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Geometric resonance of four-flux composite fermions
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Two-dimensional interacting electrons exposed to strong perpendicular magnetic fields generate emergent,
exotic quasiparticles phenomenologically distinct from electrons. Specifically, electrons bind with an even
number of flux quanta, and transform into composite fermions (CFs). Besides providing an intuitive explanation
for the fractional quantum Hall states, CFs also possess Fermi-liquid-like properties, including a well-defined
Fermi sea, at and near even-denominator Landau-level filling factors such as ν = 1/2 or 1/4. Here, we directly
probe the Fermi sea of the rarely studied four-flux CFs near ν = 1/4 via geometric resonance experiments. The
data reveal some unique characteristics. Unlike in the case of two-flux CFs, the magnetic field positions of the
geometric resonance resistance minima for ν < 1/4 and ν > 1/4 are symmetric with respect to the position
of ν = 1/4. However, when an in-plane magnetic field is applied, the minima positions become asymmetric,
implying a mysterious asymmetry in the CF Fermi sea anisotropy for ν < 1/4 and ν > 1/4. This asymmetry,
which is in stark contrast to the two-flux CFs, suggests that the four-flux CFs on the two sides of ν = 1/4 have
very different effective masses, possibly because of the proximity of the Wigner crystal formation at small ν.
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Ultra-low-disorder two-dimensional electron systems
(2DESs) subjected to a perpendicular magnetic field (B⊥)
give rise to a plethora of quantum many-body phases of
matter. Many of these phases can be understood based on
composite fermions, quasiparticles comprised of an electron
and an even number of flux quanta [1–3]. Near Landau-level
(LL) filling factor ν = 1/2, e.g., an electron merges with
two flux quanta to form a two-flux composite fermion (2CF).
While the electron system is highly interacting and is in a high
B⊥, the 2CFs behave as essentially noninteracting particles
and only feel an effective magnetic field B∗ = B − Bν=1/2,
where Bν=1/2 is the field at ν = 1/2. Importantly, these 2CFs
occupy a Fermi sea at ν = 1/2 and can execute cyclotron
motion near ν = 1/2 at small B∗, similar to their fermion
counterparts near B = 0 [3]. With the application of a
one-dimensional periodic perturbation to the 2DES, if the
2CFs can complete a cyclotron orbit ballistically, then they
exhibit a geometric resonance (GR) when their orbit diameter
equals the period of the perturbation. Such a resonance
provides a direct and quantitative way to explore some of the
fundamental properties of 2CFs [4–9]. For example, recent
GR measurements of 2CF Fermi sea revealed an unexpected
asymmetry between the two sides of ν = 1/2 [9]. This
asymmetry, and more generally the question of particle-hole
symmetry, inspired renewed interest in the physics of a
half-filled LL [10–27]. Notable among the new studies is
the theory involving a Dirac fermion description [10,15–19,
21–27].

Qualitatively similar to the case of ν = 1/2, at ν = 1/4
electrons merge with four flux quanta and form a four-flux
CF (4CF) Fermi sea. Unlike ν = 1/2, there is no obvious
particle-hole symmetry at ν = 1/4 [28]. This provides mo-
tivation for studies of 4CFs whose physics could be distinct

from 2CFs. However, measurements of 4CFs are very scarce
[29–31], partly because they require very high magnetic
fields, and also because of the proximity of ν = 1/4 to the
Wigner crystal formation near ν = 1/5 [32–34]. Therefore,
many fundamental questions have remained unanswered: Do
4CFs have properties similar to the 2CFs? Do 4CFs show an
asymmetry in the field positions of the GR minima similar
to 2CFs [9]? What happens to the 4CF Fermi sea when the
Fermi sea for zero-field electrons is highly anisotropic? Our
GR measurements reported here provide answers to these
fundamental questions, and reveal surprises for 4CFs.

Our experimental platform is a molecular beam epi-
taxy grown 2DES, with density n = 1.78 × 1011 cm−2 and
low-temperature mobility 1.4 × 107 cm2/V s, confined to a
modulation-doped, 40-nm-wide, GaAs quantum well [35]. In
our GR measurements, we impose a minute periodic density
modulation, the estimated magnitude of which is about 0.5%
[36]. As illustrated in Fig. 1(a), this is achieved by fabri-
cating a one-dimensional superlattice of period a = 240 nm,
consisting of stripes of negative electron-beam resist on the
surface of a lithographically defined Hall bar [8,9,35–46].
Thanks to the piezoelectric effect in GaAs, the strain from this
surface superlattice propagates to the 2DES which is 235 nm
underneath the sample surface and leads to a small density
modulation.

Weakly interacting CFs subjected to an effective perpen-
dicular magnetic field B∗ execute circular cyclotron motion
with an orbit radius of R∗

c = h̄k∗
F /eB∗, the size of which is

determined by the magnitude of the Fermi wave vector of the
CFs, k∗

F [47]. If the CFs have a sufficiently long mean free
path so they can complete a ballistic cyclotron orbit, then a
GR occurs when the orbit diameter becomes commensurate
with the period (a) of the modulation [see Fig. 1(a) for a

2469-9950/2019/100(4)/041112(6) 041112-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.041112&domain=pdf&date_stamp=2019-07-17
https://doi.org/10.1103/PhysRevB.100.041112


MD. SHAFAYAT HOSSAIN et al. PHYSICAL REVIEW B 100, 041112(R) (2019)

i = 14CF

2DES a

n = 1.78 × 1011 cm-2

0 5 10 15 20 25 30
0

1

2

B  (T)

a = 240 nm

[1
10

]

1/4

1/2

)

29 30 29 30

 0
.2

 k
/  

[1
10

]
[1

10
],

1i = 1 11

B  (T) B  (T)

(a)

(b)

1/4 1/4

(c)

B

B||

B

I
[110]

[110]

I  = 0°
T = 0.18 K

FIG. 1. GR features for 4CFs near ν = 1/4. (a) Lateral surface
superlattice of period a, inducing a periodic density perturbation in
the 2DES. When the 4CFs’ cyclotron orbit becomes commensurate
with the period of the perturbation, the i = 1 GR occurs. (b) Mag-
netoresistance trace revealing GR features near ν = 1/4 and ν =
1/2. Inset: The L-shaped Hall bar along [110] and [1̄10] directions
used for the measurements. (c) Magnetoresistance near ν = 1/4
demonstrating the i = 1 4CF GR features, resistance minima flanking
ν = 1/4. Black solid and orange dashed lines mark the expected
positions for the i = 1 GR for fully spin-polarized 4CFs with circular
Fermi contour assuming k∗

F = √
4πn and k∗

F = √
4πn × √

B/Bν=1/4,
respectively. The extra minimum near B⊥ = 29.75 T stems from the
i = 2 GR.

schematic illustration]. More quantitatively [6–9,42,43], when
2R∗

c/a = i + 1/4 (i = 1, 2, 3, . . .), GRs manifest as minima in
magnetoresistance at B∗

i = 2h̄k∗
F /ea(i + 1/4). Thus, k∗

F can
be deduced directly from the positions of B∗

i . Such direct
measurement of k∗

F not only provides a proof for the existence
of a CF Fermi sea and a measure of its spin polarization
but also enables one to quantitatively investigate how the
anisotropy of the electron Fermi sea transfers to the CF Fermi
sea [6–9,42–46]. Here, we apply this technique in very high
magnetic fields (using a 45 T hybrid magnet) to investigate the
4CFs near ν = 1/4.

We first show in Fig. 1(b) a representative magnetore-
sistance trace, exhibiting well-developed GR features flank-
ing symmetrically a deep V-shaped minimum at ν = 1/4.
Figure 1(c) zooms in around ν = 1/4. From the period of the

modulation, a = 240 nm, we determine the expected positions
for the primary i = 1 GR resistance minima according to
B∗

i=1 = 2h̄k∗
F /ea(1 + 1/4) where B∗

i=1 = Bi=1 − Bν=1/4. We
assume a fully spin-polarized CF sea and mark the expected
positions for Bi=1 in Fig. 1(c) considering two possibilities:
(i) black solid lines for k∗

F = √
4πn, and (ii) orange dashed

lines for k∗
F changing according to the magnetic length, i.e.,

k∗
F = √

4πn × √
B/Bν=1/4 [3,10,15,16,21,22,26,27]. The dif-

ference between the expected Bi=1 for the two assumptions is
very small and cannot be resolved in our experiments. From
Fig. 1(c), it is clear that the observed GR minima positions
are in excellent agreement with the expected B∗

i=1, confirming
that the 4CFs near ν = 1/4 are fully spin polarized [48]. More
importantly, unlike the 2CF GRs flanking ν = 1/2 [9], the GR
features for 4CFs are quite symmetric around ν = 1/4. This
is reasonable, considering that the minority carrier density,
which was found experimentally in Ref. [9] to determine k∗

F
for 2CFs, is the same on the two sides of ν = 1/4 and is equal
to n [49].

A fundamental question regarding emergent quasiparticles
such as CFs in high magnetic fields is how an anisotropy in the
Fermi sea of the electrons at zero field affects the CF Fermi sea
[7,8,50–60]. To address this question, we apply an in-plane
magnetic field (B‖) which, through its coupling to the out-of-
plane motion of the electrons in a quasi-2D system, severely
distorts the Fermi sea of the low-field electrons [61–63].
The application of B‖ shrinks the real-space cyclotron orbit
diameter in the in-plane direction perpendicular to B‖, thereby
shrinking the Fermi sea in the direction of B‖.

The subsequent anisotropy of the CF cyclotron orbit can
be determined in a straightforward manner via measuring the
positions of the CF GR minima along the two perpendicular
arms of the L-shaped Hall bar [inset of Fig. 1(b)]. Since the
reciprocal-space (k-space) orbits are expected to be a scaled
version of the real-space trajectories, rotated by 90◦ [64], our
GR measurements then directly probe the Fermi sea shape. In
our experiments, we tilt the sample so that B‖ is always along
[110], with θ denoting the angle between the field direction
and the normal to the 2D plane [Fig. 1(b), inset].

As seen in Fig. 2, the application of B‖ affects the positions
of the 4CF GR minima. Traces for the two arms of the Hall bar
along [110] and [1̄10] are shown in Figs. 2(a) and 2(b). In both
panels, the vertical dotted lines mark the expected positions of
the i = 1 CF GR minima for spin-polarized 4CFs with a circu-
lar Fermi sea, i.e., B∗

i=1 = 2h̄
√

4πn/ea(1 + 1/4). These lines
match the observed positions of the resistance minima for the
bottom traces of Fig. 2, which were taken at θ = 0◦. When
we increase θ and thereby B‖, for the [110] arm [Fig. 2(a)],
the positions of the two GR minima shift away from ν = 1/4
to larger values of |B∗

⊥|. In contrast, the GR minima for the
[1̄10] arm [Fig. 2(b)] move toward smaller |B∗

⊥|. Using the
field positions of the GR minima along the [110] and [1̄10]
directions, we directly extract the magnitude of the Fermi
wave vector k∗

F along [1̄10] and [110], respectively; we use
the expression k∗

F = B∗
i=1ea(1 + 1/4)/2h̄.

The most surprising finding of our study emerges in Fig. 3
where we show the deduced k∗

F , normalized to k∗
F0, the value

of k∗
F at B‖ = 0. We observe a remarkable difference in the

deduced k∗
F for ν > 1/4 and ν < 1/4. For both cases, with
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FIG. 2. Tilt evolution of the 4CF GR features near ν = 1/4 along
(a) [110] and (b) [1̄10] directions. The insets show the orientation
of the Hall bars, and the 4CF cyclotron orbit for the i = 1 GR.
Magnetoresistance traces are vertically offset for clarity; the tilt angle
θ is given for each trace. The expected positions for the i = 1 4CF
GRs are marked with vertical dotted lines assuming that k∗

F = √
4πn.

In both panels, the scale for the applied external field B⊥ is shown
on the bottom while the top scale is the effective magnetic field B∗

⊥
experienced by the 4CFs.

increasing B‖, k∗
F along [1̄10] increases while along [110] it

decreases. However, for ν < 1/4, the change is much slower
compared to ν > 1/4. This is different from the 2CF Fermi
sea at ν = 1/2 where both sides show similar anisotropy with
increasing B‖ [7,8]. The difference is particularly puzzling
considering that 2CFs and 4CFs form in the same LL.

Before discussing the asymmetry observed in Fig. 3 data,
we emphasize that our measured Fermi sea anisotropy for
4CFs is qualitatively different from the electron Fermi sea
anisotropy at B⊥ = 0. The comparison is summarized in Fig. 4
where we show the Fermi contours of the electrons (top
panels), calculated self-consistently based on the 8 × 8 Kane
Hamiltonian [62,63,65], and the 4CF Fermi contours deduced
from our measurements (bottom panels). For electrons, the
Fermi sea becomes severely distorted with increasing B‖ and
even splits into two tear-shaped seas, signaling the formation
of a bilayer system, as confirmed in experiments [62,63]. In
stark contrast, the 4CFs Fermi sea is much less anisotropic
and remains connected even at the highest B‖ = 30 T. This
is similar to what was seen for 2CFs except that our mea-
sured Fermi sea anisotropy for 4CFs is even smaller than for
2CFs for the same quantum well width [8]. At B‖ = 25 T,
e.g., k∗

F /kF0 = 1.9 for the 2CFs [8] while the 4CFs exhibit
k∗

F /kF0 = 1.3 and 1.6 for ν < 1/4 and ν > 1/4, respectively.
For an understanding of the qualitative difference between

the Fermi sea anisotropies of electrons and 4CFs, we use a
simple model, inspired by Fermi-liquid theory. Developed in
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FIG. 3. (a) Normalized 4CF Fermi wave vectors k∗
F from the

positions of B∗
⊥ for the primary 4CF GR minima along the [110]

and [1̄10] directions. Open and filled symbols represent the data for
ν < 1/4 and ν > 1/4, respectively. The typical error bar for the data
points is of the order of 3%. (b) Anisotropy of the 4CF Fermi sea for
ν < 1/4 (open symbols) and ν > 1/4 (filled symbols) deduced from
dividing the (interpolated) measured values of k∗

F along [1̄10] by
those along [110]. Orange lines correspond to the theoretical estimate
of the anisotropy using Eq. (1) assuming m‖ = 2.5, 1.9, 1.4, and
1.0 (see text). Inset: Geometric mean of the measured values of k∗

F

(k̃∗
F =

√
k∗

F [110] × k∗
F [1̄10]) along the two directions normalized to

k∗
F0 for ν < 1/4 and ν > 1/4 denoted by solid and dashed lines,

respectively. Up to the highest B‖, k̃∗
F /k∗

F � 1 to within 5%, implying
that the measured Fermi seas are nearly elliptical.

Ref. [8] to explain 2CF data, this model takes into account
the coupling of B‖ to the out-of-plane (orbital) motion of
the quasi-2D charged particles confined to a quantum well
of width w, and provides an estimate for the Fermi sea
anisotropy [66]. In the limit of a small anisotropy where this
model is valid, it yields an elliptical Fermi contour with minor
and major Fermi wave vectors:

kx,y =
√

n

π

(
1 − 210

35π6

e2B2
‖

h̄2

w4mz

m‖

)±1/4

. (1)

Here B‖ is along the x direction, and m‖ and mz are the
particles’ effective mass in the 2D plane and out-of-plane,
respectively. It is reasonable to expect that the physics of CFs
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FIG. 4. Comparison between the evolution with B‖ of the calcu-
lated Fermi contour of electrons [(a)–(d)] and measured Fermi con-
tour of 4CFs near ν = 1/4 [(e)–(h)]. For simplicity, in (a)–(d) only
the majority-spin contour is shown. In (e)–(h), solid and dotted
contours denote the 4CF Fermi contours for ν < 1/4 and ν > 1/4,
respectively. Even though the electron Fermi sea completely splits at
large B‖, the 4CF Fermi sea near ν = 1/4 remains intact.

characterizes the in-plane dynamics of the quasiparticles in
our experiments. According to Fermi-liquid theory, m‖ should
then be approximately the effective mass of CFs that contains
electron-electron interaction and is about unity [1,3,67,68].
(All effective masses are in units of the free-electron mass).
On the other hand, the quantized perpendicular motion of the
quasiparticles giving rise to the formation of electric subbands
should reflect the band dynamics which is characterized by
the band mass of electrons in GaAs, mz = 0.067. The ap-
proximate validity of this simple model for the 2CFs was
demonstrated in Ref. [8] where the much smaller measured
2CF Fermi sea anisotropy compared to that of the zero-field
electrons and its dependence on w was explained.

In Fig. 3(b) we show the predictions of Eq. (1) (orange
curves) using different values of m‖, with mz fixed at 0.067.
The curve with m‖ = 2.4 fits the ν < 1/4 data reasonably
well. For ν > 1/4, none of the curves fit the experimental
data well [69], but a comparison with the data suggests that
m‖ is smaller than 2.4, namely, that there is an asymmetry
between m‖ for ν < 1/4 and ν > 1/4. It is noteworthy that

a qualitatively similar asymmetry in 4CF mass (m∗) was also
deduced from measuring the temperature dependence of the
strengths of fractional quantum Hall states near ν = 1/4 [31].
For ν > 1/4, the measured m∗ for 4CFs was found to be
consistent with the value expected based on the 2CF mass
(after scaling with m∗ ∝ √

Bν to take into account that m∗
is proportional to the Coulomb energy [1,3,67,68]). However,
for ν < 1/4, a much larger m∗ was deduced and was attributed
to the formation of the pinned, magnetic-field-induced Wigner
crystal (WC) which manifests as an insulating phase near
ν = 1/5 [33,34].

For our sample, the expected m∗ for 4CFs near ν = 1/4
based on the 2CF m∗, and using the m∗ ∝ √

Bν scaling, is
�1.4 [70]. The data of Fig. 3(b) suggest that m∗ for ν < 1/4
is larger than this value, qualitatively consistent with the data
of Ref. [31]. While the proximity to the WC formation as sug-
gested in Ref. [31] and confirmed by numerical calculations
[71] might be a possible explanation for the larger 4CF m∗ on
the ν < 1/4 side in our sample also, we would like to em-
phasize an important point. The m∗ measured in Ref. [31] and
calculated in Ref. [71] were in the range 0.237 > ν > 0.222,
relatively close to the insulating phase that sets in at ν = 0.21
[31,33,34]. In contrast, we observe GR resistance minima
in the range 0.246 > ν > 0.242, reasonably far from 0.21,
and very close to ν = 1/4. It would therefore be surprising
if the WC formation would affect the 4CFs so significantly
[35]. We hope that our data would stimulate theoretical work
for a quantitative understanding of 4CF properties and, in
particular, the strong asymmetry we observe for the 4CFs
Fermi sea anisotropy on the two sides of ν = 1/4.
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