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Million-atom quantum simulations are in principle feasible with orbital-free density functional theory (OF-
DFT) because the algorithms only require simple functional minimizations with respect to the electron density
function. In this context, OF-DFT has been useful for simulations of warm dense matter, plasma, cold metals, and
alloys. Unfortunately, systems as important as quantum dots and clusters (having highly inhomogeneous electron
densities) still fall outside OF-DFT’s range of applicability. In this Rapid Communication, we make considerable
progress in addressing this century old problem by devising and implementing an accurate, transferable, and
universal family of nonlocal noninteracting kinetic energy density functionals that feature correct asymptotics
and can handle highly inhomogeneous electron densities. We show that OF-DFT achieves close to chemical
accuracy for the electronic energy and reproduces the electron density to about 5% of the benchmark for
semiconductor quantum dots and metal clusters. Therefore, this work shows that OF-DFT can reliably simulate
systems with highly inhomogeneous electron density, such as clusters and quantum dots, with applicability to
the rational design of materials.

DOI: 10.1103/PhysRevB.100.041105

Metal clusters and quantum dots constitute an important
class of systems of pivotal importance for materials design,
particularly in photovoltaics [1], catalysis [2], and even quan-
tum computing [3]. Although these fields are already strongly
shaped by computer-aided design, the high computational
cost of available quantum-mechanical methods such as Kohn-
Sham density functional theory (KS-DFT) [4,5], arising from
the need to build and diagonalize Hamiltonian matrices, is
hampering further progress. In this playing field, what is
really needed is a breakthrough in techniques alternative to the
current standard, and among them [6–12] orbital-free density
functional theory (OF-DFT) is a promising candidate.

In OF-DFT, approximating the noninteracting kinetic en-
ergy density functional (KEDF, for sake of brevity hereafter
we use the acronym KEDF to mean noninteracting KEDF)
entirely replaces the need to solve for a Schrödinger equation,
completely bypassing its inherent complexity. Particularly,
OF-DFT algorithms are promising because they involve a
computational scaling of at most O(N ln N ), where N is a
measure of the system size, and a memory requirement of only
O(N ) [13–15].

Unfortunately, even though OF-DFT has already proven to
be successful for simulations of million-atom systems involv-
ing metals, alloys [15–18], as well as plasmas, warm dense
matter [19–21], and also atomic systems [22], its applicability
has been severely limited by the accuracy of the available
KEDF. For example, systems such as metal clusters and
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quantum dots have been outside the range of applicability of
OF-DFT.

We achieve a breakthrough by carefully balancing three
important aspects defining the KEDFs: asymptotics of the
corresponding potential, intrinsic nonlocality, and ability to
handle nonhomogeneous systems. Thus, already at concep-
tion, we make sure that the functionals are nonlocal, that their
asymptotics matches the known exact behavior, and that their
nonlocal kernels adapt to such large density inhomogeneities
as the ones occurring at the interface of nonperiodic systems
with the vacuum. For finite systems, such as clusters, the latter
is perhaps the most important aspect, which we tackle head
on.

In the following, we cast our KEDF development in the
current state of the art and derive the main theoretical and
algorithmic developments. Afterwards, we benchmark the
resulting density functionals by applying them to four metal
clusters and four semiconductor quantum dots realized in 100
possible geometries for each, spanning energy windows of
several tens of eV.

Over the past two decades there have been tremendous
advances in KEDF development [23–40]. The majority of
these functionals are appropriate for main-group metallic bulk
systems. Some show potential for modeling bulk semicon-
ductors [37,41]. Although semilocal KEDFs [25–27] have
seen a recent resurgence [23,24], nonlocal KEDFs such
as Wang-Govind-Carter (WGC) [29,30], Huang-Carter (HC)
[37], Wang-Teter (WT) [42], Mi-Genova-Pavanello (MGP)
[41], and others [31,43,44] have historically delivered better
results, particularly for bulk solids. An inspiring study by
Chan, Cohen, and Handy found semilocal KEDFs to be theo-
retically appropriate for applications to clusters [45]. Several
works on metallic clusters [46–48] followed [49,50]. The
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conclusions of those studies were mixed. Thus, in this Rapid
Communication, we depart from semilocal KEDFs and adopt
fully nonlocal ones exploiting the typical nonlocal KEDF
ansatz,

TS[ρ] = TTF[ρ] + TvW[ρ] + TNL[ρ], (1)

where TTF is the Thomas-Fermi (TF) KEDF [51,52], TvW[ρ]
is the von Weizsäcker (vW) KEDF [53], and TNL[ρ] is the
remaining nonlocal contribution. The general form of TNL is

TNL[ρ] =
∫

ρα (r)ωNL[ρ](r, r′)ρβ (r′)drdr′, (2)

where ωNL[ρ](r, r′) is the kernel of the nonlocal KEDF, and
α and β are positive scalars.

Let us first describe details of the MGP functional and
then outline the developments that extend its applicability to
finite systems. Following the lead of Kohn and Sham [54],
the starting point of our derivations (common among nonlocal
functionals [55]) is the linear response of the free electron gas
(i.e., the Lindhard function). The inverse Lindhard function is
related to the noninteracting KEDF kernel by two functional
integration procedures (Supplemental Material [56], Sec. II).
However, this relationship was not exploited until our previ-
ous work [41]. Keeping the leading term from a functional
integration procedure carried out by parts leads to the WT
functional [42], while if the integration is carried out com-
pletely, the MGP functional [41] is recovered. MGP’s kernel
behaves correctly in the low q limit (where the reciprocal
space variable q corresponds to |r − r′| in a Fourier space
defined by the components eiq|r−r′ |) by construction, because
we impose the so-called “kinetic electron” (vide infra) and
therefore it can potentially approach systems beyond bulk
metals. In our previous work [41], we found that MGP repro-
duces with remarkable accuracy the energetic properties and
electron densities of silicon and several III-V semiconductors
provided that two parameters were adjusted.

The MGP nonlocal potential expression follows from
Eq. (1), vMGP(r) = vTF(r) + vvW(r) + vNL(r), and a proce-
dure of functional integration of a suitably defined inverse
response function [41] as well as from Eq. (2) constraining
α = β = 5

6 [42] (see Sec. II of the Supplemental Material
[56]),

vNL(r) = ρ(r)−
1
6 F̂−1

[
F̂

[
ρ

5
6
]
(q)ωMGP(q)

]
(r), (3)

where F̂ [·] stands for Fourier transform and F̂−1[·] for its
inverse. Thus, the inherent approximation in Eq. (3) is that
the kernel only depends on the magnitude of |r − r′|. In
particular, the MGP kernel takes the following form,

ωMGP(q) = ωWT(q) + ωHyper(q) + ωe(q). (4)

The first term, ωWT, is the kernel of the WT functional. The
second term, ωHyper, originates from functional integration.
The integration is carried out numerically after an integration
by parts (see additional details in Ref. [41]).

The third term, ωe, is the contribution encoding the kinetic
electron which is not originally present in the inverse Lindhard
function and needs to be approximated. In the literature, there
have been two separate and equivalent discussions about this
term: (1) Given the asymptotic behavior of the exchange

FIG. 1. Two very different electron densities yield the same
average density, ρ0. We propose a generalization of nonlocal KEDFs
with a ρ0-dependent kernel to become dependent on the full ρ(r) by
evaluating the potential with a kernel built with ρ0 = ρk , v[ρk](r),
for a set of {ρk}k∈1...Nsp

. Afterwards, extend to all possible values of
ρ(r) with splines.

potential, the Euler equation of DFT imposes an equivalent
asymptotic behavior to the noninteracting kinetic energy po-
tential [41]. Such behavior has a 1

q2 dependence, where q is
the magnitude of the reciprocal space vector. (2) Because the
kernel of the noninteracting kinetic energy is related to the
inverse Kohn-Sham response function χ−1

KS in systems with
a gap, this behaves asymptotically as 1

q2 [37]. Thus, the ωe

term in the kernel aims at imposing such a known asymptotic
behavior.

We borrow from Ref. [41] the general form of ωe. However,
here we modify it and propose a universal form, containing no
adjustable parameters. Namely,

ωe(q) = 4πa

q2
erf2(q) exp(−aq2), (5)

where a is a parameter that we relate to the number of elec-
trons, a = A/N2/3

e , with A = 0.2 and Ne is the total number

of electrons. The N
− 2

3
e dependence is dictated by the ρ(r)

2
3

dependence of the potential. In this way, the potential goes
asymptotically as 1

q2 as q approaches small numbers. To
avoid numerical inaccuracies, we cap the singularity at q = 0
by multiplying with the function erf2(q), ensuring smooth
behavior as q → 0. The parameter A = 0.2 was optimized in
test calculations and kept fixed throughout all calculations in
this work.

Thus, if the kernel includes ωWT(q), ωWT(q) + ωHyper(q)
or ωWT(q) + ωHyper(q) + ωe(q) in Eq. (4), then the corre-
sponding KEDF is called WT, MGP0, or MGP. These kernels
are only dependent on the average electron density, ρ0 = Ne

V
(where V is the volume of the simulation cell), through η =
q/(2kF ), where kF = (3π2ρ0)1/3 is the Fermi wave vector
associated with the average density. This approximation is too
strong and is the source reason for needing adjustable param-
eters in these functionals. In lieu of adjustable parameters, we
have made the kernel dependent on the full electron density
function ρ(r) instead of ρ0. In principle, this would benefit
and improve the description of systems where the distribution
of electron density strongly deviates from uniformity.

Such a strong approximation is shared among most non-
local functionals. In this Rapid Communication, we propose
a method that tackles this limitation and in Fig. 1 we hint
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at the proposed workaround. Inspired by the success of the
local density approximation (LDA) [57,58], we assume that
the potential at a point r in real space can be approximated
by the one of a nonlocal functional evaluated with a kernel
ω[ρ0 = ρ(r)](q). This is the same principle as LDA applied
to nonlocal kernels rather than to the energy densities, as
customarily done. Unfortunately, implementing this principle
directly would imply a superquadratic computational cost (N
nonlocal kinetic potential evaluations each costing N ln N).
The computational scaling can be brought back to O(N ln N )
by employing splines. Figure 1 provides a visual depiction of
the proposed spline method which we explain below.

A series of ρ0 values is considered, {ρk}, obtained by di-
viding the range between 0 and ρmax = max[ρ(r)], in equally
spaced segments and choosing the total number of k points
to be Nsp = 40. For each ρk , there is a corresponding kernel,
ωNL(q, η(ρk )), that can be tabulated and recovered ahead of
computing the potential. Thus, a series of nonlocal potentials
is obtained based on Eq. (3), {vNL[ρk](r)}k∈1...Nsp

, and the LDA
procedure can be exploited invoking splines,

vNL[ρ(r)](r)
spline←−−− {vNL[ρ1](r), . . . , vNL[ρk](r), . . . , vNL

× [ρNsp](r)}. (6)

This is a scheme for constructing “LDA versions” of MGP
(LMGP), WT (LWT) and MGP0 (LMGP0) functionals from
the corresponding kernels. Additional details regarding the
MGP functional are available in the Supplemental Material
Sec. III [56].

Finally, the nonlocal contribution to the total kinetic energy
is recovered by a second functional integration [41],

TNL[ρ] =
∫

dr
∫ 1

0
dt ρ(r)vNL[tρ](r). (7)

Two other prescriptions for generating density-dependent
kernels exist. WGC [30] exploits a Taylor expansion for the
kernel around a reasonable value near ρ0. Unfortunately, this
can result in numerical instabilities when the electron density
distribution differs much from the one of the free electron
gas. Another example is the kernel of the HC functional [37].
It is obtained by solving a differential equation when the
electron density is updated. To ameliorate the computational
cost, Huang and Carter offer an implementation of HC also
featuring a spline technique in the spirit of Soler and co-
workers [59].

A major advantage of the LWT and LMGP family of
functionals compared to WGC and HC is the fact that they
are universal functionals with no adjustable parameters. One
issue with universal functionals is that they may be weakly
transferable. In other words, they may work well for a certain
system, but less well for others. In the following, we craft
strict and conservative benchmarks for the proposed function-
als that show their superiority compared to the current state of
the art and their transferability among an array of cluster sizes
and types.

To assess this family of KEDFs, we choose random clusters
generated by CALYPSO [60–62]. Standard KS-DFT calcula-
tions provide benchmark values for the total energy and elec-
tron density (KS-DFT employs the exact KEDF) are carried
out with QUANTUM ESPRESSO (QE) [63]. OF-DFT simulations

are performed with a modified version of ATLAS [64,65] and
PROFESS 3.0 [66] which gave the same results. The optimal
effective local pseudopotentials (OEPP) [67] are employed for
both OF-DFT and KS-DFT calculations. The LDA exchange-
correlation functional by Perdew and Zunger [68] is employed
in all calculations. Additional technical and computational
details are available in the Supplemental Material [56].

With KS-DFT quantities as a reference, we initially select
two types of clusters: Mg8 and Si8. For each, we compute
the total energy of 100 random structures and collect the
computed values in Fig. 2. The figure shows a progressive
improvement when adopting the functionals WT → MGP →
LMGP. Particularly, we note that the consistent bias of MGP
(slope differing from KS-DFT) is eliminated by the LDA
procedure in LMGP. As shown in the lower insets of Fig. 2,
MGP improves dramatically the total energies in comparison
with WT. Furthermore, the three parameterless functionals
(LWT, LMGP0, and LMGP) are found to outperform their
ρ0-dependent kernel counterparts. We should note that while
LWT and LMGP/LMGP0 functionals are universal (no ad-
justable parameters), MGP results are obtained by adjust-
ing the parameter a independently for Mg8 and Si8 clusters
(a = 0.35 and 0.4, respectively). Strikingly, LMGP values are
found to be essentially on top of the KS-DFT results, provid-
ing us with an indication that the LDA procedure implemented
by splines is stable and accurate.

To confirm the transferability of our functionals, we select
six additional cluster systems: Mg50, Si50, Ga4As4, Ga25As25,
and two more Mg8 (i.e., MgS

8 and MgVS
8 ) featuring shorter

average interatomic distances. This set of systems provides
us with an array of metallic to semiconducting quantum-
dot-like clusters. As shown in Fig. 3, the performance of
our functionals is consistent for all systems reproducing total
energies across a wide window of energy spanning several
eV per atom. In terms of absolute values of total energies,
LWT and LMGP0 results are higher and lower than KS-DFT
results, respectively. These results are a source of consider-
able excitement—not only because the LMGP energy values
correlate almost perfectly with the KS-DFT benchmark, but
more importantly the LDA procedure (which is numerical in
nature) is found to be stable for all systems considered. LMGP
converges for more than 90% of the structures in all systems
with an average convergence rate of over 95%.

To quantify the performance of our functionals, Table I
shows the mean unsigned error (MUE) of total OF-DFT
energies compared to KS-DFT for the 100 random structures
of each system computed with LWT, LMGP, and LMGP0, as
well as WT, and TF + 1

5 vW.
An option is to also compare against the Huang-Carter [37]

(HC) and the Wang-Govind-Carter (WGC) functionals. How-
ever, even though HC is considered to be the most accurate
KEDF presently available, it is also known for drawbacks
that make it unsuitable for applications to finite systems [35].
Thus, in this work, we compare against the other functionals.

Table I shows that LWT considerably improves over WT.
Thus, the LDA procedure improves the corresponding KEDF
with a density-independent kernel while at the same time
removing the ρ0 dependence in the functional. Interestingly,
LMGP0 performs even better than LWT. This is an indi-
cation that the hypercorrelation term in the kernel further
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FIG. 2. Total energies computed with WT, MGP, LWT, LMGP0, and LMGP KEDFs compared to reference KS-DFT values (on the
diagonal) for 100 random structures of Mg8 (left) and Si8 (right) clusters.

improves the performance of the functional. Adding the ki-
netic electron [i.e., the additional term ωe(q) in the kernel,
see Eq. (4)], the LMGP functional achieves an additional
and important improvement over LMGP0, lining itself up
to the KS-DFT results in an almost quantitative fashion.
Strikingly, this is so despite the relatively uncomplicated
formalism for the kinetic electron term in Eq. (5). Scatter
plots of the OF-DFT to KS-DFT deviations are available in
Fig. S1 of the Supplemental Material [56] and similar plots to
Figs. 2 and 3 for the value of just the KEDF are available in
Fig. S2.

To address questions related to the possible fortuitous
agreement between OF-DFT and KS-DFT, in the Supplemen-
tal Material [56], we show in Figs. S3 and S4 that LMGP pre-
dicts excellent atomic electron densities and KEDF potentials
for He, Mg, Si, Ga, and As. Figure S2 shows that, similarly

to the total energy, the KEDF values obtained by LMGP also
are in excellent agreement (similar deviation to the total en-
ergy results presented above) with the exact KS-DFT values.
Tables S1 and S2 summarize test calculations showing that
LMGP also correctly predicts the energy difference between
the clusters of different composition as well as equilibrium
geometries for the clusters and the forces in the vicinity of the
equilibrium geometry.

Reproducing the electron density is as important as
reproducing the total energy [69]. Thus, we define

1
2Ne

∫ |ρOF-DFT(r) − ρKS-DFT(r)|dr, a measure of the electron
density difference between KS-DFT and OF-DFT. The perfor-
mances of the various functionals in reproducing the KS-DFT
electron density are listed in Table I. Once again, our three
functionals constitute an improvement over TF + 1

5 vW and
WT functionals.

FIG. 3. The total energies obtained by OF-DFT employing LWT, LMGP0, and LMGP KEDFs in comparison with the reference KS-DFT
results for six different cluster systems, Mg50, Si50, Ga4As4, Ga25As25, and two Mg8 systems with shorter average bond distances: MgS

8 (i.e.,
strained) and MgVS

8 (i.e., very strained), respectively. For each system we generate 100 random structures.

041105-4



ORBITAL-FREE DENSITY FUNCTIONAL THEORY … PHYSICAL REVIEW B 100, 041105(R) (2019)

TABLE I. Mean unsigned error (MUE) for the total energy in eV/atom and mean unsigned relative error (MURE) for the electron density
in percentage points (in parentheses) compared to KS-DFT. Superscripts S and VS stand for “strained” and “very strained,” respectively.

Systems LMGP LMGP0 LWT TF + 1
5 vW WT

Mg8 0.18 (3.79) 0.63 (4.12) 1.19 (4.05) 1.09 (11.36) 8.79 (16.0)
Si8 0.22 (4.84) 2.17 (4.90) 4.86 (4.74) 1.46 (8.28) 41.7 (17.5)
Ga4As4 0.34 (5.40) 2.21 (5.43) 6.15 (4.89) 1.55 (8.94) 51.8 (19.3)
Mg50 0.05 (3.31) 0.35 (3.42) 0.84 (2.38) 0.95 (9.56) 3.23 (10.3)
Si50 0.11 (4.59) 0.95 (4.65) 3.73 (3.60) 1.53 (7.24) 16.4 (14.2)
Ga25As25 0.13 (5.21) 1.06 (5.26) 4.29 (3.19) 1.67 (7.79) 22.7 (16.8)
MgS

8 0.28 (5.20) 1.16 (5.34) 2.66 (5.29) 0.27 (7.63) 19.4 (18.6)

MgVS
8 0.09 (3.94) 1.67 (4.10) 3.88 (4.87) 0.10 (5.60) 24.0 (17.5)

We point out that although the total energies computed
by TF+ 1

5 vW only partially differ from LWT, the LWT elec-
tron density is of much higher quality than the one from
TF+ 1

5 vW.
In conclusion, we have made considerable steps forward

towards addressing a long-standing problem in the field of
OF-DFT, i.e., the simulation of finite systems, such as quan-
tum dots. Our method reproduces benchmark KS-DFT results
with unprecedented accuracy for a pure KEDF. Thus, this
constitutes a major step forward for OF-DFT, a framework
that was thought to only be reliably applicable to bulk metals
and alloys. Quantum dot structure prediction is now feasible
with OF-DFT, opening the door to a different regime of
applicability for this method.

Our results are achieved by (1) imposing correct asymp-
totic behavior of the KE potentials, (2) accounting for non-
locality in the functional by construction, and (3) allowing
the functional to adapt to systems with a highly inhomoge-
neous electron density, via a technique inspired by the LDA
approximation. Such a comprehensive yet simple prescription
leads to a numerically stable family of KEDFs which we
apply to eight different quantum dots, each realized in 100

different structures spanning energy windows ranging be-
tween 10 and 80 eV. Our most refined functional, LMGP,
consistently reproduces the KS-DFT electronic energy for
all 50-atom quantum dots to within 130 meV/atom. The
energies of the 8-atom clusters are within 340 meV/atom
of the KS-DFT reference. These errors are for the most part
systematic in nature, as the OF-DFT energy values correlate
almost perfectly to the KS-DFT benchmarks.

Although the KEDFs presented here predict with unprece-
dented accuracy the total energy and electron density of the
considered quantum dots, there is still room for improvement
both in terms of computational accuracy as well as efficiency.
Particularly, LMGP shows a significant improvement in com-
parison to LWT in terms of total energies, but struggles to
improve the quality of the electron density. This indicates that
the simple LDA approximation for the kernels can be further
improved, for instance, by including a dependency over the
density gradient. This is currently being investigated.

This material is based upon work supported by the National
Science Foundation under Grant No. CHE-1553993. We
thank Chuck Witt for the useful feedback on our manuscript.
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