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We develop the tensor renormalization group (TRG) algorithm for statistical systems with open boundaries,
which allows us to investigate not only the bulk but also the boundary property, such as the surface magnetization.
We demonstrate that the tensors representing the boundary in our algorithm exhibit the fixed-point structures,
just as bulk tensors in previous TRG algorithms. At criticality, the scale-invariant boundary fixed-point tensors
have the information of the conformal tower, which is described by the underlying boundary conformal field
theory.
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I. INTRODUCTION

The renormalization group (RG) is one of the most signifi-
cant concepts in modern physics [1,2]. Apart from its original
motivation, the prescription for the divergent physical quantity
in quantum field theory, the RG method has been useful to
classify the phases, investigate the critical phenomena, and
so on [3]. The philosophy of RG has also been adopted to
invent efficient numerical methods, such as density matrix
renormalization group (DMRG) [4,5], corner transfer matrix
renormalization group (CTMRG) [6,7], and entanglement
renormalization [8]. Recent interpretation of RG, “efficient
compression of information,” draws attention in the field of
information science [9], especially machine learning [10].

Combining the real-space RG concept with tensor net-
work representation of the partition function, Levin and Nave
proposed the tensor renormalization group (TRG) algorithm
to contract the tensor network of the Boltzmann weight for
statistical systems [11]. In addition to the capability to com-
pute free energy with high accuracy, as they pointed out, the
renormalized tensors show fixed-point structures characteriz-
ing the corresponding phases. Gu and Wen investigated the
precise meaning of this statement and clarified that it consists
of trivial tensors [12]. Further interestingly, the fixed-point
tensor at a critical point becomes scale invariant, from which
one can extract the information of the underlying conformal
field theory (CFT).

“Boundary” is another significant keyword in modern
physics. The remarkable feature of topological insulators is
the metallic surface state, even though the bulk is insulator,
and Majorana fermions emerge at the edge of topological
superconductors [13,14]. The symmetry-protected topological
(SPT) phases have gapless or degenerated nontrivial surface
states which cannot be broken down by perturbation, con-
serving the corresponding symmetries [12,15]. Even before
the emergence of these recent “topological” topics, boundary
physics and surface critical phenomena have traditionally
been an important subject of study [16]. At the bulk critical
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point, the diverging correlation length of the bulk induces the
singularity at the surface, which results in the different critical
exponents of the surface physical quantities from the bulk
ones (which is called extraordinary or an ordinary transition,
depending on whether the surface was already ordered or
not before the bulk transition). When the surface itself is
also critical, another surface universality can emerge (called
special transition). Especially for two-dimensional systems
with one-dimensional edges, some of those exponents can
be exactly calculated using the boundary conformal field
theory (BCFT) [17]. Combining the above topics, there have
been recent attempts to study novel surface criticality in the
quantum phase transition of the SPT phases [18].

Although there have been proposed many improved TRG
algorithms after the invention of it [12,19–27], very few stud-
ies by TRG-type tensor network methods have focused on the
effect of boundaries or the physics arising in boundaries. This
might be because generally in tensor network computation
one can easily achieve a huge system size or deal with an
infinite system by imposing the translational invariance on the
tensors.

In contrast to most of the previous TRG-type calculations
that assume an implicitly periodic boundary condition, in this
paper we use open boundaries and investigate a natural gener-
alization of the higher-order TRG (HOTRG) [21] algorithm
so as to simulate the boundary effects. We call this algo-
rithm boundary tensor renormalization group (BTRG) below.
As we shall demonstrate using the two-dimensional Ising
model, BTRG allows us to compute a surface property such
as the surface magnetization with the same computational
complexity as HOTRG. In addition, the boundary tensors in
our algorithm also converge to the fixed-point tensors as the
conventional TRG algorithms, which are the trivial tensors
for the disordered phase and the direct sum of them for the
ordered phase. The fixed-point tensor at the critical point
has the conformal data reflecting the operator content of the
corresponding BCFT.

In the next section, we construct the algorithm of BTRG
and describe how to analyze the fixed-point boundary ten-
sors. In Sec. III, the benchmark computation of the two-
dimensional Ising model is shown, and the conclusion is in
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FIG. 1. (a) The square lattice on an open cylinder. (b) The tensor
network of the annulus geometry, with three type tensors, the bulk
tensor a, and the boundary tensors b1 and b2. (c) One renormalization
step of the BTRG algorithm. (i) The projectors are inserted into every
two vertical bonds to contract two neighboring tensors. (ii) After
the horizontal contraction, the projectors are inserted into every two
horizontal bonds. (iii) Updating the horizontal bond, we come back
to the initial network with a quarter of the previous system size.

Sec. IV. In the Appendix, we explain how to compute a
proper projector for the renormalization and how to obtain the
scale-invariant fixed-point tensor at criticality.

II. BOUNDARY TENSOR RENORMALIZATION GROUP

In this paper, we consider the two-dimensional square
lattice on an open cylinder where we adopt the periodic
boundary condition for one direction of the two and the open
boundary condition for the other, as shown in Fig. 1(a). Just
as HOTRG, our algorithm can be easily generalized for the
d-dimensional hypercubic lattice. For further simplicity, we
assume the tensor network is translationally invariant along
the periodic direction.

A. Algorithm

In the BTRG algorithm, we hold three tensors: a rank-4
bulk tensor a and two rank-3 boundary tensors b1 and b2,
which respectively represent the two open edges, see Fig. 1(b).

In Fig. 1(c), the procedure of one RG step is graphically
shown for the upper edge of the cylinder. First, every two
tensors horizontally neighboring are renormalized into one
tensor. In step (i) in Fig. 1(c), the projector U and V are
inserted into every two vertical bonds, which can be created
using the four tensors connected by the two bonds. For in-
stance, the projectors U1 and V1 inserted between the boundary
tensors b and the nearest bulk tensors a are determined so as to
minimize the following cost function C, keeping the maximal
bond dimension for truncation lower than some threshold χ :

(1)

We can obtain the projectors without calculating the norm
directly, as explained in Appendix A. The projectors U2 and
V2 are generated only from the bulk tensors in the same way
and inserted into them. In the next step (ii), after we contract
the projectors and horizontal pair of tensors, the projectors
for the vertical contraction are created. Notice that we have
an intermediate tensor ã := V1(aa)U2 vertically next to the
boundary tensor, which is different from the a′ := V2(aa)U2.
Just as for Eq. (1), we can generate two pairs of projectors for
renormalizing b′ and ã and two bulk tensors. After the contrac-
tion (iii), one step of the real-space RG with the scale factor 2
is completed. The RG for the other side of the boundary can
be performed in the same way. If the system is finite, after
repeating this step a number of times, the contraction of all
the network can be computed as the trace of two boundary
tensors, e.g., the partition function for a 2t × 2t+1 system is
calculated as

(2)

after the t th RG steps. The computational complexity is
the same as for the HOTRG algorithm, O(χ7) for the two-
dimensional case.

B. Fixed-point tensor analysis

As Levin and Nave pointed out [11], after enough RG
steps all the tensors converge to fixed-point tensors which
characterize what phases the system is in. Gu and Wen de-
veloped the theory of fixed-point tensors in Ref. [12]: they
clarified that ideally the fixed-point tensor for a trivial phase
without symmetry breaking or long-range entanglement is a
trivial tensor T TRI, all of whose bond dimensions are 1, and
for symmetry-broken phases it is the direct sum of the same
number of T TRI as the degeneracy of the phase. For instance,
the fixed-point tensor for the ordered phase of the Ising model
is

T = T TRI ⊕ T TRI. (3)

Also, they proposed a method of detecting symmetry-
breaking phase transitions utilizing this property. The follow-
ing quantity X for the bulk tensor a is a step function whose
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value of symmetry-broken phases is equal to the degeneracy
while being 1 for the trivial phase:

(4)

It can be confirmed in actual simulation of the Ising model
that the eigenvalue spectrum of the transfer matrix in Eq. (4)
is almost zero except the largest one for the trivial phase,
whereas for the ordered phases it is also zero except for the
largest two eigenvalues, which results in the step-function
feature of X .

Similarly, the boundary tensors for BTRG algorithm are
also renormalized into fixed-point tensors, as demonstrated in
the next section. The fixed-point tensor for the trivial phases is
a rank-3 tensor whose bonds are all one-dimensional, and also
the direct sum of it for symmetry-broken phases. The phase-
transition detector for boundary tensors can be defined as

(5)

This quantity shows the same behavior as Eq. (4), as con-
firmed in the next section.

If the system is at criticality, tensors are renormalized
into some infinite-dimensional ones different from T TRI. In
this case, analyzing conformal invariance of the fixed-point
tensors makes it possible to obtain conformal data described
by the corresponding CFT. The analysis of the bulk tensors
is in detail described in the Appendix of Ref. [12]. We can
derive similarly how to extract the conformal data from the
boundary tensors: BCFT yields the partition function in the
annulus geometry with M height and L circumference [see
Fig. 1(a)] [28]

Z = Tr exp

[
−M

L
π

(
L̂0 − c

24

)]
, (6)

where c is the central charge and L̂0 is the Virasoro operator,
whose eigenstates are the primary fields and their descendants.
In tensor network representation, since the scale-invariant
term in the partition function is described by the trace of the
scale-invariant tensors (see Ref. [12]), the formula Eq. (6) can
be applied for the network constructed by the scale-invariant
tensors. As for the way to obtain scale-invariant tensors, see
Appendix B. For example, if we choose L = 2 and construct
a transfer matrix B from two scale-invariant boundary tensors
b1inv and b2inv,

(7)

= Tr exp

[
−M

2
π

(
L̂0 − c

24

)]
. (8)

If we describe the eigenvalue spectrum of B as {λn}, the
conformal dimensions hn can be computed as

ln λn = −π

2

(
hn − c

24

)
. (9)

If we use known values of the lowest conformal dimension h0

or the central charge c, we can determine the whole conformal
spectrum.

In the end of this section, we would like to note that in order
to obtain the correct fixed-point tensor we have to eliminate
the short entanglement loops which remain after converging
to fixed point and waste the capacity of the tensors [12]. The
above-explained BTRG algorithm as it is cannot remove the
short correlation. Therefore, to achieve the fixed-point tensor
with high accuracy, it is necessary to combine with such an
algorithm as entanglement filtering in loop-TNR [23], the
graph-independent local truncations algorithm [25], entangle-
ment branching [29], or full environment truncation [30].

III. NUMERICAL RESULTS

To evaluate performance of our algorithm, we simulate
the two-dimensional ferromagnetic Ising model [31], whose
Hamiltonian is

βH = −K
∑

〈i j〉∈bulk

δσiσ j − Ks

∑
〈i j〉∈surface

δσiσ j , (10)

where δ is the Kronecker δ and σ = −1 or +1. If both spins
of σi and σ j are on the edges, the nearest-neighbor coupling
constant is Ks and otherwise K . The lattice geometry is the
annulus geometry as depicted in Fig. 1(a).

A. Magnetization

Using the impurity tensor method (see, e.g., Ref. [32]), we
compute the spontaneous magnetization m in the bulk and the
surface, which are defined as

bulk : mb = 1

L2

∑
i

σi , (11)

surface : m1 = 1

2L

∑
i∈surface

σi , (12)

where L is the system size. As shown in Fig. 2, compared
with the exact results [33,34], the computed magnetizations
for Ks = K are quantitatively good even for such a small bond
dimension as χ = 16. Notice that we employ

√
〈m2〉 as an

order parameter since 〈m〉 is always zero for the Z2 symmetric
tensor [35].

B. Fixed-point tensor in the noncritical phases

We analyze the fixed-point structure of the boundary ten-
sors for noncritical phases. In Fig. 3, Eq. (5) is computed
until the convergence in the very narrow temperature region
for χ = 16 and Ks = K . The values in the disordered phase
and ordered phase are respectively one and two, as expected,
and we can estimate the transition point Kc for χ = 16
as Kc = 0.881 314 886 877(2). The relative error from the
exact critical temperature [36] Kexact

c = ln(1 + √
2) is about

6.7 × 10−5, which is consistent with the transition point
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FIG. 2. The spontaneous magnetizations in the bulk and the
surface computed by the BTRG algorithm for χ = 16. The dashed
line shows the exact results [33,34].

obtained from the crossing point of the Binder ratio for the
same bond dimension in Ref. [32]. Because the quantity
defined Eq. (5) reacts sharply for such a subtle change of
temperature, the transition temperature for a given bond di-
mension can be determined with very high precision.

C. Fixed-point tensor at criticality

We compute the central charge and the conformal towers
from the boundary tensors, which corresponds to the minimal
CFT M4,3 in the annulus geometry [28]. From the bulk
fixed-point tensor of the Ising model, as already confirmed
in many preceding works with periodic boundary condition
[12,22–25,29], one can extract the conformal tower gener-
ated from three primary operators: φ0,0, φ1/16,1/16, φ1/2,1/2,
where the subscripts represent the conformal dimensions for
the holomorphic and antiholomorphic part of the Virasoro
algebra, respectively. On the other hand, the existence of
the boundary puts a constraint on the Virasoro algebra, and
the operator content of the CFT changes according to what
boundary conditions are imposed [37].

−51.0 −50.5 −50.0 −49.5
K−Kexact

c

Kexact
c

1.0

1.2

1.4

1.6

1.8

2.0

X
s

FIG. 3. The function X defined in Eq. (5) computed for χ = 16
around the transition point. The exact critical point is Kexact

c = ln(1 +√
2) [36].
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FIG. 4. The conformal dimensions hn obtained at the fifth RG
step of BTRG with χ = 72 for various boundary conditions. Note
that the lowest one h0 is given by hand. The exact values are
denoted as the dashed line, and the exact degeneracy is near the data
plots. Each figure represents the case where (a) both edges are free
boundary conditions, (b) both edges are fixed boundary conditions,
and (c) the one edge is fixed while the other is a free boundary
condition. The operator contents for them correspond to Eqs. (16),
(17), and (18), respectively. Inset: The flow of the central charge
and the conformal dimensions for the RG step. The red dashed line
represents that of the central charge.

Given the boundary conditions of both sides in the annulus,
the operator content can be calculated easily by fusion rules
[38]. Corresponding to the primary fields, there are three
Cardy states (i.e., conformally invariant boundary conditions)
in the Ising CFT:

|+〉 = |0̃〉 , (13)
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TABLE I. The flow of central charge obtained from boundary tensors with χ = 72. For comparison, we also show that computed from the
bulk tensors assuming the periodic boundary condition. Notice that the exact value is c = 0.5.

RG step 1 2 3 4 5 6 7 8 9 10 11 12

Boundary 1.4513 0.9776 0.6920 0.5864 0.5411 0.5208 0.5123 0.5101 0.5086 0.5032 0.4954 0.4889
Bulk 0.5641 0.5188 0.5038 0.5009 0.5002 0.4999 0.4994 0.4984 0.4970 0.4948 0.4920 0.4877

|−〉 =
∣∣∣∣ 1̃

2

〉
, (14)

|free〉 =
∣∣∣∣ 1̃

16

〉
, (15)

where |+〉 and |−〉 represent the fixed boundary states, where
the spins in the edge are all σ = +1 and all σ = −1, respec-
tively. In the Hamiltonian Eq. (10), when Ks = K the surface
is disordered and we associate this with free boundary condi-
tion |free〉 below, while Ks → ∞ leads to the spontaneously
ordered surface state |fixed〉 = (|+〉 + |−〉), which is called
a fixed boundary condition below. The operator content for
the system sandwiched by two boundary states 〈ã| and |b̃〉 is
determined as a result of the fusion rule φa × φb. Therefore
the operator contents for those boundary states are, from the
fusion rules of the Ising CFT,

Zfree,free = χ0 + χ 1
2
, (16)

Zfixed,fixed = 2
[
χ0 + χ 1

2

]
, (17)

Zfree,fixed = 2χ 1
16

, (18)

where χh is the Virasoro character of the Verma module with
conformal dimension h. For example, the partition function
Eq. (16) results from the fusion rule φ1/16 × φ1/16 = φ0 +
φ1/2, and Eq. (17) can be obtained as[

φ0 + φ 1
2

] × [
φ0 + φ 1

2

] = 2
[
φ0 + φ 1

2

]
. (19)

Similar formulas can be found in Ref. [39].
To investigate the conformal fixed-point tensor, we perform

BTRG computation with χ = 72 at the exactly known critical
point K = Kexact

c . In Fig. 4 we show the spectra of the scaling
dimensions at the fifth RG step using Eq. (9). The dashed lines
and small figures near the data plots represent the exact values
and degeneracies, respectively [28]. We adopt three boundary
conditions discussed above. In Fig. 4(a) the result is shown
for two free boundary conditions, where the surface couplings
in the edges are both Ks = K . Figure 4(b) is obtained from
two fixed boundary conditions. In Fig. 4(c), the result with
a mixed boundary condition is shown, where the one edge is
fixed while the other is free. We note that the lowest conformal
dimension h0 for the mixed boundary condition is set to
1/16, in contrast to the other boundary conditions. Therefore
the conformal spectra in Figs. 4(a)–4(c) correspond to the
operator contents of Eqs. (16)–(18), respectively. Comparing
with these exact values, BTRG gives the correct conformal
data, depending on the various boundary conditions, with
good precision. In the insets of Fig. 4, we show the flow of
the central charge and conformal dimensions up to 20 RG
steps, where the central charge is shown as the red dashed line.

As typically observed in TRG-type calculation of the scaling
dimensions, after reaching the right values they gradually col-
lapse starting from higher scaling dimensions. In the present
case, they converge at around the fifth step and then the tower
is collapsing from larger conformal dimensions. To make the
flow more stable and achieve higher accuracy, we would need
to eliminate the short correlation loop.

In Table I, we show the obtained value of central charge
at each RG step for two free boundary conditions. In addition
to the results from the boundary tensors, those from the bulk
tensors with the periodic boundary condition are also denoted
together. While the value from the bulk tensors is convergent
around the fifth step to the exact value c = 0.5 with good
precision, the obtained value from the boundary tensors more
slowly converges with worse accuracy. This suggests when we
estimate the central charge of an unknown model by BTRG,
the central charge should be also computed from bulk tensors
to be compared with that from the boundary ones in order not
to draw a wrong conclusion.

IV. CONCLUSION

In this paper, we proposed a method of investigating the
boundary property of the statistical system. We generalized
the HOTRG algorithm to make it possible to deal with the sys-
tem with open boundaries and simulated the two-dimensional
Ising model in the annulus geometry. The spontaneous mag-
netization at surface and bulk computed by the impurity
method gives quantitatively correct results in comparison with
exact calculation. In addition, we analyzed the fixed-point
feature of the boundary tensors, which correctly represented
the degeneracy of each of the disordered phase and the Z2

symmetry-broken phase. At the critical point, we defined the
scale-invariant boundary tensor from which we successfully
extracted the information of the conformal data described by
the M4,3 minimal BCFT of the annulus with various boundary
states. Therefore, BTRG is another numerical method to
investigate the BCFT of lattice models rather than the exact
diagonalization [40], DMRG [41,42], and the entanglement
renormalization [43]. Because it is straightforward to extend
BTRG for the higher dimension, it would also be useful to
investigate the surface critical behavior of three-dimensional
systems, although precise BCFT analysis is difficult.

However, since we do not eliminate the short correlation
loop remaining in the network, the flow of the conformal data
is unstable and the precision is not so good. It is expected
that combining with such an algorithm would make the results
better. If using a symmetry-broken boundary condition, such
as the Cardy states in Eq. (13) or (14), since we cannot
utilize the Z2 symmetric tensor it would be more important
to eliminate the short loops to achieve good accuracy with
smaller bond dimensions.
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APPENDIX A: CONSTRUCTION OF THE PROJECTORS

In this Appendix, we discuss how to obtain the proper
projectors in a general situation to renormalize the four tensors
forming a plaquette into two tensors, such as

→ → . (A1)

Such projectors P1 and P2 can be determined so as to minimize
the norm

(A2)

In order to take unnecessary bonds aside, we consider the
following QR decomposition [23,44,45]:

= (A3)

= . (A4)

However, notice that we do not have to perform this QR
decomposition, because, for example,

= = , (A5)

where Q2Q†
2 = 1 by definition. Namely, we can compute R2

by the singular value decomposition (SVD) (or eigenvalue
decomposition) of the left-side tensor in Eq. (A5). For a
two-dimensional square lattice, while the computational cost
for Eqs. (A3) and (A4) is O(χ8), Eq. (A5) reduces the cost to
O(χ6).

To determine the projectors, contract R1 and R2 and then
perform the singular value decomposition for it:

� . (A6)

Note that 	 is the truncated singular value vector. Comparing
the right-hand side of Eq. (A6) with the middle of Eq. (A1),

= � , (A7)

amounts to R1P1 = U
√

	 and P2R2 = √
	V †. We can show

that these projectors minimize the cost function Eq. (A2) in
the sense of the Frobenius norm. To avoid computing the
inverse of R1 and R2, we can make use of the result of SVD,
R1R2 
 U	V †, which yields

U
√

	 
 R1R2V
√

	
−1

, (A8)

√
	V † 


√
	

−1
U †R1R2 . (A9)

Therefore, the projectors are finally

(A10)

(A11)

The overall computational cost for creating projectors requires
O(χ6), which is the same as that of the higher-order SVD in
the HOTRG algorithm for a two-dimensional square lattice.
Actually, for the isotropic tensor the projector created for
the bulk tensors is the same as the one for HOTRG. In this
sense this way of constructing the projector is the natural
generalization of the HOTRG algorithm.

APPENDIX B: CALCULATION OF THE
SCALE-INVARIANT TENSOR

In this Appendix, we describe how to obtain the scale-
invariant tensor, which is necessary to compute the conformal
data as explained in Sec. II B. Let us suppose we hold the
bulk tensor A(i) and boundary tensors B(i)

1 and B(i)
2 in the ith

RG step, the numbers of which are N (i)
a , N (i)

b , and also N (i)
b ,
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respectively. The partition function can be symbolically
described as

Z = tTr ⊗
[
B(i)

1
N (i)

b A(i)N (i)
a B(i)

2
N (i)

b
]
. (B1)

To avoid the overflow of the exponentially growing partition
function, in practice we normalize the tensors. Here let us
define the normalized tensors

a(i) = A(i)/
(i)
a , b(i)

1 = B(i)
1 /


(i)
b , b(i)

2 = B(i)
2 /


(i)
b (B2)

and impose the following normalization:

(B3)

Using them, the partition function is

Z = 
(i)
a

N (i)
a 


(i)
b

2N (i)
b tTr ⊗

[
b(i)

1
N (i)

b a(i)N (i)
a b(i)

2
N (i)

b
]
. (B4)

Now let us define scale-invariant tensors

a(i)
inv = γ −1

a a(i), (B5)

b(i)
1inv = γ −1

1 b(i)
1 , and b(i)

2inv = γ −1
2 b(i)

2 , (B6)

so as to satisfy the following condition:

tTr ⊗
[
b(i)

1inv
N (i)

b a(i)
inv

N (i)
a b(i)

2inv
N (i)

b
]

= tTr ⊗
[
b(i+1)

1inv
N (i+1)

b a(i+1)
inv

N (i+1)
a b(i+1)

2inv
N (i+1)

b
]
. (B7)

Two equations of Eq. (B4) and Eq. (B7) and the invariance of
the partition function for RG transformation leads to


(i)
a

N (i)
a 


(i)
b

2N (i)
b γ N (i)

a
a (γ1γ2)N (i)

b

= 
(i+1)
a

N (i+1)
a 


(i+1)
b

2N (i+1)
b γ N (i+1)

a
a (γ1γ2)N (i+1)

b . (B8)

Here, our renormalization procedure described in Fig. 1(c)
gives

2N (i+1)
b = N (i)

b , (B9)

4N (i+1)
a = N (i)

a − 2N (i)
b , (B10)

which simplifies Eq. (B8) by assuming that in the (i + 1)th
step only the boundary tensors remain (i.e., N (i+1)

a = 0):

γ1γ2 = (
γa


(i)
a

)−4

(



(i+1)
b



(i)
b

2

)2

. (B11)

This allows us to determine γa assuming the bulk tensor a is
scale invariant for the bulk RG,

→ , (B12)

which is, as is also discussed in the Appendix of Ref. [12],

γa =
(


(i+1)
a



(i)
a

4

) 1
3

. (B13)

Finally, we obtain

γ1γ2 =
(


(i+1)
a



(i)
a

)− 4
3
(



(i+1)
b



(i)
b

2

)2

. (B14)

Note that it is not necessary to know the γ1 and γ2 separately
because we always use both b1 and b2 to construct a transfer
matrix, such as Eq. (7).

The relation between 
(i+1) and 
(i) is

(B15)

(B16)

Substituting them in Eq. (B14) yields

(B17)

Now we are able to calculate the scale-invariant tensors for
each RG step, according to Eqs. (B5) and (B6).
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