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Nonlinear optical response of the α-T3 model due to the nontrivial topology of the band dispersion
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We study the electronic contribution to the nonlinear optical response of the α-T3 model. This model is
an interpolation between a graphene (α = 0) and dice (α = 1) lattice. Using a second-quantized formalism,
we calculate the first- and third-order responses for a range of α and chemical potential values as well as
considering a band gap in the first-order case. Conductivity quantization is observed for the first-order, while
higher-order harmonic generation is observed in the third-order response with the chemical potential determining
which applied field frequencies both quantization and harmonic generation occur at. We observe a range of
experimentally accessible critical fields between 102–106 V/m with dynamics depending on α, μ, and the applied
field frequency. Our results suggest an α-T3-like lattice could be an ideal candidate for use in terahertz devices.
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I. INTRODUCTION

Materials with band structures possessing a nontrivial
topology have been the subject of growing interest in recent
years [1–13] . One of the main characteristics of these materi-
als is that their states are described by an equation analogous
to a two-dimensional massless Dirac electron [14,15]. Since
this early realization, a lot of work has been done in their ensu-
ing electronic and optical properties [16,17]. These materials
have applications in optoelectronics, photonics, and plasmon-
ics and as such have been attracting a significant amount of at-
tention in both theoretical and experimental settings [18–25].

Although various phenomena have been investigated in the
framework of the linear response, which is widely used to
interpret the low-energy behaviors, the nonlinear response is
also important for the elucidation of such electronic structures
[26–28]. For example, nonlinear optical properties have been
extensively studied for graphene [29–31]. Graphene is thought
of as a strong natural nonlinear material, which provides a
convenient setting for the study of quantum excitations. Here,
optical resonant excitations are allowed at all frequencies up
to vacuum ultraviolet [32]. The potentially wide utilizations
of graphene in practice follow mainly from its very specific
electronic structure. The photoresponse of a graphene sheet
has also been the subject of truly intense investigations. The
accompanying results convey particularly interesting optical
properties such as a strong broadband linear response with a
comparatively large optical absorption of visible light and a
strong nonlinear response for terahertz (THz) radiation. The
linear band structure of graphene has been identified as the
origin of the exceptionally strong nonlinear optical response
of graphene [33]. Third-order nonlinearities are found to be
remarkably strong in single-layer graphene [34–36], with
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nonlinear susceptibilities several orders of magnitude above
those of transparent materials and of the same order as in
other resonant materials such as metal nanoparticles. Higher-
order harmonic generation (HHG) in single-layer graphene
has also been reported recently. The generation of up to
the ninth harmonic is demonstrated experimentally using a
mid-infrared driving laser [37]. The third harmonic has been
observed in few-layer graphene for transitions occurring near
the K and M points of the Brillouin zone. It is also found that
the nonlinear optical conductivity of graphene would topo-
logically be enhanced in the presence of spin-orbit coupling
[38–40]. Inspired by these properties of graphene, there is a
growing interest in studying similar structures for potential
use in nanoelectronics [41].

One such similar structure is the recently proposed α-T3

lattice [42]. It is regarded as another simple system fea-
turing massless fermions like graphene. Experimentalists
have recently been able to fabricate this trilayer struc-
ture of cubic lattices in the (111) direction (for example,
SrTiO3/SrIrO3/SrTiO3) [43] or by confining cold atoms to
an optical lattice [44]. In the α-T3 model, the geometry of the
honeycomb lattice is augmented by an additional atom that
sits at the center of each hexagon coupled to one of the two
topologically inequivalent sites of the honeycomb [45–47]
(see Fig. 1). A low-energy quasiparticle in the dice lattice is
described by the pseudospin-1 Dirac-Weyl equation [44,47].
The spectrum consists of a linear Dirac cone (if it is not
gapped) at each Dirac point with an additional dispersionless
flat band cutting through the Dirac point. The nontrivial
topology emerges due to this flat band [48–53] and results
in unusual interaction effects [43,54–59]. The parameter α

describes the hopping amplitudes between the additional atom
in the honeycomb and the two topologically inequivalent
sites. In this way, the α-T3 model interpolates between the
honeycomb lattice of graphene (α = 0) and the dice lattice
(α = 1).
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FIG. 1. Graphical representation of the lattice configurations
dealt with in the α-T3 model.

The α-T3 lattice can experience a change from diamagnetic
to paramagnetic when the parameter α is tuned from α = 0 to
1. Correspondingly, the structures exhibit opposite magnetic
behaviors: strongly diamagnetic for undoped graphene, while
a large paramagnetic response is seen in the dice (or T3)
lattice. The α-dependent Berry phase [42,60,61] in the α-T3

model characterizes the unusual topological features and the
unconventional quantum Hall effect [62–64]. It has been
shown that a two-dimensional (2D) model for Hg1−xCdxTe
at critical doping can be mapped onto the α-T3 model with
an intermediate parameter α = 1/

√
3 [56]. The α-T3 model

exhibits several unusual electronic properties such as super-
Klein tunneling [65–69], minimal conductivity [60], orbital
magnetic response [42,70], frequency-dependent magneto-
optical conductivity [71,72], and Weiss oscillations [73].

It is well known that graphene displays a universal con-
ductance of σ0 = e2/4h̄ over a very broad energy range.
However, the influence of the flat band introduced in the
α-T3 model on this universal conductance needs further study
[74,75]. The flat band in its gapless structure presents a new
scenario [76,77] and plays an important role in the transport
[78]. Intuitively, the flat band itself has zero conductivity due
to its uniformly zero group velocity. However, the interplay
between the flat band and the propagating band is predicted to
induce a diverging DC conductivity in the presence of disor-
ders [74] or enhance the resulting current in a nonequilibrium
situation [78]. It is shown that the particle-hole-symmetric
spectrum of massless Dirac fermions in α-T3 lattice with a
flat band provides an opportunity for realizing detectors of
radiation in a wide range of photon energies from visible to
THz frequencies. One of the characteristic phenomena in the
optical response of a dice (or T3) lattice associated to the flat
band is its remarkable affect on nonlinearity.

Figure 2 shows the possible optical transitions in systems
without a flat band, with only a flat band and a conduction
band, and with conduction, valence, and flat bands. The
details of the mechanism underlying this flat-band-dependent
nonlinear response remain unaddressed. This may lead to
a new aspect of the nonlinear response in comparison with
graphene. In particular, an important question that remains to
be answered is whether the flat band changes the nonlinear
response in a way that is topologically guaranteed [43,44,77],

FIG. 2. Schematics of allowed transitions near the Dirac point in
graphene, dice lattice, and α-T3 systems, where ε is the band gap.
The dispersion is only for illustration.

especially in the case of the electron-hole symmetry breaking
in the α-T3 lattice [73,79–81].

For applications in the field of optoelectronics, a compre-
hensive understanding of nonlinear effects is crucial to the
efficient design and analysis of many modern optical devices.
For the purposes of application, ribbons made from the α-T3

lattice have been previously investigated [82–84]. Studies
of the optical response of α-T3 lattice nanoribbons under a
weak magnetic field in the terahertz to far-infrared regime
found that the interband transitions between the flat band
and the propagating bands can enhance the magneto-optical
response. The flat band also plays a key role in gap opening
and the emergence of a new absorption peak in the optical
conductivity [85]. Compelled by such studies, we wish to
investigate the effect of the flat band of the α-T3 lattice on
the linear and nonlinear optical properties associated with
intersubband transitions of electrons to the conduction band
[86,87].

The most consistent description of nonlinear currents,
fields, and forces contributing to a nonlinear response requires
the use of kinetic theory [88]. We will use a general equation
of motion for the tight-binding α-T3 lattice. By considering
the response to an external perturbation, we introduce a den-
sity matrix which is the transition- or conditional-probability
density for the evolution equation without the perturbation.
After expanding it in terms of orthonormal functions, we
find terms characterizing the nonlinear responses with matrix
products consisting of correlation functions independent of
the perturbation. The dynamic response equations are solved
in terms of the linear up to the third-order density fluctuations.

The method used here has proved sufficiently general and
applicable for any isotropic equilibrium electron distribution
function. In the case of linear response, a similar method for
the calculation has been well developed [89]. However, our
analytical solutions for the third-order and subsequent critical
field calculations are unique.

The organization of the paper is as follows: in Sec. II we
present the formulation of kinetic theory for the α-T3 lattice.
The nonlinear dynamical response is calculated in Sec. III
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along with associated numerical results and discussions. In
Sec. IV we present our conclusions.

II. THE α-T3 MODEL WITH A RADIATION
ELECTRIC FIELD

A. Hamiltonian and eigenstates

We adopt the tight-binding description of the α-T3 model
that couples the charge-carrying quasiparticles to the time-
dependent radiation field. When a time-dependent external
field E (t ) is situated along the x axis, the spatial dependence
of the radiation electric field can be neglected in the long-
wavelength limit, so that it can be written in the form E (t ) =
Exêx = E0e−iωt êx. The radiation field is described by a time-
dependent vector potential A(t ) = Aωe−iωt in the velocity
gauge E (t ) = −(1/c)∂A(t )/∂t , so that Aω = −i(c/ω)Exêx.
Connecting with A(t ), the tight-binding Hamiltonian of the
α-T3 model can be written

H (k, A) =

⎛⎜⎝ 0 τ1 f� cos ϕ 0

τ1 f ∗
� cos ϕ ε τ2 f� sin ϕ

0 τ2 f ∗
� sin ϕ 0

⎞⎟⎠, (1)

where τ1 and τ2 are the hopping amplitudes between adjacent
triangular lattice, � = k + (e/h̄c)A with k = (kx, ky), and the
asterisk denotes the complex conjugation

f� = −
[

1 +
∑

μ

exp(−i� · aμ)

]
(2)

is the structure factor formed by linear combinations of Bloch
states from the three neighboring sublattices with μ = 1 and
2 for two Bravais lattice vectors a1 = a(

√
3/2, 3/2) and a2 =

a(−√
3/2, 3/2) where a is the intersite distance, ε is an onsite

energy of the C atom in Fig. 1, and the parameter ϕ is related
to α by α = tan ϕ.

In the absence of the external field E (t ), the three wave
functions and associated eigenenergies are found as

ξ0 = 1

τ

⎛⎝−τ2 sin ϕei2θk

0

τ1 cos ϕ

⎞⎠ (3)

for E0 = 0 and

ξk,λ = 1√
E2

λ + | fk|2τ 2

⎛⎝τ1 f� cos ϕ

Eλ

τ2 f ∗
� sin ϕ

⎞⎠ (4)

for Eλ = (ε + λ
√

ε2 + 4| f�|2τ 2)/2, respectively, where λ =
±1 corresponds to the conduction (+) and valence (−) bands
and τ 2 = τ 2

1 cos2 ϕ + τ 2
2 sin2 ϕ. The states ξk,s (s = 0,±1)

satisfy the orthogonality condition 〈ξk,s|ξk′,s′ 〉 = δss′δ(k − k′).
The structure factor f� can be expanded in powers of A(t )

as follows:

f� = fk −
∑
n=1

1

n!

(
−i

e

h̄c

)n
A(n)(k), (5)

where A(n)(k) = ∑
μ e−i(k·aμ+nωt )(Aω · aμ)n and fk is the

structure factor in the absence of an external field.
Equation (5) is a result of a direct expansion of the Hamil-

tonian in terms of the applied field. An equivalent quantum
formalism based on Floquet states can also be used to treat the
problem of electron coupled to a boson field. The formalism
was used previously in electron-photon coupling in graphene
[90,91], electron transport in two-dimensional semiconduc-
tors [92], and article diffusion with electron-phonon scattering
[93]. In the present system, the Floquet state includes electron-
photon coupling to all orders and is an exact eigenstate of the
Hamiltonian (1). Using Floquet states or a Magnus expansion
one can construct the full density matrix which includes all
orders of electron-photon coupling [94–98]. Conversely, our
formalism expands first the Hamiltonian in successive orders
of electron-photon coupling and only requires calculation of
the density matrix and associated current response for each
order that will be considered. As such, our results are equiva-
lent to the other approaches at each order of electron-photon
coupling. The system under a more complicated nonresonant
field has been recently investigated using a Magnus expansion
within the Floquet formalism [80].

Using Eq. (5), the time-dependent Hamiltonian can be
written in the form

H (k, t ) = H0(k) + Hem(k, t ), (6)

where H0(k) is independent of A(t ) with the eigenstates ξ0

and ξk,λ, while Hem(k, t ) contains the interaction of electrons
with the external field and is given by

Hem(k, t ) = −
∑
n=1

1

n!

(
−i

e

h̄c

)n

⎛⎝ 0 τ1A(n) cos ϕ 0
τ1(−1)nA(n)∗ cos ϕ 0 τ2A(n) sin ϕ

0 τ2(−1)nA(n)∗ sin ϕ 0

⎞⎠. (7)

We use the eigenstates of H0(k) to write the time-dependent Hamiltonian H (k, t ) in the second quantization form. This
is done via the standard procedure of writing the time-dependent wave function as ψ (t ) = ∑

k ak,0(t )ξ0 + ∑
k,λ ak,λ(t )ξk,λ,

where the creation and annihilation operators of Bloch states a†
k,s and ak,s satisfy the anticommutation relations {a†

k,s, a†
k′,s′ } =

{ak,s, ak′,s′ } = 0 and {ak,s, a†
k′,s′ } = δss′δ(k − k′) where s = 0, ±1. In terms of a†

k,s and ak,s, the Hamiltonian in Eq. (7) is written

H =
∑
k,λ

[Eλa†
k,λak,λ + (Mλ,0(k)a†

k,λak,0 + H.c.)

+ Mλ,λ(k)a†
k,λak,λ + Mλ,−λ(k)a†

k,λak,−λ], (8)
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where Mi, j = ∑
n An

xM (n)
i, j with i, j = 0, λ and M (n)

i, j (k) = [M (n)
j,i (k)]

∗
are the matrix units. For simplicity, we set τ1 = τ2 = τ in

our calculations. The Mi, j can be found explicitly:

M (2n−1)
λ,0 (k) = 2τB2n−1

(2n − 1)!

Eλ sin 2ϕeiθk

Ẽλ(k)
sin

√
3

2
kxa sin

3

2
Kya,

M (2n)
λ,0 (k) = i

2τB2n

(2n)!

Eλ sin 2ϕeiθk

Ẽλ(k)
cos

√
3

2
kxa sin

3

2
Kya,

M (2n−1)
λ,λ

(k) = i
2τB2n−1

(2n − 1)!

2Eλτ | fk|
Ẽ2

λ
(k)

sin

√
3

2
kxa cos

3

2
Kya,

M (2n)
λ,λ

(k) = −2τB2n

(2n)!

2Eλτ | fk|
Ẽ2

λ
(k)

cos

√
3

2
kxa cos

3

2
Kya,

M (2n−1)
λ,−λ

(k) = i
2τB2n−1

(2n − 1)!

τ | fk| sin
√

3
2 kxa

[
ε cos 3

2 Kya + i(2Eλ − ε) cos 2ϕ sin 3
2 Kya

]
Ẽλ(k)Ẽ−λ(k)

,

and

M (2n)
λ,−λ

(k) = −2τB2n

(2n)!

τ | fk| cos
√

3
2 kxa

[
ε cos 3

2 Kya + i(2Eλ − ε) cos 2ϕ sin 3
2 Kya

]
Ẽλ(k)Ẽ−λ(k)

,

where Ẽλ(k) =
√

E2
λ + τ 2| fk|2 , B = −i

√
3ea/(2h̄c), and

Ky = ky + 2/(3a)θk with the argument of fk:

θk = − tan−1 2 cos
√

3
2 kxa sin 3

2 kya

1 + 2 cos
√

3
2 kxa cos 3

2 kya
. (9)

In our analysis, we shall calculate the current response
up to the third order. Certain conditions must be met in
order for the third-order term to represent the leading-order
nonlinear effect. Here, the parameter defining the nonlinear
effect is K = (e/hc)A · a. Since A = −c/iωE , K is the ratio
of the work done by the electric field over the distance of
the lattice constant to the photon energy. Our results cover
typical applied fields of 102 to 105 V/m. For the lattice
constant a = 0.142 nm, eEa is or the order of 1.42 × 10−5

to 1.42 × 10−2 meV. To only consider a few leading terms
of Eq. (5) and truncate the series after A(3), K should be
smaller than 1. This requires the photon energy h̄ωc > eEa
which corresponds to ωc > 0.00355 THz. Therefore, although
all our plots start from zero frequency, our results should be
valid for any frequency higher than ωc. As we shall show, this
region contains all properties of interest.

B. Reduced density matrix and its equation of motion

We define the reduced density matrix ρs,s′ (k, t ) =
〈a†

k,s(t )ak,s′ (t )〉. This is a matrix in band space whose value
is the average momentum-conserving interband (s �= s′) and
intraband (s = s′) transitions.

Using the following equation of motion for the Bloch
states,

ih̄
∂ak,s

∂t
=

∑
λ

Mλ,0δs,λak,0

+
∑

λ

(Eλδs,λ + M0,λδs,0 + Mλ,λδs,λ + M−λ,λδs,−λ)ak,λ,

(10)

the reduced density matrix can be deduced by computing its
own equation of motion ih̄[dρs,s′ (k)/dt] = 〈[a†

k,sak,s′ , H (t )]〉.
We obtain the following set of coupled three-level equations:(

ih̄
∂

∂t
+ Es − Es′ + Ms,s − Ms′,s′

)
ρs,s′

= −M0,sρ0,s′ + Ms′,0ρs,0 − M−s,sρ−s,s′ + Ms′,−s′ρs,−s′

−
∑

λ

(δs,0Mλ,0ρλ,s′ − δs′,0M0,λρs,λ). (11)

To isolate different order optical response terms, we ex-
pand ρs,s′ in powers of A such that ρs,s′ = ∑

m Am
x ρ

(m)
s,s′ . The

temporal derivative of ρ
(m)
s,s′ can then be expressed as(

ih̄
∂

∂t
+ Es − Es′

)
ρ

(m)
s,s′

= −
∑

n

(
M (n)

s,s − M (n)
s′,s′

)
ρ

(m−n)
s,s′

−
∑

n

(
M (n)

0,s ρ
(m−n)
0,s′ − M (n)

s′,0ρ
(m−n)
s,0

)
−

∑
n

(
M (n)

−s,sρ
(m−n)
−s,s′ − M (n)

s′,−s′ρ
(m−n)
s,−s′

)
−

∑
n,λ=±1

(
δs,0M (n)

λ,0ρ
(m−n)
λ,s′ − δs′,0M (n)

0,λρ
(m−n)
s,λ

)
. (12)
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The Fourier-transformed components ρ
(m)
s,s′ (k, ω) can

be obtained from this recursion relation given the
zeroth-order reduced density matrix terms are defined by
ρ

(0)
s,s′ (k) = δs,s′ns(k), where ns(k) = [1 + e[Es (k)−μ]/kBT ]

−1
is

the Fermi-Dirac distribution at temperature T and chemical
potential μ.

The first-order density matrices are ρ
(1)
0,0(k, ω) =

ρ
(1)
λ,λ(k, ω) = 0,

ρ
(1)
λ,0(k, ω) = −M (1)

0,λ

n0 − nλ

h̄ω + Eλ

, (13)

<?vsp 2pt ?>ρ
(1)
0,λ(k, ω) = ρ

(1)∗
λ,0 (k,−ω), and

ρ
(1)
λ,−λ

(k, ω) = M (1)
−λ,λ

nλ − n−λ

h̄ω + (Eλ − E−λ)
. (14)

The second, third, and higher orders can be found in
the same way. The analytical expressions of ρ

(2)
s,s′ (k, ω) and

ρ
(3)
s,s′ (k, ω) are given in Appendix A.

III. NONLINEAR DYNAMICAL RESPONSE

The current response is calculated using the standard elec-
trodynamics formula

〈J〉ω = c〈∇AH (k, t )〉
= c

∑
k,λ,n,m

nAn+m−1
ω

[
M(n)

λ,0(k)ρ (m)
λ,0 + M(n)

0,λ
(k)ρ (m)

0,λ

+ M(n)
λ,λ

(k)ρ (m)
λ,λ + M(n)

λ,−λ
(k)ρ (m)

λ,−λ

]
, (15)

where the conditions n � 1 ∈ Z and m � 0 ∈ Z are used
to determine the different order optical responses. For ex-
ample, (n, m) = {(1, 1), (2, 0)} for the first order, (n, m) =
{(2, 1), (3, 0), (1, 2)} for the second order, and so on.

The full nonlinear current is then 〈J〉ω = σ (1)
x Ex +

σ (2)
x ExEx + σ (3)

x ExExEx + · · · , where σ (i)
x (i = 1, 2, 3, . . .) are

the nonzero components of the ith-order conductivity tensor.
To yield proper dimensions, the ith-order conductivity must
be dependent on the applied field for i � 2 and is given by
σ (i) = σ (i)

x E i−1
x .

A. Linear optical conductivity: Single-photon processes

The nonzero component of the first-order optical conduc-
tivity tensor is found as

Re
(
σ (1)

x

)
σ

(1)
0

= 2π (
√

3aτ )2

⎧⎨⎩sin2(2ϕ)
∑
k,λ

E2
λ�(k)(n0 − nλ)

Ẽ2
λ

(k)

δ(h̄ω + Eλ) + δ(h̄ω − Eλ)

Eλ

−
∑
k,λ

τ 2| fk|2(nλ − n−λ)[ε2�′(k) + (ε2 + 4τ 2| fk|2) cos2(2ϕ)�(k)]

Ẽ2
λ

(k)Ẽ2
−λ

(k)

δ(h̄ω + Eλ − E−λ)

Eλ − E−λ

+
∑
k,λ

[
2E2

λ�(k)nλ

Ẽ2
λ

(k)

(
1 − E−λ

Eλ

)
sin2(2ϕ)

− τ 2| fk|2(nλ − n−λ)ε2�′(k) + (ε2 + 4τ 2| fk|2) cos2(2ϕ)�(k)

Ẽ2
λ

(k)Ẽ2
−λ

(k)

]
δ(h̄ω)

Eλ − E−λ

⎫⎬⎭, (16)

where the universal conductivity σ
(1)
0 = e2/(2h̄),

�(k) = sin2

(√
3

2
kxa

)
sin2

(
3

2
Kya

)
, (17)

and

�′(k) = sin2

(√
3

2
kxa

)
cos2

(
3

2
Kya

)
. (18)

The two δ(h̄ω) terms in Eq. (16) are intraband (Drude)
conductivity terms, while the other terms are due to the
interband conductivity. We observe that the flat band (n0)
does not contribute to the intraband conductivity. Physically,
this is due to its uniformly zero group velocity. The Dirac
peak around ω = 0 can be broadened into a Drude peak by

considering residual scattering whereby

δ(h̄ω) = 1

π

γ

(h̄ω)2 + γ 2
, (19)

where γ is the scattering rate, typically of the order 10−3μ.
For terahertz frequencies, unless μ is exceptionally large, the
intraband conductivity will not be appreciable.

The third term contains only flat-to-conduction band transi-
tions and is the only interband term remaining for the extremal
value of α = 1 (dice lattice). Finally, we observe that the
δ(h̄ω + Eλ − E−λ) term contains only valence-to-conduction
band transitions and is the only interband term for graphene
(α = 0). This agrees with other dynamical conductivity mod-
els for graphene where the flat band is not present and the
movable atom is decoupled from the hexagonal lattice.
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FIG. 3. First-order interband conductivities using a = 0.142 nm, τ1 = τ2 = 3 eV, and the following parameter ensembles: (a) α = 0, μ =
1 meV, ε = 0. (b) α = 0.5, μ = 1 meV, ε = 0. (c) α = 1, μ = 1 meV, ε = 0. (d) α = 0, T = 0 K, ε = 0. (e) α = 0.5, T = 0 K, ε = 0. (f)
α = 1, T = 0 K, ε = 0. (g) α = 0, T = 0 K, μ = 1 meV. (h) α = 0.5, T = 0 K, μ = 1 meV. (i) α = 1, T = 0 K, μ = 1 meV.

To numerically evaluate Eq. (16) we let
∑

k →
1

(2π )2

∫∫
BZ dkxdky where the Brillouin zone (BZ) is the 2D

region

BZ =
{

(kx, ky) ∈ R2 : |ky| � 2π

3a

∩ |ky +
√

3kx| � 4π

3a
∩ |ky −

√
3kx| � 4π

3a

}
. (20)

The first-order conductivity results for a number of different
band-gap, temperature, chemical potential, and α values in
Fig. 3.

We observe first that there is a stable quantization of the
first-order conductivity for any value of α so long as ε =
T = 0. For α = 0 the conductivity is quantized at a value
of σ0 and stable for h̄ω/μ > 2, for α = 1 the conductivity
is quantized at a value of 2σ0 and stable for h̄ω/μ > 1. For
0 < α < 1 we observe a superposition between these two
quantization regimes. This phenomenon has been predicted
by previous models [47,63]. The uniqueness of our first-order

calculations is in how a nonzero band gap (ε) or tempera-
ture (T ) affects the stability of these quantized conductivity
values.

From Figs. 3(g)–3(i), a nonzero ε has no effect on the sta-
bility of flat band to Dirac cone transitions. This is evidenced
by the α = 1 plots staying flat for ε �= 0. Also, the frequency
at which quantization jumps occurs is unchanged if ε � μ but
increased if ε > μ. The stability of flat band to conduction
band transitions is because the flat band gains velocity with
ε �= 0 and moves up in momentum space with the conduction
band. The latter phenomenon is due to an increased band gap
pushing the upper Dirac cone above the Fermi level leading
to an increased photon energy needed to excite charge carriers
from the flat band to the conduction band.

The stability of valence-to-conduction band transitions
(α = 0) is broken by a nonzero band gap regardless of its
magnitude. This is because considering a band gap imposes an
inversion-breaking perturbation mathematically shown by the
�′ term. Furthermore, the frequency at which the conductivity
jump occurs is decreased for ε < μ and increased for ε > μ.
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The α = 0.5 case is once again a superposition of the two
extremal value conductivities as expected.

To investigate nonzero temperatures, we consider that
when setting ε = 0, the first-order conductivity formula
simplifies significantly to

Re
(
σ (1)

x

)
σ

(1)
0

= 2π (
√

3aτ )2

⎧⎨⎩∑
k

�(k)

E+
δ(h̄ω)(n+ − n−)

+ sin2(2ϕ)
∑
k,λ

�(k)

Eλ

δ(h̄ω + λ| fk|)(n+ − n−)

+ cos2(2ϕ)

2

∑
k,λ

�(k)

Eλ

δ(h̄ω + 2λ| fk|)(n+ − n−)

⎫⎬⎭.

(21)

The expression in Eq. (21) reveals important topological
information about the system. Using the Chern-Kubo formula
one can identify(

φB

π

)2

= cos2(2ϕ) and 1 −
(

φB

π

)2

= sin2(2ϕ), (22)

where φB is the Berry phase [47,63]. Thus, the first-
order optical conductivity reveals information about the
geometry/topology of the lattice without the need for a mag-
netic field.

The plots in Figs. 3(a)–3(c) show that the first-order con-
ductivity quantization occurs only for very low temperatures
T < 4 K. The nonzero temperature curves clearly approach
their T = 0 K values for each value of α as T → 0.

Figures 3(d)–3(f) show that by varying the chemical poten-
tial of the material one can engineer the desired frequencies at
which the conductivity jumps occur. In practice this could be
done by doping the sample and would allow users to select
conductivity modes based only upon electric field frequencies
without need for a magnetic field like in quantum Hall setups.

Now, if we look at very high frequencies, which correspond
to maximal dispersion energies, we see the breakdown of the
conductivity quantization.

We see that for frequencies ω � 1015 Hz the quantization
breaks down as the photon energies approach the energy of
the top of the conduction band. The peaks occur at the delta-
function maxima for terms 2 and 3 in Eq. (21) as expected.
The second peak is much smaller as the photon energy is
above the conduction band maximum and is hence somewhat
masked in the top plot of Fig. 4.

To showcase the validity of this model in the terahertz
range, if one approximates the dispersion as a linear function
in k such that Eλ ≈ 3aτ

2 |k| and sets T = 0, the first-order
conductivity further reduces to

Re
(
σ (1)

x

)
σ

(1)
0

= cos2(2ϕ)[4μδ(h̄ω) + θ (h̄ω − 2μ)]

+ sin2(2ϕ){2[2μδ(h̄ω) + θ (h̄ω − μ)]}.
(23)

FIG. 4. First-order conductivity at high frequencies for ε = 0,
T = 0 K, and μ = 1 meV at high frequencies.

This expression is identical to the Kubo formula for this
problem [63] and agrees perfectly with our results in the
low-frequency range in Figs. 3(d)–3(f). Hence, we conclude
that for experimentally viable frequencies (ω < 1015 Hz) a
linear approximation is appropriate. However, a linear approx-
imation to the dispersion is not topologically appropriate for
ε �= 0.

B. Nonlinear optical conductivity: Two photon processes

Due to the k symmetry of second-order reduced density
matrix terms, we find that the second-order optical con-
ductivity Re (σ (2)

x ) = 0. By directly summing over all terms
proportional to A2 in Eq. (15), one can show that the second-
order current vanishes. An example of how this calculation is
carried out is shown in Appendix A. This result is both con-
sistent with accepted results for graphene and the symmetry
J(A) = −J(−A).

Since ε �= 0 changes quantization phenomena (which does
not occur in the third order) and the frequencies at which
the conductivity harmonics occur (which can equivalently be
done by changing μ) we consider ε = 0 from the outset in this
section.

Furthermore, from the results for the first-order conductiv-
ity we observe a linear approximation in k provides a very
accurate description of the system in the terahertz regime. So,
we relegate the full nonlinear dispersion results to Appendix B
and provide the results for a linear dispersion in this section.
First, the third-order intraband tensor component is given by

Re
(
σ (3),intra

x

)
σ

(3)
0

= 27πτ 4

256μ
δ3(h̄ω)

(
sin4(2ϕ)

+ cos2(2ϕ) sin2(2ϕ)

2
+ cos4(2ϕ)

2

)
, (24)

where σ
(3)
0 = σ

(1)
0 (2ea

√
2π/τ )

2
. A remarkable feature of the

intraband conductivity in the third order is that, unlike the first
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order, it is dependent on α and hence reveals some underlying
geometry of the system.

Figure 5 shows that in the region where the intraband
response is appreciable the dice lattice (α = 1) is the superior
nonlinear material, followed by the hybrid α = 0.5 lattice then

graphene. Physically, this implies that the flat band uniformly
enhances the nonlinear intraband response.

The interband tensor contains all the harmonics of the
system and is hence more complicated. Its simplest form is
given by the 22-term sum

Re
(
σ (3),inter

x

)
σ

(3)
0

= θ (3h̄ω − μ)
τ 2 sin2(2ϕ)

π (h̄ω)2

[
3

64
− τ 2

(h̄ω)2

(
27

2048
+ 81 sin2(2ϕ)

2048
− 1207 cos2(2ϕ)

17920

)]

− θ (3h̄ω − 2μ)
τ 2 cos2(2ϕ)

π (h̄ω)2

[
27

2048
+ τ 2

(h̄ω)2

(
27

128
+ 81 sin2(2ϕ)

640
− 81 cos2(2ϕ)

512

)]

+ θ (2h̄ω − μ)
τ 2 sin2(2ϕ)

π (h̄ω)2

[
1

64
+ τ 2

(h̄ω)2

(
3

1024
− 27 cos2(2ϕ)

320

)]

− θ (h̄ω − μ)
τ 2

π (h̄ω)2

[
3 sin2(2ϕ)

128
+ cos2(2ϕ)

128
+ τ 2

(h̄ω)2

(
3 sin2(2ϕ)

2048 − 9 cos2(2ϕ)
64 + 27 sin4(2ϕ)

2048

+ 1467 sin2(2ϕ) cos2(2ϕ)
2560 + 9 cos4(2ϕ)

128

)]

− θ (h̄ω − 2μ)
τ 2 cos2(2ϕ)

π (h̄ω)2

[
3

32
+ τ 2

(h̄ω)2

(
9

128
− 27 sin2(2ϕ)

2240
− 9 cos2(2ϕ)

512

)]
. (25)

Each Heaviside function in Eq. (25) represents the onset
of a specific harmonic process. The processes are equated as
per Table I. It should be noted that while a specific Heaviside
function may represent the onset of a one- or two-photon
process, it is always paired with another term in Eq. (25) to
form a three-photon process.

Each one of these processes defines a distinct onset po-
sition as shown in Fig. 6. However, simply by inspection
of Eq. (25) we note that the purely sin terms only contain
flat-to-conduction band process terms. This agrees with the
fact that when α = 1 and all cos terms become 0, the valence
band becomes inert. This is also the case for the other extremal
value α = 0 (where only the cos terms contribute) where,
although the flat band is inert, the available energy states it

FIG. 5. Third-order intraband tensor component for
a = 0.0142 nm, τ1 = τ2 = 3 eV, μ = 1 meV, ε = 0, and T = 0.

provides enhances the third-order conductivity through the
θ (h̄ω − μ) terms. This enhancement is made possible since
we consider multiple-photon processes.

It is also worth noting there are no 2ω intercone processes
present. This is because the term θ (2h̄ω − 2μ) defines a
second-order time-reversal-invariant process, which gives no
contribution to the conductivity since Re (σ (2)

x ) = 0.
Critical physical information is plainly revealed by Fig. 6.

For example, the higher magnitude peaks show the dom-
inant harmonic process in each geometry. By noting that
μ = 1 meV corresponds to approximately to ω = 1.518 THz,
the dominant process for graphene is clearly identified as
the single-photon valence-to-conduction band process (as

TABLE I. Third-order harmonic processes.

θ function Onset of harmonic processes

θ (3h̄ω − μ) Three-photon flat-to-conduction band
θ (h̄ω − μ) One-photon flat-to-conduction band

Paired with itself twice
or

Paired with a two-photon flat-to-conduction band
to produce a

three-photon flat-to-conduction band process

θ (h̄ω − 2μ) One-photon valence-to-conduction band process
Paired with itself twice

to produce a
three-photon valence-to-conduction band process

θ (2h̄ω − μ) Two-photon flat-to-conduction band
Paired with one-photon flat-to-conduction band

to produce a
three-photon flat-to-conduction band process

θ (3h̄ω − 2μ) Three-photon valence-to-conduction band process

035440-8



NONLINEAR OPTICAL RESPONSE OF THE α-T3 MODEL … PHYSICAL REVIEW B 100, 035440 (2019)

FIG. 6. Third-order interband tensor component as a function
of ω for a = 0.0142 nm, τ1 = τ2 = 3 eV, μ = 1 meV, ε = 0, and
T = 0.

found in similar quantum frameworks [90,91,99]) whereas
for α = 1 the single-photon flat-to-conduction band process
is dominant. The dominant contribution from the flat band
is attributed to its high density of states compared to that
of the valence band. This is because the rate of an optical
transition is proportional to the joint density of states of the
bands involved. Furthermore, for the third-order process, the
rate is scaled by the inverse high powers of the transition
energy. This further enhances the contribution of the flat band
at low frequencies as shown in Fig. 6.

Second, the conductivity peaks decay with increased fre-
quency due to the (h̄ω)−n terms, implying the first order
will dominate at very high frequencies. This is discussed in
the following subsection. We also note that the third-order
conductivity is negative for some frequency intervals if 0 �
α < 1. This does not imply a negative overall conductivity,
instead a switching of signs for each odd-order conductivity
term producing a smaller full nonlinear conductivity.

The existence of many distinct harmonics for certain lattice
geometries is advantageous in applications that may require
high-bandwidth modular nonlinear electronic devices. In such
a setting one can use easily distinguishable fields to extract
drastically different nonlinear behaviors out of a single mate-
rial.

Figure 7 shows that the third-order conductivity has a
clear trigonometric dependence on α, as expected since α =
tan(ϕ). The amplitude of the trigonometric curves, in general,
decreases with applied field frequency as the (h̄ω)−n terms
begin to dominate. These characteristics could, in practice,
enable one to select an appropriate frequency for the geometry
at hand, i.e., for α = 1 one should use a lower-frequency
field should they desire a larger magnitude nonlinear response.
This is again outlined in the following subsection where the
magnitude relative to the linear response becomes apparent.

C. Critical field

In nonlinear dynamics the critical field is described as the
applied field required so that the first- and third-order currents

FIG. 7. Third-order interband tensor component as a function
of α for a = 0.0142 nm, τ1 = τ2 = 3 eV, μ = 1 meV, ε = 0, and
T = 0.

have equal magnitude. Using Ohm’s law it is found

Ec
x =

√√√√∣∣∣∣∣σ (1)
x

σ
(3)
x

∣∣∣∣∣. (26)

The critical field is plotted below as a function of frequency.
Fig. 8 is the critical field determined by the total conductivity
while Fig. 9 is the critical field determined by the intra-band
conductivity only.

Since changing the chemical potential shifts the harmonics
of both conductivities, changing μ will have the same effect
on the critical field. Increasing the temperature results in a
higher critical field. These phenomena have been predicted
using more simplistic models for SLG in both quantum and
classic regimes [90,99,100].

Furthermore, the magnitude of the critical field for any α

value in the terahertz range is between 102–106 V/m. Pre-
vious models have predicted critical fields of the order 105–
106 V/m [90,99,100]. Our results encompass this interval but

FIG. 8. Critical field for a = 0.142 nm, τ1 = τ2 = 3 eV, μ =
1 meV, ε = 0, and T = 0.
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FIG. 9. Intraband response critical field for a = 0.142 nm, τ1 =
τ2 = 3 eV, μ = 1 meV, ε = 0, and T = 0.

reveal more interesting dynamics owing to the harmonics of
the system. For example, each α value exhibits a region of
small critical field; for α = 0 this is between 0.5–1.5 THz,
for α = 1: 1–3 THz; and for α = 0.5: 1001.5 THz. This is
due to the first-order conductivity minimum in these regions
while the dominant third-order harmonic process is present.
These regions are practically desirable for high-efficiency
photomixing and multiplying.

For higher terahertz fields (ω > 3.1 THz) each critical
field begins increasing with frequency at the same rate with
Ec

x (α = 0) > Ec
x (α = 1) > E . Mathematically, this is easy to

see through the dominance of the (h̄ω)−n terms.
One of the striking properties we discussed in the previous

section was the α dependence of the intraband response.
By taking a closer look at the region 0 � ω � 0.5 THz, we
explore what baring this phenomenon has on the critical field
in Fig. 10.

As one can clearly observe by the small difference between
the curves, the dependence of the intraband response on
the underlying geometry of the system has little effect on
the critical field. Although, similar to high-terahertz fields
the ordering Ec

x (α = 0) > Ec
x (α = 0.5) > Ec

x (α = 1) remains
unchanged in this interval. Showing once again, the dice
lattice will be the best nonlinear material at frequencies small
enough for the intraband response to be appreciable.

Finally, we show the α dependence of the critical field at
a number of applied frequency values. Each frequency curve
shows an α-dependent set of characteristic peaks whereby the
critical field increases rapidly by approximately an order of
magnitude. These peaks occur when the frequency activates
the dominant harmonic process for each lattice geometry, for
example, α = 1 would show a peak at ω = 0.5 THz from
Fig. 6. This information shows that, in practice, one could
use the nonlinear dynamical response alone to efficiently
characterize (measure α) an α-T3-type lattice.

IV. SUMMARY AND CONCLUSIONS

Motivated by the importance of the nonlinear response
associated with topological properties from the flat band in

FIG. 10. α dependence on the critical field for a = 0.142 nm,
τ1 = τ2 = 3 eV, μ = 1 meV, ε = 0, and T = 0.

α-T3 model, we have developed a second-quantized model
capable of calculating the full nonlinear optical response (both
intraband and interband) of an α-T3 lattice. The first-, second-,
and third-order dynamical conductivities have been calculated
and investigated in depth.

First-order conductivity plots were produced for a number
of α, chemical potential, and band-gap values as a function
of frequency (Fig. 3). The results agree with previously es-
tablished and accepted results [63], particularly the existence
of frequency and α-dependent quantization if ε = 0. Most
notably, for the first order we reveal how a nonzero band
gap can break the quantization of valence to conduction band
transitions but leave flat band to conduction band transi-
tions quantized. Meanwhile, the second-order conductivity
was found to be 0, agreeing with the time-reversal invari-
ance of the Hamiltonian and previously established results
[63,90,99,100].

The previously unknown nonlinear dynamics of the α-T3

model are revealed in the interband response. Although there
is no quantization phenomenon in the third order, HHG is
observed up to the third order. By equating the HHG with
physical processes (see Table I) we also find that the flat
band enhances both the intraband and interband conduc-
tivities. Furthermore, unlike the first-order conductivity, the
intraband response is found to be dependent on α, revealing
some underlying geometry of the system. This geometrical
dependence of the intraband conductivity leads to the dice
lattice being the superior nonlinear material for gigahertz fre-
quencies and below. Finally, a trigonometric α dependence of
the third-order conductivity is observed with lower-frequency
fields being more heavily influenced by α due to the (h̄ω)−n

terms.
Critical field calculations show values between 102–

106 V/m, depending heavily on α and the applied field
frequency (see Figs. 8 and 10). Due to the practically ac-
cessible critical field values, we conclude that α-T3-type
lattices may become practical for use as terahertz devices
since the possibility to control the nonlinearity by an opti-
cal field is realized. Moreover, the characteristic peaks for
each frequency give the possibility of characterizing the
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geometry of the material based solely on the nonlinear dy-
namical response.

Our results show that the α-T3 lattice exhibits a strong
nonlinear response in the terahertz regime, similar to other
topological materials [101]. Therefore, the effects discussed
here should have useful applications in α-T3-based devices.
The strong σ (3) can lead to enhanced surface plasmon polari-
ton excitation when α-T3 is deposited on a dielectric substrate
[102]. It can give rise to efficient frequency multiplication
[103]. Such materials can also be used as a terahertz modu-
lator with a large modulation depth under a field of around
104–105 V/m [104]. When the device is irradiated with two

fields of different frequencies, the strong third-order effect can
result in a higher-efficiency three-photon mixing.
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APPENDIX A: SECOND- AND THIRD-ORDER REDUCED DENSITY MATRICES

The probabilities of a single charge carrier coupling to two photons are determined by the following reduced density matrix
components:

ρ
(2)
0,0(k, ω) =

∑
λ

∣∣M (1)
λ,0

∣∣2 (n0 − nλ)

(h̄ω)2 − E2
λ

, (A1)

ρ
(2)
λ,0(k, ω) =

[
M (2)

0,λ − M (1)
λ,λM (1)

0,λ

h̄ω + Eλ

]
nλ − n0

2h̄ω + Eλ

+ M (1)
−λ,λM (1)

0,−λ

h̄ω + E−λ

n0 − n−λ

2h̄ω + Eλ

+ M (1)
−λ,λM (1)

0,−λ

h̄ω + Eλ − E−λ

nλ − n−λ

2h̄ω + Eλ

, (A2)

ρ
(2)
0,λ

(k, ω) =
[

M (2)
λ,0 + M (1)

λ,λM (1)
λ,0

h̄ω − Eλ

]
n0 − nλ

2h̄ω − Eλ

+ M (1)
λ,−λM (1)

−λ,0

h̄ω − E−λ

n0 − n−λ

2h̄ω − Eλ

+ M (1)
λ,−λM (1)

−λ,0

h̄ω + E−λ − Eλ

nλ − n−λ

2h̄ω − Eλ

, (A3)

ρ
(2)
λ,λ

(k, ω) =∣∣M (1)
λ,0

∣∣2 nλ − n0

(h̄ω)2 − E2
λ

+ ∣∣M (1)
λ,−λ

∣∣2 nλ − n−λ

(h̄ω)2 − (Eλ − E−λ)2
, (A4)

ρ
(2)
λ,−λ

(k, ω) = M (1)
−λ,0M (1)

0,λ

2h̄ω + Eλ − E−λ

[
nλ − n0

h̄ω + Eλ

+ n−λ − n0

h̄ω − E−λ

]
+

[
M (2)

−λ,λ − M (1)
−λ,λ

(
M (1)

λ,λ − M (1)
−λ,−λ

)
h̄ω + (Eλ − E−λ)

]
nλ − n−λ

2h̄ω + Eλ − E−λ

. (A5)

When combined with the first-order components [(13) and (14)], all components proportional to A2
ω appearing in Eq. (15) will

cancel out. For example, consider the component ∝A2
ω in (15) with ε = 0, n = 2, and m = 1:

c
∑
k,λ

2A2
ω

(
M (2)

λ,0ρ
(1)
λ,0 + M (2)

0,λρ
(1)
0,λ

) = 2c
∑
k,λ

A2
ω

(
−M (2)

λ,0M (1)
0,λ

h̄ω + Eλ

− M (2)
0,λM (1)

λ,0

h̄ω − Eλ

)

= 2c
∑

λ

A2
ω

∑
k

M(k)(n0 − nλ)

[
1

h̄ω − Eλ

+ 1

h̄ω + Eλ

]
,

where

M(k) =τ 2

(√
3ea

2h̄c

)3

sin2(2ϕ) cos

(√
3

2
kxa

)
sin

(√
3

2
kxa

)
sin2

(
3

2
Kya

)
.

Now, since M(k) = −M(−k), Eλ(k) = Eλ(−k), and nλ(k) = nλ(−k), the summand is symmetric in k so summing over k
yields

c
∑
k,λ

2A2
ω

(
M (2)

λ,0ρ
(1)
λ,0 + M (2)

0,λρ
(1)
0,λ

) = 0.

This is how we arrive at Re(σ (2) ) = 0.
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The highest-order photon process we consider is the third order. The probabilities of a single charge carrier coupling to three
photons are determined by the following reduced density matrix components:

ρ
(3)
0,0(k, ω)

= 1

3h̄ω

∑
λ

∣∣M (1)
λ,0

∣∣2M (1)
λ,λ

[
1

(h̄ω − Eλ)(2h̄ω − Eλ)
− 1

(h̄ω − Eλ)(2h̄ω − Eλ)

]
(n0 − nλ)

+ 1

3h̄ω

∑
λ

[ (
M (1)

−λ,λM (1)
0,−λM (1)

λ,0

)∗
(h̄ω − E−λ)(2h̄ω − Eλ)

− M (1)
−λ,λM (1)

0,−λM (1)
λ,0

(h̄ω + E−λ)(2h̄ω + Eλ)

]
(n0 − n−λ)

+ 1

3h̄ω

∑
λ

[ (
M (1)

0,−λM (1)
−λ,λM (1)

λ,0

)∗
(h̄ω − Eλ + E−λ)(2h̄ω − Eλ)

− M (1)
0,−λM (1)

−λ,λM (1)
λ,0

(h̄ω + Eλ − E−λ)(2h̄ω + Eλ)

]
(nλ − n−λ)

+
∑

λ

[ (
M (2)

0,λM (1)
λ,0

)∗
(2h̄ω − Eλ)(h̄ω + Eλ)

+ M (2)
0,λM (1)

λ,0

(2h̄ω + Eλ)(h̄ω − Eλ)

]
(n0 − nλ), (A6)

ρ
(3)
λ,0(k, ω)

= M (3)
0,−λn−λ − M (3)

0,λ(n0 − nλ)

3h̄ω + Eλ

+ (n0 − nλ)

3h̄ω + Eλ

[
M (1)

λ,λM (2)
0,λ

2h̄ω + Eλ

+ M (2)
λ,λM (1)

0,λ

h̄ω + Eλ

]
+ (n0 − n−λ)

3h̄ω + Eλ

[
M (1)

−λ,λM (2)
0,−λ

2h̄ω + E−λ

+ M (2)
−λ,λM (1)

0,−λ

h̄ω + E−λ

]

− (n0 − nλ)

3h̄ω + Eλ

[ ∣∣M (1)
λ,λ

∣∣2M (1)
0,λ

(2h̄ω + Eλ)(h̄ω + Eλ)
+

∣∣M (1)
−λ,λ

∣∣2M (1)
0,λ

(2h̄ω + E−λ)(h̄ω + Eλ)
+ 2

∣∣M (1)
0,λ

∣∣2M (1)
0,λ

(h̄ω)2 − E2
λ

]

− (n0 − n−λ)
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APPENDIX B: FULL NONLINEAR THIRD-ORDER CONDUCTIVITY TENSOR COMPONENTS

Without using a linear approximation to the dispersion, one can obtain the full nonlinear third-order conductivity tensor terms,
just as in the linear case. The intraband contribution is

Re
(
σ (3),intra

x

)
σ

(3)
0

=
(

3aτπ

2

)2

(n+ − n−)δ3(h̄ω)
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cos2(2ϕ)

2

�′′′(k)

| fk|3 − 1
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�(k)2
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(

sin4(2ϕ) + sin2(2ϕ) cos2(2ϕ)

2
+ cos4(2ϕ)

2
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(
1

48
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24
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| fk| + 1

8

�′′(k)

| fk| − 5

4

�′′′(k)

| fk|2 − sin2(2ϕ)

4

�′′′(k)

| fk|2
)}

, (B1)

where the � terms are given by

�′′(k) = cos2

(√
3

2
kxa

)
sin2

(
3

2
Kya

)
, (B2)
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3

2
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(√
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2
kxa

)
sin2

(
3

2
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3

2
Kya

)
, (B3)

and

�IV(k) = cos

(√
3

2
kxa

)
cos

(
3

2
Kya

)
. (B4)

The interband contribution is
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(
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x
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(
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where

�V(k) = sin2
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3

2
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)
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(
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2
Kya

)
cos

(
3

2
Kya

)
. (B6)

Results for the third-order conductivity using the full nonlinear dispersion, coincide with Fig. 6, once again highlighting the
suitability of a linear approximation to the dispersion when ε = 0 in the terahertz regime. Physically, this is because most of the
charge carriers reside near the Dirac point.
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