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Exchange energy renormalization in quantum Hall ferromagnets with strong Coulomb interaction
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An unusual behavior of the exchange energy scale of a quantum Hall ferromagnet with ν = 1 was found in
strongly correlated two-dimensional electron systems based on MgZnO/ZnO heterostructures. The exchange
contribution, entering the energy of a collective excitation, was probed by means of inelastic light scattering.
It was established that, in a wide range of electron densities corresponding to the Wigner-Seitz parameter 7 <

rs < 11, this contribution is on the order of the cyclotron energy, which is notably different from the typical
scale of e2/ε�B that is typical for weakly interacting systems. The same trend was confirmed via numerical
calculations.

DOI: 10.1103/PhysRevB.100.041407

Various mysteries of condensed matter physics can be
revealed through the exploration of certain model problems.
Therefore the effects associated with the exchange interac-
tion of two-dimensional electron systems (2DESs) in quan-
tizing magnetic fields are usually analyzed in the simplest
case of a quantum Hall ferromagnet (QHF) with ν = 1 (see
Refs. [1–4]). This state is incompressible and has a spin po-
larization degree close to unity. Its stability is preserved even
in systems with arbitrarily small Zeeman coupling because
of the significant gain in exchange energy. The minimized
set of embedded correlations makes this state suitable for
theoretical analysis, although a consistent account of many-
particle effects is possible only if the Coulomb contributions
are small compared to the cyclotron energy [5]. Probing of
the exchange and correlation energies of a 2DES is typically
carried out by measuring the energies of the simplest collec-
tive excitations. In high-quality GaAs-based 2DESs at ν = 1,
the true exchange contribution has been detected by means of
Raman scattering on special magnetoexcitons, cyclotron spin-
flip excitations (CSFEs) [1,2], corresponding to the transition
of electrons to the higher adjacent Landau level (LL) with
a simultaneous spin flip. At ν = 1, the CSFE energy at all
momenta contains positive many-particle contributions deter-
mined by the ferromagnetic exchange energy [6,7]. These
are adequately accounted for within the perturbation theory
for GaAs-based systems with a moderate interaction strength
(rs � 1).

With the emergence of high-quality 2DESs based on ZnO
[8], which have a dielectric constant ε = 8.5 and a relatively
large electron mass m∗ ≈ 0.3m0, the role of Coulomb cor-
relations became much enhanced, leading to a number of
unusual quantum Hall states [9,10]. The values of rs and the
LL mixing parameter κ = EC/h̄ωc at ν = 1 increase by an
order of magnitude with respect to GaAs. Although there is
no rigorous theory for two-dimensional (2D) electrons under
such conditions, a number of estimates and calculations have
been made for the activation energy of a QHF at ν = 1.
Various approaches based on the Landau theory of Fermi

liquids [11], excitonic representation [12], random phase ap-
proximation [13], and numerical simulations [14,15] have
predicted a change in the scale of the activation energy of
a QHF (or its exchange energy) from the familiar scale of
e2/εlB to h̄ωc at the limit of rs � 1. Thus far, experimental
evidence of this prediction is lacking, and the magnitude of
the exchange energy of a QHF was reliably established only
for 2DESs with a parameter of rs � 1.

In this Rapid Communication, the behavior of the exchange
contribution to the energy of CSFE as a function of various
parameters was studied for a ZnO-based 2DES by means of
inelastic light scattering. It was found that in a wide range of
electron densities corresponding to 7 < rs < 11, the contribu-
tion to CSFE energy at ν = 1 increases approximately linearly
with electron density and is comparable to h̄ωc. This trend
was also analyzed theoretically both within the framework
of the Hartree-Fock approximation (HFA) and by the exact
diagonalization (ED) method, where the mixing of LLs was
taken into account through a screened Coulomb potential.

The experimental samples were high-quality single het-
erojunctions MgZnO/ZnO grown by molecular beam epitaxy
with a two-dimensional electron channel formed in the ZnO
layer. The parameters of the 2DES—density ns and low-
temperature mobility μt —were determined first by transport
measurements, and then the density was specified in situ using
the magnetophotoluminescence (PL) method, as described
in previous works [16]. The actual parameters of the five
experimental structures are listed in Table I. Experiments were
conducted at a temperature of T ∼ 0.3 K in a 3He evaporation
cryostat in the core of a superconducting solenoid. Optical
access to the sample was established through two quartz
fibers, one of which was used for photoexcitation, while the
other was used for signal collection. The angular configuration
of the fibers determined the momentum transferred from light
to the 2DES. Photoexcitation was produced by a wavelength-
tunable laser source operating near the direct interband op-
tical transitions of ZnO. The excitation power density was
well below 1 mW/cm2, which prevented heating of the 2D
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TABLE I. Parameters of 2DES in the set of studied samples in
order of increasing electron density ns.

Sample No. ns (1011 cm−2) rs μt (103 cm2/V s)

254 1.14 11.1 430
259 1.73 9.0 560
475 2.03 8.4 590
244 2.23 8.0 520
427 2.8 7.1 427

electrons. Optical spectra were detected using a spectrometer
with a resolution of ∼0.2 Å. The magnetic field was tuned up
to 15 T and had a normal orientation relative to the sample
surface.

The inelastic light scattering signal was studied predom-
inantly at magnetic fields corresponding to the filling factor
near ν = 1. Weak Raman lines from the 2DES could be dis-
tinguished from the strong PL signal based on their constant
energy shift with respect to the sweeping laser’s position.
Their detection was facilitated by the resonant photoexcitation
conditions near the interband optical transitions [17].

The identification of the Raman lines corresponding to the
simplest collective excitations is made possible by consid-
ering the known properties of such excitations. Two intra-
subband excitations, magnetoplasmon and spin exciton, have
previously been identified and investigated in ZnO systems at
different quantum Hall states [10,18]. At the long-wavelength
limit, they exhibit Raman shifts close to the bare cyclotron
and Zeeman energies, respectively. The CSFE energy should
incorporate both of these quantities with the addition of some
positive many-particle contribution [6] [see the transition dia-
gram in Fig. 1(c)]. A CSFE is a long-lived excitation only at
a filling factor of ν = 1 and decays to a combination of other
magnetoexcitons on either side of ν = 1.

The Raman scattering signal of a CSFE at ν = 1 appears
as a narrow line [see Fig. 1(a)] with an energy shift exceed-
ing the Zeeman and cyclotron energies. The CSFE line is
resonantly enhanced within a spectral range of ∼2–2.5 meV.
Upon deviation from ν = 1, the spectral position of a CSFE
changes significantly. The integrated intensity is diminished
and the spectral width increases simultaneously. Therefore,
the quality parameters of the Raman line of a CSFE exhibit
significant reductions on either side of the filling factor ν = 1
[the ν dependence of spectral intensity is shown in Fig. 1(b)].
It should be noted that line extinction is caused by its internal
nature, rather than the resonant conditions for Raman scatter-
ing, because the line spectral shift in this range is several times
smaller than the width of the resonant profile. This situation
is reproduced at other wavelengths of incident light. From
the spectral evolution of the CSFE line, one can calculate the
behavior of the many-particle energy contribution. Assuming
an additive structure of the excitation energy, this simply
entails subtracting the single-particle terms h̄ωc and g∗μBB.
The residual exchange-Coulomb energy decreases on both
sides of ν = 1 [plotted in Fig. 1(c)], which agrees qualitatively
with the expected behavior for the single-mode representation
of the collective excitation CSFE [6] (indicated by dashed
curves). This situation also corresponds to the behavior of
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FIG. 1. (a) The waterfall of Raman spectra of CSFE at different
values of the magnetic field (filling factors in the vicinity of ν = 1)
measured from sample No. 475. The dotted line traces the CSFE
peaks. (b) Magnetic field evolution of the integral intensity of the
line CSFE. (c) The magnetic field (or ν) dependence of the exchange-
Coulomb energy shift of a CSFE. The fitting lines are derived from
the mean-field theory (see the main text). The inset illustrates a CSFE
structure as a magnetoexciton in a single-particle level scheme.

CSFE in similar experiments in GaAs [19]. The change in
energy on both sides of ν = 1 is associated with both a
decrease in the exchange contribution [∼(1 − |δν|)] and the
monotonic magnetic field dependence of the Coulomb energy
scale itself. The issue of the skyrmion mechanism of spin
depolarization in ZnO is not even posed due to the relatively
strong Zeeman coupling. The sharp maximum at ν = 1 is
not outlined in Fig. 1(c) either because of the incomplete
spin polarization of the QHF or instrument broadening of the
spectral lines.

Similar measurements of CSFE energy at ν = 1 were per-
formed on all five experimental heterostructures to establish
the nature of the growth in the exchange-Coulomb contribu-
tion with electron density. Although Raman measurements
were carried out with some variation in the transmission
momentum, on one of the samples, the long-wavelength dis-
persion of the CSFE was measured explicitly. These data
are presented in the inset in Fig. 2. From these data, it
follows that the dispersion has a weak negative characteris-
tic, which is confirmed by the calculations discussed below.
The change in energy is insignificant and does not exceed
0.15 meV, even in the sample with the highest electron density
and maximum momentum. Experimental data regarding the
exchange-Coulomb contribution to the CSFE energy at ν = 1
for a wide range of densities are indicated by the symbols in
Fig. 2. There, the single-particle contributions h̄ωc + g∗μBB
are eliminated. One can see that the exchange-Coulomb con-
tribution grows in an approximately linear manner and has a
magnitude close to the cyclotron energy.

This energy scale is unusual for the exchange energy of
QHFs and is qualitatively different from the characteristic
Coulomb energy at the magnetic length (indicated in Fig. 2

041407-2



EXCHANGE ENERGY RENORMALIZATION IN QUANTUM … PHYSICAL REVIEW B 100, 041407(R) (2019)

. . ..

FIG. 2. Dependence of the exchange-Coulomb energy in a CSFE
at ν = 1 on electron density. Black symbols indicate experimental
data. The black dotted line shows cyclotron energy for comparison.
The green dashed line was calculated using the ED method and
the blue dashed-dotted line is a simulation within a screened HFA.
The purple short-dashed line shows energies obtained within an un-
screened HFA. The inset compares the experimental data regarding
the measured k dispersion of the CSFE in sample No. 427 (ns =
2.8 × 1011 cm−2) to the theoretical dispersions calculated within the
ED and HFA methods. The upper axis is given in dimensionless
units.

by a short-dashed curve for comparison). Although the theory
of magnetoexcitons in the quantum Hall effect (QHE) regime
with a strong interaction at rs � 1 has not yet been developed,
there is an approximate approach that accounts for the effects
of LL mixing when considering many-particle correlations
in a system. In this method, the Fourier component of the
Coulomb potential can be modified by a static dielectric
function calculated using the random phase approximation
as follows: V (q) = 2πe2

εq
1

εs (q) . This so-called static screening
approximation [13,20] allows one to describe electronic corre-
lations adequately at partially filled LLs, provided that ν > 1
and κ � 1. It was previously used to calculate the Coulomb
gaps in graphene in the QHE regime [21], as well as in
ZnO in fractional and integer QHE states [10,22]. The same
approach is applied here to qualitatively evaluate the influence
of LL mixing on the scale of the exchange-Coulomb energy
in CSFE. As a seed estimate, we consider expressions for
both the static dielectric function and Coulomb energy terms
themselves as if the electrons were confined to the lowest LL.
The true configuration of the ν = 1 ground state is unknown
due to the strong mixing of LLs. However, as shown below,
this information is not essential for tracing the qualitative
transformation of the many-particle energy term.

The static dielectric function in the random phase approxi-
mation is given by [20]

εs(q) = 1 − 2πe2

εq
χ0

nn(q, ω → 0+).

Here, χ0
nn(q, ω) is the retarded density response function,

which takes the following form for a noninteracting 2DES in
a magnetic field,

χ0
nn(q) = 1

2π l2
B

∑
σ

∑
k,m

|Fk,m(q)|2 νm,σ − νk,σ

(m − k)h̄ωc
, (1)

where νm,σ is the filling factor of an LL m with a spin index σ .
The inter-LL oscillator strength for the transition between two
levels k and m > k is given by

|Fk,m(q)|2 = k!

m!
e−q2l2

B/2

[
Lm−k

k

(
q2l2

B

2

)]2(
q2l2

B

2

)m−k

,

where Lm−k
k (x) are the associated Laguerre polynomials.

The resulting form of the static dielectric function for
the configuration with all electrons at the lowest spin LL is
defined by the following expression,

εs(q) = 1 + e2/εlB
h̄ωc

∞∑
m=1

√
2

m · m!

(
qlB√

2

)2m−1

e−q2l2
B/2.

One can see that the second term is proportional to the LL
mixing parameter κ � 1, leading to a dramatic rescaling of
the many-particle energy terms. These terms depend on the
involved LLs and can be expressed in terms of the Coulomb
matrix elements in the k domain. For the long-wavelength
CSFE at ν = 1, they are given by the following expression,
which was derived from the HFA [1,6],

�Ek=0
CSFE = 1

(2π )2

∫
d2q

2πe2

εq

1

εs(q)

q2l2
B

2
e−q2l2

B/2. (2)

The CSFE energy calculated in this manner will be on the
order of h̄ωc under the condition κ � 1. Arithmetically, this is
the result of a reduction in the value of the Coulomb potential
at qlB ∼ 1 in the integrand, where the screening factor reaches
its maximum value εs ∼ κ . At these momenta, the main
contribution to the many-particle energy of a CSFE is attained.
In this naive picture, a crossover between the scales of e2/εlB
and h̄ωc occurs at values of κ ∼ 3 and asymptotically trends
toward �ECSFE ≈ 1.3 h̄ωc for κ � 100. The calculation re-
sults for the actual range of electron densities in the HFA
are represented by a dashed-dotted line in Fig. 2. For these
calculations, the geometric form factor of the 2D Coulomb
potential in the heterojunction with the calculated subband
wave function was taken into account. The total effect of the
form factor on the many-particle energy is small (<15%), due
to the screening of the Coulomb potential and the narrowness
of the calculated wave-function profiles.

To evaluate the effects of the redistribution of electrons
over LLs on the calculated energy, one can make the ground-
state structure less arbitrary, as well as the corresponding form
of the screening function. This approach was implemented in
the numerical calculation of CSFE energy by adopting exact
diagonalization for N = 11 electrons in the basis of states
at the two lowest LLs. In this case, the electrons at the two
relevant levels can be left uncontrolled, but their interactions
should be screened by all other LLs. In other words, the sum-
mation in Eq. (1) will begin from m � 2, thereby softening
the artificial screening. The energy spectrum was calculated
for a finite system with periodic boundary conditions in the
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FIG. 3. Ratio of the exchange-Coulomb term in a CSFE to the
cyclotron energy as a function of rs. Square symbols represent data
measured in GaAs quantum wells [2] and round symbols were
recalculated from Fig. 2. HFA and ED calculations with realistic
geometric form factors are indicated by dashed-dotted and dashed
lines, respectively, and the bare HFA prediction is indicated by
the short-dashed line. The exchange energy of a model skyrmion-
antiskyrmion pair is indicated by a solid line.

geometry of a torus using the Coulomb matrix elements
provided in Ref. [22]. The resulting CSFE energy at k = 0
for a set of actual densities is plotted in Fig. 2 as a dashed
line. Again, these results are in qualitative agreement with
the experimental results. Therefore, we can conclude that the
use of a statically screened potential in the calculation of
many-particle energy terms yields a reasonable estimate, even
if one does not know the exact structure of the ground state
of a QHF. Explicit accounting for ground-state blurring over
the several lowest LLs does not lead to principal changes if
this effect is properly accounted for in the screened potential.
Calculation using ED with a larger number of explicit LLs was
not performed because this would inevitably require a further
decrease in the number of electrons, leading to more coarse
results.

The density evolution of the exchange correlation term in
the CSFE energy for the case of a strongly interacting 2DES
can be reasonably compared to previous data for GaAs-based
systems in terms of the dimensionless units rs and �Exc/h̄ωc.
These data are plotted in Fig. 3, where the small rs points were
recalculated from the data in Ref. [2], which were measured
in finite-width quantum wells. The geometric form factor
considerably weakens the Coulomb contribution in GaAs-
based systems, but the trend is still linear as a function of rs,
as predicted by HFA (plotted as a short-dashed line). In
contrast, the large rs points of the ZnO-based system approach
saturation at �Exc/h̄ωc ∼ 1, which is qualitatively explained
by the considerations discussed above. Calculations using
screened ED and HFA are plotted as dashed lines.

More sophisticated approaches to the calculation of the
many-particle energies of quantum Hall ferromagnets were

proposed earlier in the context of the problem of skyrmion-
antiskyrmion excitations. Although this type of neutral exci-
tation has a qualitatively different structure, the many-particle
contribution to its energy is comparable to that of a CSFE. At
the limit of a strong magnetic field for a strictly 2D case with
ν = 1, each of them is exactly half of the specific exchange
energy of the zeroth LL. At rs → ∞ and a vanishing electron
g-factor, the analytical result for the skyrmion-antiskyrmion
creation energy is exactly h̄ωc, which also agrees with our
result for the many-particle contribution to CSFE at k = 0.
The analytical curve [12] for a Skyrme gap in a strict 2D case
is plotted in Fig. 3 for comparison. We guess the crossover
between the energy scales in both cases at approximately
rs ∼ 3–6.

The near-linear growth pattern of the exchange-enhanced
gap at ν = 1 has already been observed in a series of magneto-
transport experiments on GaAs-based 2DESs [3,4]. However,
even when LL mixing is considered, quantitative agreement
with theory was greatly hampered by the uncontrollable effect
of the disorder on the transport characteristics. From this
perspective, the probing of a system using inelastic light
scattering is much less vulnerable because the many-particle
contribution to the energy of long-wave magnetoexcitons is
gained at relative distances on the order of the magnetic
length. This method works equally well both in a strong-field
limit on GaAs-based systems and in a weak field here in ZnO-
based systems. At the qualitative level, the observed renor-
malization of the many-particle energy of strongly correlated
2DES in the QHE regime can serve as an explanation for the
well-established pattern of the crossing of fictitious Landau
levels of quasiparticles with a renormalized effective mass and
g-factor. It intriguing that in ZnO-based 2DES with a strong
interaction the extracted energy gaps grow almost linearly
with magnetic field [9,18], that is, the linearized combination
of exchange and Coulomb contributions is already embedded
in these gaps.

In conclusion, the scale of the exchange energy in a
quantum Hall ferromagnet with ν = 1 was probed in the
regime for the Wigner-Seitz parameter rs > 7. The exchange-
Coulomb contribution to the energy of collective excitation
CSFE was measured through inelastic light scattering on
a series of ZnO-based 2DESs. This contribution exhibited
maximum values at ν = 1 and decreased with the deviation of
the filling factor due to the perturbation of the ferromagnetic
order. We determined that the magnitude of the exchange-
Coulomb energy scales on the order of h̄ωc, rather than e2/εlB.
This phenomenon is caused by the strong mixing of LLs,
which leads to the effective renormalization of the Coulomb
interaction, expected in theory [11–13]. It was demonstrated
that a good estimate for the many-particle energy terms can be
obtained by performing calculations even within HFA with a
statically screened Coulomb potential.
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