , Eq. (B19) with d+(ξ ′; κ ) =

κ/2 and d̃±(ξ ′; κ ) = 2π − ξ ′κ/2 = 3π/2 + E ′
x and, for U1,

Eq. (B16) with E ′
x + d2(E ′

x; κ ) = π/2 from Eqs. (B18) and
(B24)]. Then, S(±)

3 (S(±)
4 ) disappear and U1 (U2) changes from

an unstable to a stable fixed point [see Fig. 7(g)]. We denote
this new stable point by S̄1 (S̄2). The positions of S̄1 and S̄2 are
still given by PU1 in Eq. (B16) and its mirror-symmetric point
PU2 , respectively.

Thus, for E ′
x < Ex � π/2, there are four stable fixed points

S1, S2, S̄1, and S̄2 and four unstable fixed points U (±,±), which
characterize the cross separatrix in the fundamental domain
[see Figs. 7(g) and 7(h)]. For Ex = π/2, using d±(0; κ ) =

±π/2 from Eq. (B22), one finds that the points U (±,±) in
Eq. (B20) are positioned simply at (π ± π/2, π ± π/2) [see
Fig. 7(h)].

4. Energy of separatrix

The exact orbits of the map (B2) are orbits of a time-
dependent (periodic) Hamiltonian, so that their energy is
not exactly conserved. However, for small κ , the map (B2)
is approximately described by an effective time-independent
Hamiltonian (B4) and one can then associate an effective
energy with an orbit of this Hamiltonian. This energy is just
the value of the Hamiltonian at any point of the orbit. In
particular, the energy of the diamond separatrix for 0 � Ex <

E∗
x (see above) can be calculated as H (e)

sep = H (e)(U1,2), where
U1 and U2 are the unstable fixed points connected by this
separatrix. The exact position of U1 is given by Eq. (B16) and
the function d2(Ex; κ ) in Eq. (B18) can be expanded in κ as
(κ/2) sin(Ex ) + O(κ2). After substituting the corresponding
expansion for Eq. (B16) into Eq. (B4) with Eq. (B5), one
finds that H (e)

sep starts from a linear term in κ , coming only

from (κ/2)H (e)
1 . There is not a κ2 term since H (e)

0 , (κ/2)H (e)
1 ,

and (κ/2)2H (e)
2 do not include it. One then gets formula (28)

for H (e)
sep. The same result is obtained, of course, by using PU2

instead of PU1 .
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