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A discrete nonlinear σ -model is obtained by triangulate both the space-time Md+1 and the target space
K . If the path integral is given by the sum of all the simplicial homomorphisms φ : Md+1 → K (i.e., maps
without any topological defects), with an partition function that is independent of space-time triangulation, then
the corresponding nonlinear σ -model will be called topological nonlinear σ -model which is exactly soluble.
These exactly soluble models suggest that phase transitions induced by fluctuations with no topological defects
usually produce a topologically ordered state and are topological phase transitions. In contrast, phase transitions
induced by fluctuations with all topological defects give rise to trivial product states and are not topological
phase transitions. Under the classification conjecture of Lan-Kong-Wen [Phys. Rev. X 8, 021074 (2018)], it is
shown that, if K is a space with only nontrivial first homotopy group G, which is finite, then these topological
nonlinear σ -models can already realize all 3+1D bosonic topological orders without emergent fermions, which
are described by Dijkgraaf-Witten theory with gauge group π1(K ) = G. Under the similar conjecture, we show
that the 3+1D bosonic topological orders with emergent fermions can be realized by topological nonlinear
σ -models with π1(K ) = finite groups, π2(K ) = Z2, and πn>2(K ) = 0. A subset of these topological nonlinear
σ -models corresponds to 2-gauge theories, which realize and may classify bosonic topological orders with
emergent fermions that have no emergent Majorana zero modes at triple string intersections.
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I. INTRODUCTION

A. Background

The study of topological phase of matter has become a very
active field of research in condensed matter physics, quantum
computation, as well as in part of quantum field theory and
mathematics. However, “topological” may have very different
meanings, even in the same context of topological phase of
matter.

In topological insulator/superconductor [1–6], “topologi-
cal” means the twist in the band structure of orbitals (see
Fig. 1), which is described by the curvature, Chern number,
finite dimensional fiber bundle, etc. [7–10]. Such “topologi-
cal” properties can be defined even without any particles.

However, in topological order [11–13], “topological”
means the pattern of quantum entanglement [14–16] in many-
body wave functions of N ∼ 1020 variables:

�(m1, m2, . . . , mN ). (1)

It is hard to visualize the patterns of many-body entanglement
in such complicated many-body systems. We may use Celtic
knots to help us to get some spirit of topological order or
pattern of many-body entanglement (see Fig. 2).

So the “topology” in topological order is very different
from the classical topology that distinguishes a sphere from
a torus. We will refer this new kind of “topology” as quantum
topology. It turns out that the mathematical foundation for

quantum topology is related to topological quantum field
theory, braided fusion category, cohomology, etc. [17–25].

To develop a quantitative theory for topological order and
the related pattern of many-body entanglement, we need to
identify physical probes that can measure topological order
[11–13], i.e., identify topological invariants that can charac-
terize topological order. We know that, for crystal order, x-ray
scattering is a universal probe that can measure all crystal
orders (see Fig. 3). So we like to ask: do we have a single
universal probe that can measure all topological orders?

One potential universal probe (topological invariant) for
topological orders is the partition function Z . Let us consider
bosonic systems described by the path integral of nonlinear
σ -models:

Z (Md+1; K,L) =
∑
φ(x)

e− ∫
Md+1 dd+1x L(φ(x),∂φ(x),...). (2)

Here, Md+1 is a d+1D space-time manifold and K a target
manifold.

∑
φ(x) sum over all the maps φ : Md+1 → K , x ∈

Md+1 and φ(x) ∈ K . dd+1x L(φ(x), ∂φ(x), . . .) is a (d + 1)-
form at x that depends on φ(x), ∂φ(x) etc. L(φ(x), ∂φ(x), . . .)
is also called the Lagrangian density in physics.

The pair (K,L) labels the bosonic systems, and the par-
tition function Z is a map from space-time manifolds to
complex numbers

Z (−; K,L) : {Md+1} → C. (3)

2469-9950/2019/100(4)/045105(31) 045105-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.045105&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1103/PhysRevX.8.021074 
https://doi.org/10.1103/PhysRevX.8.021074 
https://doi.org/10.1103/PhysRevX.8.021074 
https://doi.org/10.1103/PhysRevX.8.021074 
https://doi.org/10.1103/PhysRevB.100.045105


CHENCHANG ZHU, TIAN LAN, AND XIAO-GANG WEN PHYSICAL REVIEW B 100, 045105 (2019)

FIG. 1. “Topology” in topological insulator/superconductor
(2005) corresponds to the twist in the band structure of orbitals,
which is similar to the topological structure that distinguishes a
sphere from a torus. This kind of topology is classical topology.

So the partition function Z is a physical probe that measure
the bosonic system. However, Z (−; K,L) does not measure
topological order, since two systems (K,L) and (K ′,L′) that
are in the same topologically ordered phase can have differ-
ent partition functions: Z (−; K,L) �= Z (−; K ′,L′). In other
words, the partition function Z (−; K,L) is not a topological
invariant.

We know that the leading term in the partition function
comes from the energy density ε(x):

Z (Md+1; K,L)) = e− ∫
Md+1 dd+1x ε(x)Z top(Md+1; K,L)), (4)

where the subleading term Z top(Md+1; K,L) is of order
1 in large space-time volume limit. The leading term
e− ∫

Md+1 dd+1x ε(x) is not topological, since even when two sys-
tems (K,L) and (K ′,L′) are in the same topologically ordered
phase, their energy densities ε(x) and ε′(x) can be different.

However, the idea of using partition function to charac-
terize topological order is not totally wrong. In particular,
the subleading term is believed to be topological [26]. So
Z top(Md+1; K,L) are topological invariants that can be used
to measure/define topological order. Reference [27] describes
ways to extract topological invariant Z top(Md+1; K,L) from
nontopological partition function Z (Md+1; K,L) via surgery
operations.

After identifying the topological invariants that character-
ize and define topological orders, the next issue is to sys-
tematically construct bosonic systems (K,L) that realize all
kinds of topological orders, which is the topic of this paper.
Only 10 years ago, systemic and classifying understanding
of strongly correlated systems appeared to an impossible

FIG. 2. “Topology” in topological order (1989) corresponds to
the pattern of many-body entanglement in many-body wave function
�(m1, m2, . . . , mN ), which is robust against any local perturbations
that can break any symmetry. Such robustness is the meaning of
“topological” in topological order. This kind of topology is quantum
topology.

task. At that time, the only systemic understanding is Landau
symmetry breaking theory. Since then, we have obtained
systemic and classifying understanding of strongly correlated
1+1D gapped phases at zero temperature [28,29]. This pa-
per presents a systemic and a classifying understanding of
strongly correlated 3+1D gapped liquid phases [30,31] at zero
temperature (under the conjectures proposed in Refs. [32,33]).

(1) It is known that some topological orders are described
by gauge theory with finite gauge group. Knowing the the-
oretical existence of higher gauge theory, one may wonder,
do we have condensed matter systems on lattice that can
produce topological orders described by higher gauge theory.
In this paper, we will describe in details a general way to con-
struct exactly soluble bosonic models on lattice: topological
nonlinear σ -models, and their special cases—higher gauge
theories. We believe that, under the conjectures proposed in
Refs. [32,33], topological nonlinear σ -models can realize all
3+1D bosonic topological orders with gappable boundary.
In particular, higher gauge theories realize and classify all
bosonic topological orders with the following property: the
topological orders have a gapped boundary that all pointlike,
stringlike and other higher dimensional excitations on the
boundary have a unit quantum dimension.

(2) We find that many higher gauge theories and topo-
logical nonlinear σ -models are equivalent and describe the
same topological order. We identified a small subset of 2-
gauge theories and topological nonlinear σ -models, and argue
that the subset can realize all topological order in 3+1D
bosonic systems. In particular, 3+1D higher gauge theory
with higher gauge group B(�1,�2, . . .) (where �i are finite)
is equivalent [i.e., produces the same topological invariants
Z top(Md+1)] to a 3+1D higher gauge theory with higher gauge
group B(�′

1, Z2). (For notation, see Sec. I D.) This result
allows us to classify, under the conjectures in Refs. [32,33],
all topological order in 3+1D via concrete models. Using
these models, we can study universal experimental properties
of all 3+1D topological orders. More specifically, We use
exactly soluble 2-gauge theories to systematically realize and
classify EF1 topological orders—3+1D bosonic topological
orders with emergent bosons and fermions where triple string
intersections carry no Majorana zero modes. The rest of
3+1D bosonic topological orders with emergent bosons and
fermions are EF2 topological orders where some triple string
intersections must carry Majorana zero modes [33]. We find
that EF2 topological orders can be realized by topological
nonlinear σ -models which are beyond 2-gauge theories.

There are many works [34–43] on higher gauge theories
and their connection to topological phases of matter. In this
paper, we present a detailed description of “lattice higher
gauge theories,” in a way to make their connection to non-
linear σ -model explicit. In our presentation, we do not require
higher gauge symmetry and higher gauge holonomy. We even
do not mod out higher gauge transformations. Our “lattice
higher gauge theories” are just lattice nonlinear σ -models
with only lattice scalar fields (i.e., lattice qubits). However,
lattice nonlinear σ -models (without higher gauge symmetry)
can realize topological orders whose low-energy effective
theories are higher gauge theories with emergent higher gauge
symmetry. In other words, we describe how higher gauge
theories can emerge from lattice qubit models (i.e., quantum
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FIG. 3. X-ray scattering is a universal probe for all crystal orders.

spin models in condensed matter). In this paper, we also
apply 2-gauge theories to classify a subclass of 3+1D bosonic
topological orders with emergent fermions. We point out that
the rest of 3+1D bosonic topological orders with emergent
fermions are beyond 2-gauge theories and can be realized by
more general topological nonlinear σ -models.

B. Realize topological orders via disordered symmetry
breaking states without topological defects

In this paper, we show that all the higher gauge theories
can be viewed as nonlinear σ -models with some complicated
target space and carefully designed action. Such a duality re-
lation between nonlinear σ -models and higher gauge theories
suggests that we may be able to use disordered symmetry
breaking states (which are described by nonlinear σ -models)
to realize a large class of topological orders. In other words,
starting with a symmetry breaking state and letting the order
parameter have a strong quantum fluctuation, we may get a
symmetric disordered ground state with topological order.

However, this picture seems to contradict with many previ-
ous results that a symmetric disordered ground state is usually
just a trivial product state rather than a topological state.
The study in this paper suggests that the reason why we get
a trivial disordered state is because the strongly fluctuating
order parameter in the disordered state contains a lot of
topological defects, such as vortex lines, monopoles, etc.

The importance of the topological defects [44] in pro-
ducing short-range correlated disordered states have been
emphasized by Kosterlitz and Thouless in Ref. [45], which
shared the 2016 Nobel prize “for theoretical discoveries
of topological phase transitions and topological phases of
matter.”

In this paper, we show that the phase transitions driven
by fluctuations with all possible topological defects produce
disordered states that have no topological order, and corre-
spond to nontopological phase transitions. While transitions
driven by fluctuations without any topological defects usually
produce disordered states that have nontrivial topological
orders, and correspond to topological phase transitions. This
phenomenon has been demonstrated in a 2+1D RP3 = SO3

nonlinear σ -model [46,47]. Thus it may be confusing to refer

the transition driven by topological defects as a topological
phase transitions, since the appearance of topological defects
decrease the chance to produce topological phases of matter.

More precisely, if the fluctuating order parameter in a
disordered state has no topological defects, then the cor-
responding disordered state will usually have a nontrivial
topological order. The type of the topological order depends
on the topology of the degenerate manifold K of the order
parameter (i.e., the target space of the nonlinear σ -model). For
example, if π1(K ) is a finite group and πn>1(K ) = 0, then the
disordered phase may have a topological order described by
a gauge theory of gauge group G = π1(K ). If π1(K ), π2(K )
are finite groups and πn>2(K ) = 0, then the disordered phase
may have a topological order described by a 2-gauge theory
of 2-gauge group B(π1(K ), π2(K )).

It is the absence of topological defects that enable the
symmetric disordered state to have a nontrivial topological
order. When there are a lot of topological defects, they will
destroy the topology of the degenerate manifold of the order
parameter (i.e., the degenerate manifold effectively becomes a
discrete set with trivial topology). In this case, the symmetric
disordered state becomes a product state with no topological
order. Certainly, if the fluctuating order parameter contains
only a subclass of topological defects, then only part of the
topological structure of the degenerate manifold is destroyed
by the defects. The corresponding symmetric disordered state
may still have a topological order, as discussed in Ref. [48].

C. Realizations of all 3+1D bosonic topological orders

It was shown [32,33] that all 3+1D bosonic topological
orders belong to two classes: AB topological orders where all
pointlike excitations are bosonic and EF topological orders
where some pointlike excitations are fermionic. Reference
[33] shows that all EF topological orders have a unique
gapped boundary with the following properties.

(1) All stringlike boundary excitations have a unit quan-
tum dimension. These boundary strings form a finite group
Ĝb under string fusion. The group Ĝb is an extension of a
finite group Gb by Zm

2 : Ĝb = Zm
2 � Gb. (See Sec. I D for the

definition of Zm
2 � Gb.)
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FIG. 4. A string configuration in the bulk described by a triple
(χ
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1
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gf
2
, χ

gf
3
), where χgf is a conjugacy class in Gf containing gf ∈

Gf and the triple satisfy gf
1gf

2 = gf
3.

(2) There is one nontrivial type of pointlike boundary exci-
tations which is fermionic and has a unit quantum dimension.

(3) There are on-string pointlike excitations—Majorana
zero modes of quantum dimension

√
2. The Majorana zero

mode always lives at the pointlike domain wall where a string
labeled by g joins a string labeled by gm. Here, g ∈ Ĝb and m
is the nontrivial element in Zm

2 .
We note that the boundary fermions can form a topological

p-wave superconducting (pSC) chain [49]. The boundary
strings labeled by Ĝb can be viewed as the boundary strings
labeled by Gb plus the pSC chain. In particular, a string labeled
by g and a string labeled by gm differ by a pSC chain.

If Ĝb is the trivial extension of Gb by Zm
2 : Ĝb = Zm

2 ×Gb,
the corresponding bulk topological order is called a EF1
topological order. If Ĝb is a nontrivial extension of Gb by Zm

2 :
Ĝb = Zm

2 �ρ2 Gb where ρ2 ∈ H2(BGb;Zm
2 ), the correspond-

ing bulk topological order is called a EF2 topological order.
Here, we have used a conjecture—a holographic principle
[25,26,50]—that the boundary topological order completely
determines the bulk topological order.

When Ĝb is the trivial extension: Ĝb = Zm
2 ×Gb, we can

drop boundary strings that come from the pSC chain (by
regarding the pSC chain as a kind of trivial strings). Thus
the EF1 topological order has a simpler gapped boundary: in
addition to the boundary strings of unit quantum dimension
labeled by a finite group Gb, there is one and only one
nontrivial type of pointlike boundary excitations which is
fermionic and has a unit quantum dimension [33].

In the above, we have defined EF1 and EF2 topological
orders via their boundary properties. To distinguish EF1 and
EF2 topological order through their bulk properties, we con-
sider a stringlike excitation in the bulk that has triple string
intersections (see Fig. 4). Note that a triple string intersection
is described by the conjugacy classes χgf

1
, χgf

2
, χgf

3
⊂ G f that

satisfy gf
1gf

2 = gf
3. By measuring the appearance of Majorana

zero mode at triple string intersections for different triples
χgf

1
, χgf

2
, χgf

3
, we can determine the cohomology class of ρ2

[33]. If the measured ρ2 is a coboundary, the bulk topological
order is an EF1 or an AB topological order. Otherwise, the
bulk topological order is an EF2 topological order.

It has been shown that all 3+1D AB topological orders are
classified and realized by 1-gauge theories (i.e., Dijkgraaf-
Witten gauge theories) [32]. In this paper, we show that all
3+1D EF1 topological orders are classified and realized by 2-
gauge theories with 2-gauge-group B(Gb, Z f

2 ). The pointlike
topological excitations (including emergent fermions) are de-
scribed by symmetric fusion category sRep(Z f

2 � Gb), where
Z f

2 � Gb is an extension of Gb by Z f
2 .

We will also discuss how to systematically realize 3+1D
EF2 topological orders through topological nonlinear σ -
models whose target space K satisfies π1(K ) = Gb and
π2(K ) = Z2. These topological nonlinear σ -models are be-
yond 2-gauge theories. The resulting EF2 topological or-
ders have pointlike topological excitations described by
sRep(Z f

2 � Gb).
Our results suggest the following more general picture:
Statement I.1. Exactly soluble n-gauge theories can realize

all bosonic topological orders in n + 1 spatial dimensions
that have a gaped boundary where all boundary excitations
(including on d-brane excitations) have a unit quantum di-
mension.

This is because higher groups can be viewed as higher
monoidal categories where all objects and higher morphisms
are invertible. For more general bosonic topological orders
whose gapped boundary excitations have nonunit quantum
dimensions, we need to use more general exactly soluble
models, such as topological nonlinear σ -model or even more
general tensor network models, to realize them [26].

Combining the above realization results and the boundary
results in Ref. [33], we obtain the following classification of
EF topological orders:

Statement I.2. 3+1D EF topological orders are classified
by unitary fusion 2-categories [51] that have the following
properties.

(1) The simple objects are labeled by Ĝb = Zm
2 �ρ2 Gb, and

their fusion is described by the group Ĝb.
(2) For each simple object g there is one nontrivial invert-

ible 1-morphism corresponding to a fermion fg.
(3) In addition, there are quantum-dimension-

√
2 1-

morphisms σg,gm that connect two objects g and gm, where
g ∈ Ĝb and m is the generator of Zm

2 .
(4) The fusion of 1-morphisms is given by fg fg = 1 and

σg,gmσgm,g = 1 ⊕ fg.

D. Notations and conventions

Let us first explain some notations used in this paper. We
will use extensively the mathematical formalism of cochains,
coboundaries, and cocycles, as well as their higher cup prod-
uct �

k
, Steenrod square Sqk , and the Bockstein homomor-

phism Bn. A brief introduction can be found in Appendix A.
We will abbreviate the cup product a � b as ab by dropping
�. We will use a symbol with bar, such as ā to denote a
cochain on the target complex K. We will use a to denote
the corresponding pullback cochain on space-time Md+1:
a = φ∗ā, where φ is a homomorphism of complexes φ :
Md+1 → K.

We will use
n= to mean equal up to a multiple of n, and

use
d= to mean equal up to df (i.e., up to a coboundary). We

will use �x� to denote the greatest integer less than or equal
to x, and 〈l, m〉 for the greatest common divisor of l and m
(〈0, m〉 ≡ m).

Also, we will use Zn = {1, e i 2π
n , e i 2 2π

n , . . . , e i (n−1) 2π
n } to

denote an Abelian group, where the group multiplication
is “∗.” We use Zn = {�− n

2 + 1�, �− n
2 + 1� + 1, . . . , � n

2�} to
denote an integer lifting of Zn, where “+” is done without
mod-n. In this sense, Zn is not a group under “+.” However,

045105-4



TOPOLOGICAL NONLINEAR σ -MODEL, HIGHER … PHYSICAL REVIEW B 100, 045105 (2019)

under a modified equality
n=, Zn is the Zn group under “+.”

Similarly, we will use R/Z = (− 1
2 , 1

2 ] to denote an R-lifting

of U1 group. Under a modified equality
1=, R/Z is the U1

group under “+.” In this paper, there are many expressions
containing the addition “+” of Zn-valued or R/Z-valued,
such as aZn

1 + aZn
2 , where aZn

1 and aZn
2 are Zn-valued. These

additions “+” are done without mod n or mod 1. In this
paper, we also have expressions like 1

n aZn
1 . Such an expression

convert a Zn-valued aZn
1 to a R/Z-valued 1

n aZn
1 , by viewing

the Zn value as a Z value. (In fact, Zn is a Z lifting of Zn.)
We introduced a symbol � to construct fiber bundle X from

the fiber F and the base space B:

pt → F → X = F � B → B → pt . (5)

We will also use � to construct group extension of H by
N [52]:

1 → N → N �e2,α H → H → 1. (6)

Here, e2 ∈ H2[H ; Z (N )] and Z (N ) is the center of N . Also H
may have a nontrivial action on Z (N ) via α : H → Aut(N ).
e2 and α characterize different group extensions.

We will use K (�1,�2, . . . , �n) to denote a
connected topological space with homotopy group
πi(K (�1,�2, . . . ,�n)) = �i for 1 � i � n, and
πi(K (�1,�2, . . . ,�n)) = 0 for i > n. In this paper,
we assume that all �n’s are finite. We note that πi is
Abelian for i > 1. If only one of the homotopy groups,
say �d , is nontrivial, then K (�1,�2, . . . ,�n) is the
Eilenberg-MacLane space, which is denoted as K (�d , d ). If
only two of the homotopy groups, say �d , �d ′ , is nontrivial,
then we denote the space as K (�d , d; �d ′ , d ′), etc. We will
use K(�1; �2; . . . ; �n), K(�d , d ), and K(�d , d; �d ′ , d ′) to
denote the simplicial complexes that describe a triangulation
of K (�1,�2, . . . ,�n), K (�d , d ), and K (�d , d; �d ′ , d ′)
respectively. We will use B(�1; �2; . . . ; �n), B(�d , d ),
and B(�d , d; �d ′ , d ′) to denote the simplicial sets with
only one vertex satisfying Kan conditions that describe
a special triangulation of K (�1,�2, . . . ,�n), K (�d , d ),
and K (�d , d; �d ′ , d ′) respectively. Since simplicial sets
satisfying Kan conditions are viewed as higher groupoids in
higher category theory, the simplicial sets B(�1; �2; . . . ; �n),
B(�d , d ), and B(�d , d; �d ′ , d ′), with only one vertex (unit),
can be viewed as higher groups. In this paper, higher groups
are treated therefore as this sort of special simplicial sets.

II. TOPOLOGICAL NONLINEAR σ-MODELS AND
TOPOLOGICAL TENSOR NETWORK MODELS

A. Discrete defectless nonlinear σ-models

The nonlinear σ -model (2) is widely used in field theory
to describe a bosonic system. If we require the map φ(x) to
be continuous, then the nonlinear σ -model will be defectless,
i.e., the fluctuations contain no defects. But the corresponding
path integral (2) is not well defined since the summation∑

φ(x) over ∞∞ number of the continuous maps is not well
defined. To obtain a well defined theory, we discretize both
the space-time Md+1 and the target space K . We replace them
by simplicial complexes Md+1 and K.

1. A detailed description of simplicial complex

Let us first describe the simplicial complexes systemati-
cally. We introduce M0, M1, M2, . . . as the sets of vertices,
links, triangles, etc. that form the space-time complex Md+1.
The complex Md+1 is formally described by

(7)

where di are the face maps, describing how the (n − 1)-
simplices are attached to a n-simplex. Similarly, the complex
K is formally described by

(8)

where K0, K1, K2, . . . are the sets of vertices, links, triangles,
etc. that form the target complex K.

In this paper, we will use v1, v2, . . . ∈ K0 to label different
vertices in the complex K. We will use l1, l2, . . . ∈ K1 to label
different links in the complex K, and t1, t2, . . . ∈ K2 different
triangles, etc. We choose a fine triangulation on Md+1 such
that the links, triangles, etc. can be be labeled by their vertices.
In other words, we will use i to label vertices in M0. We will
use (i j) to label links in M1, and (i jk) to label triangles in
M2, etc.

The continuous maps between manifolds φ(x) : Md+1 →
K is replaced by homomorphisms between complexes φ :
Md+1 → K. The homomorphism φ is a set of maps φ(0) :
M0 → K0, φ(1) : M1 → K1, φ(2) : M2 → K2, etc. that preserve
the attachment structure of simplices described by the face
maps di. For example, if (i j) is attached to (i jk) by the
face map d3 in space-time complex Md+1, then φ(1)((i j))
is attached to φ(2)((i jk)) by the face map d3 in target space
complex K. The homomorphism is the discrete version of
continuous map. Physically, the continuous map or the ho-
momorphism describes fluctuations without any topological
defects and any kind of “tears.”

2. A simple definition of discrete nonlinear σ-model

Now, a discrete nonlinear σ -model is defined via the
following path integral:

Z (Md+1;K, ω̄d+1) =
∑

φ

e2π i
∫
Md+1 φ∗ω̄d+1 , (9)

where
∑

φ sums over all the homomorphisms φ : Md+1 →
K. It is clear that the map φ assign a label vi to each vertex
i ∈ M0, a label li j to each link (i j) ∈ M1, a label ti jk to each
triangle (i jk) ∈ M2, etc. Thus we can view the map φ as a
collection of fields on the space-time complex M: a field vi

on the vertices M0, a field ei j on the links M1, a field ti jk on
the triangles M2, etc. We can rewrite the path integral as a
integration of these fields:

Z (Md+1;K, ω̄d+1) =
∑

vi,li j ,ti jk ,...

e2π i
∫
Md+1 ωd+1(v,l,t,...). (10)

Although these fields vi, li j, ti jk, . . . satisfy certain local con-
straints described by the face maps di, we can impose
these local constraints by energy penalty: the field configu-
rations that do not satisfy attachment conditions will cost a
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large energy. Thus we can view these fields as independent
fields.

The term e2π i
∫
Md+1 φ∗ω̄d+1 in the path integral is the action

amplitude. Here, φ∗ω̄d+1 ≡ ωd+1 is a real-valued (d + 1)-
cochain on Md+1 which is a pull back of a real-valued
(d + 1)-cochain ω̄d+1 on K. The resulting path integral de-
fines a discrete nonlinear σ -model whose fluctuations have no
defects.

However, the above definition of discrete nonlinear σ -
model has an inconvenience: different choices of space-time
triangulation may lead to different phases of the bosonic
systems. To avoid this problem, we like to choose some
special triangulation K of the target space K , and some special
ω̄d+1’s on K such that, for a given pair (K, ω̄d+1), the corre-
sponding discrete defectless nonlinear σ -model will realize
the same phase for any space-time triangulations, as long as
they are very fine triangulations (i.e., in the thermodynamic
limit). Such kind of choice of (K, ω̄d+1) turns out to give
rise exactly soluble models. To describe how we choose
(K, ω̄d+1), we will first discuss a more general class of dis-
crete bosonic discrete nonlinear σ -models—tensor network
models.

In the above definition of discrete nonlinear σ -models, we
assign each d + 1-simplex �d+1 a field-dependent complex
number e i 2π

∫
�d+1 ωd+1 , and multiply all these numbers together

to get an action amplitude. In the more general tensor network
models, we also assign each n-simplex �n, n < d + 1, a
field-dependent real positive number, and multiply all these
numbers together to get additional contributions to the action
amplitude. In the following, we will describe tensor network
models in details.

B. Exactly soluble tensor network models

Let us describe a tensor network model in 2+1D space-
time complex M3 as an example. The tensor network model
is constructed from a tensor set T of two real and one
complex tensors: T = (wv0 ,w

v0v1
l01

,Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

). We will

call Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

) the top tensor and wv0 ,w
v0v1
l01

the weight

tensors. The complex tensor Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

can be asso-
ciated with a tetrahedron (0123), which has a branching
structure (see Fig. 5). A branching structure is a choice
of orientation of each link in the complex so that there

FIG. 5. The tensor Cl01l02 l03l12 l13l23;t012
v0v1v2v3;t023t013t123

is associated with a tetra-
hedron, which has a branching structure. If the vertex-0 is above
the triangle-123, the tetrahedron has an orientation s0123 = ∗. If the
vertex-0 is below the triangle-123, the tetrahedron has an orientation
s0123 = 1. The branching structure gives the vertices a local order:
the ith vertex has i incoming links.

is no oriented loop on any triangle (see Fig. 5). Here the
v0 index is associated with the vertex-0, the l01 index is
associated with the link-01, and the t012 index is associated
with the triangle-012. They represents the degrees of freedom
on the vertices, links, and the triangles. Similarly, the real
tensor w

v0v1
l01

is associated with a link (01), and wv0 with a
vertex 0.

Using the tensors, we can define a path integral on any 3-
complex that has no boundary [26]:

Z (M3;T) =
∑

vi,...;li j ,...;ti jk ,...

∏
i

wvi

∏
(i j)

w
viv j

li j

×
∏

(i jkm)

[
C

li j lik liml jk l jmlkm;ti jk
viv jvkvm;tikmti jmt jkm

]si jkm
, (11)

where
∑

vi;li j ;ti jk
sums over all the vertex indices, the link

indices, and the triangle indices, si jkm = 1 or ∗ depending on
the orientation of tetrahedron (i jkm) (see Fig. 5).

On the complex M3 with boundary: B2 = ∂M3, the parti-
tion function is defined differently:

Z =
∑

{vi;li j ;ti jk}

∏
i/∈B2

wvi

∏
(i j)/∈B2

w
viv j

li j

∏
(i jkm)

[
Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123

]si jkm
,

(12)

where
∑

vi;li j ;ti jk
only sums over the vertex indices, the link

indices, and the triangle indices that are not on the boundary.
The resulting Z is actually a complex function of vi’s, li j’s, and
ti jk’s on the boundary B2: Z = Z ({vi; li j ; ti jk}). Such a function
is a vector in a Hilbert space HB2 . We will denote such a vector
by |�(M3)〉.

Consider two complexes M3
1 and M3

2 with the same
boundary B = ∂M3

1 = −∂M3
2, the inner product between

|�(M3
1)〉 and |�(M3

2)〉 can be obtained by gluing M3
1 and

M3
2 together M3 = M3

1 ∪ M3
2 and perform the path integral

on M3

〈
�

(
M3

2

)∣∣�(
M3

1

)〉 = Z (M3;T). (13)

This is because the inner product of two wave functions
|�(M3

2)〉 and |�(M3
1)〉 performs the summation of the

boundary indices {vi; li j ; ti jk}. We note that, in the definition of
|�(M3

1)〉 and |�(M3
2)〉, the tensors wvi and w

viv j

li j
are absent

for the vertices and the links on the boundary. When we glue
two boundaries together, these tensors wvi and w

viv j

li j
need to

be added back. So the tensors wvi and w
viv j

li j
defines the inner

product in the boundary Hilbert space HB2 . Therefore we
require wvi and w

viv j

li j
to satisfy the following unitary condition

(or the reflection positivity condition):

wvi > 0, w
viv j

li j
> 0. (14)

The tensor network model (11) are also inconvenient since
for a fixed tensor set T, different choices of the triangulations
of the space-time M3 may lead to different phases. To solve
this problem, we want to choose the tensors (wv0 , w

v0v1
l01

,

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

) such that the path integral is retriangulation
invariant. The corresponding models will be called a topolog-
ical tensor network model, which can realize the same phase
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for any triangulations of the space-time M3. In general such a phase has a nontrivial topological order that has gappable
boundary.

The invariance of Z under the re-triangulation in Fig. 6 requires that∑
φ123

Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

Cl12l13l14l23l24l34;t123
v1v2v3v4;t134t124t234

=
∑
l04

w
v0v4
l04

∑
t014t024t034

Cl01l02l04l12l14l24;t012
v0v1v2v4;t024t014t124

C∗l01l03l04l13l14l34;t013
v0v1v3v4;t034t014t134

Cl02l03l04l23l24l34;t023
v0v2v3v4;t034t024t234

. (15)

The invariance of Z under the retriangulation in Fig. 7 requires that

Cl02l03l04l23l24l34;t023
v0v2v3v4;t034t024t234

=
∑

l01l12l13l14,v1

wv1w
v0v1
l01

w
v1v2
l12

w
v1v3
l13

w
v1v4
l14

∑
t012t013t014t123t124t134

× Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

C∗l01l02l04l12l14l24;t012
v0v1v2v4;t024t014t124

Cl01l03l04l13l14l34;t013
v0v1v3v4;t034t014t134

Cl12l13l14l23l24l34;t123
v1v2v3v4;t134t124t234

. (16)

There are other similar conditions for different choices of the
branching structures. To obtain these conditions, we start with
a 4-simplex (01234), and divide the five 3-simplices on the
boundary of the 4-simplex (01234) into two groups. Then the
partition function (12) on one group of the 3-simplices must
equal to the partition function on the other group of the 3-
simplices, after a complex conjugation.

The above two types of the conditions are sufficient to de-
termine the tensor set T that produces a topologically invariant
partition function Z for any triangulated space-time M3. For
such a tensor set, its partition function Z = Z top [i.e., the
energy density in Eq. (4) ε(x) = 0]. Such topological partition
function Z top(M3) is nothing but the topological invariant for
three manifolds introduced by Turaev and Viro [53].

C. Topological nonlinear σ-models

A subclass of topological tensor network models happen
to have a form of discrete defectless nonlinear σ -models.
Such topological tensor network models (i.e., exactly soluble
discrete nonlinear σ -models) are called topological nonlinear
σ -models.

In the following, we will explain why a subclass of topo-
logical tensor network models can be viewed as discrete
defectless nonlinear σ -models. Again we will use a 2+1D
nonlinear σ -model as example. The target complex K has a
set of vertices labeled by v, a set of links labeled by l , a set of
triangles labeled by t , etc. We assume that each tetrahedron in
K is uniquely determined by its vertices v0, v1, v2, v3, its links
l01, l02, l03, l12, l13, l23, and its triangles t012, t023, t013.

We first assign a complex number to each tetrahedron
in K, which can be written as Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123
. When the

indices v0, v1, v2, v3, l01, l02, l03, l12, l13, l23, t012, t023, t013 are
not vertices, links, and triangles of a tetrahedron in K, then the

0
3

2

4 11

0
3

2

4

FIG. 6. A retriangulation of a 3D complex, obtained by dividing
the five 3-simplices on the boundary of the 4-simplex (01234) into
[(0123), (1234)] and [(0124), (0134), (0234)].

corresponding Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

= 0. Similarly, we also choose
a real tensor w

v0v1
l01

whose value is positive when v0, v1, l01,
are the vertices and the link of a triangle in K. Otherwise
w

v0v1
l01

= 0. We also assign a real positive value wv to each
vertex v in K. For such a choice of tensor set T, the partition
function (11) actually describes a discrete defectless nonlinear
σ -model.

To see this we note that a homomorphism φ : M3 → K
assigns a value vi (a vertex in K) to each vertex i in M3.
φ also assigns a value li j to each link (i j) and assigns a
value ti jk to each triangle (i jk) in M3. The terms in the
summation in Eq. (11) are nonzero only when the fields vi, li j ,
ti jk correspond to a homomorphism φ : M3 → K. Thus the
summation

∑
{vi;li j ;ti jk} in Eq. (11) corresponds to a summation∑

φ over all the homomorphisms φ : M3 → K. In this case,
Eq. (11) can be viewed as a discrete defectless nonlinear
σ -model. If the tensors wv0 w

v0v1
l01

, Cl01l02l03l12l13l23;t012
v0v1v2v3;t023t013t123

also satisfy
the conditions Eqs. (15) and (16), then the corresponding
discrete defectless nonlinear σ -model will be a topological
nonlinear σ -model.

D. Labeling simplices in a complex

In the above example, most components of the tensor
Cl01l02l03l12l13l23;t012

v0v1v2v3;t023t013t123
are zero. This is because most combinations

of v0, v1, v2, v3, l01, l02, l03, l12, l13, l23, t012, t023, t013 are not
vertices, links, and triangles of a tetrahedron in K. In the
following, we will describe a more economical way to label
simplices in a complex, such that each label will have a
smaller range and a larger fraction of the tensor elements will
be nonzero.

We still use v to label different vertices in the complex K.
Thus K0 = {v}. To label links in K, we will first try to use
two vertices v0, v1 on the two ends of the link to label it.

0
4 4

0

1

22
3 3

FIG. 7. A retriangulation of another 3D complex, obtained di-
viding the five 3-simplices on the boundary of the 4-simplex (01234)
into [(0234)] and [(0123), (0124), (0134), (1234)].
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If there are many links with the same end points v0, v1, we
will introduce additional label a01 to label these links with the
same set of end points. Thus different links in K are labeled
by (v0, v1, a01), and K1 = {(v0, v1, a01)}. We see that the new
link label a01 has a smaller range than the original link label
l01 ∼ (v0, v1, a01).

In general, the set of the extra labels, {a01}, depends on the
end points v0, v1. In this paper, we will only consider a special
type of complex K such that the set of the extra labels, {a01},
does not depend on the end points v0, v1. In this case, a01 can
be treated as a new label that is independent of vertex label vi.

Similarly, different triangles t012 in K are labeled
by t012 ∼ (v0, v1, v2, a01, a12, a02, b012), and K2 =
{(v0, v1, v2, a01, a12, a02, b012)}. Again the complex K
has a property that b012 is a new label independent of
vertex and link labels vi, a jk . We like to stress that not all
combinations {(v0, v1, v2, a01, a12, a02, b012)} correspond to
valid triangles in K. Only when v0, v1, v2, a01, a12, a02, b012’s
satisfy certain conditions, can they label the triangles in K.
Using the new set of labels, the tensors that define topological
nonlinear σ -model can be rewritten as wv0 , wv0v1

a01
, and

Ca01a02a03a12a13a23;b012
v0v1v2v3;b023b013b123

, where the indices have a smaller range.
The new notation is more economical in the sense that the
space of each new additional label is smaller than that of old
label. For example, the set {ai j} is usually smaller than the
set {li j} because {li j} can be very roughly understood as the
product {vi}×{vi}×{ai j}. See also (36) for an explicit example
in the case when the target is a 2-group.

III. DIJKGRAAF-WITTEN GAUGE THEORIES FROM
TOPOLOGICAL NONLINEAR σ-MODELS

In this section, we will introduce 1-gauge theories
(i.e., Dijkgraaf-Witten gauge theories), as topological nonlin-
ear σ -models. We will show that 1-gauge theories are nothing
but a special kind of topological nonlinear σ -models whose
target space K is modeled by a special one-vertex complex
K and satisfy π1(K ) = G, πk>1(K ) = 0. Such a one-vertex
complex K is a simplicial set and is denoted by BG. Similarly
n-gauge theories are nothing but a special kind of topological
nonlinear σ -models whose target spaces K is modeled by a
simplicial set B(π1(K ), π2(K ), . . .) and satisfy πk>n(K ) = 0.

A. Lattice gauge theories from topological nonlinear σ-models

The simplest class of topological nonlinear σ -models has
a simple target space K (G), the Eilenberg-MacLane spaces
with only nontrivial π1(K (G)) = G. For a finite G, K (G) is
the classifying space BG. To construct a discrete nonlinear
σ -model from the classifying space BG = K (G), we need to
choose a triangulation of BG = K (G) which is a simplicial
complex. Here we will choose a triangulation that contains
only one vertex. The corresponding triangulation is a simpli-
cial set denoted by BG or B(G). We will show that for such
a one-vertex triangulation, the topological nonlinear σ -model
becomes a (Dijkfraaf-Witten) lattice gauge theory, which is
also called 1-gauge theory.

The triangulation BG = B(G) is obtained in the following
way.

(1) There is only one vertex (BG)0 = {pt} (called the base
point) in BG.

(2) The links are the loops starting and ending at the base
point. We pick one loop in each homotopic class of loops:
(BG)1 = π1(BG). Thus the links are labeled by the group
elements ai j ∈ G: (BG)1 = G.

(3) For arbitrary three links a01, a12, a02 they may not
form the links around a triangle. Only when they satisfy
a01a12 = a02, the composition of the three links is a con-
tractible loop. In this case, there is a triangle t012 bounded by
the links a01, a12, a02. Note that, for a finite G, πn(BG) = 0
for n � 2. Thus all different choices of triangles are homotopy
equivalent. Here we just pick a particular one. This gives rise
to the set of 2-simplices labeled by the three links a01, a12, a02

that satisfy a01a12 = a02. Thus the set of 2-simplices is
(BG)2 = G×2, labeled by a01, a12.

(4) The set of 3-simplices (BG)3 is obtained by filling all
four triangles in a tetrahedron that share their sides in the
expected way. Using a similar consideration, we find the set
of 3-simplices to be (BG)3 = G×3, labeled by a01, a12, a23.

The sets of higher simplices (BG)n = G×n are obtained
in the same way. To summarize, the complex BG has the
following nerve:

(17)

Next, let us determine the set of tensors that satisfy the
retriangulation invariance conditions like (15) and (16). We
assume the space-time dimension to be d + 1. For each d + 1-
simplex labeled by (a01, a12, . . . , ad,d+1) in BG, we assign a
complex number

Td+1(ai j ) = wd+1 e i 2πω̄d+1(a01,a12,...,ad,d+1 ), (18)

where ω̄d+1(a01, a12, . . . , ad,d+1) is a R/Z-valued cocycle on
BG: ω̄d+1 ∈ Hd+1(BG;R/Z). T is the top tensor in the tensor
set T, like the tensor Ca01a02a03a12a13a23;b012

v0v1v2v3;b023b013b123
in Sec. III A. For each

n-simplex, n � d , we assign a positive number wn. wn’s cor-
respond to the weight tensors wv0 and wv0v1

a01
in Sec. III A. The

partition function of the corresponding topological nonlinear
σ -model is then given by

Z =
∑

φ

[
d+1∏
n=0

(wn)Nn

]
e i 2π

∫
Md+1 φ∗ω̄d+1 , (19)

where Nn is the number of n-simplices in Md+1 and
∑

φ sums
over all the homomorphisms φ : Md+1 → BG. Because ω̄d+1

is a cocycle on BG, the term e i 2π
∫
Md+1 φ∗ω̄d+1 is independent

on how we triangulate the space-time Md+1. However, the
term

∑
φ

∏d+1
n=0 (wn)Nn does dependent on the triangulation of

Md+1. The idea is to choose the weight tensors wn to cancel
such triangulation dependence.

Let us define two homomorphisms φ and φ′ to be ho-
motopic if there exist a homomorphism � : I×Md+1 → BG
such that, when restricted to the two boundaries of I×Md+1,
� becomes φ and φ′. For such two homomorphisms, we have

e2π i
∫
Md+1 φ∗ω̄d+1 = e2π i

∫
Md+1 φ′∗ω̄d+1 (20)

if the space-time Md+1 has no boundary. Such a prop-
erty is called gauge invariance. Since the phase factor

045105-8



TOPOLOGICAL NONLINEAR σ -MODEL, HIGHER … PHYSICAL REVIEW B 100, 045105 (2019)

e2π i
∫
Md+1 φ∗ω̄d+1 only depends on the homotopic classes [φ],

we can rewrite it as e2π i
∫
Md+1 [φ]∗ω̄d+1 . For two homotopic

homomorphisms φ and φ′, their corresponding field config-
urations a and a′ are said to be gauge equivalent.

Let us describe the homotopic classes [φ] in more detail.
First, there is a surjective map

φ � Hom(π1(Md+1), G) (21)

where Hom(π1(Md+1), G) is the set of group homomor-
phisms. There is another surjective map

Hom(π1(Md+1), G) � {[φ]}, (22)

where {[φ]} is the set of homotopic classes of the simplicial

homomorphisms Md+1 φ−→ BG. Two group homomorphisms
γ , γ ′ ∈ Hom(π1(Md+1), G) are said to be equivalent if their
are related by

γ = gγ ′g−1, g ∈ G. (23)

Let [γ ] be an equivalent class of the group homomorphisms
Hom(π1(Md+1), G). It turns out that

{[γ ]} = {[φ]}, (24)

where {[γ ]} is the set of equivalent classes of the group
homomorphisms.

Now,
∑

φ is reduced to a summation over the homotopic
classes of the homomorphisms φ,

∑
[φ], which is a sum with

only a few terms:

Z =
∑
[φ]

[
d+1∏
n=0

(wn)Nn

]
N ([φ],Md+1,BG)e2π i

∫
Md+1 [φ]∗ω̄d+1,

(25)

where N ([φ],Md+1,BG) is the number of the homomor-
phisms φ : Md+1 → BG in the homotopic class [φ]. Due
to the one-to-one correspondence between [φ] and [γ ], we
can also write N ([φ],Md+1,BG) as N ([γ ],Md+1,BG). The
total number of the homomorphisms φ is given by

N (Md+1,BG) =
∑
[φ]

N ([φ],Md+1,BG). (26)

To count N ([φ],Md+1,BG), we note that, in the above
discrete nonlinear σ -models, the map φ sends all vertices in
Md+1 (labeled by i = 0, . . . , Nv − 1) to the base point pt in
BG. The map φ sends an link (i j) ∈ Md+1 to an link ai j ∈
BG. Thus on each link (i j) of space-time complex Md+1, we
have a degree of freedom ai j . Note that if three links in space-
time complex, (01), (12), and (02), form the boundary of a
triangle (012), then the map φ will sends such a triangle to the
triangle t012 ∈ BG bounded by a01, a12, a02. This implies that
there is no extra degrees of freedom on the triangles except
those that come from the links a01, a12, a02. It also implies
that ai j on the three links (i j) satisfy a flat condition:

ai ja jk = aik . (27)

This is an example of the conditions discussed above. Using
similar considerations, we see that there are no extra degrees
of freedom on the 3-simplices and higher simplices. Thus the
summation

∑
φ can be rewritten as

∑
ai j

where
∑

ai j
sum over

all ai j ∈ G on link (i j) ∈ Md+1, so that ai j satisfy the flat
condition (27).

Since the set of ai j describes a flat G-gauge connection, we
see that N ([φ],Md+1,BG) is the number gauge equivalent
flat G-gauge connections on Md+1. We find that

N ([φ],Md+1,BG) = N ([γ ],Md+1,BG)

= |G|N0Wtop([γ ], Md+1,BG), (28)

Wtop([γ ], Md+1,BG) = Wtop([φ], Md+1,BG) = |[γ ]|/|G|,
where |G| is the number of the elements in the group G and
|[γ ]| is the number of the elements in the equivalent class
[γ ]. Here the factor |G|N0 comes from the numbers of gauge
transformations

ai j → giai jg
−1
j (29)

generated by gi ∈ G on each vertex i in Md+1. Also
1/Wtop([φ], Md+1,BG) is the number of gauge transfor-
mations that leave a gauge field a (or φ) invariant. So
1/Wtop([γ ], Md+1,BG) is given by the number of the ele-
ments in the subgroup of G thats leave γ invariant, which
is |G|/|[γ ]|. Thus Wtop([φ], Md+1,BG) is independent of the
triangulation on Md+1.

N0 in |G|N0Wtop([φ], Md+1,BG) depends on the triangu-
lation of Md+1. We want to choose wn to cancel the N0

dependence, which turns out to be

w0 = |G|−1, other wn = 1. (30)

In this case, the partition function (19) becomes

Z =
∑
ai j

(∏
i

|G|−1

)
e i 2π

∫
Md+1 ωd+1(a01,a12,...,ad,d+1 )

=
∑
[φ]

Wtop([φ], Md+1,BG)e i 2π
∫
Md+1 [φ]∗ω̄d+1, (31)

which is invariant under the retriangulation of space-time
Md+1. Such choice of tensors give us a topological nonlinear
σ -model.

We see that the topological nonlinear σ -models with BG as
the target complex are classified by the (d + 1)-cohomology
classes Hd+1(BG;R/Z). When ωd+1 = 0, the partition func-
tion is given by the equal weight summation of all flat connec-
tions ai j on the links of space-time complex, which give rise
to a G-gauge theory in the deconfined phase. If we choose
a nontrivial cocycle ωd+1 ∈ Hd+1(BG;R/Z), then the path
integral (31) will gives rise to a Dijkgraaf-Witten lattice gauge
theory.

B. Classification of exactly soluble 1-gauge theories

We have seen that by choosing a classifying space BG =
K (G) as the target space and choosing a particular trian-
gulation of K (G), B(G), as the target complex, we obtain
the Dijkgraaf-Witten gauge theories for a finite gauge group
G. For each finite gauge group G, we only have one cor-
responding K (G). The different (d + 1)-cohomology classes
ωd+1 ∈ Hd+1(K (G),R/Z) give rise to different Dijkgraaf-
Witten gauge theories. Thus Dijkgraaf-Witten gauge theories
(or 1-gauge theories) are classified by pairs (G, ωd+1).
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We have seen that Dijkgraaf-Witten gauge theories are
topological nonlinear σ -models. It is natural to ask if topo-
logical nonlinear σ -models with target complex BG are
Dijkgraaf-Witten gauge theories. In other words, we have
shown that the tensor set

Td+1(ai j ) = e i 2πω̄d+1(a01,a12,...,ad,d+1 ), w0 = |G|−1 (32)

satisfy the retriangulation invariance conditions, such as
Eqs. (15) and (16). The question is that if all the solutions
of the retriangulation invariance conditions [such as Eqs. (15)
and (16)] have the form Eq. (32) as described by a cocycle
ω̄d+1. There is another related question: given a triangulation
K of the classifying space BG (K may not be a simplicial set),
are all the topological nonlinear σ -models with target complex
K equivalent to Dijkgraaf-Witten gauge theories (i.e., produce
the same topological invariant Z top or produce the same
topological order)? We left the questions for future work
(see Ref. [54] and references therein for some discussions).

IV. 2-GAUGE THEORIES FROM TOPOLOGICAL
NONLINEAR σ-MODELS

In this section, we are going to discuss exactly soluble 2-
gauge theories and their classification, from a point of view
of topological nonlinear σ -model. We have seen that if the
target space K has only nontrivial π1(K ), we can get a 1-gauge
theory from the topological nonlinear σ -model. If the target
space K has only nontrivial π1(K ) and π2(K ), then we can get
a 2-gauge theory.

A. 2-groups

1. Classification of 2-groups

To obtain a 2-gauge theory via a topological nonlinear
σ -model, we choose a special triangulation of K (G,�2), the
simplicial set B(G,�2), as the target complex. The simplicial
set B(G,�2) is called a 2-group. The corresponding topo-
logical nonlinear σ -model can be a 2-gauge theory. In this
section, we concentrate on 2-groups B(G,�2), where G is a
finite group and �2 a finite Abelian group.

The simplicial set B(G; �2) (the 2-group) can be viewed
as a fiber bundle with B(0; �2) = B(�2, 2) as the fiber and
B(G) as the base space:

B(�2, 2) → B(G; �2) → B(G). (33)

Thus a classification of B(G; �2) can be obtain using the
following general result.

Lemma IV.1. The simplicial set B(π1; . . . ; πn) has the fol-
lowing fibration:

B(πn, n) → B(π1; . . . ; πn) → B(π1; . . . ; πn−1),

Thus B(π1; . . . ; πn) for fixed πi’s are classified by
Hn+1[B(π1; . . . ; πn−1); πn] with local coefficient πn.

The n = 2 case was discussed in Ref. [55], Theorem 43.
Using the above result, we find that, for a fixed

pair (G,�2), the 2-groups B(G; �2) are classified by
H3(B(G),�2) = H3(BG,�

α2
2 ). The local coefficient �2 in

topological cohomology classes H3(BG,�
α2
2 ) means that G

may have a nontrivial action on �2, which is described by α2 :
G → Aut(�2). Such an action is indicated by the superscript
α2 in �

α2
2 .

To summarize, 2-groups B(G; �2) are classified by the
following data:

G; �2, α2, n̄3 (34)

where G is a finite group, �2 a finite Abelian group, α2

a group action α2 : G → Aut(�2), and n̄3(a01, a12, a23) is a
group-cocycle in H3(G,�

α2
2 ). The group-cocycle condition

that determines n̄3(a01, a12, a23) is given by

0 = α2(a01) · n̄3(a12, a23, a34) − n̄3(a02, a23, a34)

+ n̄3(a01, a13, a34) − n̄3(a01, a12, a24) + n̄3(a01, a12, a23)

= α2(a01) · n̄3(a12, a23, a34) − n̄3(a01a12, a23, a34)

+ n̄3(a01, a12a23, a34) − n̄3(a01, a12, a23a34)

+ n̄3(a01, a12, a23) (35)

for all a01, a12, a23, and a34.

2. A description of one-vertex triangulation B(G; �2 )

After knowing how to label all the 2-groups B(G; �2)
using the data (34), the next important question is to obtain
a detailed description of the simplicial set B(G; �2) from
the classifying data (34). The simplicial set B(G; �2) has the
following sets of simplices:

(36)

Let us describe the sets of simplices and the face map dm in
more details. First, there is only one vertex pt in B(G; �2).
The links in B(G; �2) are labeled by elements ai j in G. All
the links connect pt to pt , and correspond to noncontractable
loops in π (B(G; �2)) = G. Thus the face maps are give by

d0(a01) = pt, d1(a01) = pt . (37)

The boundary map is given by ∂ = d0 − d1. We see that
∂ (a01) = 0 and the link (a01) is a 1-cycle, for all a01 ∈ G.

The composition of two links a01 and a12 can be deformed
into the link a02 if and only if

a01a12 = a02. (38)

Thus a01, a12, and a02 are boundary of a triangle if and only if
a01a12 = a02.

The G-valued ai j on each link of B(G,�2) define a G-
valued 1-cochain ā, which is called a canonical 1-cochain.

045105-10



TOPOLOGICAL NONLINEAR σ -MODEL, HIGHER … PHYSICAL REVIEW B 100, 045105 (2019)

Using ā, the above condition can be written as

δā ≡ a01a12a−1
02 = 1. (39)

This implies that the canonical 1-cochain ā is a G-valued 1-
cocycle.

When a01a12 = a02, there may be many triangles with
the same boundaries a01, a12, and a02. These triangles are
labeled by elements in �2. Thus all the triangles are labeled
by (a01, a12, a02; b012) where ai j satisfy Eq. (38). If we use
independent ai j , we find all the triangles are labeled by
[a01, a12; b012], which leads to the set of triangles G×2×�2.
The face maps are given by

d0(a01, a12, a02; b012) = (a12),

d1(a01, a12, a02; b012) = (a02), (40)

d2(a01, a12, a02; b012) = (a01),

which map the triangle to one of its links. From the face maps
dm, we obtain the boundary map ∂:

∂ = d0 − d1 + d2. (41)

Thus the boundary of triangle (a01, a12, a02; b012) is given by

∂ (a01, a12, a02; b012) = (a12) − (a02) + (a01). (42)

Using the above boundary map, we find that four tri-
angles −(a01, a12, a02; b012), (a01, a13, a03; b013), −(a02, a23,

a03; b023), (a12, a23, a13; b123), form a 2-cycle since their
boundaries cancel each other. Note that ai j in each triangle
must satisfy Eq. (38). Otherwise, they will not form triangles.
However, the 2-cycle formed by the four triangles may not
be the boundary of a tetrahedron in B(G; �2). In order to
have a tetrahedron in B(G; �2) that fill the 2-cycle, bi jk’s
must satisfy a condition. In other words, ai j’s and bi jk’s that
label the links and triangles in a tetrahedron in B(G; �2) must
satisfy a condition. Such a condition can be described using
the cochain language (see Appendix A) if we introduce a
�2-valued canonical 2-cochain b̄, as defined by the values bi jk

on all the triangles of B(G; �2). Using b̄, the condition on bi jk

can be written as

db̄ = n̄3(ā), (43)

So, the canonical 2-cochain b̄ may not be a cocycle. Its
derivative is given by a function of canonical 1-cocycle ā.
When α2 is trivial, the above have the following explicit
expression: ai j’s and bi jk’s that label the links and triangles
in a tetrahedron satisfy

b123 − b023 + b013 − b012 = n̄3(a01, a12, a23). (44)

When α2 is nontrivial, db̄ = n̄3(ā) becomes

α2(a01) · b123 − b023 + b013 − b012 = n̄3(a01, a12, a23). (45)

We see that the tetrahedrons in B(G; �2) are labeled by
(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123) that sat-
isfy Eqs. (38) and (45). In other words, the tetrahedrons in
B(G; �2) are labeled by independent indices [a01, a12, a23;
b012, b023, b013]. These tetrahedrons form the set G×3×�×3

2 in
Eq. (36).

The face maps dm’s on tetrahedrons are given by

d0(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)
= (a12, a23, a13; b123),

d1(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a02, a23, a03; b023),

d2(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a01, a13, a03; b013),

d3(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123)

= (a01, a12, a02; b012). (46)

Let us introduce s[01] to describe the link (a01), s[012]
the triangle (a01, a12, a02; b012), s[0123] the tetrahedron
(a01, a12, a23, a02, a13, a03; b012, b023, b013, b123), etc. Then,
the above expression can be put in a more compact form

d0s[0123] = s[123], d1s[0123] = s[023],

d2s[0123] = s[013], d3s[0123] = s[012]. (47)

Using independent labels, Eq. (46) can be rewritten as

d0[a01, a12, a23; b012, b023, b013] = [a12, a23; b123] = [
a12, a23; α−1

2 (a01) · (b023 − b013 + b012 + n̄3(a01, a12, a23))
]
,

d1[a01, a12, a23; b012, b023, b013] = [a02, a23; b023], d2[a01, a12, a23; b012, b023, b013] = [a01, a13; b013],

d3[a01, a12, a23; b012, b023, b013] = [a01, a12; b012]. (48)

The boundary map ∂ for tetrahedron is given by

∂ = d0 − d1 + d2 − d3. (49)

Thus

∂[a01, a12, a23; b012, b023, b013]

= [a12, a23; α−1
2 (a01) · (b023 − b013 + b012

+ n̄3(a01, a12, a23))] − [a02, a23; b023]

+ [a01, a13; b013] − [a01, a12; b012]. (50)

In general, the n-simplices in G×n×�
(n
2 )

2 are labeled by
(ai j, bklm), i < j, k < l < m i, j, k, l, m = 0, 1, . . . , n, that
satisfy the conditions (38) (after replacing 012 by i< j<k)
and Eq. (45) (after replacing 0123 by i < j < k < l). We
see that all the ai j’s are determined by the independent
a01, a12, . . . , an−1,n. Similarly, all the bi jk’s are given by an
independent subset of bi jk’s. Such independent subset is ob-
tained by picking i = 0, and j < k.

Using the labeling scheme (ai j, bi jk ), i, j, k = 0, 1, . . . , n,
where ai j, bi jk satisfy Eqs. (38) and (45), we can obtain a
simple description of the face map dm in Eq. (36) that sends
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an n-simplex to an (n − 1)-simplex. To describe the action
of dm, we start with an n-simplex (ai j, bi jk ). The resulting
(n − 1)-simplex is obtained by dropping all in ai j, bi jk in the
set (ai j, bi jk ) that contain the vertex m. This changes (ai j, bi jk )
to its subset which is written as

dm(ai j, bi jk|0 � i, j, k � n) = (ai j, bi jk|i, j, k �= m). (51)

ai j, bi jk in the subset also satisfy Eq. (38) and (45). The
subset dm(ai j, bi jk ) describes the resulting (n − 1)-simplex
after the dm map. We see that the explicit expression for
dm(ai j, bi jk|0 � i, j, k � n) is simple to construct using non-
independent ai j, bi jk’s.

3. A trivialization

We have mentioned that n̄3 in db̄ = n̄3(ā) is a group-
cocycle in H3(G; �2). Such a group cocycle correspond to
a topological cocycle ñ3 on space BG: ñ3 ∈ H3(BG; �2). We
may also view n̄3(ā) as a function of ā and as a topological
cocycle on B(G,�2).

We note that there is unique complex homomor-
phism ϕ : B(G,�2) → BG, which sends the triangle
(a01, a12, a02; b012) in B(G,�2) to the triangle (a01, a12, a02)
in BG. Then, we may view n̄3(ā) on B(G,�2) as a pullback
of ñ3 on BG by the homomorphism ϕ:

n̄3 = ϕ∗ñ3. (52)

We note that although ñ3 is a nontrivial cocycle on BG, its
pullback n̄3 = ϕ∗ñ3 is always a coboundary on B(G,�2):
db̄ = n̄3(ā). In other words, given a �2-valued 3-cocycle ñ3

on BG, let B(G,�2)
ϕ−→ BG be the fibration corresponding to

ñ3, which always exists as stated in Lemma IV.1. Then ϕ∗ñ3

is a coboundary on B(G,�2).
The above result can be generalized: given a

�m+1-valued (m + 2)-cocycle ñm+2 on B(G, . . . ,�m),
let B(G, . . . ,�m,�m+1)

ϕ−→ B(G, . . . ,�m) be the fibration
corresponding to ñm+2 as stated in Lemma IV.1. Then ϕ∗ñm+2

is a coboundary on B(G, . . . ,�m,�m+1): db̄m+1 = ϕ∗ñm+2.

B. 2-gauge theories

To define a d+1D topological nonlinear σ -model (we will
assume d � 2 since there is no 2-gauge theory in 1+1D),
we need to specify the tensor set T. To do so, for each
d + 1-simplex labeled by (ai j, bi jk ) in B(G,�2) we assign a
complex number

Td+1(ai j, bi jk ) = wd+1ei2πω̄d+1(ai j ,bi jk ), (53)

where ω̄d+1(ai j, bi jk ) is a R/Z-valued cocycle on B(G,�2):
ω̄d+1 ∈ Hd+1(B(G,�2);R/Z). T is the top tensor in the ten-
sor set T. For each n-simplex in B(G,�2), n � d , we assign
a positive number wn, which correspond to the weight tensors
in the tensor set. The partition function of the corresponding
topological nonlinear σ -model is then given by

Z =
∑

φ

[
d+1∏
n=0

(wn)Nn

]
ei2π

∫
Md+1 φ∗ω̄d+1 (54)

where Nn is the number of n-simplices in Md+1 and
∑

φ sums
over all the homomorphisms φ : Md+1 → B(G,�2).

The pullbacks of the canonical cochains ā and b̄ on
B(G,�2) by the homomorphisms φ give rise to cochains a
and b on Md+1:

a = φ∗ā, b = φ∗b̄. (55)

a and b are referred as gauge field and rank-2 gauge field in
physics, which satisfy

δa = 1, db = n3(a). (56)

In fact there is a one-to-one correspondence between the
allowed field configurations a and b and the homomorphisms.
Thus we can replace

∑
φ and

∑
a,b:

Z =
∑
a,b

[
d+1∏
n=0

(wn)Nn

]
ei2π

∫
Md+1 ωd+1(a,b). (57)

As shown in Eq. (20), homotopic homomorphisms φ’s give
rise to the same action amplitude e2π i

∫
M4 φ∗ω̄d+1 . Thus the

partition function can be written as

Z =
∑
[φ]

[
d+1∏
n=0

(wn)Nn

]
N ([φ],Md+1,B(G,�2))

×ei2π
∫
Md+1 [φ]∗ω̄d+1 , (58)

where N ([φ],Md+1,B(G,�2)) is the number of homomor-
phisms φ : Md+1 → B(G,�2) in the homotopic class [φ].

Let two field configurations ai j, bi jk, . . . and a′
i j, b′

i jk, . . .

on Md+1 come from two homotopic homomorphisms φ and
φ′. Thus the two field configurations have the same the action
amplitude e2π i

∫
M4 φ∗ω̄d+1 . We say that the two configurations

differ by a gauge transformation.
The gauge equivalent field configurations are generated by

two kinds of gauge transformations. The first one is generated
by gi on each vertex

ai j → a′
i j = giai jg

−1
j ,

bi jk → b′
i jk = bi jk + ζ2(ai j, a jk, gi, g j, gk ), (59)

where ζ2(ai j, a jk, gi, g j, gk ) is a �2-valued function that sat-
isfy

(dζ2)(ai j, a jk, akl , gi, g j, gk, gl )

= −ζ2(ai j, a jk, gi, g j, gk ) + ζ2(aik, akl , gi, gk, gl )

− ζ2(ai j, a jl , gi, g j, gl ) +α2(gi j ) · ζ2(a jk, akl , g j, gk, gl )

= n3
(
giai jg

−1
j , g ja jkg−1

k , gkaklg
−1
l

) − n3(ai j, a jk, aik ).
(60)

Since n3 is a cocycle, the above equation always has a solu-
tion. The second one is generated by �2-valued λi j on each
link

ai j → a′
i j = ai j,

bi jk → b′
i jk = bi jk + λi j − λik + α2(gi j ) · λ jk. (61)

Equations (59) and (61) generate the 2-gauge transformations.
The action amplitude e2π i

∫
M4 ωd+1(a,b) is invariant under the

2-gauge transformations.
Since N ([φ],Md+1,B(G,�2)) counts 2-gauge equiva-

lent field configurations, from the above form of 2-gauge
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transformations, we see that

N ([φ],Md+1,B(G,�2))

= |G|N0 |�2|N1Wtop([φ], Md+1,B(G,�2)). (62)

To cancel the triangulation dependence N0 and N1, we choose
the weight tensors to be

w0 = |G|−1, w1 = |�2|−1, other wn = 1. (63)

Such choice of top and weight tensors, (53) and (63), give rise
to a topological nonlinear σ -model which is a 2-gauge theory.

We like to remark that Eqs. (53) and (63) represent one
class of the solutions to the retriangulation invariance condi-
tions [like Eqs. (15) and (16)]. It is not clear if Eqs. (53) and
(63) represent all the solutions to the retriangulation invari-
ance conditions. In other words, it is not clear if topological
nonlinear σ -models with target complex B(G,�2) are always
2-gauge theories described by [see Eq. (57)]

Z =
∑
a,b

⎛
⎝∏

i

|G|−1
∏
(i j)

|�2|−1

⎞
⎠ei2π

∫
Md+1 ωd+1(a,b)

=
∑
[φ]

Wtop([φ], Md+1,B(G,�2))ei2π
∫
Md+1 [φ]∗ω̄d+1 . (64)

Since the data (G; �2, α2, n̄3) classify the 2-groups, the
d+1D 2-gauge theories are then classified by the following
data:

G; �2, α2, n̄3; ω̄d+1, (65)

where ω̄d+1 ∈ Hd+1(B(G,�2),R/Z). Using the above data,
we can construct a 2-gauge theory Eq. (64).

C. 2-group cocycles

ω̄d+1 in Eq. (64) is called a 2-group cocycle. In the follow-
ing, we give an explicit description of 2-group cocycles, based
on the discussion in Sec. IV A. First, a d+1D 2-group cochain

ω̄d+1 with value M is a function ω̄d+1 : G×d×�
(d
2 )

2 → M.
Then we can define the differential operator d acting on the
2-group cochains as the following [see Eq. (47) or (48)]:

(dω̄d+1)(s[0 . . . d + 1]) =
d+1∑
m=0

(−)mω̄d+1(s[1 . . . m̂ . . . d+1]).

(66)

In each dimension, we obtain

(dω̄0)(a01) = 0, (67)

(dω̄1)(a01, a12, b012) = ω̄1(a01) − ω̄1(a02) + ω̄1(a12), (68)

(dω̄2)(a01, a12, a23, b012, b013, b023) = −ω̄2(a01, a12, b012) + ω̄2(a01, a13, b013) − ω̄2(a02, a23, b023) + ω̄2(a12, a23, b123), (69)

(dω̄3)(a01, a12, a23, a34, b012, b013, b014, b023, b024, b034)

= +ω̄3(a01, a12, a23, b012, b013, b023) − ω̄3(a01, a12, a24, b012, b014, b024) + ω̄3(a01, a13, a34, b013, b014, b034)

− ω̄3(a02, a23, a34, b023, b024, b034) + ω̄3(a12, a23, a34, b123, b124, b134), (70)

(dω̄4)(a01, a12, a23, a34, a45, b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

= −ω̄4(a01, a12, a23, a34, b012, b013, b014, b023, b024, b034) + ω̄4(a01, a12, a23, a35, b012, b013, b015, b023, b025, b035)

−ω̄4(a01, a12, a24, a45, b012, b014, b015, b024, b025, b045) + ω̄4(a01, a13, a34, a45, b013, b014, b015, b034, b035, b045)

−ω̄4(a02, a23, a34, a45, b023, b024, b025, b034, b035, b045) + ω̄4(a12, a23, a34, a45, b123, b124, b125, b134, b135, b145), (71)

(dω̄5)(a01, a12, a23, a34, a45, a56, b012, b013, b014, b015, b016, b023, b024, b025, b026, b034, b035, b036, b045, b046, b056)

= +ω̄5(a01, a12, a23, a34, a45, b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

−ω̄5(a01, a12, a23, a34, a46, b012, b013, b014, b016, b023, b024, b026, b034, b036, b046)

+ω̄5(a01, a12, a23, a35, a56, b012, b013, b015, b016, b023, b025, b026, b035, b036, b056)

−ω̄5(a01, a12, a24, a45, a56, b012, b014, b015, b016, b024, b025, b026, b045, b046, b056)

+ω̄5(a01, a13, a34, a45, a56, b013, b014, b015, b016, b034, b035, b036, b045, b046, b056)

−ω̄5(a02, a23, a34, a45, a56, b023, b024, b025, b026, b034, b035, b036, b045, b046, b056)

+ω̄5(a12, a23, a34, a45, a56, b123, b124, b125, b126, b134, b135, b136, b145, b146, b156). (72)

In the above, the variables ai j with j − i > 1 and bi jk with i �= 0 do not appear on the left-hand side of the equation but appear
on the right-hand side of the equation. In fact, these ai j and bi jk are given by ai,i+1’s and b0mn’s that do appear on the left-hand
side of the equation:

ai j = ai,i+1 . . . a j−1, j, if j − i � 2,

bi jk = α−1
2 (a01) · [b0 jk − b0ik + b0i j + n̄3(a0i, ai j, a jk )]. (73)

045105-13



CHENCHANG ZHU, TIAN LAN, AND XIAO-GANG WEN PHYSICAL REVIEW B 100, 045105 (2019)

So the above are conditions on the functions of ai,i+1’s and
b0mn’s.

With the above definition of d operator, we can define
the 2-group cocycles as the 2-group cochains that satisfy
dω̄d+1 = 0. This generalizes the notion of group cocycle to
2-group cocycle. Two different 2-group cocycles ω̄d+1 and
ω̄′

d+1 are equivalent if they differ by a 2-group coboundary
d ν̄d . The set of equivalent classes of d+1D 2-group cocycles
is denoted as Hd+1(B(Gb; �2),M).

D. Cohomology of 2-group

One way to understand the structure of
Hd+1(B(Gb; �2),M) is to use the fibration B(�2, 2) →
B(Gb; �2) → BGb [see Eq. (33), and use spectral
sequence to reduce the cohomology of B(Gb; �2) to
cohomology groups of Gb and B(�2, 2)]. In particular,
from Appendix B, we see that every element in
Hd+1(B(Gb; �2),R/Z) can be labeled by (k0, k1, . . . , kd )
where kl ∈ Hl [BGb, Hd+1−l (B(�2, 2);R/Z)G], although
some (k0, k1, . . . , kd )’s may not correspond to any
elements in Hd+1(B(Gb; �2),R/Z), and some different
(k0, k1, . . . , kd )’s may correspond to the same element
in Hd+1(B(Gb; �2),R/Z). [When B(Gb; �2) =
B(�2, 2)×BGb, (k0, k1, . . . , kd ) will be the one-to-one
label of all the elements in Hd+1(B(Gb; �2),R/Z).]

Next, let us concentrate on a special case of �2 = Z2, and
try to compute Hd+1(B(Gb;Z2),R/Z). Since Z2 group has
no nontrivial automorphism, α2 is always trivial. However,
n̄3 ∈ H3(BGb;Z2) is in general nontrivial. Thus a 2-group
B(Gb;Z2) is characterized by a pair G, n̄3. The cohomology
H∗(B(Z2, 2),Z) is given by [56]

d : 0 1 2 3 4 5 6 7,

Hd (B(Z2, 2),Z) : Z 0 0 Z2 0 Z4 Z2 Z2.

(74)

Using the universal coefficient theorem

Hn(X,M) � Hn(X ;Z) ⊗Z M ⊕ Tor(Hn+1(X ;Z),M) (75)

and Zn ⊗Z R/Z = 0, Tor(Zn,R/Z) = Zn, we find that
Hn(B(Z2, 2);R/Z) = Hn+1(B(Z2, 2),Z):

d : 0 1 2 3 4 5 6,

Hd (B(Z2, 2);R/Z) : R/Z 0 Z2 0 Z4 Z2 Z2.

(76)

Using the above result, we find that H4(B(Gb;Z2),R/Z) can
be labeled by

H4(B(Z2, 2);R/Z) = Z4 = {k̄0},
H1[BGb; H3(B(Z2, 2);R/Z)] = {0},
H2[BGb; H2(B(Z2, 2);R/Z)] = H2(BGb;Z2) = {k2},
H3[BGb; H1(B(Z2, 2);R/Z)] = {0},

H4[BGb;R/Z)] = {k4}. (77)

Since 2-gauge theories in 3+1D are classified pairs
(n̄3, ω̄4), ω4 ∈ H4(B(Gb;Z2),R/Z)}, we find that each 3+1D
2-gauge theory corresponds to one or more elements in a
subset of

H3[BGb;Z2)] × H4(B(Z2, 2);R/Z)

× H2[BGb;Z2)] × H4[BGb;R/Z)]. (78)

The first H comes from n̄3 and the rest H’s from ω̄4.
If the index k̄0 ∈ H4(B(Z2, 2);R/Z) = Z4 is k̄0 = 2, the

2-gauge theory has emergent fermions. The index k2 in
H2(BGb;Z2) describes the extension of Gb by Z2 to obtain
G f . sRep(G f ) describes the particle-like excitations in the
2-gauge theory. For details, see Sec. VI.

V. PURE 2-GAUGE THEORY OF
2-GAUGE-GROUP B(�2, 2)

In the last section, we discuss some general properties of 2-
gauge theory. In this section, we are going to discuss a special
2-gauge theory, pure 2-gauge theory.

A. Pure 2-group and pure 2-gauge theory

If we choose the target complex of the topological nonlin-
ear σ -model to be B(0; �2) = B(�2, 2), we will get a pure 2-
gauge theory of 2-gauge-group B(�2, 2), where �2 is a finite
Abelian group. There is only one complex of B(�2, 2)-type.
The complex B(�2, 2) has a structure

(79)

In this case, n̄3 = 0, α2 is trivial, and bi jk satisfy

b123 − b023 + b013 − b012 = 0. (80)

We see that canonical 2-cochain b̄ is a �2-valued 2-cocycle
on target complex B(�2, 2). The action of d on the cochains
in B(�2, 2) are given by

(dω0)() = 0, (81)

(dω1)(b012) = ω1(), (82)

(dω2)(b012, b013, b023) = −ω2(b012) + ω2(b013) − ω2(b023) + ω2(b123), (83)

(dω3)(b012, b013, b014, b023, b024, b034)

= ω3(b012, b013, b023) − ω3(b012, b014, b024) + ω3(b013, b014, b034) − ω3(b023, b024, b034) + ω3(b123, b124, b134), (84)
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(dω4)(b012, b013, b014, b015, b023, b024, b025, b034, b035, b045)

= −ω4(b013, b014, b023, b024, b034) + ω4(b012, b013, b015, b023, b025, b035) − ω4(b012, b014, b015, b024, b025, b045)

+ ω4(b013, b014, b015, b034, b035, b045) − ω4(b023, b024, b025, b034, b035, b045) + ω4(b123, b124, b125, b134, b135, b145). (85)

In the above, the variables bi jk for i �= 0 do not appear on the
left-hand side of the equation, but appear on the right-hand
side of the equation. In fact, these bi jk are given by b0mn’s that
do appear on the left-hand side of the equation:

bi jk = b0 jk − b0ik + b0i j . (86)

So the above are the conditions on functions of b0mn’s.
Clearly,

H0(B(�2, 2);R/Z) = R/Z, H1(B(�2, 2);R/Z) = 0.

(87)

From Eq. (83), we see that, for �2 = Zn, a 2-group 2-cocycle
has a form

(ω2)i jk = m

n
bi jk + c, m = 0, . . . , n − 1, (88)

The constant term c is a coboundary. Thus H2(B(Zn, 2);
R/Z) = Zn. This allows us to show that for a finite �2

H2(B(�2, 2);R/Z) = �2, (89)

which agrees with H2(B(Z2, 2);R/Z) = Z2 [see Eq. (76)].
To compute H4(B(�2, 2);R/Z), let us first assume �2 =

Z2. From Eq. (76), we see that H4(B(Z2, 2);R/Z) = Z4.
One of the four-dimensional 2-group cocycle is given by

ω4(b) = 1
2 b2. (90)

We note that 2ω4
1= 0. Thus ω4 only generate Z2 subgroup of

Z4 = H4(B(Z2, 2);R/Z).
To obtain the generator of H4(B(Z2, 2);R/Z), we note

that, if we view b as Z-valued 2-cochain, we have db = 2c
where c is a Z-valued 3-cochain. Then, from Eqs. (A19) and
(A20), we see that

dSq2b = Sq2 db + 2Sq3b = 4(c �
1

c + bc). (91)

Thus

ω4(b) = 1
4 Sq2b (92)

is a R/Z-valued 4-cocycle: dω4(b)
1= 0. Such a ω4 generates

the full group Z4 = H4(B(Z2, 2);R/Z).
In general, if b is a Zn-valued 2-cocycle, we have db = nc

where c is a Z-valued 3-cochain. From Eq. (A17), we see that

dSq2b = Sq2 db + 2Sq3b = n2c �
1

c + 2nbc. (93)

This result tells us that when n = odd,

ω4(b) = 1

n
Sq2b (94)

is a R/Z-valued 4-cocycle, while when n = even

ω4(b) = 1

2n
Sq2b (95)

is a R/Z-valued 4-cocycle. ω4(b) generates a Zn group
when n = odd, and a Z2n group when n = even. This

suggests that H4(B(Zn, 2);R/Z) = Zn when n = odd, and
H4(B(Zn, 2);R/Z) = Z2n when n = even.

B. Pure 2-gauge theory in 3+1D

1. n = odd case

We see that, when n = odd, we have n different 3+1D
B(Zn, 2) 2-gauge theories, described by partition function

Z (M4;B(Zn, 2), k) =
∑

dbZn n=0

e2π i
∫
M4

k
n (bZn )2

(96)

where k = 0, 1, . . . , n − 1 and bZn is a Zn-value 2-cocycle.
Clearly, the action amplitude e2π i

∫
M4

k
n (bZn )2

is invariant under
the 2-gauge transformation bZn → bZn + dλ. The above 2-
gauge theory was studied in Ref. [57]. It was found that the
theory realizes a 3+1D Z〈2k,n〉-gauge theory. It is an untwist
Z〈2k,n〉-gauge theory since 2kn/〈2k, n〉2 is always even.

2. n = even case

When n = even, we have 2n different 3+1D B(Zn, 2) 2-
gauge theories, described by partition function

Z (M4;B(Zn, 2), m) =
∑

dbZn n=0

e2π i
∫
M4

m
2n Sq2bZn

(97)

where m = 0, 1, . . . , 2n − 1. Noticing that the Zn-valued 2-
cocycle bZn satisfies dbZn = nc. Under the 2-gauge transfor-
mation bZn → bZn + dλ generated by Zn-valued 1-cochain λ,
we see that, from Eq. (A24) and using dbZn = nc

Sq2(bZn + dλ) − Sq2bZn 2n,d= 0. (98)

This implies the 2-gauge invariance of the action amplitude
e2π i

∫
M4

k
2n Sq2b for the n = even case.

3. Properties and duality relations

The pure 2-gauge theories (96) and (97) were studied
for n = odd cases and for n = even and m = 2k cases in
Ref. [57]. In these cases, it was found that the theory realizes
a 3+1D Z〈2k,n〉-gauge theory. The Z〈2k,n〉-gauge theory has
emergent fermions if 2kn/〈2k, n〉2 = odd, and it is a untwist
Z〈2k,n〉-gauge theory if 2kn/〈2k, n〉2 = even. To understand the
properties of the model (97) for n = even and m = odd cases,
we compute the partition function (97) in Appendix C. The
result is summarized in Table I. We see that, for n = even,
the 3+1D pure 2-gauge theory is equivalent to Z〈m,n〉-gauge
theory. The theory has emergent fermion iff mn/〈m, n〉2 =
odd.

The higher gauge theories are labeled by a pair (K, ωd+1):
a target space K and a cocycle ωd+1 on it. Some times
two different higher gauge theories may realize the same
topologically ordered phase. In this case, we say that the
two theories are equivalent or dual to each other. The results
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TABLE I. Volume independent partition function Z top(M4;B, ω4) for the constructed local bosonic models, on closed four-dimensional
space-time manifolds. The space-time M4 considered have vanishing Euler number and Pontryagin number χ (M4) = P1(M4) = 0, which

makes Z top(M4) to be a topological invariant [26]. Here, L3(p) is the three-dimensional lens space and F 4 = (S1×S3)#(S1×S3)#CP2#CP
2
. F 4

is not spin.

Models\M4: T 4 T 2×S2 S1×L3(p) F 4 Low-energy effective theory

Z top(M4;B(Zn, 2), m
2n Sq2bZn ) (97) 〈m, n〉 if mn

〈m,n〉2 = even Z〈m,n〉 gauge theory〈m, n〉3 〈m, n〉 〈m, n, p〉
n = even, m = 0, . . . , 2n − 1 0 if mn

〈m,n〉2 = odd (with fermions iff mn
〈m,n〉2 = odd)

Z top(M4;B(Zn, 2), k
n Sq2bZn ) (96) 〈2k, n〉3 〈2k, n〉 〈2k, n, p〉 〈2k, n〉 untwisted Z〈2k,n〉 gauge theory

n = odd, k = 0, . . . , n − 1 (no emergent fermions)

Z top(M4;BZn, 0) n3 n 〈n, p〉 n untwisted Zn gauge theory
(no emergent fermions)

in Table I suggest the following duality relations, where we
use [B(�1.�2, . . .), ω̄d+1] to label different higher gauge
theories.

(1) For n = even and mn
〈m,n〉2 = even,[

B(Zn, 2),
m

2n
Sq2bZn

]
∼ [B(Z〈m,n〉), 0]. (99)

(2) For n = odd,[
B(Zn, 2),

k

n
Sq2bZn

]
∼ [B(Z〈2k,n〉), 0]. (100)

We note that [B(Zn), 0] is an untwisted Zn-gauge theory.

VI. 3+1D 2-GAUGE THEORY OF
2-GAUGE-GROUP B(Gb, Z f

2 )

In this section, we are going to consider more general
3+1D 2-gauge theories which have 2-gauge-group B(Gb, Z f

2 ).

A. The Lagrangian and space-time path integral

Since Z f
2 has no nontrivial automorphism, so α2 is trivial.

As a result, such 2-gauge theories are classified by

Gb; n̄3; ω̄4, (101)

where n̄3 ∈ H3(BGb;Z f
2 ) and ω̄4 ∈ H4(B(Gb;Z f

2 );R/Z).
To write down the Lagrangian and space-time path integral

for the 2-gauge theories, the key is to find ω̄4. To do so, we
note that the links in B(Gb;Z f

2 ) are labeled by (a), a ∈ Gb.
The triangles in B(Gb;Z f

2 ) are labeled by (ai j, a jk, aik, bi jk )
that satisfy Eqs. (38) and (45). We see that on each link of
B(Gb;Z f

2 ), we have a label ai j , and on each triangle we have
a label bi jk . We may view ai j as the canonical Gb-valued
1-cocycle ā [due to Eq. (38)], and bi jk as the canonical Z f

2 -
valued 2-cochain b̄ on B(Gb;Z f

2 ). The canonical 1-cocycle
and the 2-cochain are related

db̄ = n̄3(ā). (102)

We may use the 1-cocycle ā and the 2-cochain b̄ to write down
ω̄4.

We note that each ω̄4 ∈ H4(B(Gb;Z f
2 );R/Z) corresponds

[see Eq. (77)] to one or more elements in a subset of

H4
(
B

(
Z f

2 , 2
)
;R/Z

)×H2
(
BGb;Z f

2

)×H4(BGb;R/Z). (103)

To construct a ω̄4, we may guess ω̄4 = k̄0
4 Sq2b̄. Using

Eq. (A20), we find that

dSq2b̄ = Sq2n̄3(ā) + 2Sq3b̄ = Sq2n̄3(ā) + 2b̄n̄3(ā). (104)

So ω̄4 = k̄0
4 Sq2b̄ is not a cocycle. However, the error is only a

function of 1-cocycle ā if k̄0 = 2. In this case, we can fix the
error by adding a function of ā, ν̄4(ā). Similarly, we can try
ω̄4 = 1

2 b̄ē2(ā), where ē2(ā) ∈ Z2(BGb;Z f
2 ). But d[b̄ē2(ā)] =

n̄3(ā)ē2(ā). Again ω̄4 = 1
2 b̄ē2(ā) is not a cocycle. Again we

can fix it by adding a function ν̄4(ā). Thus we come up with
the following general expression of ω̄4:

ω̄4(ā, b̄) = k0

2
Sq2b̄ + 1

2
b̄ē2(ā) + ν̄4(ā), (105)

where ν̄4(ā) is a R/Z-valued cochain in C4(BGb;R/Z) that
satisfy

−d ν̄4(ā) = k0

2
Sq2n̄3(ā) + 1

2
n̄3(ā)ē2(ā). (106)

In this case, ω̄4(ā, b̄) will be a cocycle dω̄4
1= 0. The three

terms in Eq. (105) correspond to the three cohomology
classes in Eq. (103). Thus our construction of ω̄4 is complete
(for n̄3 �= 0).

Using the expression (105) for ω̄4, we can con-
struct a topological nonlinear σ -model (i.e., a 2-gauge
theory):

Z
(
M4;B

(
Gb;Z f

2

)
, ω̄4

)

=
∑

φ

⎛
⎝∏

i

|Gb|−1
∏
(i j)

2−1

⎞
⎠e2π i

∫
M4 φ∗ω̄4

= |Gb|−N0 2−N1
∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2(a),

(107)

where
∑

δa=1,db=n3
sum over the Gb-valued 1-cochains ai j and

the Z f
2 -valued 2-cochains bi jk on the space-time complex M4,

that satisfy

(δa)i jk ≡ ai ja jka−1
ik = 1, db = n3(a). (108)

In the above k0 = 0, 1 labels the elements of the Z2 sub-
group of H4(B(Z f

2 , 2);R/Z) = Z4, ē2(a) labels the elements
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in H2(BGb;Z f
2 ), and different ν̄4(a) differ by the elements

in H4(BGb;R/Z). Plus n̄3 ∈ H3(BGb;Z f
2 ), the four pieces

of data, (k0, ē2, n̄3, ν̄4), classify 2-gauge theories of 2-gauge-
group B(Gb;Z f

2 ).

B. The equivalence between [k0, ē2(ā), n̄3(ā), ν̄4(ā)]’s

The Lagrangian of the 2-gauge theory (107) is labeled by
the data [k0, ē2(ā), n̄3(ā), ν̄4(ā)]:

ē2(a01, a12) ∈ Z2(BGb;Z2),

n̄3(a01, a12, a23) ∈ Z3(BGb;Z2), (109)

ν̄4(a01, a12, a23, a34) ∈ Cd+1(BGb;R/Z),

that satisfy

d ν̄4(ā)
1= 1

2 [Sq2n̄3(ā) + n̄3(ā)ē2(ā)]. (110)

As local bosonic systems, the different 2-gauge theories la-
beled by different data may realize the same bosonic topolog-
ical phase. We say that these 2-gauge theories or these data
are equivalent.

Note that the Lagrangian is a 2-group cocycle, and two
Lagrangians differing by a 2-group coboundary should be
equivalent. This kind of equivalent relation is generated by
the following three kinds of transformations.

(1) A transformation generated by a 1-cochain l̄1 ∈
C1(BGb;Z2)

ē2 → ē2 + dl̄1,

n̄3 → n̄3, (111)

ν̄4 → ν̄4 + 1
2 n̄3 l̄1.

(2) A transformation generated by a 2-cochain ū2 ∈
C2(BGb;Z2)

ē2 → ē2,

n̄3 → n̄3 + dū2, (112)

ν̄4 → ν̄4 + k0

2
(dū2 �

2
n̄3 + Sq2ū2 + ū2ē2).

(3) A transformation generated by a 3-cochain η̄3 ∈ C3(BGb;
R/Z):

ē2 → ē2,

n̄3 → n̄3, (113)

ν̄4 → ν̄4 + d η̄3.

Under these transformations, the Lagrangian ν4(a) +
k0
2 Sq2b + 1

2 be2(a) only changes by a coboundary. These
transformations do not change the topological partition
function and do not change the topological order in the
ground state.

We like to point out that the different transformations of the
second type do not commute. These transformations may gen-
erate changes (ē2, n̄3, ν̄4) → (ē2, n̄3, ν̄4 + �ω̄4), where �ω̄4

is a cocycle in Z4(BGb;R/Z).
We also want to mention that the above transformations

can not generate all possible equivalent relations. In particular,
an isomorphism of the target space B(Gb, Z f

2 ) → B(Gb, Z f
2 )

(2-group isomorphism) may relate two Lagrangians whose
difference is not a 2-group coboundary. We are not sure if
there are more general “duality” equivalent relations between
2-gauge theories. This will be left for future work.

C. 2-gauge transformations in the cocycle σ-model

As a local bosonic model, the discrete nonlinear σ -model
(107) do not have to have any symmetry. However, in
Eq. (107), we choose a very special Lagrangian, the pullback
of a cocycle on the target space. For such a special Lagrangian,
the model is exactly soluble. Such a special Lagrangian has a
large set of accidental symmetries: invariant under 2-gauge
transformations. These accidental symmetries are called 2-
gauge symmetries.

The first type of 2-gauge transformation is given by 1-
cochain λ1 ∈ C1(Md+1;Z2):

b → b + dλ1, a → a; (114)

We find that, using Eqs. (A23) and (A21)

k0Sq2(b + dλ1) + (b + dλ1)e2(a) − k0Sq2b − be2(a)

2,d= k0Sq2 dλ1
2,d= 0. (115)

Therefore the Lagrangian changes by only a total derivative
term under the first type of 2-gauge transformation.

The second type of 2-gauge transformation is given by
0-cochain gi ∈ C0(Md+1; Gb):

b → b + ζ2(a, g), ai j → ag = giai jg
−1
j . (116)

Under the above transformation,

n3(a) → n3(ag)
2= n3(a) + dζ2(a, g),

e2(a) → e2(ag)
2= e2(a) + dξ1(a, g), (117)

which defines ζ2(a, g). Thus the condition db
2= n3(a) is

maintained under the 2-gauge transformation. We find that,
using Eqs. (A22) and (A21),

k0Sq2(b + ζ2) + (b + ζ2)(e2 + dξ1) − k0Sq2b − be2

2,d= k0 db �
2

dζ2 + bdξ1 + ζ2e2 + ζ2 dξ1

2,d= k0n3 �
2

dζ2 + n3ξ1 + ζ2e2 + ζ2 dξ1. (118)

We note that the above only depends on a and g. Thus, if ν(a)
satisfies

ν(ag) − ν(a)
2,d= k0n3 �

2
dζ2 + n3ξ1 + ζ2e2 + ζ2 dξ1, (119)

the Lagrangian changes by only a total derivative term under
the second type of 2-gauge transformation.

D. The pointlike excitations in the 2-gauge theory

There are two types of pointlike excitations in the 2-gauge
theory. Let S1 be the world line of a pointlike excitation of the
first type. The presence of the pointlike excitation modifies the
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path integral via a Wilson loop:

Z
(
M4;B

(
Gb;Z f

2

)) = |Gb|−N0 2−N1

×
∑

δa=1,db=n3

[
Tr

∏
S1

RGb (ai j )

]
e2π i

∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2(a),

(120)

where RGb (a), a ∈ Gb, is a representation of Gb and∏
S1 RGb (ai j ) is a product RGb (ai j ) along the loop S1.
To describe the second type of pointlike excitations, let

f3 be the Poincaré dual of the worldline C1 of the pointlike
excitations. Then the second type of pointlike excitations are
created by modifying the condition db = n3(a) to

db = n3(a) + f3. (121)

Now the path integral with the second type of pointlike
excitations becomes

Z
(
M4;B

(
Gb;Z f

2

))
= |Gb|−N0 2−N1

∑
δa=1,db=n3+ f3

e2π i
∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2(a). (122)

To understand the property of the second type of excitations,
let us assume the worldline S1 to be the boundary of a disk
D2. Let a Z2-valued 2-cochain s2 to be the Poincaré dual of
D2. Then we have f3 = ds2. The above path integral can be
rewritten as

Z
(
M4;B

(
Gb;Z f

2

))|Gb|N0 2N1

=
∑

δa=1,db=n3+ds2

e2π i
∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2(a)

=
∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+ k0

2 Sq2(b+s2 )+ 1
2 (b+s2 )e2(a)

= ek0π i
∫
M4 Sq2s2

×
∑

δa=1,db=n3

e2π i
∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2 e

π i
∫
M4 k0 f3�

2
n3+s2e2

,

(123)

where we have used Eq. (A22). We note that the term
eπ i

∫
M4 s2e2(a) is the only one on the disk D2 that depends on

the 1-cocycle field a. This term can be rewritten as

eπ i
∫
M4 s2e2(a) = eπ i

∫
D2 e2(a). (124)

However, on the surface, eπ i
∫

D2 e2(a) may not be a function
of the world line C1 = ∂D2. It may depend on how we extend
the C1 to D2 (i.e., changing s2 by a cocycle). In other words,
eπ i

∫
M4 s2e2(a) may change if change s2 by a cocycle. On the

other hand, the path integral (123) depends on s2 via f3 = ds2.
So it should not change is we change s2 by a cocycle. In other
words,

eπ i
∫
M4 k0Sq2s2+s2e2(a) (125)

should not change if we change s2 by a cocycle.
If we s2 by a cocycle β2, the term eπ i

∫
M4 k0Sq2s2+s2e2(a)

changes by a factor

eπ i
∫
M4 k0Sq2β2+β2e2(a) = eπ i

∫
M4 k0(w2+w2

1 )β2+β2e2(a) (126)

where we have used Eq. (A22), and the fact Sq2β2
2,dd= (w2 +

w2
1 )β2. We also assume that M4 is closed. Next we will show

that k0(w2 + w2
1 ) + e2

2,d= 0, and the above factor is always 1.

To show k0(w2 + w2
1 ) + e2

2,d= 0, let us fix a and do the
path integral of b. We have seen that if we change b by a

coboundary, the action amplitude e2π i
∫
M4 ν4(a)+ k0

2 Sq2b+ 1
2 be2(a)

does not change. However, if we change b by a cocycle b0, the
action amplitude will change. Using Eqs. (A23) and (A21),
we find that

k0Sq2(b + b0) + (b + b0)e2 − k0Sq2b − be2

2,d= k0Sq2b0 + b0e2
2,d= [

k0
(
w2 + w2

1

) + e2
]
b0. (127)

Thus the action amplitude depends on b0 via
eπ i

∫
M4 [k0(w2+w2

1 )+e2]b0 . Since M4 is orientable and compact,
its intersection form for Z2-valued 2-cocycle classes is
nondegenerate. Therefore, when we integral over b (i.e., b0)
in the path integral, such a term will cause the partition
function to vanish if

k0
(
w2 + w2

1

) + e2 �= Z2-valued coboundary. (128)

As a result, k0(w2 + w2
1 ) + e2

2,d= 0 in order for the partition
function to be nonzero. This completes our proof.

For simplicity let us assume k0 = 0 for the time being.
We consider a particle described by a world line C1 that is
a combination of the first type and the second type. In this
case, C1 dependent factor in the path integral is given by[

Tr
∏
S1

RGb (ai j )

]
eπ i

∫
D2 e2(a), C1 = ∂D2. (129)

Since e2(a)
2,d= 0, the term eπ i

∫
D2 e2(a) only depend on C1,

and does not depend on how we extend C1 to D2. The term
eπ i

∫
D2 e2(a) introduces ±1 phase to RGb (ai j ) and promotes it

into a representations of G f = Z2 �e2 Gb. e2(a) is the two
cocycle that describes the Z2 extension of Gb, since on the
space-time M4, e2(a) is trivialized. We see that the pointlike
excitations are described by G f representations.

We know that when n3 = e2 = k0 = 0, the a and b fields in
the 2-gauge theory (107) decouple. In this case, a describes
a Gb gauge theory (with a cocycle twist), and b describes
a Z2 gauge theory (in the dual form) [57]. Thus Eq. (107)
describes a Z2×Gb gauge theory, whose charges are described
by Z2×Gb representations. The above result suggests that
when e2 �= 0, Eq. (107) describes a G f = Z2 �e2 Gb gauge
theory, whose charges are described by G f representations.

When n3 = e2 = 0 but k0 = 1, the a and b fields in the
2-gauge theory (107) still decouple. In this case, b describes
a twisted Z2 gauge theory (in the dual form) where the Z2

charge is a fermion (see Sec. V B) [57]. Thus Eq. (107)
describes a Z2×Gb gauge theory, whose charges are described
by representations sRep(Z2×Gb), where the nontrivial Z2 rep-
resentations are fermions. When e2 �= 0, we expect Eq. (107)
to describe a G f = Z2 �e2 Gb gauge theory, whose charges
are described by representations sRep(G f ). In fact, Eq. (107),
with k0 = 1, is an example of high dimensional bosonization
for fermions that carry a G f quantum number [57–59].
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To summarize, the pointlike excitations in the 2-gauge
theory (107) are described by Rep(G f ) when k0 = 0 and
by sRep(G f ) when k0 = 1. Here, Rep(G f ) is the symmetric
fusion category formed by the representations of G f where
all the representations are bosons. sRep(G f ) is the symmetric
fusion category formed by the representations of G f where
all the representations that represent the extended Z2 trivially
are bosons and the others are fermions. The representations
that represent the extended Z2 trivially correspond to the
first type of pointlike excitations, which are always bosons
regardless the value of k0. The representations that represent
the extended Z2 nontrivially correspond to the second type of
pointlike excitations. The second type of pointlike excitations
are fermions when k0 = 1, and bosons when k0 = 0.

We see that when k0 = 0, there is no fermionic particle-
like excitations, and the 2-gauge theory Eq. (107) is dual
to Dijkgraaf-Witten model with gauge group G f . This is
consistent with the result in Ref. [32].

VII. CLASSIFY AND REALIZE 3+1D EF1 TOPOLOGICAL
ORDERS BY 2-GAUGE THEORIES

OF 2-GAUGE-GROUP B(Gb, Z f
2 )

It was argued that 3+1D AB and EF topological or-
ders with emergent bosons and/or fermions have a unique
canonical boundary [32,33]. On the canonical boundary, the
boundary stringlike excitations are labeled by the elements in
a finite group. All these boundary string excitations have a unit
quantum dimension. For EF1 topological orders with emer-
gent fermions, the canonical boundary also has an emergent
fermionic pointlike excitation with quantum dimension 1 [33].
These boundary excitations are described by a pointed unitary
fusion 2-category. Such a pointed unitary fusion 2-category
is classified by a 2-group B(Gb, Z f

2 ) and a R/Z-valued 4-
cocycle ω4 on the 2-group. Here Gb is the group that labels the
types of boundary string excitations. Therefore all EF1 3+1D
topological orders are classified by a pair B(Gb, Z f

2 ), ω̄4 – a
2-group and a R/Z-valued 4-cocycle on the 2-group.

To see why pointed fusion 2-categories are classified by
the pairs (B(Gb, Z f

2 ), ω̄4), we note that the pointed fusion 2-
category has objects labeled by elements in Gb, 1-morphisms
labeled by elements in Z2 and 2-morphisms corresponding to
physical operators. The 2-morphisms are not all invertible, but
for the structural morphisms we only need to consider the in-
vertible 2-morphisms, thus no generality is lost by restricting
2-morphisms to U (1) � R/Z. This way we obtain a 3-group
B(Gb, Z2,R/Z), which has the same classification data as the
pointed fusion 2-category. We explain now in more detail.

On one hand, by lLemma IV.1, we have

B(R/Z, 3) → B(Gb, Z2,R/Z) → B(Gb, Z2), (130)

and B(Gb, Z2,R/Z) is classified by the base 2-group
B(Gb, Z2) and an element ω̄4 in H4(B(Gb, Z2),R/Z). Then
the 2-group B(Gb, Z2) is in turn characterised by Gb, Z2, n̄3 ∈
H3(BGb;Z2). Thus 3-group B(Gb, Z2,R/Z) is characterised
by (Gb, Z2, n̄3 ∈ H3(Gb, Z2), ω̄4 ∈ H4(B(Gb, Z2),R/Z)).

On the other hand, recall the classification data of the
pointed fusion 2-category that is listed in Ref. [33].

(1) Objects g ∈ Gb, 1-morphisms pg ∈ Z2 ⊂ Hom(g, g).

(2) Interchange law: 2-isomorphisms [U (1) phase factors]
b̃(p′

g, q′
h, pg, qh) that determines the particle statistics.

(3) Associator: 1-morphism n3(g, h, j) : (gh) j → g(h j) in
H3(BGb;Z2) and 2-isomorphisms ñ3(pg, qh, r j ).

(4) Pentagonator: 2-isomorphisms ν4(g, h, j, k) ∈
C4(BGb,R/Z).

We thus find an exact correspondence between the
above and the classification data on the higher group
side (Gb, Z2, n̄3 ∈ H3(BGb;Z2), ω̄4 ∈ H4(B(Gb, Z2),R/Z))
as below: Gb, Z2, n3 are exactly the same. The 2-group 4-
cocycle ω̄4 has three components k0, ē2, ν̄4.

(1) k0 corresponds to b̃(p′
g, q′

h, pg, qh) on the 2-category
side. It has four different choices, corresponding to boson,
fermion, semion, and antisemion statistics, respectively. For
EF1 topological orders we stick to the choice of fermion
statistics, which is indicated in our notation by using Z f

2
instead of Z2.

(2) ē2 determines the Z f
2 extension from Gb to G f . To-

gether with k0 it determines the associator 2-morphisms
ñ3(pg, qh, r j ) on the 2-category side.

(3) The last component ν̄4 is just the pentagonator
ν4(g, h, j, k) on the 2-category side.

(4) Moreover, on both sides they satisfy the same consistent
condition (110).

Since all 3+1D EF1 topological orders are classified by
B(Gb, Z f

2 ), ω̄4, and since for each pair B(Gb, Z f
2 ), ω̄4 we

can construct a 2-gauge theory to realize a EF1 topological
order, we conclude that exactly soluble 2-gauge theories of
2-gauge-group B(Gb, Z f

2 ) realize and classify all 3+1D EF1
topological orders.

VIII. REALIZE 3+1D EF2 TOPOLOGICAL ORDERS
BY TOPOLOGICAL NONLINEAR σ-MODELS

A. Construction of topological nonlinear σ-models

In Ref. [26], it was conjectured that all topological or-
ders with gappable boundary can be realized by exactly
soluble tensor network model defined on space-time com-
plex [27,53,60,61]. In Ref. [33], it was shown that all EF
topological orders have a unique canonical boundary de-
scribed by a unitary fusion 2-category in Statement I.2. Moti-
vated by the results in Refs. [32,60], here we like to show that
all the EF 3+1D bosonic topological orders can be realized
by topological nonlinear σ -models, a particular type of tensor
network models defined on space-time complex [26,27,61].
The topological nonlinear σ -models are constructed using the
data of unitary fusion 2-categories described in Statement I.2.

Let us remind the readers that the canonical boundary of
a EF topological order is described by a unitary fusion 2-
category A3

b. The boundary stringlike excitations (the simple
objects in A3

b) are labeled by the elements in Ĝb = Gb � Zm
2

[33]. All the strings have a unit quantum dimension and their
fusion is described by the group Ĝb:

g1g2 = g3, g1, g2, g3 ∈ Ĝb. (131)

Also two strings (two objects) labeled by g and gm (where
g ∈ Ĝb and m is the generator of Zm

2 ) are connected by an 1-
morphism σg,gm of quantum dimension

√
2. This 1-morphism

correspond to an on-string pointlike excitation. There is
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another 1-morphism fg of quantum dimension 1 that connect
every string g to itself. The second 1-morphism correspond to
a fermionic pointlike excitation. The fusion of 1-morphisms
is given by

fg ⊗ fg = 1, fg ⊗ σg,gm = σg,gm,

σg,gm ⊗ σgm,g = 1 ⊕ fg. (132)

We note that the fusion 2-category A3
b has three layers.

The first layer is formed by objects in a fusion category.
For our case, the simple objects in fusion ring form a finite
group Ĝb [see Eq. (131)]. The second layer is formed by
1-morphisms generated by 1, fg, σg,gm. The objects and the 1-
morphisms are described by a fusion category [see Eq. (132)].
The third layer is formed by 2-morphisms, which are complex
vector spaces for our case. The objects plus the 1-morphisms
and 2-morphisms are described by the fusion 2-category. In
the first part of this section, we are going to show that the
simple objects and simple morphisms in the fusion category
Eqs. (131) and (132) (i.e., the object and 1-morphism layers)
are described by a simplicial set K̂(Ĝb, Z f

2 ). And from this
simplicial set, we can recover the entire fusion category (in-
cluding semisimple objects). In the second part of this section,
we will show that the 2-morphism layer is described by a set of
tensors. So the fusion 2-category is described by a topological
nonlinear σ -model with a target complex K̂(Ĝb, Z f

2 ).
To obtain the bulk topological nonlinear σ -model that real-

ize the fusion 2-category A3
b, let us first ignore the quantum-

dimension-
√

2 1-morphisms σg,gm. In this case, the canonical
boundary will be described by a pointed unitary fusion 2-
category, i.e., by a 2-group B(Ĝb, Z f

2 ) and a R/Z-valued 4-
cocycle ω̄4( ˆ̄a, b̄) on the 2-group, where ˆ̄a and b̄ are canonical
1-cochain and 2-cochain of B(Ĝb, Z f

2 ). The tensor network
model that realize this reduced boundary will be a 2-gauge
theory of 2-gauge-group B(Ĝb, Z f

2 ). In other words, the links
in the tensor network model have an index âi j ∈ Ĝb which
defines ˆ̄a, and the triangles in the tensor network model have
an index bi jk ∈ Zm

2 which defines b̄. ˆ̄a and b̄ satisfy

δ ˆ̄a = 1, db̄ = n̂3( ˆ̄a), (133)

where n̂3 ∈ H3(Ĝb;Z f
2 ). The corresponding path integral is

given by

Z (M4) = |Ĝb|−N0 2−N1
∑

δâ=1,db=n̂3(â)

e2π i
∫
M4 ω4(â,b). (134)

Now, let us include the 1-morphisms σg,gm that connect two
strings g and gm. But at the moment, we will assume such
1-morphisms to have a unit quantum dimension and a fusion
σg,gm ⊗ σgm,g = 1. Since the extra 1-morphism can connect
two strings differ by m, the flat condition on â is modified
and becomes a quasiflat condition δ ˆ̄a ∈ Zm

2 . In B(Ĝb, Z f
2 ),

three links âi j , â jk , âki = (âik )−1 bound a triangle only when
âi j â jk âki = 1. Now we add some triangles to the complex
B(Ĝb, Z f

2 ) so that three links âi j , â jk , âki bound a triangle
even when âi j â jk âki = m ∈ Zm

2 . Including these extra triangles
change the first homotopy group of the target complex to
π1 = Ĝb/Zm

2 = Gb. The new target complex is denoted as
B̂(Gb, Z f

2 ), which is a triangulation of K (Gb, Z f
2 ).

Let us compare two triangulations, B̂(Gb, Z f
2 ) and

B(Gb, Z f
2 ), of the same space K (Gb, Z f

2 ). In B(Gb, Z f
2 ), the

links are labeled by ai j ∈ Gb, while in K̂(Gb, Z f
2 ) we dou-

ble the number of links, which now are labeled by âi j ∈
Ĝb = Zm

2 � Gb. The triangles in B(Gb, Z f
2 ) are labeled by

[a01, a12, a02; b012] where a01, a12, a02 satisfy a01a12(a02)−1 =
1. On the other hand, the triangles in B̂(Gb, Z f

2 ) are labeled by
[â01, â12, â02; b012] where â01, â12, â02 satisfy â01â12(â02)−1 ∈
Zm

2 . The full structure of K̂(Gb, Z f
2 ) is determined by its

canonical 1-cochain ˆ̄a and 2-cochain b̄ that satisfy

δ ˆ̄a ∈ Zm
2 , db̄ = n̂3( ˆ̄a). (135)

where n̂3( ˆ̄a) is a 3-cocycle in K̂(Ĝb, Z f
2 ) satisfying

n̂3( ˆ̄a) = n3(πm( ˆ̄a)), πm : Ĝb → Gb,

n3(ā) ∈ H3
(
BGb, Z f

2

)
. (136)

To have a more rigorous construction of B̂(Gb, Z f
2 ), we

note that given a morphism of groups A2
p2−→ Ĝ, ker p2

0−→
G := Ĝ/Imp2 together with G action α on ker p2 and n3 ∈
H3(G, ker pα

2 ) decide a 2-group B(G, ker p2), which as a
simplicial set has the following form: Kn = G×n×(ker p2)×(n

2 ),
where

K1 = {(a01)|a01 ∈ Ĝ},
K2 = {

(a01, a12, a02; b012)|a01a12a−1
02 = 1, b012 ∈ ker p2

}
,

K3 = {(a01, a12, a23; b012, b013, b023, b123)|α(a01)b123 − b023

+ b013 − b012 = n3(a01, a12, a23) ∈ ker p2}, (137)

and Kn in general is made up of these n-simplices whose 2-
faces are elements of K2 and such that each set of four 2-faces
gluing together as a 3-simplex is an element of K3. This is the
so-called coskeleton construction.

Then we pullback this 2-group structure via the projection

map Ĝ
πm−→ G, we obtain another 2-group. The pullback

simplicial set K̂• of K• through K̂1 → K1 (both
K̂0 = K0 = pt) is inductively defined as K̂n =
Kn×Hom(∂�[n],K )Hom(∂�[n], K ). Here ∂�[n] is the boundary
simplicial set of the standard simplicial simplex �[n].
Pullback of a 2-group still satisfies the same Kan conditions,
thus still a 2-group. Then after calculation, we see that the
pullback 2-group as a simplicial set has the following form:
K̂n = Ĝ×n×A

×(n
2 )

2 , where

K̂1 = {(â01)|â01 ∈ Ĝ},
K̂2 = {

(â01, â12, â02; b012)|â01â12â−1
02 ∈ Imp2, b012 ∈ ker p2

}
,

K̂3 = {(â01, â12, â23; b012, b013, b023, b123)|α(πm(â01))b123

− b023 + b013 − b012 = n̂3(â01, â12, â23) ∈ ker p2},
(138)

and K̂n is similarly defined by coskeleton construction. Here,
n̂3 = (πm)∗n3 is the pullback 3-cocycle. We denote this 2-
group by B̂(G, ker p2). Since the pullback construction intro-
duces equivalent 2-groups, B̂(G, ker p2) and B(G, ker p2) are
equivalent 2-groups. To apply in the above situation, we take
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G = Gb, A2 = Z f
2 ×Zm

2 and p2 = 0×i where i : Zm
2 → Ĝb is

the embedding, thus ker p2 = Z f
2 and Imp2 = Zm

2 .
Through the above examples, we see that pointed unitary

fusion 2-categories have a “geometric” picture in terms of
2-groups. The fusion rules in the 2-categories are described
by the complex of the 2-groups. The complicated coherent
relations in the 2-categories are described by the cocycle
conditions on the 2-groups side. In the following, we will
develop a “geometric” picture, i.e., a complex K̂(Gb; Z f

2 ), for
the unitary fusion 2-category A3

b that contains noninvertible
1-morphisms.

The complex K̂(Gb; Z f
2 ) has one vertex. The links in

K̂(Gb; Z f
2 ) are labeled by elements âi j in group Ĝb = Zm

2 �ρ2

Gb, with ρ2 ∈ H2(BGb;Z2). The complex K̂(Gb; Z f
2 ) has the

same set of links as B(Ĝb, Z f
2 ), but has a different set of trian-

gles to describe a different set of 1-morphisms. In K̂(Gb, Z f
2 ),

three links âi j , â jk , âki = (âik )−1 bound a triangle when
âi j â jk âki ∈ Zm

2 . When âi j â jk âki = 1, the three links bound two
triangles labeled by bi jk = 0, 1. When âi j â jk âki = m, where
m generates Zm

2 , the three links bound only one triangle which
has a fixed bi jk = 1.

The tetrahedrons in K̂(Gb; Z f
2 ) describe the fusion channels

of 1-morphisms Eq. (132). Consider a 2-sphere in K̂(Gb; Z f
2 )

formed by four triangles who share their edges. If all four
triangles carry no m-flux, i.e., satisfy âi j â jk âki = 1, then the
2-sphere is filled by a tetrahedron if the label bi jk on the four

triangles satisfy
∑

bi jk
2= n̄3(ai j ). Here n̄3(âi j ) is a function

that depends on labels âi j of the six links on the 2-sphere.
Note that n̄3(âi j ) is defined only when âi j â jk âki = 1 for all
four triangles. If two of four triangles carry m-flux, i.e., satisfy
âi j â jk âki = m, then the 2-sphere is filled by a tetrahedron
regardless the values of the labels bi jk on the four triangles.

If all four triangles carry m-flux, then the 2-sphere is filled
by two different tetrahedrons, labeled by c0123 = 0, 1. This
is because each triangle with m-flux corresponds to the 1-
morphism σ . The fusion of three σ is given by σ ⊗ σ ⊗ σ =
(1 ⊕ f ) ⊗ σ = 2σ . The factor 2 means there are two fusion
channels, and thus two different tetrahedrons to fill the 2-
sphere.

At higher dimensions, every 3-sphere formed by five tetra-
hedrons glued along their 2-faces is filled by a 4-simplex,
every 4-spheres formed by six 4-simplexes glued along their
3-faces is filled by a 5-simplex, etc. In this way, we obtain the
simplicial set K̂(Gb; Z f

2 ) (which is thus 3-coskeleton):

(139)

where the simplexes at each dimensions are given by

K̂0 = {pt .},
K̂1 = {(â01)|â01 ∈ Ĝ},
K̂2 = {(â01, â12, â02; b012)|â01â12 = â02, b012 = 0, 1

or â01â12 = mâ02, b012 = 0.},
K̂3 = {(â01, â12, â23, â02, â13, â03; b012, b013,

b023, b123; c0123)

|if all δâ = 1 : b123 − b023 + b013 − b012 = n̂3(â01, â12, â23),

c0123 = 0; if two δâ = m : c0123 = 0.}, (140)

where n̂3 ∈ H3(BĜb;Z2). The complex K̂(Gb; Z f
2 ) describes a

fusion category formed by the objects and 1-morphisms in the
unitary fusion 2-category A3

b. (The 2-morphisms in A3
b will be

discussed in the later part of this section.)
Since it is a coskeleton construction of a 3-step tower,

K̂(Gb; Z f
2 ) is certainly a simplicial set. In general, the geo-

metric realization |Y | of the simplicial set Y is a topological
space. By construction, |Y | is given by |Y | := �Yi×�i/ ∼,
where ∼ is provided by gluing along lower dimensional faces
provided by the information given by s the degeneracy maps.
However, |Y | may not be a manifold. Also, K̂(Gb; Z f

2 ) is
not a 2-group any more. First of all, strict Kan(3, j)! are
not satisfied, and even nonstrict Kan(4, j) are not satisfied.
Nevertheless, π�3(K̂(Gb; Z f

2 )) = 0. Moreover, we still have
π2(K̂(Gb; Z f

2 )) = Z f
2 and π1(K̂(Gb; Z f

2 )) = Gb.
Although K̂(Gb; Z f

2 ) does not correspond to a 2-group, in
the following, we will show that from the data of K̂(Gb; Z f

2 ),
one can recover the fusion category, which is the original
fusion 2-category A3

b without the 2-morphism layer. We first
let the set of simple objects to be the links in K̂(Gb; Z f

2 ), C0 :=
K̂(Gb; Z f

2 )1 = Ĝb. And let the set of simple 1-morphisms to be
the triangles with one side degenerate in K̂(Gb; Z f

2 ). One can
picture them as bigons (see Fig. 8),

C1 :={(1, â12, â02; b012) ∈ K̂2}
={(g, g′; b)|g = g′, b = 0, 1; g′ = gm, b = 0}

Then the composition ·v of 1-morphisms can be read
from the information of K̂3, which tells which tetrahedrons
are allowed, indicated by Fig. 9. For example, we have a
unique tetrahedron (1, 1, g, 1, g, g; 0, b, b + b′, b′) in K̂3 to fill
its (3,1)-horn. Then this implies that (g, g; b) ·v (g, g; b′) =
(g, g; b + b′), here + is the addition in Z2. Then the only
nonunique case is for (g, gm; 0) ·v (gm, g; 0): there are both
(1, 1, g, 1, gm, g; 0, 0, 0, 0) or (1, 1, g, 1, gm, g; 0, 0, 1, 0) to
fill the (3, 1)-horn. This makes (g, gm; 0) ·v (gm, g; 0) =
(g, g; 0 ⊕ 1) a nonsimple element. We thus can extend ·v
to an associative product to all semi-simple objects and 1-
morphisms. We call the result category A3

b.
Now we will read from K̂3 the fusion product for A3

b, which
makes A3

b further into a fusion category. We only need to take
care of fusion of simple objects and simple 1-morphisms, then
we can extend the fusion by distribution law to semisimple
objects and 1-morphisms. The fusion of simple objects is
simply the group multiplication of Ĝb; the fusion of simple

0

1

2

b012 = b

0

1
b ⇑

1

â02 = g′

â01 = g g

g′

FIG. 8. Links are simple objects and triangles with degenerate
(0,1)-sides are simple 1-morphisms.
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0

1

2

3b013

b123

0

1

b ⇑
b′ ⇑

1
â02 = g′′

â01 = g′1
1

â02 = g
g

g′

g′′

FIG. 9. The composition ·v of 1-morphisms.

1-morphisms is again read from tetrahedrons in K̂3. If we want
to fuse (g1, g′

1; b1) and (g2, g′
2; b2), the first step is to transfer

the (0,1)-side degenerate triangle (g1, g′
1; b1) = (1, g′

1, g1; b1)
to an (2,3)-side degenerate triangle, by filling the (3,0)-horn
of the tetrahedron (0,1,2,3) with a unique element

(1, g′
1, g′

1, g1, g1, 1; b1, 0, b1, 0) ∈ K̂3.

The second step is to fill the (2,1)-horn of the triangle (0, 1, 4)
without flux with (g′

1, g′
2, g′

1g′
2; 0). The third step is to fi-

nally fill the (3,1)-horn of the tetrahedron (0, 2, 3, 4) and
obtain a triangle (0, 3, 4) with three sides (g1, g2, g′

1g′
2). The

fourth step is to transfer this triangle to a triangle with sides
(1, g1g2, g′

1g′
2) by filling the (3, 2)-horn of a tetrahedron. The

filling can be nonunique only in the third step. This procedure
is illustrated with Fig. 10.

Following this strategy, the calculation shows that the
only nonunique case happens when we fuse (g1, g1m; 0)
and (g2, g2m, 0), and (g1, g1m; 0) ⊗ (g2, g2m, 0) = (g1g2,

g1g2; 0 ⊕ 1). The associator for the fusion product is still
given by n3. Thus we have recovered a fusion 2-category from
the simplicial set K̂(Gb, Z f

2 ).
To obtain the coherence relations (i.e., the 2-morphism

layer) in the unitary fusion 2-category A3
b, we try to con-

struct topological nonlinear σ -models with target complex
K̂(Gb, Z f

2 ). To do so, we assign a complex number to
each 4-simplex in K̂(Gb, Z f

2 ). A 4-simplex is labeled by
(âi j ; bi jk, ci jkl |i, j, k, l = 0, 1, 2, 3, 4), that satisfy

âi j ∈ Ĝb, bi jk ∈ Z2, ci jkl ∈ Z2;

b123 − b023 + b013 − b012 = n̂3(â01, â12, â23)

when all four δâ = 1,

bi jk = 0 when (δā)i jk = m.

ci jkl = 0 when one of δā = 1. (141)

We see that ci jkl can take two values 0,1 only when all four
δā = m. So we can write such a complex number as

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
(142)

0

1

2

b012 = b

3

4

b234 = b′

0

1 2
b ⇑ b′ ⇑

1

â02 = g′
1

â01 = g1
1

â34 = g2

â01 = g′
2

g1

g′
1

g2

g′
2

↓

0 2

b012 = b

3

4

b234 = b′

b024 = 0
â02 = g′

1

â03 = g1
1

â34 = g2

â01 = g′
2

g′
1g

′
2

→
0

4

g1g2

g′
1g

′
2

FIG. 10. Fusion of 1-morphisms.

which corresponds to the top tensor of the tensor set. The
above number is nonzero only when âi j, bi jk, ci jkl satisfy
Eq. (141). We also assign a positive number w0 to the
vertex in K̂(Gb, Z f

2 ). To the links labeled by [â01] we as-
sign the same positive number w1. To the triangle labeled
by [â01, â12, â02; b012] we assign a positive number w2(1)
or w2(m) depending on â01â12(â02)−1 = 1 or m. The path
integral that describes the topological nonlinear σ -model on
space-time with boundary is given by

Z (M4) =
∑

δâ∈Zm
2 ,db=n̂3(â),c

∏
i

′
w0

∏
(i j)

′
w1

∏
(i jk)

′
w2[δâ)i jk]

×
∏

(i jkl p)

(
�̂4

âi j âik âil âipâ jk â jl â j pâkl âkpâl p;c jkl pcikl pci jl p

bi jkbi jl bi j pbikl bikpbil pb jkl b jkpb jl pbkl p;ci jkpci jkl

)si jkl p

,

(143)

where
∏

(i jkl p) is a product over all the 4-simplices and si jkl p is
the orientation of the 4-simplices (see Fig. 12). Also,

∏′
(i jk) is

a product over all the interior triangles,
∏′

(i j) is a product over
all the interior links, and

∏
i is a product over all the interior

vertices.
The rank-25 tensor �̂4, as well as the weight tensors

w0, w1, and w2, must satisfy certain conditions in order for
the above path integral to be re-triangulation invariant. The
conditions can be obtained in the following way: We start with
a 5-simplex (012345). Then, divide the six 4-simplices on the
boundary of the 5-simplex (012345) into two groups. Then the
partition function on one group of the 4-simplices must equal
to the partition function on the other group of the 4-simplices,
after a complex conjugation.

For example, the two groups of the 4-simplices
can be [(12345), (02345), (01345)] and [(01245), (01235),
(01234)]. This partition leads to a condition

∑
b345

∑
c0345c1345c2345

w2[(δâ)345] �̂4
â12 â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234

(
�̂4

â02 â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234

)∗

�̂4
â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134

=
∑
b012

∑
c0123c0124c0125

w2[(δâ)012] �̂4
â01â02 â04â05â12 â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

(
�̂4

â01â02 â03â05â12 â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123

)∗

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
. (144)
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For the partition [(12345), (02345)] and [(01345), (01245), (01235), (01234)], we obtain a condition∑
c2345

�̂4
â12 â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234

(
�̂4

â02 â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234

)∗

= w1

∑
â01;b012,b013,b014,b015;c0123c0124c0125c0134c0135c0145

w2[(δâ)012]w2[(δâ)013]w2[(δâ)014]

× w2[(δâ)015]
(
�̂4

â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134

)∗
�̂4

â01â02 â04â05â12 â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

×
(
�̂4

â01â02 â03â05â12 â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123

)∗
�̂4

â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
. (145)

For the partition [(12345)] and [(02345), (01345), (01245), (01235), (01234)], we obtain a condition

�̂4
â12 â13â14â15â23â24â25â34â35â45;c2345c1345c1245

b123b124b125b134b135b145b234b235b245b345;c1235c1234
= w0w

5
1

∑
â01,â02,â03,â04,â05

∑
b012,b013

w2[(δâ)012]w2[(δâ)013]

∑
b014,b015,b045,b023;c0123c0124c0125c0134c0135c0145c0234c0235c0245c0345

w2[(δâ)014]w2[(δâ)015]w2[(δâ)045]w2[(δâ)023]

∑
b024,b025,b034,b035;

w2[(δâ)024]w2[(δâ)025]w2[(δâ)034]w2[(δâ)035] �̂4
â02 â03â04â05â23â24â25â34â35â45;c2345c0345c0245

b023b024b025b034b035b045b234b235b245b345;c0235c0234

(
�̂4

â01â03â04â05â13â14â15â34â35â45;c1345c0345c0145

b013b014b015b034b035b045b134b135b145b345;c0135c0134

)∗
�̂4

â01â02 â04â05â12 â14â15â24â25â45;c1245c0245c0145

b012b014b015b024b025b045b124b125b145b245;c0125c0124

(
�̂4

â01â02 â03â05â12 â13â15â23â25â35;c1235c0235c0135

b012b013b015b023b025b035b123b125b135b235;c0125c0123

)∗

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
. (146)

There are many other similar conditions from different parti-
tions.

Each solution of these conditions give us a topological
nonlinear σ -model. Some of these models have emergent
fermions and describe EF topological orders. We believe that
all EF topological orders can be realized this way.

In general, it is very hard to find solutions of these con-
ditions, since that corresponds to solve billions of nonlinear
equations with millions of unknown variables, even for the
simplest cases. One way to make progress is to note that when
restricted to the indices â that satisfy δâ = 1, the tensor �̂4

becomes a U(1)-valued 4-cocycle on the 2-group B(Ĝb, Z f
2 ).

This is because some conditions for �̂4, such as Eq. (144), act
within these components of �̂4 whose indices satisfy δâ = 1.
When δâ = 1, w2(m) will not appear in these conditions. In
this case, if we choose �̂4 to be a U(1)-valued 4-cocycle on
the 2-group, the terms in the summation in Eq. (144) will all
have the same value. Thus we can replace the summation in
Eq. (144) by factors that count the number of the terms in the
summation. From Eq. (144), we see that these factors cancel
out. In this case, the condition (144) reduces to the condition
for the 4-cocycles on the 2-group. Thus the restricted �̂4 must
be U(1)-valued 4-cocycle on the 2-group B(Ĝb, Z f

2 ), which
has a form

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123

∣∣∣
δâ=1,c’s=0

= e2π i
∫

(01234) ν4(â)+ k0
2 Sq2b+ 1

2 be2(â). (147)

When k0 = 1, the tensor �̂4 and the associated topological
nonlinear σ -model will describe an EF topological order.
Starting from the parcial solution (147) we can use the

equations Eqs. (144)–(146) to find other components of �̂4

whose indices do not satisfy δâ = 1.
As we have seen that the topological nonlinear σ -model on

the complex K̂(Gb, Z f
2 ) is closely related to the unitary fusion

2-category A3
b that describes the canonical boundary of a EF

topological order [33]. The links in K̂(Gb, Z f
2 ) correspond

to the objects in the fusion 2-category. The 1-morphisms
fg that connect an object to itself corresponds to triangles
with no flux, which are labeled by π2[K̂(Gb, Z f

2 )] = Z2. The
noninvertible 1-morphisms σg,gm correspond to triangles with
m-flux. If we treat the objects connected by 1-morphisms as
equivalent, then the equivalent classes of the objects corre-
spond to π1[K̂(Gb, Z f

2 )] = Gb. The fusion of the objects in
different orders may differ by an 1-morphism which lives in
π2[K̂(Gb, Z f

2 )], It is called an associator. In both Ref. [33]
and this paper, we use the same symbol n̂3 to describe the
associator. The part of the �̂4 tensor, ν̂4, also correspond
to ν̂4 in Ref. [33] that is another piece of data to describe
the unitary fusion 2-category A3

b. It is this correspondence
between topological nonlinear σ -models on K̂(Gb, Z f

2 ) and
the fusion 2-categories described in Ref. [33] that allows us
to conclude that all EF topological orders are realized by
topological nonlinear σ -models on K̂(Gb, Z f

2 ).
From a consideration of 2-gauge transformations [see

Eqs. (59) and (61)], we expect w0 and w1 to contain factors
|Ĝb|−1 and 1

2 to cancel the volume of the 2-gauge transfor-
mations. If w2(1) = w2(m) with m being the generator of Zm

2 ,
the solutions should describe AB or EF1 topological orders.
If w2(1) �= w2(m), some of these solutions should describe
EF2 topological orders. In particular, we expect w2(m) to
be related to the quantum dimension of the noninvertible
1-morphism—the Majorana zero mode.
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FIG. 11. A boundary configuration. The thin dash-lines corre-
sponds to âi j = 1. The thin colored-lines corresponds to âi j �= 1.
The white triangles corresponds to bi jk = 0. The yellow triangles
corresponds to bi jk = 1, which are boundary fermions. The nonzero
âi j’s describe boundary strings on the dual lattice, represented by the
thick lines. The strings with different colors are described by g and
gm. The domain wall between two strings has a Majorana zero mode
marked by a green dot.

B. The canonical boundary of topological nonlinear σ-models

In the last section, we constructed topological nonlinear
σ -models using the data of unitary fusion 2-categories in
Statement I.2. In this section, we like to show that the topolog-
ical nonlinear σ -models have a canonical boundary described
by corresponding unitary fusion 2-category A3

b.
The canonical boundaries of the topological nonlinear σ -

models are very simple which are given by choosing âi j =
1 and bi jk = 0 on the boundary. The states with âi j �= 1 and
bi jk �= 0 corresponds excited states with boundary stringlike
and pointlike excitations (see Fig. 11).

We see that the boundary string are labeled by âi j which is
an element in Ĝb. They correspond to objects in a unitary fu-
sion 2-category. bi jk on triangles correspond to 1-morphisms
of unit quantum dimension. bi jk = 1 implies the presence of
a fermion on the triangle (i jk). The condition db = n̂3(â)
describes how a fermion worldline can starts or ends at certain
configurations of â, where n̂3(â) �= 0.

The Fermi statistics of the particle described by
bi jk �= 0 is determined by the form of the top tensor

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
in Eq. (147). k0 =

1 will make the particle to be a fermion.
The triangles with δâ = m will carry a Majorana zero

mode, provided that the weight tensor w2(δâ) satisfies
w2(1) �= w2(m). If w2(1) = w2(m), the triangles with δâ = m
will not correspond to a Majorana zero mode. These results
suggest that the canonical boundaries of the topological non-
linear σ -models are described by unitary fusion 2-categories
in Statement I.2.

To summarize, the topological nonlinear σ -models are
described by the following data:

Ĝb = Zm
2 �ρ2 Gb, n̂3(â), w0, w1, w2(1), w2(m),

�̂4
â01â02 â03â04â12 â13â14â23â24â34;c1234c0234c0134

b012b013b014b023b024b034b123b124b134b234;c0124c0123
, (148)

where n̂3(â) is defined only when δâ = 1. In that case, it is
a Z2-valued group 3-cocycle for Ĝb: n̂3|δâ=1 ∈ H3(Ĝb;Z2).
Also, w0,w1,w2(Zm

2 ), �̂4 satisfy a set of nonlinear equations,
such as Eqs. (144)–(146). If the tensor �̂4 has a form (147)
with k0 = 1, then the data describe an EF topological order.

Such data also classify the EF topological orders after quotient
out certain equivalence relation. When Ĝb = Zm

2 �ρ2 Gb is a
nontrivial extension of Gb by Zm

2 and when w2(1) �= w2(m),
the data classify the EF2 topological orders.

Although we have collected many evidences to support the
above proposal, many details still need to be worked out to
confirm it.

IX. TURAEV-VIRO CONSTRUCTION
AND HIGHER CATEGORY

The above topological nonlinear σ -models are actually a
special case of Turaev-Viro type state sum construction. So
in this section, we will discuss such a construction in most
general setting.

The most general Turaev-Viro type state sum construction
of n + 1D TQFT that one can imagine is to triangulate the
space-time, color all the k-simplices for k < n + 1, give each
n + 1-simplex a factor which depends the its colorings, then
multiply the factors together to get the action amplitude, and
then sum the action amplitudes over all possible colorings
(i.e., do the path integral). The final answer is the partition
function of the state sum model. In order for the partition
function to be topological, the colorings and the factors must
satisfy a series of self-consistent conditions, such that the
action amplitudes are retriangulation invariant [see conditions
Eqs. (144)–(146)].

More precisely, (1) the coloring of a 0-simplex (i.e., vertex)
is in a labeling set L0. (2) The coloring of a 1-simplex (i.e.,
link) between vertices a, b ∈ L0 is in a labeling set L1(a, b).
(3) The coloring of a 2-simplex (i.e., triangle) is in a labeling
set which is determined by the colorings of the three vertices
and three links. (4) . . . (5) The factor �i of an n + 1-simplex
i is a function of all the above colorings. (6) The weighting
factor w

(k)
j of an k-simplex (k < n + 1) j is a function of all

the colorings of the k-simplex. (7) The partition function is
given by

Z =
∑

colorings

⎛
⎝ n∏

k=0

∏
j

w
(k)
j

⎞
⎠(∏

i

�i

)
. (149)

However, it is not necessary to use so general a construc-
tion. Many of the above models turn out to describe the same
topological phase. To produce all the possible phases it is
sufficient to use only some simplified versions of state sum
model. This can be seen by the following n-category picture.

Although not rigorously proved, we believe the above data
of the most general state sum model exactly corresponds
to a n-category which describes the topological defects and
excitations on a gapped nD boundary of the n + 1D TQFT.
(n + 1D Turaev-Viro type TQFT = n + 1D TQFT with
gapped boundary.) The labeling sets Lk of k-simplices are just
the sets of isomorphisms classes of simple k-morphisms in the
n-category. An n + 1-simplex can be read as a closed graph
in the n-category, whose evaluation gives rise to a complex
number which is the factor associated to the n + 1 simplex.

The physical picture of such n + 1-category is that k-
morphisms correspond to codimension k topological defects.
More precisely,
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(1) 0-morphism: nD “defect,” in fact not a defect but just a
label of a uniform boundary region, like a boundary “phase.”

(2) 1-morphism: n − 1D defect between different boundary
phases.

(3) ...
(4) (n − 2)-morphism: 2D=1+1D defect, namely, line de-

fect. If between trivial membrane defects, they are actually
stringlike excitations.

(5) (n − 1)-morphism: 1D=0+1D defect, point defect. If
between trivial line defects, they are pointlike excitations, or
particles.

(6) n-morphism: 0D defect, “instanton,” a change in time,
represented by physical operators.

As a first simplification, nD boundary phases that can have
n − 1D defects between them should be “Morita-equivalent”;
they share the same bulk phase. This indicates that the vertex
labels in the state sum model (corresponding to 0-morphisms
in the n-category) should not produce more phases and can
always be dropped. For the n-category this means fixing the
0-morphism, which turns the n-category into a fusion (n − 1)-
category.

For n = 2, the above is the best one can do, and it is why
2 + 1D Turaev-Viro TQFTs are built upon fusion categories.
There are two levels of colorings:

(1) L1 labels the links, also the objects in the fusion
category, corresponding to the point-like excitations on the
boundary.

(2) L2(a, b, c) labels the triangles, also the morphisms in
the fusion category, corresponding to basis operators in the
fusion space Hom(a ⊗ b, c). When all such fusion spaces are
1-dimensional, this level of coloring can be dropped and these
models are called multiplicity-free.

For n = 3, the above means that 3 + 1D Turaev-Viro
TQFTs can be built upon fusion 2-categories. There are thus
there levels of colorings:

(1) L1 labels the links, also the objects in the fusion 2-
category, corresponding to the string-like excitations on the
boundary.

(2) L2(a, b, c) labels the triangles, also the 1-morphisms in
the fusion 2-category, corresponding to the point-like defects
on the junction of a, b, c strings.

(3) L3(. . . ) labels the tetrahedrons, also the basis physical
operators in the corresponding fusion space.

One possible further simplification is to consider bound-
aries without string-like excitations. Note that in this case par-
ticles (the only nontrivial topological defects) on the boundary
form a pre-modular category. The corresponding model is
the so-called Crane-Yetter TQFT [60] or Walker-Wang model
[62]. But they are not sufficient to construct all 3+1D phases.
In Refs. [63,64], it was generalised to use G-crossed extension
of the premodular category as input data.

Another possibility is to consider boundaries whose point-
like excitations are as simple as possible, by the results
in Refs. [32,33]. This leads to more general and powerful
simplification.

First, every 3+1D topological phase have a canonical
gapped boundary (this in particular means that all 3+1D
topological phase are of Turaev-Viro type) whose stringlike
excitations fuse under a group multiplication law. Thus L1 is
a group. Note that the particles (point defects on the trivial

string) form a premodular category. G-crossed premodular
category is just a special case of of such fusion 2-category.
In other words, constructions, based on fusion 2-category
whose objects form a group, include the construction in
Refs. [63,64].

Second, Refs. [32,33] further show that particles on the
boundary can be reduced to Vec or sVec; in other words,
either there is no nontrivial particle, or the only nontrivial
particle is the fermion. This means that there are at most two
labels in L2. (As a result most L3 also become trivial.) This is
exactly the model discussed in this paper, which should be the
most simplified version of state sum model in 3+1D, but still
general enough to produce all 3+1D phases.

X. SUMMARY

In this paper, we show that higher gauge theories are
nothing but familiar nonlinear σ -models in the topological-
defect-free disordered phase. As a result, nonlinear σ -models
whose target spaces K satisfy π1(K ) = finite group and
πk>1(K ) = 0 can realize gauge theories, and nonlinear σ -
models whose target spaces K satisfy π1(K ), π2(K ) = finite
group and πk>2(K ) = 0 can realize 2-gauge theories, etc.

We discuss in detail how to characterize and classify higher
gauge theories, such as 2-gauge theories. As an application,
we use 2-gauge theories to realize and classify all 3+1D
EF1 topological orders—3+1D topological orders for bosonic
systems with emergent fermions, but no Majorana zero modes
for triple string intersections. We also design topological
nonlinear σ -models to realize and classify all 3+1D EF2
topological orders—3+1D topological orders for bosonic sys-
tems with emergent fermions that have Majorana zero modes
for some triple string intersections. Since EF topological
orders can be viewed as gauged fermionic SPT state in 3+1D,
our result also give rise to a classification of 3+1D fermionic
SPT orders.

To obtain the above results, we developed a “geometric”
way to view the unitary fusion 2-category A3

b for the canonical
boundary of the EF topological orders. We used a special
triangulation of a space K (Ĝb,Z

f
2 ) to described the fusion

category formed by the objects and 1-morphisms in A3
b. We

used a tensor set defined for the triangulation to described the
2-morphism layer of 2-category A3

b.
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APPENDIX A: SPACE-TIME COMPLEX,
COCHAINS, AND COCYCLES

In this paper, we consider models defined on a space-time
lattice. A space-time lattice is a triangulation of the d+1D
space-time, which is denoted as Md+1. We will also call
the triangulation Md+1 as a space-time complex, which is
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FIG. 12. Two branched simplices with opposite orientations.
(a) A branched simplex with positive orientation and (b) a branched
simplex with negative orientation.

formed by simplices—the vertices, links, triangles, etc. We
will use i, j, . . . to label vertices of the space-time complex.
The links of the complex (the 1-simplices) will be labeled by
(i, j), ( j, k), . . .. Similarly, the triangles of the complex (the
2-simplices) will be labeled by (i, j, k), ( j, k, l ), . . ..

In order to define a generic lattice theory on the
space-time complex Md+1 using local tensors Ti j...k and

ωd+1(aG f

i j , a
G f

ik , . . .), it is important to give the vertices of each
simplex a local order. A nice local scheme to order the vertices
is given by a branching structure [21,65,66]. A branching
structure is a choice of orientation of each link in the d+1D
complex so that there is no oriented loop on any triangle
(see Fig. 12).

The branching structure induces a local order of the ver-
tices on each simplex. The first vertex of a simplex is the
vertex with no incoming links, and the second vertex is the
vertex with only one incoming link, etc. So the simplex in
Fig. 12(a) has the following vertex ordering: 0,1,2,3.

The branching structure also gives the simplex (and its sub-
simplices) a canonical orientation. Figure 12 illustrates two
3-simplices with opposite canonical orientations compared
with the three-dimension space in which they are embedded.
The blue arrows indicate the canonical orientations of the
2-simplices. The black arrows indicate the canonical orien-
tations of the 1-simplices.

Given an Abelian group (M,+), an n-cochain fn is an
assignment of values in M to each n-simplex, for example a
value fn;i, j,...,k ∈ M is assigned to n-simplex (i, j, . . . , k). So
a cochain fn can be viewed as a bosonic field on the space-time
lattice.

We like to remark that a simplex (i, j, . . . , k) can have
two different orientations si j...k = ±. We can use (i, j, . . . , k)
and ( j, i, . . . , k) = −(i, j, . . . , k) to denote the same simplex
with opposite orientations. The value fn;i, j,...,k assigned to the
simplex with opposite orientations should differ by a sign:
fn;i, j,...,k = − fn; j,i,...,k . So to be more precise fn is a linear
map fn : n-simplex → M. We can denote the linear map as
〈 fn, n-simplex〉, or

〈 fn, (i, j, . . . , k)〉 = fn;i, j,...,k ∈ M. (A1)

More generally, a cochain fn is a linear map of n-chains:

fn : n-chains → M, (A2)

or (see Fig. 13)

〈 fn, n-chain〉 ∈ M, (A3)

where a chain is a composition of simplices. For exam-
ple, a 2-chain can be a 2-simplex: (i, j, k), a sum of two

i

l

j k

a

FIG. 13. A 1-cochain a has a value 1 on the red links: aik =
ajk = 1 and a value 0 on other links: ai j = akl = 0. da is nonzero on
the shaded triangles: (da) jkl = ajk + akl − ajl . For such 1-cochain,
we also have a � a = 0. So when viewed as a Z2-valued cochain,
B2a �= a � a mod 2.

2-simplices: (i, j, k) + ( j, k, l ), a more general composition
of 2-simplices: (i, j, k) − 2( j, k, l ), etc. The map fn is linear
respect to such a composition. For example, if a chain is
m copies of a simplex, then its assigned value will be m
times that of the simplex. m = −1 correspond to an opposite
orientation.

We will use Cn(Md+1;M) to denote the set of all n-
cochains on Md+1. Cn(Md+1;M) can also be viewed as
a set all M-value fields (or paths) on Md+1. Note that
Cn(Md+1;M) is an Abelian group under the + operation.

The total space-time lattice Md+1 correspond to a (d + 1)-
chain. We will use the same Md+1 to denote it. Viewing fd+1

as a linear map of (d + 1)-chains, we can define an “integral”
over Md+1: ∫

Md+1
fd+1 ≡ 〈 fd+1,Md+1〉. (A4)

We can define a derivative operator d acting on
an n-cochain fn, which give us an n + 1-cochain
(see Fig. 13):

〈dfn, (i0i1i2 . . . in+1)〉 =
n+1∑
m=0

(−)m〈 fn, (i0i1i2 . . . îm . . . in+1)〉,

(A5)

where i0i1i2 . . . îm . . . in+1 is the sequence i0i1i2 . . . in+1 with
im removed, and i0, i1, i2 . . . in+1 are the ordered vertices of
the (n + 1)-simplex (i0i1i2 . . . in+1).

A cochain fn ∈ Cn(Md+1;M) is called a cocycle if dfn =
0. The set of cocycles is denoted as Zn(Md+1;M). A cochain
fn is called a coboundary if there exist a cochain fn−1

such that dfn−1 = fn. The set of coboundaries is denoted as
Bn(Md+1;M). Both Zn(Md+1;M) and Bn(Md+1;M) are
Abelian groups as well. Since d2 = 0, a coboundary is always
a cocycle: Bn(Md+1;M) ⊂ Zn(Md+1;M). We may view two
cocycles differ by a coboundary as equivalent. The equiva-
lence classes of cocycles, [ fn], form the so called cohomology
group denoted as

Hn(Md+1;M) = Zn(Md+1;M)/Bn(Md+1;M), (A6)

Hn(Md+1;M), as a group quotient of Zn(Md+1;M) by
Bn(Md+1;M), is also an Abelian group.
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FIG. 14. A 1-cochain a has a value 1 on the red links, Another
1-cochain a′ has a value 1 on the blue links. On the left, a � a′

is nonzero on the shade triangles: (a � a′)i jl = ai ja′
jl = 1. On the

right, a′ � a is zero on every triangle. Thus a � a′ + a′ � a is not
a coboundary.

For the ZN -valued cocycle xn, dxn
N= 0. Thus

BN xn ≡ 1

N
dxn (A7)

is a Z-valued cocycle. Here, BN is Bockstein homomorphism.
From two cochains fm and hn, we can construct a third

cochain pm+n via the cup product (see Fig. 14):

pm+n = fm � hn,

〈pm+n, (0 → m + n)〉 = 〈 fm, (0 → m)〉〈hn, (m → m + n)〉,
(A8)

where i → j is a consecutive sequence from i to j:

i → j ≡ i, i + 1, . . . , j − 1, j. (A9)

The cup product has the following property

d (hn � fm) = (dhn) � fm + (−)nhn � (dfm) (A10)

We see that hn � fm is a cocycle if both fm and hn are
cocycles. If both fm and hn are cocycles, then fm � hn is
a coboundary if one of fm and hn is a coboundary. So the
cup product is also an operation on cohomology groups �:

Hm(Md ;M)×Hn(Md ;M) → Hm+n(Md ;M). The cup prod-
uct of two cocycles has the following property (see Fig. 14):

fm � hn = (−)mnhn � fm + coboundary. (A11)

We can also define higher cup product fm �
k

hn, which

gives rise to a (m + n − k)-cochain [67]:

〈 fm �
k

hn, (0, 1, . . . , m + n − k)〉

=
∑

0�i0<...<ik�n+m−k

(−)p〈 fm, (0 → i0, i1 → i2, . . .)〉

× 〈hn, (i0 → i1, i2 → i3, . . .)〉, (A12)

and fm �
k

hn = 0 for k > m or n or k < 0. Here i → j is

the sequence i, i + 1, . . . , j − 1, j, and p is the number of

permutations to bring the sequence

0 → i0, i1 → i2, . . . ; i0 + 1 → i1 − 1, i2 + 1 → i3 − 1, . . .

(A13)

to the sequence

0 → m + n − k. (A14)

For example,

〈 fm �
1

hn, (0, 1, . . . , m + n − 1)〉 =
m−1∑
i=0

(−)(m−i)(n+1)

× 〈 fm, (0 → i, i + n → m + n − 1)〉〈hn, (i → i + n)〉.
(A15)

We can see that �
0
=�. Unlike cup product at k = 0, the

higher cup product of two cocycles may not be a cocycle. For
cochains fm, hn, we have

d ( fm �
k

hn) = dfm �
k

hn + (−)m fm �
k

dhn

+ (−)m+n−k fm �
k−1

hn + (−)mn+m+nhn �
k−1

fm.

(A16)

Let fm and hn be cocycles and cl be a chain, from
Eq. (A16), we can obtain

d ( fm �
k

hn) = (−)m+n−k fm �
k−1

hn

+ (−)mn+m+nhn �
k−1

fm,

d ( fm �
k

fm) = [(−)k + (−)m] fm �
k−1

fm,

d (cl �
k−1

cl + cl �
k

dcl ) = dcl �
k

dcl − [(−)k − (−)l ]

× (cl �
k−2

cl + cl �
k−1

dcl ).

(A17)

From Eq. (A17), we see that, for Z2-valued cocycles zn,

Sqn−k (zn) ≡ zn �
k

zn (A18)

is always a cocycle. Here, Sq is called the Steenrod square.
More generally hn �

k
hn is a cocycle if n + k = odd and hn

is a cocycle. Usually, the Steenrod square is defined only for
Z2 valued cocycles or cohomology classes. Here, we like to
define Steenrod square for M-valued cochains cn:

Sqn−kcn ≡ cn �
k

cn + cn �
k+1

dcn. (A19)

From Eq. (A17), we see that

dSqkcn = d (cn �
n−k

cn + cn �
n−k+1

dcn) = Sqk dcn + (−)n

{
0, k = odd
2Sqk+1cn k = even

. (A20)

In particular, when cn is a Z2-valued cochain, we have

dSqkcn
2= Sqk dcn. (A21)
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Next, let us consider the action of Sqk on the sum of two M-valued cochains cn and c′
n:

Sqk (cn + c′
n) = Sqkcn + Sqkc′

n + cn �
n−k

c′
n + c′

n �
n−k

cn + cn �
n−k+1

dc′
n + c′

n �
n−k+1

dcn

= Sqkcn + Sqkc′
n + [1 + (−)k]cn �

n−k
c′

n − (−)n−k[−(−)n−kc′
n �

n−k
cn + (−)ncn �

n−k
c′

n]

+ cn �
n−k+1

dc′
n + c′

n �
n−k+1

dcn

= Sqkcn + Sqkc′
n + [1 + (−)k]cn �

n−k
c′

n + (−)n−k[dc′
n �

n−k+1
cn + (−)nc′

n �
n−k+1

dcn]

− (−)n−k d (c′
n �

n−k+1
cn) + cn �

n−k+1
dc′

n + c′
n �

n−k+1
dcn

= Sqkcn + Sqkc′
n + [1 + (−)k]cn �

n−k
c′

n + [1 + (−)k]c′
n �

n−k+1
dcn − (−)n−k d (c′

n �
n−k+1

cn)

− [(−)n−k+1 dc′
n �

n−k+1
cn − cn �

n−k+1
dc′

n]

= Sqkcn + Sqkc′
n + [1 + (−)k]cn �

n−k
c′

n + [1 + (−)k]c′
n �

n−k+1
dcn − (−)n−k d (c′

n �
n−k+1

cn)

− d (dc′
n �

n−k+2
cn) + dc′

n �
n−k+2

dcn

= Sqkcn + Sqkc′
n + dc′

n �
n−k+2

dcn + [1 + (−)k][cn �
n−k

c′
n + c′

n �
n−k+1

dcn]

− (−)n−k d (c′
n �

n−k+1
cn) − d (dc′

n �
n−k+2

cn). (A22)

We see that, if one of the cn and c′
n is a cocycle,

Sqk (cn + c′
n)

2,d= Sqkcn + Sqkc′
n. (A23)

We also see that

Sqk (cn + dfn−1) = Sqkcn + Sqk dfn−1 + [1 + (−)k]dfn−1 �
n−k

cn − (−)n−k d (cn �
n−k+1

dfn−1) − d (dcn �
n−k+2

dfn−1)

= Sqkcn + [1 + (−)k][dfn−1 �
n−k

cn + (−)nSqk+1 fn−1] + d[Sqk fn−1 − (−)n−kcn �
n−k+1

dfn−1 − dcn �
n−k+2

dfn−1].

(A24)

Using Eq. (A25), we can also obtain the following result if dcn = even

Sqk (cn + 2c′
n)

4= Sqkcn + 2d (cn �
n−k+1

c′
n) + 2dcn �

n−k+1
c′

n
4= Sqkcn + 2d (cn �

n−k+1
c′

n). (A25)

As another application, we note that, for a Z2 cochain md and using Eq. (A16),

Sq1(md ) = md �
d−1

md + md �
d

dmd = 1
2 (−)d [d (md �

d
md ) − dmd �

d
md ] + 1

2 md �
d

dmd

= (−)dB2(md �
d

md ) − (−)dB2md �
d

md + md �
d
B2md

= (−)dB2md − 2(−)dB2md �
d+1

B2md = (−)dB2md − 2(−)d Sq1B2md , (A26)

where we have used md �
d

md = md . This way, we obtain a

relation between the Steenrod square and Bockstein homo-
morphism, when md is a Z2 valued cocycle

Sq1(md )
2= B2md . (A27)

APPENDIX B: LYNDON-HOCHSCHILD-SERRE
SPECTRAL SEQUENCE

The Lyndon-Hochschild-Serre spectral sequence (see
Ref. [68], pages 280 and 291 and Ref. [69]) allows us to
understand the structure of of the cohomology of a fiber
bundle F → X → B, H∗(X ;R/Z), from H∗(F ;R/Z) and

H∗(B;R/Z). In general, Hd (X ;M), when viewed as an
Abelian group, contains a chain of subgroups

{0} = Hd+1 ⊂ Hd ⊂ . . . ⊂ H0 = Hd (X ;M) (B1)

such that Hl/Hl+1 is a subgroup of a factor group of
Hl [B, Hd−l (F ;M)B], i.e., Hl [B, Hd−l (F ;M)B] contains a
subgroup �k , such that

Hl/Hl+1 ⊂ Hl [B, Hd−l (F ;M)B]/�l ,

l = 0, . . . , d. (B2)

Note that π1(B) may have a nontrivial action on M and π1(B)
may have a nontrivial action on Hd−l (F ;M) as determined
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by the structure F → X → B. We add the subscript B to
Hd−l (F ;M) to indicate this action. We also have

H0/H1 ⊂ H0[B, Hd (F ;M)B],

Hd/Hd+1 = Hd = Hd (B;M)/�d . (B3)

In other words, all the elements in Hd (X ;M) can be one-to-
one labeled by (x0, x1, . . . , xd ) with

xl ∈ Hl/Hl+1 ⊂ Hl [B, Hd−l (F ;M)B]/�l . (B4)

Note that here M can be Z,Zn,R,R/Z etc. Let xl,α , α =
1, 2, . . ., be the generators of Hl/Hl+1. Then we say xi,α for
all l, α are the generators of Hd (X ;M). We also call Hl/Hl+1,
l = 0, . . . , d , the generating subfactor groups of Hd (X ;M).

The above result implies that we can use (k0, k1, . . . , kd )
with kl ∈ Hl [B, Hd−l (F ;R/Z)B] to label all the ele-
ments in Hd (X ;R/Z). However, such a labeling scheme
may not be one-to-one, and it may happen that only
some of (k0, k1, . . . , kd ) correspond to the elements in
Hd (X ;R/Z). However, on the other hand, for every element
in Hd (X ;R/Z), we can find a (k0, k1, . . . , kd ) that corre-
sponds to it.

For the special case X = B×F , (k0, k1, . . . , kd ) will give
us a one-to-one labeling of the elements in Hd (B×F ;R/Z).
In fact,

Hd (B × F ;R/Z) =
d⊕

l=0

Hl [B, Hd−l (F ;R/Z)]. (B5)

APPENDIX C: PARTITION FUNCTIONS
FOR 3+1D PURE 2-GAUGE THEORY

In this section, we compute the partition function for the
pure 2-gauge theory (97) with n = even and m = odd. Let
Cd (M;M) be the set of M-valued (d + 1)-cochains on the
complex M, Zd (M;M) the set of (d + 1)-cocycles, and
Bd (M;M) the set of (d + 1)-coboundaries. When m = 0,
the partition function is given by the number of Zn-valued
2-cocycles |Z2(M4;Zn)|, which is |H2(M4;Zn)| times the
number of 1-cochains whose derivatives is nonzero. The num-
ber of 1-cochains whose derivatives is nonzero is the number
of 1-cochains (|C1(M4;Zn)| = nNe ) divide by |H1(M4;Zn)|
and by the number of number of 0-cochains whose derivatives
is nonzero. The number of 0-cochains whose derivatives is
nonzero is the number of 0-cochains (|C0(M4;Zn)| = nNv )
divide by |H0(M4;Zn)|. Thus the partition function is

Z (M4;B(Zn, 2), 0)

= |Z2(M4;Zn)|

= |H2(M4;Zn)| |C
1(M4;Zn)|

|H1(M4;Zn)|
|H0(M4;Zn)|
|C0(M4;Zn)|

= nNe−Nv
|H2(M4;Zn)||H0(M4;Zn)|

|H1(M4;Zn)| , (C1)

where Nv is the number of vertices and Ne the number of
links. The volume-independent topological partition function

is given by

Z top(M4;B(Zn, 2), 0) = |H2(M4;Zn)||H0(M4;Zn)|
|H1(M4;Zn)| .

(C2)

When m �= 0, the volume-independent topological partition
function is given by

Z top(M4;B(Zn, 2), 0)

= |H0(M4;Zn)|
|H1(M4;Zn)|

∑
b∈H2(M4;Zn )

e
i 2π

∫
M4

m
2n b2+ m

2 b�
1
Bb

, (C3)

where
∑

b∈H2(M4;Zn ) e
i 2π

∫
M4

m
2n b2+m

2 b�
1
Bb

replaces |H2(M4;Zn)|.
Now, let us compute topological invariants. On M4 = T 4,

the cohomology ring H∗(T 4;Zn) is generated by aI , I =
1, 2, 3, 4, where aI ∈ H1(T 4;Zn) = 4Zn. Using the cohomol-
ogy ring discussed in Ref. [57], we can parametrize bZn as

b = αIJaI aJ , αIJ = −αJI ∈ Zn. (C4)

We also have Bb
n= 0. Thus

Z (T 4;B(Zn, 2), m) = 1

n3

∑
αIJ∈Zn

e i 2π m
2n 2(α12α34−α13α24+α14α23 ).

(C5)

Using
∑

α1,α2∈Zn
e i 2π m

n α1α2 = 〈m, n〉n, we find that

Z top(T 4;B(Zn, 2), m) = 〈m, n〉3. (C6)

On M4 = S2×T 2, the cohomology ring H∗(T 2×S2;Zn)
is generated by aI , I = 1, 2 and b, where aI ∈
H1(T 2×S2;Zn) = Z⊕2

n and b0 ∈ H2(T 2×S2;Zn) = Z⊕2
n .

Using the cohomology ring discussed in Ref. [57], we can
parametrize b as

b = α1a1a2 + α2b0, α1, α2 ∈ Zn. (C7)

Thus

Z top(S2 × T 2;B(Zn, 2), m) = 1

n

∑
α1,α2∈Zn

e i 2π m
2n 2α1α2 = 〈m, n〉.

(C8)

On M4 = S1×L3(p), we need to use the cohomology ring
H∗(S1×L3(p);Zn) calculated in Ref. [57]:

H1(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {a1, a0},
H2(S1 × L3(p),Zn) = Z〈p,n〉 ⊕ Z〈p,n〉 = {a1a0, b0},
H3(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {c0, a1b0},
H4(S1 × L3(p),Zn) = Zn = {a1c0}, (C9)

where we have also listed the generators. Here, a1 comes
from S1 and a0, b0, c0 from L3(p). The cohomology ring
H∗(S1×L3(p),Zn) is given by

a2
1 = 0, a2

0 = n2 p(p − 1)

2〈p, n〉2
b0,

a0b0 = n

〈p, n〉c0, b2
0 = a0c0 = 0. (C10)
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For 〈n, p〉 = 1, Z top(S1×L3(p);B(Zn, 2), m) = 1. For
〈n, p〉 �= 1, we can parametrize b as

b = α1a0a1 + α2b0, α1, α2 ∈ Z〈n,p〉, (C11)

which satisfies Bb = 0 (see Ref. [57]). Using a0a1b0 =
n

〈n,p〉 a1c0 and (a0a1)2 = b2
0 = 0, we find that

Z top(S1 × L3(p);B(Zn, 2), m)

= 1

〈n, p〉
〈n,p〉−1∑
α1,α2=0

e i 2π m
〈n,p〉 α1α2 = 〈m, n, p〉. (C12)

On M4 = F 4, we need to use the cohomology ring
H∗(F 4;Zn) as described in Ref. [57]:

H1(F 4;Zn) = Z⊕2
n , H2(F 4;Zn) = Z⊕2

n ,

H3(F 4;Zn) = Z⊕2
n , H4(F 4;Zn) = Zn. (C13)

Let a1, a2 be the generators of H1(F 4;Zn), b1, b2 the gener-
ators of H2(F 4;Zn), c1, c2 be the generators of H3(F 4;Zn),
and v be the generator of H4(F 4;Zn):

H∗(F 4;Zn) = {a1, a2, b1, b2, c1, c2, v}. (C14)

We find that the nonzero cup products are given by

b2
1 = −b2

2 = a1c1 = a2c2 = v. (C15)

All other cup products vanish.
We can parametrize b as

b = α1b1 + α2b2, α1, α2 ∈ Zn, (C16)

where b1, b2 are generators of H2(F 4;Zn). Using b2
1 = −b2

2 =
v, b1b2 = 0, and Bb1 = Bb2 = 0, we find that

Z top(F 4;B(Zn, 2), m) = 1

n

n−1∑
α1,α2=0

e i 2π m
2n (α2

1−α2
2 )

=
{

〈m, n〉, if mn
〈m,n〉2 = even;

0, if mn
〈m,n〉2 = odd.

(C17)

The above results, plus some previous results from Ref. [57],
are summarized in Table I.

APPENDIX D: SIMPLICIAL SETS, KAN CONDITIONS

A simplicial set X is a contravariant functor from the
catogory of finiate ordinals to that of sets, X : � → Sets,
where �, the category of finite ordinals, is made up by
[0] = {0}, [1] = {0, 1}, . . . , [n] = {0, 1, . . . , n}, . . . ,

with order-preserving maps, for example,

di : [n − 1] → [n], ∀ j < i, j �→ j,∀ j � i, j �→ j + 1,

that is, to leave i skipped, or

si : [n] → [n − 1], ∀ j < i, j �→ j,∀ j � i, j �→ j − 1,

that is, to leave i-doubly mapped. In fact, all oder-preserving
maps are generated by di’s and si’s. In another word, X
consists of a tower of sets X0, X1, . . . , Xn with face di : Xn →
Xn−1 and degeneracy si : Xn−1 → Xn, which are dual to di and
si. If we take the simplicial decomposition of a topological
space |X |, and take Xn to be the set of n-simplices, then the

collection of Xn for a simplicial set with di the natural face
maps and si the natural degeneracy maps. Thus it is not hard
to imagine, in general, for a simplicial set X , di and si satisfy
expected coherence conditions,

did j = d j−1di if i < j, sis j = s j+1si if i � j,

dis j = s j−1di if i < j, d js j = id = d j+1s j,

dis j = s jdi−1 if i > j + 1. (D1)

Example D.1 (m-simplex and (m, j)-horn). If we take a
geometric n-simplex and take its natural simplicial decom-
position, we end up with a simplicial set �n, which can be
described in the following combinatoric way,

(�m)n = { f : [n] → [m] | f (i) � f ( j) for all i � j}, (D2)

Similarly, we define the simplicial (m, j)-horn as the follow-
ing (see Fig. 15):

(�m
j )n = { f ∈ (�m)n

∣∣ {0, . . . , j − 1, j + 1, . . . , m}
� { f (0), . . . , f (n)}}. (D3)

Their geometric realisation is a m-simplex removing the inner
and j-th facet.

Clearly, there is an inclusion of simplicial sets ιm, j : �m
j →

�m.
Then the set of simplicial morphisms Hom(�m, X ) = Xm,

and Hom(�m
j , X ) is usually some sort of product of Xi’s

and represents horns in X . For example, Hom(�2
1, X ) =

X1×d0,X0,d1 X1.
Definition D.2. A simplicial set X satisfies the Kan condi-

tion Kan(m, j) iff the canonical map (i.e., the horn projection)

Xm = Hom(�m, X )
ι∗m, j−→ Hom

(
�m

j , X
)

(D4)

is surjective. It satisfies the unique Kan condition Kan!(m, j)
iff the canonical map in (D4) is an isomorphism. We call X a
Kan simplicial set (or a Kan complex or an ∞-groupoid) iff it
satisfies Kan(m, j) for all m � 1, 0 � j � m. X is called an
n-groupoid iff it satisfies Kan(m, j) for all m � 1, 0 � j � m
and Kan!(m, j) for all m � n + 1, 0 � j � m. X is called an
n-group if it is a n-groupoid and X0 is a point.

For the content of this Appendix, we refer to the standard
text books [70,71] for the theory simplicial sets. ∞-groupoid
using Kan condition is due to [72], we also refer to Ref. [[73],
Sec. 1] for a nice detailed introduction of this topic.
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1
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FIG. 15. The horns.
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