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Induced superconductivity in Fermi arcs
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When the interface of a superconductor (SC) with a Weyl semimetal (WSM) supports Fermi arcs, the chirality
blockade eliminates the induction of superconductivity into the bulk of time-reversal symmetry (TRS) breaking
WSM. This leaves the Fermi arc states as the only low-energy degrees of freedom in the proximity problem.
Therefore the SC|WSM system will be a platform to probe transport properties which involve only the Fermi
arcs. With a boundary condition that flips the spin at the boundary, we find a Z2 protected Bogoliubov Fermi
contour (BFC) around which the Bogoliubov quasiparticles disperse linearly. The resulting BFC and excitations
around it leave a distinct T 2 temperature dependence in their contribution to specific heat. Furthermore, the
topologically protected BFC being a Majorana Fermi surface gives rise to a zero-bias peak, the strength of
which characteristically depends on the length of Fermi arc and tunneling strength. For the other BC that flips
the chirality at the interface, instead of BFCs, we have Bogoliubov-Weyl nodes whose location depends on the
tunneling strength.
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I. INTRODUCTION

One of the interesting features of gapless three-
dimensional WSMs [1–5] with topologically protected band
touching points [6–10] is the realization of robust Fermi
arcs [3,11–13]. Angle-resolved photoemission spectroscopy
(ARPES) is an appropriate method to observe the Fermi arc
shapes [13–15], but for situations where the boundary is
buried in the interfaces and, hence, not accessible to ARPES,
it is desirable to find the clues of these Fermi arcs in transport
experiments. However, the challenge is that when it comes
to transport properties, the Weyl cones in the bulk and Fermi
arc states both being gapless will jointly contribute to the
transport, and therefore, separation of the contribution of
surface degrees of freedom is difficult. One of the methods
for separating the arc contribution is to address the supercon-
ducting proximity effect. In the proximity effect, only several
atomic layers near the interface of materials are involved.
Therefore, bringing a SC to form a SC|WSM junction, even at
this simple-minded level of argument, one expects to observe
the Fermi arc dominated effects. As we will argue in this
paper, there is yet another more fundamental reason that
makes SC|WSM a genuine Fermi arc dominated system for
transport purposes.

In recent years, there have been many studies in the issue
of superconducting proximity in WSMs, most of which have
been focused on the proximity effect on the bulk states. It has
been shown that, as long as the conical dispersion (in the bulk
excitation spectrum of TRS-broken WSMs) is concerned [16],
the Andreev reflection from a conventional s-wave supercon-
ductors will be blocked: Bovenzi et al. [17] have shown that
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in the proximity with conventional s-wave superconductors,
if the (momentum) vector connecting the Weyl nodes has a
component parallel to the interface (i.e., the interface sup-
ports Fermi arcs) the Andreev reflection of bulk degrees of
freedom in a TRS-breaking WSM will be suppressed by the
phenomenon of chirality blockade. The simple explanation of
chirality blockade rests on the bulk Hamiltonian of the χ �σ · �p
form. In proximity to a spin-singlet superconductor, the An-
dreev reflected hole is required to reverse both spin and physi-
cal momentum. The physical momentum reversal is accompa-
nied by chirality flip. But simultaneous reversal of χ, �σ , and
�p is not consistent with the conservation of the energy χ �σ · �p.
This will block Andreev reflections involving both momentum
and spin reversal [17]. However, if the superconductor is not a
spin singlet [18], or the Cooper pairs do not have zero center-
of-mass momentum (i.e., Fulde-Ferrell-Larkin-Ovchinnikov
superconductivity) [19], the chirality blockade will not hold.
Other possible ways to escape the chirality blockade would
involve pseudoscalar superconductivity [20,21] or Josephson
setup [22–24]. Another important situation that spoils the
chirality blockade is the presence of a boundary itself [25].
This is simply because the presence of boundary breaks the
inversion symmetry.

When the vector connecting the two Weyl nodes is perpen-
dicular to the interface, there would be no chirality blockade
[17]. In this situation, there would be no Fermi arcs as well.
But once the vector connecting the Weyl nodes develops a
small component along the interface (the projection of which
is precisely the Fermi arc), the chirality blockade appears. The
conclusion will be that the chiraltiy blockade of bulk degrees
of freedom in proximity with conventional superconductors
crucially depends on the existence of Fermi arcs. So even
if the superconducting coherence length is long enough to
reach the deep interior of the proximitized system, by chirality
blockade in WSMs, the Fermi arc wins the competition,
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and the bulk states will have no contributions in induced
superconductivity. In this way, the response of a WSM to
the proximity with a conventional s-wave superconductor
selectively couples to the Fermi arcs only. From this point
of view, the proximity with conventional superconductors
can be regarded as a tool to study the transport properties
where the only relevant low-energy degrees of freedom are the
Fermi arc states. So our proposal in this paper is to promote
the SC|WSM heterostructure into a platform to study the
transport properties of Fermi arcs only. Motivated by this,
we undertake the study of induced superconductivity in the
SC|WSM system and find more interesting results than we
expected, namely, a topologically protected Bogoliubov Fermi
contour (BFC) or Bogoliubov-Weyl (BW) nodes.

Let us start by reviewing the existing literature on the
combination of superconductivity with a WSM. The first class
of works start by a Weyl system which are superconducting in
the bulk and examine the resulting surface states [18,26,27].
In this class of works, doping a WSM converts the flatband
along the nodal direction to crossing flatbands [28]. This can
be understood in terms of the nontrivial monopole charge of
the Cooper pairs [29]. In this paper, we are not concerned with
this class.

The second class, however, deals with the induction of
superconductivity in WSMs and their surface states (Fermi
arc states). The numerical result of Khanna and co-workers
indicates that the Fermi arc states are gapped except for the
two points corresponding to the projection of Weyl nodes
on the surface supporting the Fermi arcs [23]. The presence
of gapless points in the excitations of the Bogoliubov quasi-
particle spectrum of a WSM can be understood as follows:
A generic gap term in the Dirac equation has to be propor-
tional to ψ∗

RψL [30] which corresponds to a term, such as
ψ∗

Rψ∗
R . This is because the complex conjugation exchanges

the chirality [30]. But these types of terms are forbidden if one
requires zero center-of-mass Cooper pairs [31]. Therefore, the
spectrum of Bogoliubov excitations in the WSM cannot be
entirely gapped, and there should exist nodal points or nodal
lines.

In this paper, we will develop an analytical understand-
ing of the induced superconductivity in Fermi arc states
of undoped WSMs. The analytical approach of the present
paper based on classification of boundary conditions (BCs) in
WSMs [32–34] and their Greens’ function [32] will enable
us—depending on the BC—to obtain elliptic BFC or BW
nodes. We find that, for first-type BC that flips the spin at
the boundary, the BFC is protected by a Z2 index and find an
appropriate Pfaffian that changes sign across the BFC. For this
type of BC, the Bogoliubov excitations around the BFC are
linearly dispersing and, therefore, contribute a specific-heat
term that can be distinguished from bulk contributions. For
the second-type of BC that flips the chirality at the boundary,
instead of robust BFC, we find pairs of BW nodes that disperse
by changing the tunneling strength. For mixed BC, there will
be a phase transition that separates the above two situations.

The paper is organized as follows: In Sec. II, we adjust our
previously developed Green’s function method for problems
involving the superconductivity. In Sec. III, we bring the SC
into proximity with the WSM, and, corresponding to two
classes of BCs, we obtain the nature of superconductivity

induced into Fermi arc states. In Sec. IV, we talk about pairing
symmetry and discuss the Majorana character of the BFC. We
end the paper with a summary of the main findings in Sec. V.
Details of algebra are presented in the Appendix.

II. GREEN’S FUNCTION METHOD

A. Green’s function for electrons

In our previous work [32], we have calculated the Green’s
function of a normal WSM. Since the present paper will be
based on our earlier work, let us briefly summarize its core
results. For a semi-infinite inversion symmetric WSM with
two nodes at ±�b and a hard wall boundary [33] at z = 0, the
wave equation is as follows:

[iτ̂z ⊗ (�σ · �∇ ) + τ̂0 ⊗ (�σ · �b) + M̌δ(z)]ψe = Eψe, (1)

where M̌ is a 4 × 4 Hermitian unitary matrix and effectively
incorporates the confinement potential at the boundary. Pauli
matrices τ and σ operate in chirality and spin spaces. We work
in units of h̄ = 1. Furthermore, the lengths and velocities are
measured in units of |�b|−1 and vF , respectively. The electron
wave-function ψe is a four-component wave function,

ψe = [ψ−↑, ψ−↓, ψ+↑, ψ+↓]T ,

where ±’s represent the chirality corresponding to right-
handed and left-handed fermions and ↑,↓ denote the spin
direction.

Consistency with the constraint of hard wall assumption,
gives the following form for the boundary matrix M̌ [20]:

M̌ = (cos γ )M̌1 + (sin γ )M̌2, (2)

where

M̌1 =

⎛
⎜⎜⎝

0 e−i� 0 0
ei� 0 0 0
0 0 0 e−iξ

0 0 eiξ 0

⎞
⎟⎟⎠ (3)

rotates the in-plane component of the spin through angles � =
− cot−1(by/bx ) and ξ = � − π for the left- and right-handed
electrons, respectively, and

M̌2 =

⎛
⎜⎜⎝

0 0 e−iα 0
0 0 0 e−iβ

eiα 0 0 0
0 eiβ 0 0

⎞
⎟⎟⎠, (4)

which is diagonal in spin space, but mixes the chirality
components. Independent of the value of γ , the BC Eq. (2)
frightfully reproduces a Fermi arc on the surface state that
connects the projections of Weyl nodes on the surface [32].
Requiring the Fermi arc (ray) emitted from one node to end
precisely at the other node gives α − β = � − ξ .

For the Hamiltonian Eq. (1), the time-ordered single-
particle Green’s function of electrons is given by

Ĝσσ ′
χχ ′ (�r, �r ′) = Gσσ ′

χχ ′ (z, z′)e[ikx (x−x′ )+iky (y−y′ )], (5)

where

Gσ̄ σ
χχ ′ (z, z′) = Cσ̄ σ

χχ ′ (z′)e−(qχ +iχbz )z

− χ
(
kχ

x + iσkχ
y

)
8π2(qχ + iχbz )

e−(qχ +iχbz )|z−z′ |δχχ ′ , (6)
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and

Gσσ
χχ ′ (z, z′) = ε − iχσ∂z + σbz

χ
(
kχ

x + iσkχ
y
) Gσ̄ σ

χχ ′ (z, z′), (7)

where χ, χ ′ = ±1 is the chirality, σ = ±1 represents the spin
direction, σ̄ = −σ , and qχ = (kx − χbx )2 + (ky − χby)2 −
ε2. ε is the electron’s energy. Since we consider a system that
is infinite in the x and y directions, the momenta along the x
and y axes are good quantum numbers, and a plane-wave part
can be factorized in Eq. (5).

The coefficients Cσσ ′
χχ ′ depend on the BC. For M̌1-type BC

(γ = 0), we have

Cσ̄ σ
χχ ′ = ε − iχσqχ + 2σbz − χe−iσθχ

(
kχ

x + iσkχ
y

)
ε + iχσqχ − χe−iσθχ

(
kχ

x + iσkχ
y
)

× χ
(
kχ

x + iσkχ
y

)
8π2(qχ + iχbz )

e−(qχ +iχbz )z′
δχχ ′ , (8)

whereas, for M̌2-type BC (γ = π/2), one obtains

Cσ̄ σ
χχ = iχσ

(
kχ

x + iσkχ
y

)(
kχ̄

x + iσkχ̄
y

)
8π2Dσ̄ σ

χχ

e−(qχ +iχbz )z′
, (9)

Cσ̄ σ
χ̄χ = χ

(
kχ

x + iσkχ
y

)
8π2(qχ + iχbz )

(
N σ̄ σ

χχ

Dσ̄ σ
χχ

)
e−(qχ +iχbz )z′

, (10)

where

Dσ̄ σ
χχ = χ̄eiχθσ̄ (ε + iχσqχ )

(
kχ̄

x + iσkχ̄
y

)
−χeiχθσ (ε + iχ̄σqχ̄ )

(
kχ

x + iσkχ
y

)
, (11)

and

N σ̄ σ
χχ = Dσ̄ σ

χχ + 2iσeiχθσ̄ (qχ + iχbz )
(
kχ̄

x + iσkχ̄
y

)
. (12)

Both BCs produce a Fermi ray (meaning that the shape of
the Fermi arc is a straight line) connecting the projection of
Weyl nodes on the surface whose slope is solely determined
by vector �b as tan−1(by/bx ).

B. Green’s functions for holes

To incorporate superconductivity into our Green’s function
formulation, we need to augment the Green’s functions into
the Nambu space. So, we need the Green’s function for the
holes as well. The electron and hole Hamiltonians are related
by the operation of time-reversal operator [17],

Hh(�k) = σyH∗
e (−�k)σy. (13)

For the Weyl Hamiltonian in Eq. (1), the corresponding hole
Hamiltonian becomes

Hh(�k) = τz(�σ · �k) − τ0(�σ · �b), (14)

which can be combined with the electronic part to give the
Bogoliubov–de Gennes (BdG) Hamiltonian,

HW =
(

He 0
0 −Hh

)
. (15)

The crucial point in constructing the Green’s function for
holes is that the particle-hole transformation should also op-
erate on matrix M̌ in Eq. (1) that encodes the BC information.

Starting with BC matrix M̌1 of electrons,

M̌1 = τ̂0 + τ̂z

2
⊗ (cos �σ̂x + sin �σ̂y)

+ τ̂0 − τ̂z

2
⊗ (cos ξ σ̂x + sin ξ σ̂y)

for holes we obtain σyM̌∗
1 σy = −M̌1 which is eventually

equivalent to the substitutions � → π + � and ξ → π + ξ .
This is quite intuitive as the reflection of an electron with its
in-plane spin rotated by angle � after the TR operation can be
equivalently viewed as rotation of the spin of a hole by angle
π + �. Similarly, for M̌2-type BC, we have

M̌2 = (cos ατ̂x + sin ατ̂y) ⊗ σ̂0 + σ̂z

2

+ (cos βτ̂x + sin βτ̂y) ⊗ σ̂0 − σ̂z

2
which upon particle-hole transformation becomes

σyM̌∗
2 σy = (cos ατ̂x − sin ατ̂y) ⊗ σ̂0 − σ̂z

2

+ (cos βτ̂x − sin βτ̂y) ⊗ σ̂0 + σ̂z

2
.

Therefore, the M̌2 BC matrix for holes is obtained from the
corresponding M̌2 of electrons by the replacement α ↔ −β.

Now, we are ready to set up the Green’s function for holes.
For this, we need to solve

[ε + Hh + M̌hδ(z)]Gh = δ(�r − �r′),

where the matrix M̌h can be any of the matrices discussed
above. Another important technical point is that the hole part
of the wave function is as follows:

ψh = [−ψ∗
+↓, ψ∗

+↑,−ψ∗
−↓, ψ∗

−↑]T .

So that Ǧh(�r, �r ′) will be arranged into the following matrix:

Ǧh(�r, �r ′) =
(

[Ĝ++(�r, �r ′)]h [Ĝ+−(�r, �r ′)]h

[Ĝ−+(�r, �r ′)]h [Ĝ−−(�r, �r ′)]h

)
. (16)

In the above equation, [Ĝχχ ′ (�r, �r ′)]h is of the following form:

[Ĝχχ ′]h =
(

G↓↓
χχ ′ (z, z′) G↓↑

χχ ′ (z, z′)

G↑↓
χχ ′ (z, z′) G↑↑

χχ ′ (z, z′)

)
e[ikx (x−x′ )+iky (y−y′ )],

(17)

where every element in the above equation is obtained from
the corresponding element of the electron Green’s function
by appropriate replacements of the angles as discussed above.
After this replacement (and, of course, changing the sign of
energy), the spin-off-diagonal elements of the holes Green’s
functions become

Gσ̄ σ
χχ ′ (z, z′) = Cσ̄ σ

χχ ′ (z′)e−(qχ +iχbz )z

− χ
(
kχ

x − iσkχ
y

)
8π2(qχ + iχbz )

e−(qχ +iχbz )|z−z′ |δχχ ′ , (18)

whereas the spin-diagonal components are as follows:

Gσσ
χχ ′ (z, z′) = ε + iχσ∂z − σbz

χ
(
kχ

x − iσkχ
y
) Gσ̄ σ

χχ ′ (z, z′), (19)
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where kχ

x(y) = kx(y) + χbx(y). The value of these matrix el-
ements is the same as those for electrons, except for the
replacement σ → −σ .

Up to this point, the above expressions are valid for any
BC. For M̌1-type BC, we have

Cσ̄ σ
χχ ′ = ε + iχσqχ − 2σbz − χeiσθχ

(
kχ

x − iσkχ
y

)
ε − iχσqχ − χeiσθχ

(
kχ

x − iσkχ
y
)

× χ
(
kχ

x − iσkχ
y

)
8π2(qχ + iχbz )

e−(qχ +iχbz )z′
δχχ ′ , (20)

where θ− = � + π and θ+ = ξ + π and for the M̌2-type BC
for chirality off-diagonal and chirality off-diagonal, respec-
tively, we obtain

Cσ̄ σ
χ̄χ = −iχσ

(
kχ

x − iσkχ
y

)(
kχ̄

x − iσkχ̄
y

)
8π2Dσ̄ σ

χχ

e−(qχ +iχbz )z′
, (21)

Cσ̄ σ
χχ = χ

(
kχ

x − iσkχ
y

)
8π2(qχ + iχbz )

(
N σ̄ σ

χχ

Dσ̄ σ
χχ

)
e−(qχ +iχbz )z′

, (22)

where

Dσ̄ σ
χχ = χ̄eiχθσ̄ (ε − iχσqχ )

(
kχ̄

x − iσkχ̄
y

)
−χeiχθσ (ε − iχ̄σqχ̄ )

(
kχ

x − iσkχ
y

)
, (23)

and

N σ̄ σ
χχ = Dσ̄ σ

χχ − 2iσeiχθσ̄ (qχ + iχbz )
(
kχ̄

x − iσkχ̄
y

)
, (24)

with θ↑ = −β and θ↓ = −α.
For practical calculations, one has to specialize to a specific

coordinate system. The coordinate system can be chosen in
such a way that the Fermi arc lies along the kx axis. This does
not harm the generality of approach as always by appropriate
rotation along the kz axis, a new coordinate system can be
chosen in such a way that the new kx is along the Fermi arc.
For details, please refer to the Appendix.

III. PROXIMITY WITH A SUPERCONDUCTOR

Now, we bring a conventional s-wave SC near the WSM.
The SC occupies the z > 0 part of the space, and WSM
occupies the z < 0 part with its interface being at z = 0. The
bulk Hamiltonian of the SC is as follows:

Hs = [|�ks|2/(2m)κ̂3 + �sκ̂1] ⊗ σ̂0, (25)

where �ks denotes the momentum in the SC, m is the electron
mass, �s is the superconducting gap, and κ̂(i=0···3) are the
Pauli matrices acting in the particle-hole space. The coupling
between WSM and SC is incorporated by

T =
(

0 t̆†

t̆ 0

)
, (26)

where, considering that the tunneling amplitude t is the same
for right-handed and left-handed electrons, the 4 × 8 matrix
t̆ is constructed as t̆ = t/2(ť+ ť−) from 4 × 4 matrices ťα =
(τ̂z + ατ̂0 + τ̂1 + iατ̂y) ⊗ σ̂0 with α = ±.

Based on the Dyson equation, the Green’s function of the
WSM becomes

GW = G0
W +

∑
ks

G0
W t̆†ǧst̆GW , (27)

where we use the symbols ǧs to denote 4 × 4 matrices and G
for 8 × 8 matrices. The superscript 0 in G0 denotes the Green’s
function in Nambu space when the tunneling is set to zero.

Assuming that the superconductivity at the surface of the
SC is of the same form as its bulk and that t̆ and t̆† in Eq. (27)
are independent of �ks, we can perform the sum over �ks to
obtain the self-energy as [35]∑

ks

t̆†ǧst̆ = s√
�2 − ε2

(εκ̂0 − �κ̂1) ⊗ (τ̂0 + τ̂x ) ⊗ σ̂0,

(28)
where s = πρ0t with ρ0 as the density of states of the su-
perconductor at its Fermi level before becoming a supercon-
ductor. Substituting this result in Eq. (27), we can drive the
Green’s function for the surface of the WSM in the presence
of a SC.

A. M̌1-type BC

The poles of the Green’s function give us the dispersion
relation of the excitations on the surface. For M̌1-type BC,
we obtain the following secular equation for the poles of the
Green’s function:

[F (ε, �k) + 4εbkys2]2 − 16s4ε4(k2
x + k2

y

) = 0, (29)

where F (ε, �k) = √
�2−ε2[4s4(−b2+k2

x + k2
y )−(ε2 − k2

y )]
and the tunneling strength s quantifies the ability of electrons
in the superconductor to tunnel into the WSM. The states
at the Fermi level correspond to ε = 0, such that the above
equation becomes F2(0, �k) = 0. Therefore, the solutions of
F (0, �k) = 0 will be twofold degenerate. These solutions are

−0.25

0

0.25

0.50

0.75

1.00

1.25

FIG. 1. Bogoliubov Fermi contour for the first-type boundary
conditions. The major axis of the ellipse coincides with the Fermi arc
of the WSM before bringing the SC to contact with it. The Pfaffian
(see the text) changes sign across this contour, and excitations around
the elliptic contour are linearly dispersing. The minor axis of the
ellipse depends on the tunneling strength as in Eq. (30). By turning
off the tunneling, the minor axis becomes zero, and the ellipse will
reduce to the Fermi arc.
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given by the following ellipse on the kx-ky plane (see Fig. 1):

k2
x +

(
1 + 4s4

4s4

)
k2

y = 1. (30)

The major axis of this ellipse is horizontal with magnitude
1 (note that, in our units, a momentum of size 1 actually
means b) and coincides with the Fermi arc of the pristine Weyl
semimetal before bringing the superconductor to its proxim-
ity. This is similar to the zero-energy surfaces due to Fermi
arcs of the doped WSM [29]. Furthermore, the magnitude of
the minor axis b̃ = 2s2√

1+4s4 is determined by the combination
s of the tunneling amplitude t and the density of states ρ0 of
the superconductor in its normal phase. As such, when the
superconducting agent is an undoped Dirac superconductor
[20], due to ρ0 = 0, the minor axis will be of zero length,
and the ellipse will collapse into the Fermi arc. It is curious
that, although the very existence of the ellipse depends on
the superconducting gap � of the s-wave superconductor that
proximitizes the WSM, the minor axis does not depend on the
superconducting gap � and is only controlled by the tunneling
strength s.

At ε = 0, the denominator of Green’s function (ε −
H )−1 will become the determinant of the Hamiltonian, i.e.,
F2(0, �k) = det H (�k), where H (�k) is the Hamiltonian of the
entire system. The above relations mean that F (0, �k) is actu-
ally the Pfaffian of the Hamiltonian. Following Refs. [36,37],
we use F (0, �k) to construct the Z2 topological index ν that
protects the zero-energy ellipse of Bogoliubov quasiparticles
as (−1)ν = sgn[F (�k−)F (�k+)] where �k+(�k−) refers to mo-
menta inside (outside) the BFC [36,37]. As can be seen,
F (0, �k) changes its sign across the elliptic zero-energy con-
tour, and therefore, we are dealing with the ν = −1 situation
which is Z2 nontrivial. In our two-dimensional case, the Z2

index is only consistent with the DIII class which belongs
to the BdG family [38,39]. In this class, particle-hole and
sublattice symmetries must be present which is here the case
by construction. The TR must be broken, which is here
again the case, as the parent WSM is characterized by TR
breaking parameter �b. The meaning of ν = −1 is that weak
perturbations within the DIII class are not able to destroy
the elliptic Fermi contour of Bogoliubov quasiparticles. A
simple consequence of this robustness is that by changing
the tunneling parameter s, only the minor axis of the ellipse
changes, but it cannot be cut into pieces or destroyed. As we
will see in next subsection with M̌2-type BC, we will have a
totally different situation.

In terms of the Altland-Zirnbauer [40] classification, the
induced superconductivity on Fermi arc states belongs to the
DIII class. The interpretation of its Z2 index is connected with
the existence of (elliptic) BFC. Once the Fermi contour is
formed, the Fermi contour itself as a singularity of the Green’s
function in momentum space can be further classified by a
winding number [41]. This is defined by

n1 = tr
1

2π i

∮
C

G ∂�G−1d�, (31)

where the closed path C is any contour enclosing the Fermi
contour (ellipse in our case) and � parametrizes this path. For
the Fermi contour of two-dimensional metals, as long as it

has the Fermi-liquid structure G(iω, p) ∝ (iω − p)−1, where
p is the momentum deviation from the Fermi contour, the
above winding number will be ±1. However, an essential
difference between the elliptic Fermi contour of Bogoliubov
quasiparticles compared to the Fermi contour of Fermi liquids
is that, due to twofold degeneracy, the pole structure near
the Fermi contour is given by G(iω, p) ∝ (iω − p)−2. This
form of the Fermi contour will give n1 = ±2. This means
that, in principle, there can be perturbations outside the DIII
class which can break the n1 = 2 topological charge into two
n1 = 1 (Fermi-liquid-like) Fermi contours.

To gain further insight into the physical nature of this BFC,
let us study the excitations around this elliptic Fermi contour.
In the radial direction, a little away from the ellipse, we can
use a small parameter η to parametrize the momenta at ε = 0
as kx = (1 + η) cos φ and ky = (b̃ + η) sin φ. Let us assume
that, by approaching the ellipse, energy vanishes as αηγ . With
this choice, the lowest-order terms of Eq. (29) are as follows:

4b̃4

1 − b̃2
α2η2γ sin2φ +

(
2 �b̃2

1 − b̃2

)2

η2

(
cos2 φ + 1

b̃
sin2 φ

)2

+
[

8�b̃4

(1 − b̃2)3/2

]
αηγ+1

(
cos2 φ + 1

b̃
sin2 φ

)
sin φ

= 4b̃2

1 − b̃2
α4η4γ

(
cos2 φ + 1

b̃
sin2 φ

)
. (32)

If γ > 1, then only the second term on the left-hand side is
the leading-order term and should be zero, but it is generically
impossible. On the other hand, if γ < 1, then the first term in
Eq. (32) is the leading-order term, and this leads to α = 0. We,
thus, conclude that γ = 1 and that around the BFC the energy
disperses linearly. There are only two exceptions to γ = 1: at
φ = 0 (and φ = π related to the former by symmetry) which
correspond to dispersion along the kx axis. These two peculiar
points correspond to the projection Weyl nodes on the kx-ky

surface. In this case, sin φ = 0, and Eq. (32) reduces to(
�b̃2

1 − b̃2

)
η2 = α4η4γ , (33)

from which we obtain γ = 1/2. Therefore, the singular be-
havior at φ = 0 means that, by departing from the projection
of Weyl nodes in the kx direction inward of the ellipse,
we obtain a peculiar ε(px, py = 0) ∼ √

px where px and py

measure the momenta from the two ends of the major axis of
the ellipse.

B. M̌2-type BC

Unlike the M̌1-type BC where a robust BFC is obtained
which can be distorted but not destroyed by changing the
parameters of the Hamiltonian (in our case, the combination
s = πρ0t), for M̌2-type BC, instead of BFC, we will have a
set of BW nodes. To see this, let us look into the zeros of
the determinant appearing in the denominator of the Green’s
function, which, at ε = 0, becomes{[

3
(
b2 − k2

x + ky2
)2 + 4k2

x

(
b2 − 4ky + 3k2

y

)]
s4 − b2k2

y

}2

+ 16b2k2
x k2

y (2ky − b)2s4 = 0. (34)
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FIG. 2. Bogoliubov-Weyl nodes with second-type boundary conditions. (a) The k2
y coordinate of the position of BW nodes as a function

of dimensionless tunneling strength s. (b) The k2
x coordinate of the nodes lying on ky = b/2 as a function of s. The insets in both (a) and

(b) indicate the locations of BW nodes. The panels in the second row show the schematic evolution of BW nodes upon varying s. Colors of the
nodes correspond to their chirality.

This expression being the sum of two complete squares
appearing in the first and second lines, respectively, can only
vanish when each term separately vanishes. From the second
line, there are three possibilities, namely, kx = 0, ky = b/2,
or ky = 0. The third case does not give any zero for the first
line. The first two cases, however, give two pairs of solutions
as follows (note that we are working in units of b = 1): On the
kx = 0 line, there are two values of k2

y as long as tunneling is

less than smax = [(4 − √
15)/6]1/4 ≈ 0.38. As can be seen in

Fig. 2(a), the two solutions move towards each other and hit
at smax. Beyond smax, there is no zero-energy solution on the
ky axis, meaning that the two BW nodes annihilate each other
upon colliding. This indicates that they are carrying opposite
topological charges. Their partner on the negative ky axis also
behaves similarly. This has been schematically shown in the
second row of Fig. 2. On the ky = 1/2 line, as can be see
in Fig. 2(b), the blue pair of BW nodes start at k2

x ≈ 0 for
very small s ≈ 0. As can be seen, k2

x increases linearly as we
increase s. Beyond smin = (4/75)1/4 ≈ 0.48, a second pair of
(green) BW nodes appear on ky = 1/2 and start their journey
from the k2

x = 0 point. By further increasing s, the blue and
green BW nodes further depart from each other.

C. Linear combination of M̌1-type and M̌2-type BCs

Let us now see what happens if the boundary condition
is neither M̌1 nor M̌2 type but a linear combination of the
form M = 1

1+λ2 (M1 + λM2) ≈ M1 + λM2. Assuming that the
Green’s functions of the Weyl semimetal with the type-1 and
type-2 BCs are g1 and g2, respectively, the Green’s function g
for the mixed BC can be perturbatively obtained for small λ

as follows:

g = g1

1 + λg1M2
≈ g1 − λg1M2g1, (35)

where higher powers of λ are ignored and, due to δ(z) in
Eq. (1), it is understood that the self-energy corrections arising
from mixing of the M̌2-type boundary condition of strength λ

are nonzero only at the interface. The above equation when
combined with Eq. (27) gives

det g1 → det g1[1 − λ tr M̌2g1]. (36)

The poles of which are characterized by det g1 as long as
perturbative thinking is valid to determine the pole of the
above renormalized Green’s function. Therefore, as long as
λ remains within the reach of perturbation theory, the above
self-energy arising from chirality flip (M̌2) at the interface will
only produce a renormalization of spectral features of g1. So
the picture will be as follows: At λ = 0 (i.e., pure M̌1-type
BC), we have a robust Bogoliubov Fermi contour. At λ = ∞
(i.e., pure M̌2-type BC), we have the superconducting phase
with point nodes in the spectrum of Bogoliubov quasiparticles
of the proximitized surface. Therefore, it is likely that a phase
transition at a finite λ separates the physics of M̌1 from M̌2

BCs.

IV. PAIRING SYMMETRY AND MAJORANA FERMI
CONTOUR

So far, we have shown that M̌1-type BC gives a topo-
logically protected BFC. Now, we are going to discuss its
consequences. The Cooper pairs can be either even or odd
with respect to its behavior under the exchange of chirality
index. In the following, we separately discuss these two cases.

A. Even chirality pairing

It is useful to form combinations of the pairing amplitudes
which are even or odd under the exchange of orbital (chirality)
index [20]. Each of these �’s is a 2 × 2 matrix in spin space
and can be written as a sum of singlet and triplet components
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FIG. 3. The ky dependence of Eq. (40) for kx = 0.

as

�̂ = iσy(d0 + �d · �σ ). (37)

The even interorbital part of the anomalous Green’s function
which is even under the exchange of band index is given by

F̂+ = h

[−ikx + ky −b
−b ikx + ky

]
, (38)

h = 4 �skys2[F − 4bεs2(ε − ky)]

(F + 4εbkys2)2 − 16ε2s4k2
, (39)

which gives d0 = 0 and �d = (ikx,−iky,−b)h. The spin-
singlet pairing is absent, and therefore, the spin angular
momentum of the Cooper pairs is even with respect to the
exchange of the spin attribute of the electrons forming the
Cooper pair. Since the chirality (band index) is already as-
sumed to be even, the orbital part will be necessarily odd. It
is evident from the �d vector that, in this channel, a substantial
p + ip pairing exists. However, it has been multiplied by a
factor of h which needs to be integrated over ε to give the
induced pairing. In the weak tunneling regime where s is
small, working to order s2 which amounts to ignoring s4 in
comparison to s2 in the numerator, and ignoring s altogether
in the denominator, allows us to analytically calculate this
function that gives the following strength for the pairing which
after restoration of h̄ and vF will become

� ∼
π �ss2h̄vF

√
k2

x + k2
y + b2√∣∣(h̄vF ky)2 − �2

s

∣∣ . (40)

This function has been plotted in Fig. 3. On the Fermi arc
ky = 0, the induced pairing in its middle kx = 0 is simply
π h̄vF bs2 which conforms to golden rule intuition. Even on
the BFC, according to Eq. (30), the minor axis is controlled
by s2, and hence, even on the BFC, ky remains small. As
can be seen in Fig. 3, the ky dependence near ky ≈ 0 is very
weak, and therefore, this factor will not introduce higher
angular momenta, and the orbital (angular momentum) part
will entirely be given by the p + ip form.

B. Odd-chirality pairing

The odd amplitude interorbital pairing is odd under the
exchange of the orbital index which is given by

�̂− = 4 �kys2[{ − 4bεs2(ε − ky)]

(F + 4εbkys2)2 − 16ε2s4k2

[ −ib −kx + iky

−kx − iky ib

]
,

with d0 = ikyh and �d = (−ib, 0, kx )h. The integration over
energy in the weak tunneling regime gives the same formula
(40). Although the singlet pairing amplitude d0 is zero on the
Fermi arc (ky = 0), nevertheless, on the BFC, it acquires a
nonzero value. From Eq. (30), this value is proportional to
the minor axis b̃ ∝ s2. Therefore, the singlet component of
pairing on BFC will be controlled by tunneling strength. On
the contrary, the triplet component �d of the induced pairing
depends on b and kx. The z component of this pairing changes
from +b to −b by spanning the BFC, whereas its x component
remains constant −ib. So the BFC is endowed with a non-
trivial spin texture for the Cooper pairs.

C. Majorana nature of BFC

The elliptic BFC in our problem is distinct from the un-
derlying Fermi arc. Outside the BFC, the Bogoliubov quasi-
particles are more electronlike, whereas, inside the elliptic
BFC, the excitations are more holelike. Right on the BFC, the
excitations will be equally electronlike and holelike so that
the average charge of the excitations is zero. Therefore, the
BFC is actually a Majorana Fermi contour. The fact that it is
protected by a Z2 topological index already manifests as the
simple fact that changing the tunneling strength s does not
destroy the elliptic BFC. It can only modify the aspect ratio
and maintains the elliptic shape of the BFC. Now, the question
will be as follows: What is the experimental signature of
such a Majorana Fermi contour? In a transport setting, the
portion of the current which passes through the BFC surface
states will appear as a zero-bias feature. At zero temperature,
the strength of such a zero-bias peak which is determined
by the number of channels is proportional to the perimeter
of the Majorana Fermi contour,

dI

dV
∝ 4bE

(
1√

1 + 4s4

)
, (41)

where E is the elliptic function of the second kind and we have
restored the length 2b of the Fermi arc which determines the
major axis of the ellipse. For low temperatures, the peak will
acquire thermal broadening but still remains proportional to
the above value. According to Ref. [42], the effective length
of the Fermi arc can be controlled by coupling to radiation.
To this extent, the linear dependence of the above formula to
the length 2b of the Fermi arc can be checked in transport
measurements of illuminated samples.

The BFC will also have clear thermodynamic signature in
the specific heat. Since the two-dimensional BFC supports
linearly dispersing excitations around it (except for two nodal
points which are of measure zero), the resulting density of
states will be linear in energy. Therefore, the contribution
of these excitations to the specific heat will be ∼T 2. This
situation is similar to graphene [43]. This can be pleasantly
separated from other degrees of freedom that contribute to
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absorption of heat. First of all, the bulk degrees of freedom
of the superconductor has no subgap excitations. Second,
the bulk degrees of freedom of the WSM disperse linearly
but in three space dimensions. By power counting, they will
contribute a T 3 term. Therefore, the T 2 term due to excitations
around the BFC will take over at low temperatures and can be
separated from the bulk of the WSM and SC.

V. SUMMARY AND DISCUSSION

We have discussed the proximity induced superconductiv-
ity in Fermi arc states. By the chirality blockade, the bulk
states play no role in the induced superconductivity in the
WSM and the resulting transport is dominated by induced
superconductivity in surface Fermi arc states. Computing to
infinite order in tunneling perturbation theory, we find that
the original Fermi arc is completely washed out by coherent
all-order tunneling of Cooper pairs from the superconductor
into the WSM. However, as a result of this all-order tunneling,
a new Bogoliubov Fermi contour is established which is
protected by a Z2 topological index. Such a BFC is actually a
Majorana Fermi contour. This Majorana Fermi contour shows
up as a zero-bias conductance peak, the strength of which
is proportional to the perimeter of the elliptic BFC. This
implies linear dependence on the length 2b of the Fermi arcs.
This Fermi contour is protected from small perturbations.
Moreover, in simple specific-heat measurements, the BFC at
subgap temperature scales shows up as a distinct T 2 contri-
bution to the heat absorption. This can be separated from the
T 3 contribution from bulk states of the WSM. The bulk of the
superconductor itself being gapped is out of game in subgap

temperature scales. By slightly moving away from the Fermi
level, the weight of either hole or electron in the Bogoliubov
wave function starts to increase. This might be used for the de-
tection of Bogoliubov bands within ARPES or inverse ARPES
measurements. By approaching the Fermi level, the portion
of the ARPES signal related to the projection of Bogoliubov
states onto hole states will decrease in a characteristic BCS
fashion.

For the second type of BC that flips chirality at the bound-
ary instead of BFC, we find pairs of Bogoliubov-Weyl nodes
that disperse in the Brillouin zone upon changing the tun-
neling strength s. The specific-heat signature of Bogoliubov-
Weyl nodes is similar to BFC and goes like T 2. The zero-
bias conductance peak for first-type BC is expected to be
stronger than those of Bogoliubov-Weyl nodes. For the mixed
boundary conditions, our perturbative analysis indicates that
there can be a phase transition that separates the two types of
boundary conditions.

An interesting question that can be put forward is the
following: The BFC is a noninteracting Fermi contour. What
happens when strong interactions are included on top of
such a Majorana FC, and what are the possible gap-opening
mechanisms? In the case of p + ip pairing, a possible strong-
coupling analogous state can be a ν = 5

2 quantum Hall
state which is expected to develop a pair density wave
gap [44].
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APPENDIX: MATRIX ELEMENTS FOR THE FERMI ARC ALONG THE kx AXIS

Without loss of generality, one can rotate the coordinates along the kz axis in such a way that the Fermi arc will lie along the
kx axis. This coordinate system corresponds to setting � → π

2 and ξ → 3π
2 [20]. So, for electrons, we have

kχ
x = kx − χb, kχ

y = ky, qχ = −χkx + b, ε = ky, (A1)

and for holes,

kχ
x = kx + χb, kχ

y = ky, qχ = χkx + b, ε = −ky. (A2)

After these simplifications, for the M̌1-type BC, we have

[
Gσ̄ σ

χχ

]
e
=

(−iσ

4π2

)
kx − χb + iσky

ε − ky
e(χkx−b)(z+z′ )�(χ̄kx ),

[
Gσσ

χχ

]
e =

( −χ

4π2

)
kx − χb + iσky

ε − ky
e(χkx−b)(z+z′ )�(χ̄kx ),

[
Gσ̄ σ

χχ

]
h

=
(

iσ

4π2

)
kx + χb − iσky

ε + ky
e(−χkx−b)(z+z′ )�(χkx ),

[
Gσσ

χχ

]
h =

( −χ

4π2

)
kx + χb − iσky

ε + ky
e(−χkx−b)(z+z′ )�(χkx ). (A3)

So, the elements of the Green’s function matrices for electrons and holes are obtained as follows:

[G↑↑(↓↓)
++ ]e =

( −1

4π2

)
kx − b ± iky

ε − ky
e(kx−b)(z+z′ )�R, [G↑↑(↓↓)

−− ]e =
(

1

4π2

)
kx + b ± iky

ε − ky
e(−kx−b)(z+z′ )�L,

[G↑↓(↓↑)
++ ]e =

( ±i

4π2

)
kx − b ∓ iky

ε − ky
e(kx−b)(z+z′ )�R, [G↑↓(↓↑)

−− ]e =
( ±i

4π2

)
kx + b ∓ iky

ε − ky
e(−kx−b)(z+z′ )�L,

[G↑↑(↓↓)
++ ]h =

( −1

4π2

)
kx + b ∓ iky

ε + ky
e(−kx−b)(z+z′ )�L, [G↑↑(↓↓)

−− ]h =
(

1

4π2

)
kx − b ∓ iky

ε + ky
e(kx−b)(z+z′ )�R,
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[G↑↓(↓↑)
++ ]h =

( ∓i

4π2

)
kx + b ± iky

ε + ky
e(−kx−b)(z+z′ )�L, [G↑↓(↓↑)

−− ]h =
( ∓i

4π2

)
kx − b ± iky

ε + ky
e(kx−b)(z+z′ )�R, (A4)

and for the M̌2-type boundary,

[
Gσ̄ σ

χχ

]
e
= −

(
iχσ

8π2b

)
(kx + iσky)2 − b2

ε − ky
e(χkx−b)(z+z′ )�(χkx < 0),

[
Gσσ

χχ

]
e =

( −1

8π2b

)
(kx + iσky)2 − b2

ε − ky
e(χkx−b)(z+z′ )�(χkx < 0), (A5)

[
Gσ̄ σ

χ̄χ

]
e =

(
1

16π2b

)
(kx + iσky)2 − b2

ε − ky
e(χkx−b)(z+z′ )�(χkx < 0),

[
Gσσ

χ̄χ

]
e = −

(
iχσ

16π2b

)
(kx − χb)2 + k2

y

ε − ky
e(χkx−b)(z+z′ )�(χkx < 0),

[
Gσ̄ σ

χχ

]
h =

(
iχσ

8π2b

)
(kx − iσky)2 − b2

ε + ky
e−(χkx+b)(z+z′ )�(χkx > 0),

[
Gσσ

χχ

]
h =

(
1

8π2b

)
(kx − iσky)2 − b2

ε + ky
e−(χkx+b)(z+z′ )�(χkx > 0),

[
Gσ̄ σ

χ̄χ

]
h =

(
1

16π2b

)
(kx − iσky)2 − b2

ε + ky
e−(χkx+b)(z+z′ )�(χkx > 0),

[
Gσσ

χ̄χ

]
h =

(
iχσ

16π2b

)
(kx + χb)2 + k2

y

ε + ky
e−(χkx+b)(z+z′ )�(χkx > 0). (A6)

Expanding the spin components of the matrix, we have

[G↑↑(↓↓)
++ ]e =

( −1

8π2b

)
(kx ± i ky)2 − b2

ε − ky
e(kx−b)(z+z′ )�R, [G↑↑(↓↓)

−− ]e =
( −1

8π2b

)
(kx ± iky)2 − b2

ε − ky
e−(kx+b)(z+z′ )�L,

[G↑↓(↓↑)
++ ]e =

( ±i

8π2b

)
(kx ∓ iky)2 − b2

ε − ky
e(kx−b)(z+z′ )�R, [G↑↓(↓↑)

−− ]e =
( ∓i

8π2b

)
(kx ∓ iky)2 − b2

ε − ky
e−(kx+b)(z+z′ )�L, (A7)

[G↑↑(↓↓)
+− ]e =

( ±i

16π2b

)
(kx + b)2 + k2

y

ε − ky
e−(kx+b)(z+z′ )�L, [G↑↑(↓↓)

−+ ]e =
( ∓i

16π2b

)
(kx − b)2 + k2

y

ε − ky
e(kx−b)(z+z′ )�R,

[G↑↓(↓↑)
+− ]e =

(
1

16π2b

)
(kx ∓ iky)2 − b2

ε − ky
e−(kx+b)(z+z′ )�L, [G↑↓(↓↑)

−+ ]e =
(

1

16π2b

)
(kx ∓ iky)2 − b2

ε − ky
e(kx−b)(z+z′ )�R,

[G↑↑(↓↓)
++ ]h =

(
1

8π2b

)
(kx ∓ iky)2 − b2

ε + ky
e−(kx+b)(z+z′ )�L, [G↑↑(↓↓)

−− ]h =
(

1

8π2b

)
(kx ∓ iky)2 − b2

ε + ky
e(kx−b)(z+z′ )�R,

[G↑↓(↓↑)
++ ]h =

( ∓i

8π2b

)
(kx ± iky)2 − b2

ε + ky
e−(kx+b)(z+z′ )�L, [G↑↓(↓↑)

−− ]h =
( ±i

8π2b

)
(kx ± iky)2 − b2

ε + ky
e(kx−b)(z+z′ )�R,

[G↑↑(↓↓)
+− ]h =

( ∓i

16π2b

)
(kx − b)2 + k2

y

ε + ky
e(kx−b)(z+z′ )�R, [G↑↑(↓↓)

−+ ]h =
( ±i

16π2b

)
(kx + b)2 + k2

y

ε + ky
e−(kx+b)(z+z′ )�L,

[G↑↓(↓↑)
+− ]h =

(
1

16π2b

)
(kx ± iky)2 − b2

ε + ky
e(kx−b)(z+z′ )�R, [G↑↓(↓↑)

−+ ]h =
(

1

16π2b

)
(kx ± iky)2 − b2

ε + ky
e−(kx+b)(z+z′ )�L. (A8)
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