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Motivated by the recent activities on the diamond lattice antiferromagnet NiRh2O4 with Ni2+ 3d8 local
moments, we theoretically explore on general grounds the unique spin and orbital physics for the diamond lattice
antiferromagnet with 3d8 local moments. The superexchange interaction between the local moments usually
favors magnetic orders. Due to the particular electron configuration of the 3d8 ion with a partially filled upper t2g

level and a fully filled lower eg level, the atomic spin-orbit coupling becomes active at the linear order and would
favor a spin-orbital-entangled singlet with quenched local moments in the single-ion limit. Thus, the spin-orbital
entanglement competes with the superexchange and could drive the system to a quantum critical point that
separates the spin-orbital singlet and the magnetic order. We further explore the effects of magnetic field and
uniaxial pressure. The nontrivial response to the magnetic field is intimately tied to the underlying spin-orbital
structure of the local moments. We discuss future experiments such as doping and pressure and point out the
correspondence between different electron configurations.
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I. INTRODUCTION

The spin-orbit coupling (SOC) is a relativistic effect
and plays an important role in our understanding of the
quantum-mechanical properties of quantum materials with
heavy elements. Contrary to this conventional belief that
explains the recent SOC activities in 4d/5d transition-metal
compounds [1], SOC occasionally becomes important in 3d
transition-metal materials, especially in the Mott insulat-
ing systems with orbital degeneracies [2]. It is well known
that, in Mott insulators with pure spin moments, the atomic
SOC enters via the high-order perturbation of the Hubbard
model and generates the single-ion spin anisotropy and the
Dzyaloshinskii-Moriya interaction [2]. Except in certain cir-
cumstances, these extra spin anisotropy and interactions can
often be regarded as small perturbations to the (Heisenberg)
exchange part of the interactions. When the system has an
orbital degeneracy, however, the atomic SOC should be con-
sidered at the first place and would reconstruct local spin
and orbital degrees of freedom. The diamond lattice antifer-
romagnet FeSc2S4 [3–12] with Fe2+ 3d6 local moments and
various vanadates [2,13–15] provide physical realizations of
such physics, where the former has an eg orbital degeneracy,
while the latter has a t2g degeneracy.

In this paper, we study the diamond lattice antiferromagnet
where the Ni2+ 3d8 ions are the magnetic ions. We are partly
motivated by the experiments and the existence of the dia-
mond lattice antiferromagnet NiRh2O4 [16], but we explore
on general grounds the consequence of the atomic SOC of the
Ni2+ ions. The compound NiRh2O4 is merely our motivation,
and we explore the more general possibilities that may occur
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in principle. We point out that there exists keen competition
between the atomic SOC at the single-ion level and the
intersite superexchange interaction for a 3d transition-metal
ion such as Ni2+. The spin-orbital singlet would give way
to the magnetically ordered state through a quantum phase
transition when the superexchange interaction dominates over
the atomic SOC. We further show the effect of the external
magnetic field and the uniaxial pressure on the quantum
criticality. The nontrivial structure of the phase diagram such
as the re-entrant transition under the field directly reveals
the underlying spin-orbital structure of the local moments.
Although our motivation originates partly from the diamond
lattice antiferromagnet NiRh2O4, the physics that we reveal
in this paper may be easily extended to other magnets with
similar crystal field schemes and orbital configurations. We
further go beyond the specific case of the 3d8 ions, establish
the correspondence between different electron configurations,
and suggest the applicability to many other materials.

The rest of this paper is organized as follows. In Sec. II,
we discuss the microscopics and propose our model for the
3d8 diamond lattice antiferromagnet. Combining the Weiss
mean-field approach and the flavor-wave approach, we obtain
the phase diagram of this model and discuss the criticality
at the quantum phase transition in Sec. III. We then explore
the effect of the external magnetic field and the uniaxial
pressure in Secs. IV and V, respectively. Finally, in Sec. VI
we summarize our results and discuss the potential relation of
our theoretical results to experiments.

II. THE MICROSCOPICS AND OUR MODEL

We start with the microscopics of the Ni2+ 3d8 ion. In
NiRh2O4, which initiated our motivation, the Ni2+ ion is in
the tetrahedral crystal field environment, and as a result, the
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FIG. 1. The electron configuration of the 3d8 ion in the tetrahe-
dral crystal field environment. When the atomic spin-orbit coupling
(SOC) is introduced, the electron states in the upper t2g levels are
further split into the spin-orbital entangled J states. Here, “CEF”
refers to the crystal electric field splitting.

t2g levels are higher in energy than the eg levels. As we show
in Fig. 1 for the 3d8 electron configuration, the lower eg levels
are completely filled, and the t2g levels are partially filled
with four electrons. For our purposes here, we first ignore
the further splitting within the t2g manifold and include the
specific physics in the later part of the paper. Because the
t2g levels are partially filled, the atomic SOC is active at
the linear order. As the fully filled eg manifold can be ne-
glected, the local physics for the 3d8 electron configuration
here is rather analogous to the one for the 4d4/5d4 electron
configurations of the Ru4+ or Ir5+ ions that were discussed
in Refs. [17,18], where Ref. [18] proposed the interesting
possibility of excitonic magnetism. For the t2g manifold in
Fig. 1, the local Hund’s coupling first favors a total spin S = 1
local moment, and the remaining orbital occupation still has
threefold degeneracy. The total orbital angular momentum
remains unquenched and can be treated as an effective orbital
angular moment L with L = 1 in the reduced Hilbert space
of the three orbital occupations. The atomic SOC is then
written as

Hsoc = +λ
∑

i

Li · Si, (1)

where the sign of the SOC is opposite to the case for two
electrons in the t2g manifold. The SOC here acts on the total
spin and total orbital angular momentum of the four electrons
and differs from the SOC at the single-electron level. The
SOC entangles the spin and the orbitals and leads to a total
moment J in the single-ion limit. The single-ion ground state
is a spin-orbital singlet with J = 0, and the excited ones are
J = 1 triplets and J = 2 quintuplets (see Fig. 1).

Besides the atomic SOC, the spin and orbital degrees of
freedom on neighboring sites interact with each other through
the superexchange interaction. Due to the orbital degeneracy,
the exchange interaction should be of the Kugel-Khomskii
form [19]. The superexchange path for both the first neigh-
bor and second neighbor in the diamond lattice of spinel
compounds involves five atoms [4,20]. Thus, the explicit
derivation of the superexchange interaction is complicated and
is not quantitatively reliable. Our purpose here is not to be
quantitatively precise but to capture the generic physics of
the competition between the spin-orbital entanglement and
the tendency to magnetic ordering for the 3d8 diamond lattice
antiferromagnet and the systems alike. Thus, we consider a

simplified superexchange model with only spin interactions.
The exchange model is given as

Hex =
∑
〈i j〉

J1 Si · S j +
∑
〈〈i j〉〉

J2 Si · S j, (2)

where J1 (J2) is the first- (second-) neighbor exchange cou-
pling. This simplified model captures the ordering tendency
but is not supposed to capture the possibility of an (exotic)
quantum spin-orbital liquid or quantum spin liquid with frac-
tionalized excitations that was recently explored with the
functional renormalization group calculation in Ref. [21] for
the spin-1 diamond lattice antiferromagnet with frustrated
spin interactions.

III. PHASE DIAGRAM AND QUANTUM CRITICALITY

Here, we study the full Hamiltonian that contains both
SOC and the exchange interaction,

H = Hsoc + Hex. (3)

Once our full model is written, the physics is almost trans-
parent. In addition to the competition between SOC and ex-
change, the exchange frustration would further complicate our
phase diagram. To establish the phase diagram, one approach
is to start from the (nonmagnetic) spin-orbital singlet phase
and study its magnetic instability to an ordered state by con-
densing the excitonic excitation. The resulting ordered state
was dubbed the “excitonic magnetic state.” This approach
was used by Khaliullin for a more realistic exchange model
on a square lattice [18] with 4d4/5d4 ions such as Ca2RuO4

by truncating the physical Hilbert space to the J = 0 and
J = 1 states, and the excitonic magnetism was introduced
there. The other approach is to start from the ordered state
and trace the fate of the magnetic order parameters as we
increase the strength of the SOC. When the magnetic order
disappears, the system enters the spin-orbital singlet phase.
Both approaches are adopted in this work. Via a Weiss-type
mean-field decoupling, our Hamiltonian becomes

HMFT = Hsoc +
∑
〈i j〉

J1 Si · 〈S j〉 +
∑
〈〈i j〉〉

J2 Si · 〈S j〉, (4)

where 〈S j〉 is taken to be a mean-field order parameter.
To choose a mean-field ansatz for the order parameter, we
start from the limiting case with a vanishing SOC such
that this limit has been well understood. Here, we consider
the antiferromagnetic couplings J1 > 0 and J2 > 0. It was
shown [20,22,23] that, for J2/J1 < 1/8, a Néel state with an
order wave vector q = 0 is obtained; for J2/J1 > 1/8, the
ground state has a spiral configuration, and the degenerate or-
der wave vectors form a spiral surface [20] in the momentum
space and satisfy

cos
qx

2
cos

qy

2
+ cos

qx

2
cos

qz

2
+ cos

qy

2
cos

qz

2
= J2

1

16J2
2

−1.

(5)

When J2/J1 is increased from 1/8, this “spiral surface”
emerges and surrounds q = 0, showing a nearly spherical
geometry. It then touches the boundary of the Brillouin zone
at J2/J1 = 1/4 and develops “holes” on the boundary of

045103-2



SPIN-ORBITAL ENTANGLEMENT IN d8 MOTT … PHYSICAL REVIEW B 100, 045103 (2019)

0

2

4

6

8

J 1

111 001111∗N
ée

l
Spin-Orbital Singlet

0 0.2 0.4 0.6 0.8 1
J2 J1

FIG. 2. The phase diagram of the full model in Eq. (3). This
phase diagram summarizes the competition between the SOC and
the superexchange interaction and captures the frustration of the
exchange part. Refer to the main text for details about the magnetic
orders.

the Brillouin zone, as J2/J1 is further increased. Finally, the
spiral surface shrinks to lines corresponding to the degenerate
ground-state manifold of two decoupled fcc lattices in the
limit J2/J1 → ∞. This degeneracy is lifted when quantum
fluctuation is included, giving certain stabilized spiral or-
ders [21,24,25]. For 1/8 < J2/J1 < 1/4, the selected wave
vectors are along the [111] direction. For 1/4 < J2/J1�1/2,
the [111] direction no longer intersects with the spiral surface,
and the selected wave vectors are around the [111] direction.
This region is labeled by [111∗] in Fig. 2. When J2/J1�1/2,
quantum fluctuation favors the spiral orders with the wave
vectors along the [001] direction.

From the known results, we set up a general mean-field
ansatz as

r j ∈ I, 〈S j〉 = MRe[(x̂ − iŷ)eiq·r j ], (6)

r j ∈ II, 〈S j〉 = MRe[(x̂ − iŷ)ei(q·r j+φq )], (7)

where I and II refer to the two sublattices of the diamond
lattice, q is the propagating wave vector of the spin spiral, and
φq is the phase shift between the two sublattices [20]. The
order parameter M is determined self-consistently from the
mean-field Hamiltonian HMFT.

Our phase diagram is depicted in Fig. 2. When SOC is
weak, the magnetic ordered phase is separated into the Néel
order region and the spiral order regions (111, 111∗, and
001). A transition from the magnetic ordered phase to the
spin-orbital singlet occurs when increasing the strength of
SOC. This transition is evidenced by the vanishing of M
and is found to be continuous within our mean-field theory.
The critical strength of SOC is 16(J1/3 − J2) for J2/J1 < 1/8
and J2

1 /(3J2) + 16J2/3 for J2/J1 > 1/8. As expected, when
the frustration is large, a smaller critical SOC is needed to
drive the transition. The smallest critical SOC is found at
J2/J1 = 1/4.

To explore the critical properties, we start from the spin-
orbital singlet and study its excitations and instability [18,26].
Removing the highly excited J = 2 quintuplets, we then

rewrite our model using a representation with four flavors of
bosons, si, tix, tiy, tiz, on each site i that are defined as

s†
i |0〉 ≡ |0, 0〉i, (8)

t†
ix|0〉 ≡ i(|1, 1〉i − |1,−1〉i )/

√
2, (9)

t†
iy|0〉 ≡ (|1, 1〉i + |1,−1〉i )/

√
2, (10)

t†
iz|0〉 ≡ −i|1, 0〉i, (11)

where the states are labeled |J, Jz〉 and |0〉 is the vacuum state.
A local Hilbert space constraint,

s†
i si +

∑
α

t†
iαtiα = 1, (12)

is imposed with α = x, y, z. In the spin-orbital singlet phase,
the singlet boson si is condensed, with 〈si〉 ≡ s 
= 0. With the
above reformulation of the spin variables, we obtain a flavor-
wave mean-field Hamiltonian for the triplet excitations,

HfMF =
∑
i j,α

Ji j

3
(t†

iαt jα + t†
iαt†

jα + H.c.) + λ
∑

iα

t†
iαtiα, (13)

where the detailed derivation is given in Appendix A, and the
triplon excitation is found as

ω±(q) = λ
1
2 (λ + 4J±

q /3)
1
2 , (14)

where

J±
q ≡ J2

∑
bi

eiq·bi ± J1

∣∣∣∣∣
∑

ai

eiq·ai

∣∣∣∣∣ (15)

and {ai} ({bi}) refer to the first- (second-) neighbor vectors.
Both ω±(q) are threefold degenerate, and the minimum of
ω−(q) is determined by minimizing J−

q . For J2/J1 < 1/8,
a single minimum is realized at the � point, and for
J2/J1 > 1/8, the minima are extensively degenerate and re-
alized on the “spiral surface.”

The triplon gap is closed at a critical SOC that coincides
with the Weiss mean-field result. For J2/J1 > 1/8, the en-
hanced density of states at low energies at the criticality
implies a specific heat behavior Cv ∝ T at low tempera-
tures [24,27]. This behavior should be modified at the zero-
temperature limit since the accidental continuous degeneracy
in the momentum space would be lifted by fluctuations. On
the other hand, for J2/J1 < 1/8, there is only a single critical
mode at the criticality; hence, one expects a conventional
Cv ∝ T 3 behavior up to a logarithmic correction from fluc-
tuations beyond the mean-field theory.

IV. RESPONSE TO MAGNETIC FIELD

The response to external magnetic field provides an im-
portant and visible characterization of the phase transition
from the spin-orbital singlet to the ordered phase. It is of
experimental interest to understand whether the magnetic
field enhances the magnetic order like the case for dimerized
magnets [28] or suppresses the magnetic order like the case
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FIG. 3. (a) The phase diagram under external magnetic fields.
We have fixed J2/J1 = 1/4 in the plot. Here, “SOS” refers to the spin-
orbital singlet. There is a region that supports reentrant transitions
between the conical state and the spin-orbital singlet state as the field
is varied. (b)–(e) The magnetization curves for λ/J1 = 0, 2, 4, 6,
respectively.

for FeSc2S4 [3,4,6,7]. We consider the Zeeman coupling,

HZeeman = −
∑

i

B
(
Lz

i + 2Sz
i

)
. (16)

Including the Zeeman coupling, our mean-field Hamiltonian
now becomes H ′

MFT = HMFT + HZeeman.
With the magnetic field, the mean-field ansatz is adapted as

r j ∈ I, 〈S j〉 = M⊥Re[(x̂ − iŷ)eiq·r j ] + Mzẑ, (17)

r j ∈ II, 〈S j〉 = M⊥Re[(x̂ − iŷ)ei(q·r j+φq )] + Mzẑ, (18)

where M⊥ and Mz are determined self-consistently from the
mean-field Hamiltonian H ′

MFT and represent the magnetiza-
tions on the xy plane and along the z axis, respectively.

In Fig. 3, we depict the phase diagram of H ′
MFT for a

fixed J2/J1. The response to external magnetic field varies
for different strengths of the SOC and, more precisely, dif-
fers significantly for the initial state of the system at the
zero field and thus provides a characterization of the ground
state. In the limit λ → 0, H ′

MFT reduces to Hex + HZeeman.
From the initial spiral order, our mean-field theory yields
M⊥ = [1 − (B/J̃ )2]

1
2 and Mz = B/J̃ when B < J̃ , where

J̃ ≡ 4J1 for J2/J1 < 1/8 and J̃ ≡ J2
1 /(8J2) + 8J2 + 2J1 for

J2/J1 > 1/8. The system is fully polarized when B > J̃ [see
Figs. 3(a) and 3(b)].

Switching on SOC but keeping λ lower than the critical
value at the zero field such that the ground state has the
spiral order, we find that the magnetization curve differs from
the limit with λ → 0. A small magnetic field brings down
one of the J = 1 triplet states and thus enhances the spiral
magnetization component M⊥ that would be suppressed by
SOC and at same time brings a linear growth of the out-of-
plane magnetization Mz. As the field is further increased, the
system enters a fully polarized state [see Fig. 3(c)], and M⊥
is then suppressed. This explains the left part of the phase
diagram in Fig. 3(a), where the coexisting region of M⊥ and
Mz is dubbed the “conical state.”

When the strength of SOC is greater than the critical value,
the mean-field ground state at the zero field is a spin-orbital
singlet. The polarized moment Mz still grows linearly as the
magnetic field is switched on, while a nonzero M⊥ emerges
only at a critical field and shows a double-dome structure [see
Fig. 3(d)]. For an even stronger SOC, the M⊥ curve evolves
into two separated domes, as shown in Fig. 3(e). This is what
happens in the right part of the phase diagram in Fig. 3(a),
where the system shows reentrant transitions between the
spin-orbital singlet and the conical state before being fully
polarized when the field is very strong.

The peculiar double-dome structure of the magnetization
and the reentrant transitions under the magnetic field are inti-
mately connected to the spin-orbit-entangled structure of the
local moments. Let us consider the strong SOC limit where the
single-ion ground state of the local moment is a spin-orbital
singlet with a total moment J = 0. Due to different g factors
for the orbital angular momentum and spin, HZeeman conserves
Jz while mixing states with different J . This gives the direct
consequence that the Jz = 0 singlet state can gain energy from
the growth of Mz when the magnetic field is switched on [6].
As the magnetic field increases, it brings down a Jz = 1 state
from the triplets and a Jz = 2 state from the higher quintuplets
successively. Thus, the single-ion ground-state level crossing
happens twice, and the crossing points expand to finite ranges
due to the bandwidth brought by the exchange interaction,
corresponding to the double-dome structure in the M⊥ curve,
where the domes fuse together for large enough exchange
interaction. This explains the structure of the magnetic phase
diagram in Fig. 3(a).

It is illuminating to compare our results to that for dimer-
ized magnets, where the field-driven Bose-Einstein condensa-
tion of triplons (and quintuplons) from the dimerized ground
state happens following the same argument as above [28],
leading to a similar single- (double-) dome structure in the
M⊥ curve for spin-1/2 (spin-1) dimerized magnets. On the
other hand, Mz there grows only within the domes in the M⊥
curve and becomes a plateau out of that [28–31], which differs
from the results here. The field response of our model is also
quite different from that of FeSc2S4, where the magnetic order
will be suppressed under the field [3,4]. All three cases can
be naturally understood from the evolution of the single-ion
level scheme under the magnetic field that is summarized in
Appendix B. From our simple comparison, we immediately
conclude that the double-dome structure in the magnetization
curve and the reentrant transitions here reflect the entangled
structure of the spin and the orbitals in Hsoc.

V. UNIAXIAL STRAIN

We introduce the perturbation from the uniaxial strain that
is modeled by

HUni = −U
∑

i

(
Lz

i

)2
. (19)

This term is designed to capture the tetragonal distortion
that often occurs in the spinel families. Another common
distortion is trigonal distortion, which can be modeled dif-
ferently. In its form, the tetrahedral distortion preserves the
twofold degeneracy of the xz and yz orbitals [24]. Apparently,
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FIG. 4. The phase diagram with uniaxial strain U/J1 = 0.5. The
Néelz phase indicates that the Néel order is along the z axis. For com-
parison, the red dashed line gives the original boundary between the
spin-orbital singlet and the magnetic ordered phases when U/J1 = 0.

the diamond lattice antiferromagnet NiRh2O4 experiences a
tetragonal distortion at low temperatures [16,32]. A recent
study explored the combination of the tetragonal distortion
and the SOC and considered a stronger tetragonal distor-
tion [33].

To explore the effect of the uniaxial strain, we start again
from the spin-orbital singlet and study its excitations and in-
stability using the flavor-wave approach introduced in Sec. III.
With the uniaxial strain term HUni, the flavor-wave mean-field
Hamiltonian becomes

H ′
fMF = HfMF +

∑
iα

U

6
t†
iαtiα −

∑
i

U

2
t†
iztiz. (20)

The uniaxial strain lowers the energy of the ti,z mode and splits
the threefold degeneracy, as expected. The dispersion of the
triplon excitation now reads

ω±
z (q) = (λ − U/3)

1
2 (λ − U/3 + 4J±

q /3)
1
2 , (21)

ω±
xy(q) = (λ + U/6)

1
2 (λ + U/6 + 4J±

q /3)
1
2 , (22)

where ω±
z (q) are not degenerate and ω±

xy(q) are twofold de-
generate.

The triplon gap is closed at a critical SOC whose strength
is raised by U/3 compared to the one without the uniaxial
strain; that is, the magnetic order is enhanced (see Fig. 4). For
J2/J1 < 1/8, Néel order along the z axis is stabilized from
condensing ω−

z (q) at the � point. For J2/J1 > 1/8, the minima
of ω−

z (q) are realized on the “spiral surface,” and generally,
the critical modes prefer a magnetic order with nonuniform
magnitude on each site. We dub this ordered region the “spiral
state” in Fig. 4.

VI. DISCUSSION

In summary, we proposed a simple spin-orbital model
for a diamond lattice antiferromagnet that was inspired by
the compound NiRh2O4 and related systems, capturing the
competition between the atomic SOC and the exchange inter-
action. We point out that this competition in our model could

FIG. 5. The correspondence between different electron configu-
rations in the tetrahedral and octahedral environments. The second
row indicates the possibility of exploring physics similar to iridates
and Kitaev physics [1,37] in d9 materials [38].

lead to a quantum criticality between the spin-orbital singlet
and the magnetic ordered states. We further study the unique
response behavior of our model to the magnetic field and the
perturbation effect from the uniaxial strain.

The material NiRh2O4 shows an R ln 6 magnetic entropy
that is greater than the pure spin-1 moments [16], indicating
the presence of additional (twofold) orbital degrees of free-
dom. It is likely that this entropy arises from the residual
degeneracy of the xz and yz orbitals in the presence of the
tetragonal distortion [24]. Since this is the orbital degeneracy
in the t2g manifold, the atomic SOC is active at the linear order.
The tetragonal distortion was then included on top of the SOC
and the exchange interactions. We expect that our model may
qualitatively describe the properties of the material and that
the general physics revealed by this model could be relevant
to other similar materials.

Due to the absence of obvious magnetic orders, the system
is probably located on the spin-orbital singlet side. Various
experimental probes could be useful to reveal the effects of
spin-orbital entanglement and could probably drive the system
from the spin-orbital singlet side towards the quantum critical-
ity via pressure. To test the possible relevance of the theory to
the compound, one may detect the magnetic excitations in the
spin-orbital singlet and possibly the critical dynamics in the
critical region through the spectroscopic and thermodynamic
measurements. For example, one could use inelastic neutron
scattering to detect the magnetic field dependence of the
excitations, as it was performed for the powder sample of
FeSc2S4 [6]. A completely opposite tendency, however, is
expected for our model, as we discussed in Sec. IV. The
Higgs mode (or amplitude mode) is one of the characteristic
properties associated with the criticality in our model and
may be probed by inelastic neutron scattering near the crit-
icality but on the ordered side. This was previously studied
in the dimerized magnet TlCuCl3 [34,35] and the quasi-two-
dimensional antiferromagnet Ca2RuO4 [36].

The atomic SOC acts quite similarly for the 3d8 ion in
the tetrahedral environment and the 4d4/5d4 electron config-
uration in the octahedral environment. From this observation,
we list the correspondence between the electron configura-
tions under these two crystal field environments in Fig. 5.
This list can be further expanded with more examples. This
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correspondence immediately suggests some of the physics on
one side may be extended to the other side. For instance,
doping-induced ferromagnetism and unconventional super-
conductivity were proposed for doped d4 systems such as
Ca2RuO4 [18,39]. Without much creativity, one may think
such phenomena could be relevant for doped d8 materials with
tetrahedral crystal field environments.
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APPENDIX A: DETAILS ON THE FLAVOR-WAVE
APPROACH

In this part we describe the flavor-wave approach to the
diamond lattice system,

H =
∑
〈i j〉

J1 Si · S j +
∑
〈〈i j〉〉

J2 Si · S j + λ
∑

i

Li · Si, (A1)

with S = 1 and L = 1. In this approach, one starts from the
spin-orbital singlet side, i.e., the large-λ limit, and studies its
excitations and instability. Considering the low-energy space
on each site consisting of the J = 0 singlet and the J = 1
triplets and projecting out the J = 2 quintuplets, we introduce
four flavors of bosons, si, tix, tiy, tiz, on each site i that are
defined as

s†
i |0〉 ≡ |0, 0〉i, (A2)

t†
ix|0〉 ≡ i√

2
(|1, 1〉i − |1,−1〉i ), (A3)

t†
iy|0〉 ≡ 1√

2
(|1, 1〉i + |1,−1〉i ), (A4)

t†
iz|0〉 ≡ −i|1, 0〉i, (A5)

where the states are labeled |J, Jz〉 and |0〉 is the vacuum
state. A local Hilbert space constraint s†

i si + ∑
α t†

iαtiα = 1
is imposed, with α = x, y, z. The original spin and orbital
operators are then represented as

Sx
i = �

†
i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i
√

2
3 0 0

i
√

2
3 0 0 0

0 0 0 − i
2

0 0 i
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

�i , (A6)

Sy
i = �

†
i

⎛
⎜⎜⎜⎜⎝

0 0 −i
√

2
3 0

0 0 0 i
2

i
√

2
3 0 0 0

0 − i
2 0 0

⎞
⎟⎟⎟⎟⎠�i , (A7)

Sz
i = �

†
i

⎛
⎜⎜⎜⎜⎝

0 0 0 −i
√

2
3

0 0 − i
2 0

0 i
2 0 0

i
√

2
3 0 0 0

⎞
⎟⎟⎟⎟⎠�i , (A8)

and

Li · Si = �
†
i

⎛
⎜⎝

−2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠�i , (A9)

(
Lz

i

)2 = �
†
i

⎛
⎜⎜⎝

2
3 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

⎞
⎟⎟⎠�i , (A10)

with �i = (si, tix, tiy, tiz )T .
In the spin-orbital singlet phase, the singlet boson si is

condensed, with 〈si〉 ≡ s 
= 0, and one can further require

s →
[

1 − 1

N

∑
iα

t†
iαtiα

] 1
2

≈ 1 − 1

2N

∑
iα

t†
iαtiα, (A11)

which takes the local Hilbert space constraint into account.
Here, N is the number of sites.

With the above reformulation of the spin variables, we keep
terms up to the second order and obtain a flavor-wave mean-
field Hamiltonian for the triplet excitations,

HfMF =
∑
〈i j〉,α

2J1

3
(t†

iαt jα + t†
iαt†

jα + H.c.)

+
∑

〈〈i j〉〉,α

2J2

3
(t†

iαt jα + t†
iαt†

jα + H.c.) + λ
∑

iα

t†
iαtiα.

(A12)

The triplon excitation can be readily found as

ω±(q) = λ
1
2 (λ + 4J±

q /3)
1
2 , (A13)

where J±
q ≡ J2

∑
bi

eiq·bi ± J1|
∑

ai
eiq·ai | and {ai} ({bi}) refer

to the first- (second-) neighbor vectors. Both ω±(q) are three-
fold degenerate, and the minimum of ω−(q) is determined
by minimizing J−

q . For J2/J1 < 1/8, a single minimum is
realized at the � point, and for J2/J1 > 1/8, the minima are
extensively degenerate and realized on the spiral surface.

For the diamond lattice, the first-neighbor vectors {ai} are
{ 1

4 [111], 1
4 [11̄1̄], 1

4 [1̄11̄], 1
4 [1̄1̄1]}, and three fcc lattice vectors

are 1
2 [011], 1

2 [101] and 1
2 [110]; then,

J±
q =4J2�(q) ± 2J1

√
�(q) + 1, (A14)

with

�(q) = cos
(qx

2

)
cos

(qy

2

)
+ cos

(qx

2

)
cos

(qz

2

)
+ cos

(qy

2

)
cos

(qz

2

)
. (A15)
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FIG. 6. Single-ion energy level schemes (top panels) and schematic magnetization curves (bottom panels) for (a) the 3d8 diamond
lattice antiferromagnet, (b) the S = 1 diamond lattice antiferromagnet FeSc2S4, (c) spin-1/2 dimerized magnets, and (d) spin-1 dimerized
magnets [29]. See discussion in the text.

The spiral surface is given by

�(q) = J2
1

16J2
2

− 1. (A16)

APPENDIX B: COMPARISON OF THE RESPONSE
BEHAVIOR TO MAGNETIC FIELD OF

DIFFERENT SYSTEMS

In this Appendix, we discuss the response behavior to
magnetic field of (1) our model for the diamond lattice antifer-
romagnet, (2) the spin S = 2 diamond lattice antiferromagnet
FeSc2S4, and (3) spin-1/2 and spin-1 dimerized magnets.

For each system, the Hamiltonian can be separated into the
single-ion part H0 and the exchange part Hex (for dimerized
magnets [34], the building block is the spin dimer with two
spin-1/2 or spin-1 moments, H0 is the isolated dimer part,
and Hex should be understood as interdimer exchange interac-
tions). Whether the initial state of the system at the zero field
is a nonmagnetic state or a magnetic ordered state depends on
the strength of Hex. When Hex is small, in all three cases the
system starts from the nonmagnetic singlet side and finally
becomes fully polarized. The response behavior is directly
related to the single-ion energy level scheme evolution under
the magnetic field, as we show in Fig. 6.

As in the main text, we assume that the magnetic field is
applied along the ẑ direction, and 〈Si〉 = M⊥n̂i + Mzẑ, where
n̂i is a unit vector on the xy plane. So M⊥ and Mz represent
the magnetizations on the xy plane and along the z axis,
respectively.

The single-ion Hamiltonian of our model for the diamond
lattice antiferromagnet with 3d8 magnetic ion reads

H0 = λ
∑

i

Li · Si −
∑

i

B
(
Lz

i + 2Sz
i

)

= λ
∑

i

(Ji )
2/2 −

∑
i

B
(
Jz

i + Sz
i

)
, (B1)

with λ > 0, spin S = 1, effective orbital angular momentum
L = 1, and Ji ≡ Li + Si. At the zero field, the SOC term splits
the single-ion energy levels to the lowest J = 0 singlet, higher
J = 1 triplets, and J = 2 quintuplets. Since Jz is conserved
and J is not, the singlet evolves to a 〈J〉 
= 0 state and gains
energy from the growth of Mz, when the magnetic field is
switched on. As the magnetic field increases, it brings down
a Jz = 1 state from the triplets and a Jz = 2 state from the
quintuplets successively, and the ground-state level crossing
happens twice. For small but nonzero Hex, the crossing points
expand to finite ranges due to the bandwidth brought by the
exchange interaction, leading to the double-dome structure in
the M⊥ curve [see Fig. 6(a)]. For stronger Hex, two domes will
fuse together.

The single-ion Hamiltonian of FeSc2S4 can be modeled
as [3]

H0 = −λ

3

∑
i

{√
3T x

i

[(
Sx

i

)2 − (
Sy

i

)2]
+ T z

i

[
3
(
Sz

i

)2 − S2
i

]} −
∑

i

BSz
i , (B2)

with λ > 0, spin S = 2, and pseudospin T = 1/2, where T
acts on the x2-y2 and 3z2-r2 orbitals in the eg subspace. The
orbital angular momentum is quenched, and the magnetic field
couples only to spin. Again, the lowest singlet state at zero
field can gain energy from the polarization when the magnetic
field is switched on. Moreover, it adiabatically evolves to the
fully polarized state without level crossing, so M⊥ remains
zero [see Fig. 6(b)]. For strong enough Hex, the initial state of
the system is a magnetic ordered state with nonzero M⊥. The
magnetic field is to suppress the magnetic order [3], leading
to a monotonic decrease of M⊥.
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For dimerized magnets, one has

H0 = J0

∑
i

Si,1 · Si,2 −
∑

i

B
(
Sz

i,1 + Sz
i,2

)
= J0

∑
i

(Si,tot )
2/2 −

∑
i

BSz
i,tot, (B3)

with J0 > 0. Here, Si,1 and Si,2 are two spins on the dimer
i. At zero field, J0 splits the single-ion energy levels to the
lowest Stot = 0 singlet and higher high-spin multiplets. For
S = 1/2 dimerized magnets, the field could drive a Bose-
Einstein condensation of triplons from the dimerized ground
state, and the transition occurs at the point where the energy
gap of the triplon is closed. Due to the local moment structure

of the dimer with only singlet and triplets, there is only one
dome in the M⊥ curve, and the ground-state level crossing
happens only once. For S = 1 dimerized magnets, one could
expect a double-dome structure in the M⊥ curve due to the
existence of higher quintuplets, following the same argument
as that for the 3d8 diamond lattice antiferromagnet. For both
the S = 1/2 and S = 1 cases, since the magnetic field couples
to only the spins, the Zeeman term conserves both Sz

tot and Stot

on each dimer. This implies that Mz can grow only within the
ranges corresponding to level crossings, i.e., within the domes
in the M⊥ curve, and becomes a plateau out of that [26,29].
Please refer to Fig. 6(c) [Fig. 6(d)] for the spin-1/2 (spin-1)
case.
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