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For materials that exhibit dynamic changes in the electronic quasiparticle states after ultrafast optical excita-
tion, it is extremely difficult to unambiguously separate quasiparticle band dynamics and carrier redistribution
processes in state-of-the-art photoemission experiments. We study theoretically the interplay of band and carrier
dynamics for a model system of a quasi-two-dimensional material with a small band gap and investigate the
consequences for electronic distribution curves. Our model system contains photo-induced band-gap narrowing
by a coherent phonon mechanism, which mimics the quenching of an insulator phase. We discuss the importance
of impact ionization in the ultrafast response and investigate the interplay between carrier and band dynamics.
Our model allows us to compare with recent experiments and identify signatures of carrier multiplication
in typical electronic distribution curves as measured by time-resolved photoemission spectroscopy. We also
investigate the influence of the shape of the bands on the carrier multiplication.
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I. INTRODUCTION

Recent developments in time- and angle-resolved photoe-
mission spectroscopy (trARPES) have opened up the possi-
bility to study the material response after ultrafast optical ex-
citation using photoemission techniques [1–3]. This progress
has facilitated the study of correlated and nanoscale quantum
materials [4]. Besides graphene [5–9], other two-dimensional
materials [10], in particular transition-metal dichalcogenides
(TMDC) [11–13], have been the center of current investi-
gations. Associated with this topic is an active interest in
metal-insulator transitions [14]. Besides Mott insulators [13,
15–20] these transitions can appear as excitonic and Peierls
insulators, where a formation of a charge density wave (CDW)
and a periodic lattice distortion occur [21]. However, charge
density waves are observed in many solids and their origin is
still under debate [22–26]. Further, changing the symmetry of
a material via optically induced phase transitions offers new
ways to manipulate material properties on ultrafast timescales
[27,28]. Research about the ultrafast response of two-
dimensional materials like TMDC in connection with their
rich electronic phase diagrams, e.g., superconductivity [29,30]
or CDW phases, may well be important for understanding the
basic physics for the design of future ultrafast (optoelectronic
or optospintronic) devices [31–33]. If one is interested in,
e.g., photoresponse and/or photocurrents in this new type of
materials, then the effects of impact ionization as the cause
of carrier multiplication become important. In this context a
lot of research has been done on graphene [34–42], carbon
nanotubes [43–49], and recently also on TMDCs [50–55].

Materials like 1T-TaS2, 2H-TaSe2, and 1T-TiSe2 have been
studied in some detail [56–58], but there still is a contro-
versy about the origin of the CDW phases in those materi-
als, especially for 1T -TiSe2. In Refs. [59–68] an excitonic
insulator mechanism was identified. However, there are also
arguments that an electron-lattice interaction with the help of

the Jahn-Teller effect leads to a Peierls-like CDW transition
and the accompanying opening of a gap [69–72]. To our
knowledge, the prevailing explanation is a combination of
exciton-formation and electron-phonon coupling [65–67,70,
72–82]. In this context, the chirality of the CDW [83–86] and a
softening of phonon modes [81,87] have also been discussed.

On the basis of experimental results and a simple model
calculation, it has recently been argued in Ref. [88] that in 1T-
TiSe2 excitation by an ultrafast optical pulse induces carrier
multiplication and gap-closing dynamics, which amplify each
other during the quenching of the CDW phase.

The present paper is devoted to a study of nonequilibrium
carrier dynamics during an optically induced phase change be-
tween an “insulator” and a “metallic” phase in a system with a
small band gap, where carrier-scattering processes may lead to
carrier multiplication due to impact ionization. In particular,
we investigate in more detail than we did in Ref. [88] the
interplay between carrier dynamics/carrier multiplication and
quasiparticle band-structure change/gap quenching. We em-
ploy a dynamical model that is capable of describing aspects
of the ultrafast response of small band-gap two-dimensional
(2D) materials, assuming an electron-phonon-based mecha-
nism behind the formation of the CDW state. We do not
attempt a microscopic description of the complete change
between insulator and metallic phase, but restrict our attention
to the onset of the phase transition starting from the CDW
insulator phase, and model the relevant lattice dynamics by
coherent phonons. These coherent phonons interact with the
optically excited electronic dynamics and, in turn, change the
quasiparticle band structure via a modulation of hybridization
between electronic orbitals centered at the ions that oscillate
with the coherent phonon. For this concrete mechanism, we
study the interplay between carrier multiplication effects and
quasiparticle band-structure dynamics, and we explore the
consequences for quantities accessible in recent experiments,
where carrier multiplication and band-strucure dynamics
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cannot easily be disentangled [88]. In particular, we study
the influence of different excitation scenarios and compare the
results for different band structures (parabolic and Mexican-
hat-shaped bands).

The outline of this paper is as follows. In Sec. II we first
introduce a model composed of a tight-binding band structure
and carrier-phonon interaction in which the quenching of the
insulator phase is due to the coupling to coherent phonons.
In a nonequilibrium situation, this electron-phonon coupling
results in the change in quasiparticle bands associated with
a Peierls-like transition. In Sec. III we set up the equations
of motion for the relevant distribution functions including
the optical-excitation contribution and Coulomb interaction.
Numerical results are presented in Sec. IV. We discuss here
in particular the influence of model parameters on the carrier
dynamics, the interplay of carrier multiplication, and gap-
closing dynamics and their signatures in electronic distribu-
tion curves. Technical details concerning the tight-binding
model and the numerical solution of the dynamical equations
including the gap dynamics are collected in Appendices A and
C. We conclude the paper in Sec. V.

II. QUASIPARTICLE ELECTRONIC
STRUCTURE CALCULATION

As we want to describe carrier dynamics that accom-
pany the quenching of a small band-gap insulator phase, we
first need to address how the quasiparticle band structure
changes during this phase transition. While a variety of dif-
ferent models for charge-density-wave insulators exist [22],
the classification for materials like 1T-TiSe2 or 1T TaS2 is
not straightforward. Among other reasons, this is because
electron-electron and electron-phonon interactions may both
play an important role in the phase transition dynamics. As we
focus here on the carrier dynamics, it is beyond the scope of
this paper to include such complex interdependencies. Instead
of determining the insulator phase from the normal phase, we
start from a TB model of the band structure in the insulator
phase and describe the quenching of this phase as an effective
misalignment of the atomic positions of the different atoms
in the unit cell. This effective atomic displacement after an
optical excitation enters our calculation as a coherent phonon.

A. Tight-binding model

We employ a tight-binding model to describe a quasi-two-
dimensional material with two atomic species Ad and Ap in
the insulator phase. The parameters are chosen such as to
reproduce some important characteristics of electronic states
in TMDCs. In the case of a TMDC, the atomic species Ad is
the transition metal (e.g., Ti) with d-type or f -type valence
orbitals and the atomic species Ap is the chalcogen (e.g., Se)
with p-type valence orbitals. For instance, in Refs. [74,76] it
was found that for 1T -TiSe2 only the three hopping parame-
ters ddσ , ppσ , and pdπ contribute significantly to the behavior
of states with energies close to the Fermi energy. This allows
one to use a restricted model that includes only these hopping
parameters.

As we do not attempt a microscopic model of the
physics underlying the phase transition and as we are mainly

interested in the electronic dynamics close to the small band
gap, which is the indicator of the CDW and typically opens at
high symmetry points, such as � or M points, we use a simple
two-band tight-binding model to capture the characteristics
of the carrier and band dynamics around the gap after an
ultrashort optical excitation. We explain the relation of this
ansatz to existing tight-binding models of transition-metal
dichalcogenides in Appendix A. For now, we take the model
tight-binding Hamiltonian in the form

HTB = ε
p
0

(
cps

k

)†
cps

k + εc
0

(
cds

k

)†
cds

k

+ 2Vpp[cos(kxex ) + cos(kyey)]
(
cps

k

)†
cps

k

+Vpd
(
cps

k

)†
cds

k + Vd pcds†
k bcps

k

+ 2Vdd [cos(kxex ) + cos(kyey)]
(
cds

k

)†
cds

k , (1)

where ε
p
0 , εd

0 are the on-site energies; Vpp, Vpd , Vd p, and Vdd

are the tight-binding coupling-elements; and e is the distance
vector between two neighboring unit cells. As we do not
include spin-orbit coupling, we do not explicitly write out the
spin dependence s in the following.

This model yields a conduction band mainly consisting of a
d-type transition metal orbital and a valence band mainly orig-
inating from a p-type chalcogen orbital. In the neighborhood
of this point the band structure has the shape of a Mexican
hat with a small band gap and pronounced band mixing for
the model parameters chosen here, see Sec. IV. Close to the
high symmetry point the band structure possesses rotational
symmetry. We stress that the simplicity of this model and the
high symmetry are not too restrictive, because a fast angular
redistribution of carriers due to electron-phonon scattering
[89] will smooth out the effects of anisotropy, and our results
should also be transferable to nonparabolic band structures.

B. Quasiparticle band dynamics and the effective Hamiltonian

This subsection is concerned with determination of the car-
rier states that accompany the onset of the phase change and
that we will sometimes refer to simply as “band dynamics.”
We do not attempt a microscopic ab initio description of the
coupled electron-ion system and the transition from normal
phase to charge-density wave phase. Instead, we use an ef-
fective Hamiltonian for the system in the charge-density wave
state that already incorporates the lattice distortion induced
by the electron-phonon interaction. Using the language of
dynamical correlation functions for the electron-phonon inter-
action, the coherent phonon is the lowest order contribution,
as shown, e.g., by Rossi and Kuhn [90]. In the next order one
finds scattering and dephasing terms, but only the coherent
phonon mode leads to a permanent ionic displacement and is
therefore important for the band-structure change. The ionic
displacement causes a change of the hybridization between
electronic orbitals centered at different ions, which changes
the effective Hamiltonian. Due to the dependence on the
phonon dynamics, the effective Hamiltonian becomes time
dependent.

We begin with the free phonon Hamiltonian and the
electron-phonon interaction which we will then specialize to
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the case of a coherent phonon. Free phonons are described by

Hpn = h̄
∑
q,λ

ωq,λ

(
b†

q,λbq,λ + 1

2

)
, (2)

where λ is the phonon mode. The electron-phonon coupling is

He-pn =
∑
q,λ

∑
k,b1,b2

gλ,b1,b2
q,k (bq,λ + b†

−q,λ)(ck+q,b1 )†ck,b2 ,

+ H.c., (3)

where gλ,b1,b2
q,k is the electron-phonon matrix element and b1,

b2 the band indices.
We now specialize the above expressions for a coherent

phonon (cpn) with q = 0 that leads to a distortion consistent
with the symmetry of the material, e.g., the A1g mode, in
which the two kinds of atoms are displaced in the unit cell.
The coherent phonon couples to the electrons by modulating
the p-d hybridization

He-cpn =
∑

k

gpd
0 (b0 + b†

0)
(
cp

k+0

)†
cd

k + H.c., (4)

where gpd
0 is the matrix element for the coupling of electrons

to the coherent phonon in the orbital basis. We assume for
simplicity that the corresponding matrix element is indepen-
dent of k. The interaction of electrons with such a coherent
phonon leads to a mean-field contribution,

H (mf)
e-cpn =

∑
k

∑
l1,l2

gl1l2
0 (B0 + B†

0)cl1†
k+0cl2

k + H.c., (5)

where B0 = 〈b0〉 is the coherent phonon amplitude and l1, l2 ∈
{p, d} denotes the orbital index. The mean-field part of the
coupling Hamiltonian to the coherent phonon does not con-
tain phonon operators and can be combined with HTB to an
effective Hamiltonian for the carrier system that describes the
states around the Fermi energy

Heff = HTB + H (mf)
e-cpn. (6)

As Heff is time dependent its eigenvalues εb,k and eigenvectors
�b,k(r) are calculated for every time step of the dynamical
calculation. Thus, matrix elements gb1b2

0 and ρ
b1b2
k generally

involve time-dependent basis states as will be discussed in
Appendix C. In this time-dependent eigenbasis, nb

k = ρbb
k can

be interpreted as the occupation of the state |b, k〉 at that
time and gb1b2

0,k the corresponding phonon matrix element. In

particular, the matrix element gpd
0 in the orbital basis is related

to matrix elements gcc
0,k and gvv

0,k in the time-dependent basis.
Assuming that the coherences in this equation of motion die
out faster than the dynamics of interest, we obtain the equation
of motion

d

dt
B0 = −(

iω0 + γ P
deph

)
B0 + 1

ih̄

∑
k

∑
b

[(
gbb

0,k

)∗
nb

k

]
= −(

iω0 + γ P
deph

)
B0

+ 1

ih̄

[∑
k

(
gcc

0,k

)∗
nc

k +
∑

k

(
gvv

0,k

)∗
nv

k

]
. (7)

The coupling matrix elements gpd
0 , which are off diagonal with

respect to the orbital index, influence the band occupations nb
k

via gbb
0,k matrix elements, which are diagonal with respect to

the band index and thus drive the coherent phonon amplitude
Eq. (7).

Counterintuitive to Eq. (7), where a compensation between
electron and hole contributions could be expected, we have an
additive contribution due to the different sign of the electron-
phonon coupling constant for the two bands after the basis
transformation. This leads to an additional contribution to the
gap closing by the carrier multiplication. This is explained in
more detail in Appendix B.

The contribution of the fully occupied valence band in
Eq. (7) is subtracted from the coherent phonon amplitude
because the effective Hamiltonian for the system in the CDW
state already incorporates the corresponding lattice distortion
induced by the electron-phonon interaction. In our two-band
model the hole distribution in the v′ band is neglected in the
calculation of the coherent phonon amplitude. If the optical
excitation would directly couple the conduction band c and
valence band v, then the effects of the band-gap narrowing
would be stronger for the same strength of the phonon cou-
pling constant. However, as we do not attempt a material
realistic description and instead focus on the photo-induced
band-gap narrowing by a coherent phonon mechanism in a
two-band tight-binding model, the electron-phonon coupling
constant is only an effective parameter to characterize the
strength of the interplay between band and carrier dynamics.
Effects of additional phonon modes or band contributions
would unnecessarily bedevil the understanding of the model
system and for the sake of simplicity are incorporated in this
effective parameter.

III. CARRIER DYNAMICS VIA EQUATION
OF MOTION TECHNIQUE

A. Optical excitation

We model the optical excitation after a recent experiment
on 1T-TiSe2 in Ref. [88], where carriers were excited with an
1.6-eV pulse around 200 meV above the Fermi level into a Ti
3d band around the M point. A sketch of the band structure
around such a high symmetry point is contained in Fig. 1. In
this region of the band structure, only a small band gap exists
between the Ti 3d band and a back-folded Se 4p band. As the
holes, which are likely created in a Se 4p(x, y) bands, never
appear close to the Fermi surface, we do not include these
band states in our two-band tight-binding model. Further, the
dispersions of the bands of interest are different (i.e., have
very different curvature in our simplified case), so that in
the first few hundred femtoseconds the excited holes have no
chance to reach the Fermi surface and no efficient contribution
to the ultrafast carrier and band response around Fermi surface
is possible, as found in experiment [88]. Thus, we model the
optical excitation between the conduction band “c” mainly
originating from the d-type orbital of atom species Ad and
a third band v′ below the Fermi surface by

d

dt
pb1b2

k

∣∣∣∣
opt

= −(
iωb1b2

k + γ P
deph

)
pb1b2

k

− i�b1b2
k

(
nb1

k − nb2
k

)
(8)
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FIG. 1. Band structure of the unexcited material on a high sym-
metry point in the Brillouin zone on the Fermi surface in radial
in-plane direction. The blue curves are the conduction band c and
the valence band v calculated from the tight-binding Hamiltonian.
The black curve is a third band v′ not included in the two-band
tight-binding model far below the Fermi surface used for the ultrafast
optical excitation with a 1.6-eV pulse (red arrow). The vertically
dashed line is the Fermi surface and the horizontal dashed line is
the high symmetry point in the Brillouin zone.

and

d

dt
nb1

k

∣∣∣∣
opt

= −(
i�b1b2

k pb1b2
k + H.c.

)
, (9)

where b ∈ {c, v′}, and we have again suppressed the spin
index.

The major contribution to the coherent phonon amplitude
dynamics originates from the excitation of electrons into the
conduction band. This is in accordance to situations where
optical excitation can trigger a displacive A1g CDW ampli-
tude mode by exciting electrons from bonding to antibonding
states, e.g., in 1T -TiSe2 [80]. It is also supported by other
investigations, which have found that the A1g mode shows
a strong coupling to conduction electrons [91,92]. While the
effects of excitonic contributions likely have to be included to
obtain quantitative agreement (e.g., for the speed of the gap
dynamics) [88], the qualitative picture of the onset of a phase
transition due to ultrafast optical excitation can be described
by coherent phonons. In such a model, carrier multiplication
also has an contribution to the dynamics of the coherent
phonon amplitude, as we show in the following.

B. Carrier-carrier Coulomb scattering

The carrier dynamics due to Coulomb scattering in the first
few hundred femtoseconds after the ultrafast optical excitation
is also included in the equation of motion for the density
matrix. As the Coulomb interaction leads to transitions be-
tween quasiparticle states, which change dynamically, we
use time-dependent Bloch states. This entails not only the

correction of the band energies but also a recalculation of
the interaction-matrix elements. In general, it is associated
with a transformation of diagonal density contributions nb

k
into off-diagonal coherence contributions in conjunction with
correlated correction-terms in the equation of motion. This
general consequences are described and the level of approx-
imation for the system under investigation is explained in
Appendix C, where we assume a sufficiently high dephasing
for these coherences, which is likely for the system under
investigation, and hence the off-diagonal coherence contribu-
tions in conjunction with correlated correction-terms in the
equation of motion can be neglected. Thus, we implement the
time-dependent basis in the description of the carrier dynam-
ics using time-dependent band energies and wave functions
including time-dependent Coulomb matrix elements due to
the basis transformation, which also include screening that
is time dependent due to the changes the density of excited
carriers. Importantly, the band dynamics here leads to an
additional redistribution of carriers into the new equilibrium
distribution and changes the ratio between intra and interband
scattering pathways.

The derivation of the Coulomb scattering equations itself
can be established in various ways, for instance, with cluster
expansion techniques or with the Green’s function technique
under the use of the Kadanoff-Baym equations by applying
the second-order Born approximation for the self-energy [13].
For the carrier-carrier scattering we neglect coherences and
obtain the following equation of motion for the Coulomb
scattering in Markov approximation:

d

dt
nb

k = 2π

h̄

∑
k2k3

∑
b2b3b4

Ŵ (N in − Nout )δ(ε) (10)

with

Ŵ = W bb2b3b4
kk2k3k4

(
W bb2b3b4*

kk2k3k4
− W bb2b4b3*

kk2k4k3

)
, (11)

N in = (
1 − nb

k

)
nb2

k2

(
1 − nb3

k3

)
nb4

k4
, (12)

Nout = nb
k

(
1 − nb2

k2

)
nb3

k3

(
1 − nb4

k4

)
, (13)

ε = εb
k − ε

b2
k2

+ ε
b3
k3

− ε
b4
k4

, (14)

where W bb2b3b4
kk2k3k4

are the screened Coulomb-matrix elements, nb
k

is the carrier distribution, and εb
k the corresponding energy on

k for the band b ∈ {c, v}. The spin-index s is neglected. We
would like to add a remark on the validity of the Markov
approximation, which is usually based on time-independent
energies. The time dependence in quasiparticle bands affects
the energy conserving δ function, i.e., the spectral part of
Eq. (10). Even though the changes in quasiparticle bands
described below are not small, the heated quasiequilibrium
that results after optical excitation is more influenced by the
carrier redistribution in the bands, i.e., the kinetic part of
Eq. (10). We therefore keep Eq. (10) in the Markov form with
the energy-conserving δ function.

The screened Coulomb potential is

W bb2b3b4
kk2k3k4

=
∑

q

w(q)Ibb4
kk4

(q)Ib2b3
k2k3

(−q) (15)
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(a) (c)(b) (d)

FIG. 2. Schematic picture of (a) the optical excitation, (b) impact ionization processes, (c) Auger recombination processes, and (d) the
quasiequilibrium situation in the quenched CDW phase, which is reached a few hundred fs after the optical excitation. The red bands are
valence bands and the blue band is the conduction band. For the transitions in (a)–(c), initial carrier states are denoted by open circles and
final states by filled circles. For the quasiequilibrium situation in (d) occupied electron and hole states are indicated by open and filled circles,
respectively.

with the overlap integrals

Ibb4
kk4

(q) =
∫

�b
k(r)∗eiqr�

b4
k4

(r) d3r (16)

and w(q) = ε−1(q)v(q). Further, �b
k(r) are the eigenfunc-

tions of the time-dependent tight-binding Hamiltonian in
Eq. (6), v(q) is the unscreened Coulomb potential including
a background dielectric constant εb, and A the normalization
area.

In the derivation of the Coulomb scattering equations,
the screened Coulomb potential can be naturally included. The
screening of the Coulomb interaction is time dependent as the
density of excited carriers changes. This effect is taken into
account using the static limit of Lindhard dielectric function

ε(q) = 1 − 1

A

∑
k,b

V bbbb
k,k−q,k,k−q

nλ
k−q − nλ

k

ελ
k−q − ελ

k

, (17)

where V bb2b3b
k,k2,k3,k4

are the Coulomb-matrix elements calculated
from the unscreened Coulomb potential v(q).

IV. NUMERICAL RESULTS

A. Overview of calculational setup

To investigate the ultrafast response of a small band-gap 2D
material after an ultrafast optical excitation, and particularly
of the role of impact ionization and carrier multiplication
in the conduction band, we assume the setup shown in
Fig. 1, which we discuss here first. From the tight-binding
Hamiltonian Eq. (1) from Sec. II A, we obtain two Mexican-
hat-shaped bands close to the Fermi surface, a conduction
band “c” and a valence band “v.” Further, we assume a lattice
temperature of 100 K and the band gap is measured as the
nearest distance between the two Mexican-hat-shaped bands,
which is 100 meV for the unexcited band structure. The lattice
temperature is below the transition temperature and the band
gap is adapted to that of the CDW phase of a typical material
like TiSe2 as reported, for example, in Ref. [60]. The optical
excitation is modeled as originating from a third band “v′” not

included in the two-band tight-binding model, see Sec. III A.
As indicated in Fig. 1, the v′ band is far below the Fermi
surface and the ultrafast optical excitation by a pulse with
a 1.6-eV photon energy excites carriers into the conduction
band around 200 meV above the Fermi surface as measured
by trARPES experiments on TiSe2 reported in Ref. [88]. For
the unexcited material we assume Fermi distributions and
thus obtain a nearly empty conduction band with negligible
band corrections due to coherent phonons, see Sec. II B, and
a weak screening.

An overview of the carrier and band dynamics that we
study quantitatively in the following is given in Fig. 2. After
the ultrashort optical excitation shown in Fig. 2(a), different
effects are indicated in Figs. 2(b)–2(d). The band dynamics
induced by coherent phonons is shown as the narrowing
of the gap and a change of the band curvature. The band
dynamics are coupled to carrier redistribution processes due
to Coulomb scattering. Besides carrier-carrier intraband scat-
tering processes, interband scattering processes such impact
ionization as illustrated in Fig. 2(b) and the reverse process,
Auger recombination, as depicted in Fig. 2(c), are included
in our treatment of Coulomb scattering, see Sec. III B. A few
hundred femtoseconds after the optical excitation a quasiequi-
librium in a quenched CDW phase is reached, as illustrated in
Fig. 2(d).

B. Characteristics of band and carrier response

First, we discuss the essential characteristics of the dynam-
ical results for the excitation described above. A technical
aspect is to clarify and investigate the effect of the basis trans-
formation of the electron-phonon matrix element between the
time-dependent basis of band states and the atomic eigenba-
sis, which creates k-dependent phonon matrix elements from
initially constant values in the atomic eigenbasis.

The Mexican-hat-shaped electronic band structure shown
in Fig. 1 is modeled using the tight-binding parame-
ters ε

p
0 = 1.95 eV, εd

0 = −1.95 eV for the on-site energies
and Vpp = −Vdd = −0.5 eV, Vpd = 0.05 eV for the coupling
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)

FIG. 3. Band dynamics (top) and carrier distribution in the con-
duction band (bottom) at −25 fs (solid green), 25 fs (dashed black),
100 fs (dotted black), 175 fs (solid black), and 250 fs (dashed red)
after an ultrashort optical excitation by a σT = 14 fs pulse centered at
0 fs. Between -25fs and 25 fs the optical excitation mainly determines
the carrier dynamics and the nonequilibrium carrier distribution lead
to a closing of the gap. After 25 fs the optical excitation does not
contribute any more. Now the carrier scattering and the effect of gap
closing increase the impact ionization, which contributes to a further
gap closing until a quasiequilibrium after about 200 fs is reached.

elements. For the coherent phonons, we take h̄ω0 = 12.4 meV
and γ P

deph = 5.0 ps−1. The electron-phonon matrix element
controls the influence of the optical phonon on the band
dynamics and plays an important role in our model. To study
its influence, we present calculations using the values of
gpd

0 = 8.0 meV and gpd
0 = 10.0 meV in the orbital basis for

this matrix element. The optical excitation is patterned after
the experimental conditions in Ref. [88] and taken to be a
Gaussian pulse with 1.6 eV photon energy, temporal width
of σT = 14 fs assuming a Rabi energy h̄�0 = 10 meV. This
results in an excitation of electrons in the conduction band
around 200 meV above the unexcited Fermi surface.

After analyzing the consequences of the k-dependent basis
transformation we will introduce as a further simplification
an averaged value of the electron-phonon matrix element and
neglect the influence of the basis transformation. In this case
we treat the phonon matrix element as a parameter with g̃cc

0 =
8.0 meV.

1. Band and carrier response after optical excitation

Figure 3 shows essential characteristics of the dynamical
results via snapshots of the band dynamics and conduction-
electron dynamics for the setup with gpd

0 = 10.0 meV. For
this parameter choice, the effects of band renormalization and
carrier multiplication are clearly visible. Before the optical
excitation the valence band is full and the conduction band
nearly empty, as sketched in Fig. 2(a). The band gap of the

Mexican-hat-shaped bands is 100 meV at the crease of the
Mexican hat k0 � 0.35 nm−1. At around 0 fs the ultrafast
optical pulse excites carriers from the lower-lying v′ band
into the conduction band c at around 200 meV above the
unexcited Fermi energy, cf. Fig. 1. Between −25 fs and 25 fs
mainly optical excitation occurs but also carrier scattering
and the onset of impact ionization. The process of impact
ionization is sketched in Fig. 2(b). The combination of these
effects and the Mexican-hat band structure lead to a small
second peak at the band bottom k0. Due to the comparatively
large band gap of 100 meV, the impact ionization initially is
not very efficient. However, after 25 fs, i.e., after the optical
excitation is over, the hot carriers in the conduction band lead
to a gap closing due to the coherent phonon dynamics and
a more efficient screening. The results of Fig. 3 demonstrate
that, especially at early times, impact ionization processes,
cf. Fig. 2(b) dominate over Auger scattering, cf. Fig. 2(c).
In particular, the gap closing leads to a more efficient impact
ionization, as will be discussed in detail in connection with
Fig. 5. Figure 2 together with Fig. 5 support the following sce-
nario, which is sketched by the sequence of Figs. 2(a)–2(d):
Hot carriers relax from a high-energy peak induced by the
optical excitation via impact ionization toward a peak at lower
energies closer to the band bottom. The impact ionization
leads to carrier multiplication in the conduction band, which
results in a further gap closing, which is also sketched in
Figs. 2(a)–2(d). The smaller gap makes impact ionization even
more efficient, which speeds up the relaxation of hot carriers.
This is visible in the distances between the snapshots in Fig. 3
but more clearly in Fig. 5 below. Thus there is a mutual
amplification between gap closing and impact ionization. The
latter occurs predominantly at the band bottom, i.e., at k0 of
the Mexican hat, and thus scatters electrons into the lower
energy peak at the band bottom of the conduction band in
Fig. 3 until no more phase space for electron-electron scatter-
ing is available and a quasiequilibrium distribution is reached,
see Fig. 2(d).

We next investigate details of the carrier and band-gap
dynamics for the same parameters as in Fig. 3, which are
marked by solid black lines in Figs. 4 and 5. We defer a
discussion of the different parameters (dashed and red curves
in Figs. 4 and 5) to the next subsection. The solid black
lines in Fig. 4 shows the carrier distribution of the conduction
and valence band 250 fs after the optical excitation. As the
optical excitation is into the conduction band, the increase
of the hole density around the top of the valence band k0

in the first 250 fs after the optical excitation indicates the
effect of impact ionization as all the carrier dynamics is
exclusively due to Coulomb scattering. In Fig. 5 the solid
black lines depict the time dependence of the conduction-band
carrier density and the band gap. The fast increase of the
carrier density due to the ultrafast optical excitation occurs
around the center of the pulse at 0 fs. This induces a gap
closing via coherent phonons that is clearly visible for times
later than 50 fs. Finally, and importantly, there is a delayed
increase of the carrier density that is exclusively due to impact
ionization from carriers originating from the valence band.
This impact ionization therefore effectively acts as carrier
excitation mechanism which drives the distributions in the
conduction and valence bands further away from equilibrium.
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n v
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FIG. 4. Carrier distribution in the conduction and valence band
before and long after the pulse. t = −25 fs (green dashed line) and
t = 250 fs for the setup with gpd

0 = 10.0 meV (solid black line),
gpd

0 = 8.0 meV (dashed black line), and g̃cc
0 = 8.0 meV (solid red

line). As electrons are optically excited into the conduction band, the
valence band dynamics are exclusively due to interband scattering,
i.e., carrier multiplication. The setups with gpd

0 = 10.0 meV and
g̃cc

0 = 8.0 meV exhibit similar carrier distributions after 250 fs.

The coupling of the nonequilibrium carriers to the coherent
phonon increases the band-gap shrinkage further.

2. Influence of electron-phonon matrix elements on response

In Figs. 4 and 5 we study the influence of the electron-
phonon coupling and also the consequence of using an aver-
aged value of the phonon matrix element g̃0. We first replace
the electron-phonon matrix elements gpd

0 = 10 meV used so
far by an averaged matrix element g̃cc

0 = 8.0 meV. With this
replacement, we obtain similar final carrier distributions after
250 fs as shown in Fig. 4, similar carrier densities and band-
gap dynamics as shown in Fig. 5 and thus also a similar
carrier multiplication of slightly above 70% at 250 fs. To
show the sensitivity of the results on the electron-phonon
coupling matrix element, we also show a calculation with
gpd

0 = 8.0 meV. This leads to a sizable difference in the final
carrier distributions, reduces the band-gap shrinkage and also
the carrier multiplication to about 50% for the setup with
gpd

0 = 8.0 meV. Therefore, for a simulation of real materials
and their electron-phonon matrix elements it is important to
take into account the basis transformation. However, in the
spirit of our model, we will use averaged electron-phonon
matrix elements, which are capable of reproducing the dy-
namical calculations, albeit for a slightly different value of
the electron-phonon matrix elements. This is sufficient for the
more qualitative analysis of the present paper.

In Fig. 6 we analyze the influence of different values of
the averaged electron-phonon coupling matrix element g̃0 by

Ba
nd

 g
ap

 (m
eV

)
Ca

rr
ie

r d
en

sit
y

( x
 1

010
cm

-2
)

Time (fs)

FIG. 5. Gap closing (bottom) and carrier density in the conduc-
tion band (top) vs time. After the optical excitation an induced gap
closing and a delayed carrier multiplication correlated to the gap
closing is visible for the setup with gpd

0 = 8.0 meV (dashed black
line), gpd

0 = 10.0 meV (solid black line), and g̃cc
0 = 8.0 meV (solid

red line). The setup with gpd
0 = 10.0 meV and g̃cc

0 = 8.0 meV have
a similar time evolution of the carrier density and the gap closing.
Between 100 fs and 200 fs (short times after optical excitation) only
small derivations are visible, which vanish after 200 fs.

comparing g̃cc
0 = 8.0 meV, 4.0 meV, and 6.0 meV. Because

the quenching of the insulator phase is due to the coherent
phonon dynamics, the gap closing depends on the strength of
the electron-phonon matrix. Due to efficiency of the coupling
between carrier and band dynamics, the mutual amplification
between impact ionization and gap closing leads to a gap
minimum of 15 meV for the setup with g̃cc

0 = 8.0 meV and
58 meV for the setup with g̃cc

0 = 6.0 meV and 81 meV for
the setup with g̃cc

0 = 4.0 meV. Besides the gap closing also
the carrier multiplication is visible in Fig. 6 via the time
evolution of the carrier density in the conduction band. After
300 fs a carrier multiplication of 74% (g̃cc

0 = 8.0 meV), 42%
(g̃cc

0 = 6.0 meV), and 26% (g̃cc
0 = 4.0 meV) is reached.

C. Comparison to experimental results and influence
of different excitation scenarios

An important objective of this paper is to provide results
that can be compared with recent experimental photoemis-
sion data. In particular, the energy distribution curves of
photoemitted electrons cannot unambiguously be interpreted
without some theoretical model [88]. As we cannot compute
the cross sections that would be needed for a quantitative
comparison with the energy distribution curves, we present a
qualitative comparison using a broadening of the conduction
and valence distribution by the typical experimental energy
resolution of 150 meV (FWHM). The broadened distributions
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FIG. 6. Gap closing (bottom) and carrier density in the conduc-
tion band (top) vs time for setups with averaged phonon matrix ele-
ments of 4.0 meV (dotted), 6.0 meV (solid), and 8.0 meV (dashed).

are defined by

Nb(E ) =
∑

k

nb
k gE

(
εb

k − E
)
, (18)

where gE (εb
k − E ) is a Gaussian of width E . The important

point for the comparison with experiment are the energy-
dependent features, not the numerical value of the Nbs.

In the following, we first illustrate the spectral and kinetic
response with the help of the broadened distributions using
our two-band model and the electron-phonon matrix element
gpd

0 = 10.0 meV in the orbital basis including the basis trans-
formation of the electron-phonon matrix elements. We first
show results for our model using the band gap of TiSe2 in the
charge-density wave phase which are intended to be compared
to electron distribution curves for small band-gap materials.
Afterward we analyze the dependence of the response on
the optical excitation by a parameter study for different Rabi
frequencies and excitation energies.

The broadened distributions for conduction and valence
bands, together with the band dispersions are shown in Fig. 7
for different times. We focus on the distribution of conduction
electrons first. In the first 25 fs, the ultrafast optical excitation
creates a peak in this distribution function at 200 meV above
the Fermi energy. After 100 fs the hot-carrier relaxation due
to impact ionization induced by the gap closing is clearly
visible in the broadened distribution function. However, in
a Mexican-hat-shaped band structure the interpretation of
the broadened electron distribution is not straightforward
because a time-dependent increase in the conduction band is
a combination of band-dispersion effects and the on-going
carrier multiplication. As we have seen in Figs. 4 and 5 the
effects of carrier multiplication dominate the increase of the

N
c

k
(n

m
-1

)
Energy (meV)

N
v

FIG. 7. Time-dependent band dispersion (top), broadened carrier
distribution function in the conduction band (middle), and valence
band (bottom) at 25 fs (dashed black), 100 fs (dotted black), 175 fs
(solid black), and 250 fs (dashed red) after an ultrashort optical
excitation at 0 fs. After 200 fs a quasiequilibrium is almost reached in
both bands. The dynamics of the distribution function in the valence
band is mainly due to the gap closing and reshaping of the bands as
the effect of impact ionization is hardly visible due to the broadening.
Note that for a better comparison between the Nc and Nv curves, Nc

has been multiplied by a factor of 16.

carrier signal at later times. The mutual amplification between
impact ionization and gap closing, which has already been
discussed, continues as shown by the snapshots for the band
and distribution functions in Fig. 7 until there is no more
phase space for electron-electron scattering available and a
quasiequilibrium distribution is reached after 250 fs. Starting
from a value of the band gap that is realistic for a small
band-gap material like 1T -TiSe2 we thus obtain in our model
calculation a signal of ultrafast carrier dynamics that is in
agreement with experimental results, such as those reported in
Ref. [88]. Our calculated “signal” can be explained in terms of
a mutual amplification between gap closing, which goes along
with the quenching of the insulator phase, and impact ioniza-
tion. In the present paper, the band-gap dynamics are due to
coherent phonons and are therefore applicable to a Peierls-like
insulator. It is to be expected that a similar connection between
gap closing and impact ionization occurs also for an excitonic-
insulator phase-change mechanism. It may be even more
pronounced in the excitonic-insulator case, because there the
characteristic response times are faster than the response
time of a Peierls insulator, cf. Ref. [14], which indicates
that the important electron-electron coupling matrix elements
in that case are larger. However, because of the slower gap
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response in the Peierls (electron-phonon coupling) case, the
connection between gap closing and carrier multiplication can
be more easily disentangled in the model used here.

Turning to the broadened valence band distributions,
shown in Fig. 7(bottom), the holes at the top of the Mexican-
hat-shaped valence band created by impact ionization are
hardly visible. This is because the broadening of the distribu-
tion function almost completely removes the dip in the micro-
scopic valence band distributions nv shown in Fig. 4. This is
in agreement with our earlier study using a parabolic valence
band and experimental results in Ref. [88]. The dynamics of
the Mexican hat introduces new features, such as the bump
of the broadened valence band distribution around the top of
the filled valence band, which is due to the changing band
dispersion. The shift of the broadened distribution function
is due to the band shift of the valence band as shown in
Fig. 7(top). These results give a simple microscopic picture
of electronic dynamics underlying the electron distribution
curves observed, e.g., in Ref. [88] for TiSe2. We plot and
discuss the band and carrier dynamics in this paper up to
about 250 fs, which is the onset of the phase transition. At
longer times the system can go further into a different phase
where the back-folded valence band disappears or the system
can return to the insulator phase by cooling processes due to
carrier-phonon scattering. Both effects are not included in the
present study and are left for future investigations.

After analyzing the characteristic response of the system,
we study its dependence on the optical excitation by varying
the Rabi frequency and photon energy of the ultrafast optical
excitation. The quantitative differences between a calculation
with and without the electron-phonon basis transformation are
insignificant for this analysis, and for the sake of simplicity,
we use an averaged electron-phonon matrix element g̃cc

0 =
6.0 meV. We take this as a reference value in the following
parameter study as it is an intermediate value of the coupling
so that a reduction and an increase still show an interesting
gap closing dynamics. The value of gpd

0 = 10.0 was chosen in
Fig. 7 because it exhibits a relatively fast dynamics (of the gap
closing and the carrier dynamics) for which structures in the
distribution function are most easily visible.

In Fig. 8 we compare different excitation photon energies,
which lead to different energies at which the electrons are
created in the conduction band. We call this the excitation
energy EX and measure it from the unexcited Fermi energy
EF, as sketched in Fig. 3. We analyze the cases of EX =
150 meV, 200 meV (which has been used so far and con-
stitutes our reference setup in the following), and 250 meV.
For the setup with EX − EF = 250 meV, carriers are excited
around 200 meV above the conduction-band bottom; the
distance to the band bottom is reduced to 100 meV for the
setup with EX − EF = 150 meV. As shown in Fig. 8(top)
the carrier density created during the optical pulse in the
conduction band is only slightly different for the three setups,
but its subsequent time evolution is different. However, the
corresponding band gap changes for the different excitation
energies in Fig. 8(bottom) deviate only by around 20 meV,
i.e., 10 meV for each band, which is much smaller than
the difference of the excitation energies. The most important
contribution to the difference in carrier densities for the three
excitation energies must therefore be due to different carrier
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FIG. 8. Gap closing (bottom) and carrier density in the con-
duction band (top) vs time for different excitation energies of 150
(dotted), 200 (solid), and 250 (dashed) meV above the Fermi energy.

multiplication effects, and the impact ionization is most effi-
cient for the setup with EX − EF = 250 meV. Figure 8 further
shows that the efficiency of the mutual amplification between
impact ionization and gap closing increases nonlinearly. After
250 fs the values for the the carrier multiplication are 73%,
42%, and 14%, respectively, for the excitation energies of
EX − EF = 250, 200, and 150 meV. The corresponding band
gaps are 52, 60, and 67 meV. This nonlinearity is mainly
due to repeated interband scattering processes that become
possible for electrons excited at higher energies. During their
scattering dynamics toward the band bottom these electrons
can contribute to the carrier multiplication process twice or
more times.

In Fig. 9 we investigate the dependence of the dynamics
on the excitation strength. We compare three amplitudes of
the Rabi energy h̄�0: 6.6, 10.0 (our reference setup and the
value used so far), and 15.0 meV. In contrast to Fig. 8, the
carrier density created in the conduction band by the optical
excitation is different for the three cases. The carrier density
is the driving force of the coherent-phonon amplitude, which
induces an atomic displacement responsible for the band-
gap dynamics, so that we obtain a higher initial band-gap
reduction for larger values of h̄�0 and this band gap remains
smaller due to the mutual amplification between gap closing
and impact ionization. The gap closing evidently saturates
in Fig. 9(bottom). The effect of impact ionization can be
assessed from the carrier multiplication in Fig. 9(top), which
is 33%, 42%, and 43%, respectively, for Rabi energies h̄�0 =
6.6, 10.0, and 15 meV. This carrier multiplication shows only
a comparatively small increase between the two smaller Rabi
energies, whereas we have a pronounced difference in the
gap closing. The difference between the dynamical scenarios

035431-9



MICHAEL AND SCHNEIDER PHYSICAL REVIEW B 100, 035431 (2019)

Ca
rr

ie
r d

en
sit

y
( x

 1
010

cm
-2

)
Ba

nd
 g

ap
 (m

eV
)

Time (fs)

FIG. 9. Gap closing (bottom) and carrier density in the conduc-
tion band (top) vs time for different Rabi energies of 6.6 (dotted),
10.0 (solid), and 15.0 (dashed) meV.

shown in Fig. 9 is therefore mainly due to the different gap
closing related to the initial photoexcited carrier density and
the saturation of the gap closing is mainly responsible for
the saturation of the carrier multiplication. Parenthetically, we
remark that a saturation of the gap quenching of the charge-
density wave state has been observed in the charge-density
wave material RTe3 where only an incomplete suppression
of the charge-density wave occurs; here we find an indica-
tion of a saturation for comparatively small electron-phonon
coupling [93].

D. Influence of different band shapes

As mentioned, we are interested in elucidating the influ-
ence of the band structure on measurable quantities, in par-
ticular energy distribution curves produced by photoemission
experiments. In order to understand the calculated broadened
distribution functions that can be compared with experiment,
we here first discuss the influence of the band shape on the
carrier dynamics without added broadening and use for the
comparison a parabolic band and the Mexican-hat-shaped
band that we have based our calculations on so far. For a
meaningful comparison, we define the parabolic band setup
using all band parameters of the Mexican-hat-like band setup,
except a change of the on-site energies ε

p
0 and εd

0 from 1.95 to
2.0 eV. In this way, the parabolic and the Mexican-hat-shaped
bands have the same band gap, but in the parabolic case it
occurs at k = 0 and in the Mexican-hat band case at k0. The
band structures are plotted in Figs. 12(top) and 13(top) as
dotted lines.

In Figs. 10 and 11 the gap closing and carrier density in
the conduction band vs time is shown for the parabolic and
Mexican-hat-shaped band structures with g̃cc

0 = 6.0 meV and
g̃cc

0 = 8.0 meV, respectively. Due to the different band shape,

FIG. 10. Gap closing (bottom) and carrier density in the con-
duction band (top) vs time for a parabolic (red) and a Mexican-hat-
shaped (black) band with phonon matrix element g̃cc

0 = 6.0 meV.

the “tuning” of the band dispersion and the optical excitation
is slightly different. We have already seen in Fig. 8 that such
a small difference in excitation energy will also lead to a
slightly different optically excited carrier density for the two
band structures. However, the further time evolution of the
carrier density is mainly determined by the different band
dispersions. The origin of the steeper band dispersion for
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FIG. 11. Gap closing (bottom) and carrier density in the con-
duction band (top) vs time for a parabolic (red) and a Mexican-hat-
shaped (black) band with phonon matrix element g̃cc

0 = 8.0 meV.
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FIG. 12. Band dynamics (top) and broadened carrier distribution
function in the conduction band (middle) and valence band (bottom)
at 25 fs (dashed) and 250 fs (solid) after an ultrashort optical
excitation at 0 fs for a parabolic (red) and a Mexican-hat-shaped
(black) band with phonon matrix element g̃cc

0 = 6.0 meV.

the Mexican-hat-shaped band is the characteristic band-gap
minimum at a k0 �= 0 (i.e., not at the high-symmetry point)
and a local band-gap maximum at k = 0 (the high symmetry
point) in contrast to the parabolic case, where the global
band gap minimum is at k = 0. The efficiency of the impact
ionization depends on the size of the band gap and the k-
dependent Bloch wave functions, which include band mixing
effects, as well as the available phase space for the scattering
process. The band mixing is connected to the position of the
band-gap minimum and, thus, different between the parabolic
and Mexican-hat setups.

These qualitative differences between the band structures
should lead to different carrier dynamics, and we compare
these dynamics in Figs. 10–13. In a parabolic band, the hot
carriers relax directly into the high-symmetry k = 0 point,
while in the case of the Mexican-hat-shaped band, hot carriers
relax more into the band minimum k0 and reach the local
maximum at the high-symmetry k = 0 point only with a
delay. Therefore, band-gap minima on different k positions
combined with a different k dependence of the available phase
space results in different efficiency for impact ionization for
equal band-gap minima. We first focus on Figs. 10 and 11
where we compare the gap closing and conduction-band
carrier density between Mexican-hat and parabolic bands for
different electron-phonon couplings. A higher impact ion-
ization efficiency for the Mexican-hat-shaped band induces
a difference in the carrier density between the two band

FIG. 13. Band dynamics (top) and broadened carrier distribution
function in the conduction band (middle) and valence band (bottom)
at 25 fs (dashed) and 250 fs (solid) after an ultrashort optical
excitation at 0 fs for a parabolic (red) and a Mexican-hat-shaped
(black) band with phonon matrix element g̃cc

0 = 8.0 meV.

structures, as can be seen from splitting of the curves above
100 fs in Figs. 10 and 11, respectively. The mutual am-
plification between impact ionization and band-gap closing
amplifies the difference in the temporal evolution of the band
gap (see splitting of the curves at a slightly later time around
150 fs) and of the impact ionization efficiency. Therefore,
the difference between the two band structures increases for
band gap and conduction-band carrier density with time. In
Fig. 10 this results in a band gap of 60 and 62 meV and a
carrier multiplication of 42% and 35% (factor: 1.2) for the
Mexican-hat structures compared to the respective calculation
with the parabolic bands. In Fig. 11 for the larger electron-
phonon coupling g̃cc

0 = 8.0 meV we have band gaps of 15 and
26 meV after 250 fs and carrier multiplications of 74% and
50% (factor: 1.5) for the Mexican-hat and parabolic bands, re-
spectively. Depending on the electron-phonon matrix element
the influence of the band shape can therefore be substantial.

In Figs. 12 and 13 we compare the time evolution of
the band structure and broadened carrier distributions for the
Mexican-hat and parabolic bands. As the broadened distri-
butions average over all k states in a given energy range set
by E in Eq. (18) they are influenced both by the carrier
redistribution dynamics (i.e., carrier multiplication) and by
the band structure, especially if the band structure changes. In
our earlier paper [88], we presented a simple parabolic model
without band mixing and without a dynamically changing
band structure. With the present calculation for parabolic and
Mexican-hat-shaped bands and a consistent inclusion of band
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mixing effects, we can investigate the contribution of the
dynamical band structure to the electron distribution curves.

Figures 12 and 13 are for different electron-phonon cou-
plings and are obtained from the same dynamical calculations
as Figs. 10 and 11, respectively. For a broadening that cor-
responds to state-of-the-art photoemission experiments, the
broadened carrier distributions created by the optical excita-
tion around 25 fs are similar for the Mexican hat and parabolic
bands, but a difference of the weighted carrier distribution in
the conduction band can be seen after 250 fs. In the parabolic-
band case, there are only rigid band shifts and negligible
changes in band curvature so that the change in the broadened
distribution reflects essentially only the redistribution by scat-
tering processes and the increase in the number of carriers due
to carrier multiplication. In the Mexican-hat band structure,
there are pronounced changes in the band curvature that also
influence the broadened distribution functions. While there
are quantitative differences to the parabolic case, we observe a
similar behavior of the broadened distribution function that is
in qualitative agreement with the carrier multiplication factors
determined from Figs. 10 and 11. We conclude that the behav-
ior of computed broadened distribution functions, which are
the quantity we compare to experimental electron-distribution
curves and which are similar to experimental results on TiSe2,
are an unambiguous indicator of carrier multiplication. The
energy-dependent signatures found in Figs. 12 and 13 are
only influenced to a small extent by changes in the spectral
properties of the carriers, even though the dynamical changes
in the curvature of the Mexican-hat band-structure model
likely overestimate those occurring in a real small band-gap
material.

In the valence band, a characteristic bump below the Fermi
energy appears only in the broadened distribution function
in the Mexican-hat-shaped band. The erosion of this bump,
which is not visible in the parabolic band, indicates the effect
of carrier multiplication. In TiSe2 the Se 4p band, as opposed
to the Ti 3d , does not show a Mexican-hat-like structure and
therefore it is difficult to observe characteristics of impact
ionization in the valence band with the energy broadening
introduced by current experimental photoemission setups.
Because the temporal evolution of the valence band signal is
more influenced by the band and less influenced by the carrier
dynamics, the difference between different band shapes, in
particular in Fig. 12, is more pronounced than the differences
between the two snapshots at different times.

V. CONCLUSION

Motivated by recent experimental time-resolved photoe-
mission studies of the carrier and band dynamics in 1T-TiSe2,
we investigated carrier multiplication dynamics due to impact
ionization after ultrafast optical excitation in a model band
structure of a quasi-two-dimensional material with small band
gaps. We analyzed the coupling to coherent phonons, which
mimics the onset of the quenching of the insulator phase,
as a concrete mechanism for the photo-induced band-gap
narrowing close to the Fermi surface. An important goal of our
study was to explore the consequences of the combined carrier
and band-structure dynamics on experimentally accessible
quantities, in particular electron distribution curves.

We used a dynamical approach that includes time-
dependent band energies and wave functions, which make the
Coulomb-matrix elements and the static screening effectively
time dependent. Using this model, we were able to quantify
the contribution of impact ionization in the ultrafast response
of small band-gap 2D materials and discussed the impor-
tance of the interplay between carrier and band dynamics.
We discussed the signatures of impact ionization and gap
closing in photoemission electron-distribution curves. We also
investigated the influence dynamical changes in the band
curvature, as these changes will also influence energy distri-
bution curves and cannot, at present experimental resolutions,
be distinguished from carrier multiplication effects. To this
end, we compared a parabolic band structure with that of a
Mexican hat and found that the characteristic change in energy
distribution curves in, e.g., TiSe2 [88], are indeed mainly due
to carrier multiplication effects, and only to a small extent
due to changes in the spectral function of the electrons. Our
computed energy-dependent distribution curves compare well
with experiments on TiSe2. Although we consider a specific
coupling mechanism to a coherent phonon and have not yet
included excitonic effects, we believe that our results capture
a general trend in small band-gap 2D materials as far as carrier
multiplication vs band gap dynamics go.

APPENDIX A: TIGHT-BINDING MODEL

For our tight-binding model we assume a quasi-two-
dimensional material like TMDCs with two kind of atoms Ad

and Ap. In the case of a TMDC, atom sort Ad would be the
transition metal atom (e.g., Ti) with d-type or f -type valence
orbital and atom sort Ap would be the chalcogen atoms (e.g.,
Se) with p-type valence orbitals. The unit cell would consist
of one Ad and two Ap atoms. For example, the lattice vectors
L1 = (l1,−l2, 0), L2 = (l1, l2, 0), and L2 = (0, 0, l3) would
span a unit cell with the atom basis Bd = (0, 0, 0) for Ad ,
Bp,1 = (b1, b2, b3) for the first Ap, and Bp,2 = (b1, b2,−b3)
for the second Ap. The nearest-neighboring Ad or Ap atoms
in the same plane would have a hexagonal or tetragonal
symmetry. To model an accurate band structure for a TMDC
around the Fermi surface the three t2g (i.e., dxy, dzx, dxy) and
eventually the energetically higher two eg (i.e., d3z2−r2 , dx2−y2 )
orbitals of the atom of sort Ad and the six p-orbitals of the two
atoms of sort Ap might be considered [76].

Weak interactions between neighboring orbitals are usu-
ally neglected and the remaining interactions are expressed
in terms of Slater-Koster integrals [94]. The bond integrals
between two orbitals are distinguished among σ , π , or even-
tually δ bondings. For example, as described in Refs. [74,76]
for TiSe2, only the three hopping pathways ddσ , ppσ , and pdπ

contribute significantly to the behavior of charges close to the
Fermi energy. The resulting band structure around the high-
symmetry points under investigation of the small band-gap
TMDCs is often highly unisotropic like in TiSe2 as reported,
e.g., in Ref. [60]. For this material, the nonisotropic band
dispersion of the Ti 3d band is nonparabolic, i.e., an ellip-
soid, and has a Mexican-hat-shaped geometry in the CDW
insulator phase.

Regarding the investigated band dynamics of such a ma-
terial in the insulator phase, we avoid a material realistic
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description, where the insulator phase is determined from
the normal phase, to investigate the role of different kinds
of interactions in the phase transition. Instead, we model the
TB Hamiltonian already in the insulator phase and describe
the band dynamics via an effective atomic displacement as
disturbance of the insulator phase. To model the small band
gap around the Fermi surface, we use a simple two-band
tight-binding model capable to describe the characteristics
of the carrier and band dynamics of such a material after
an ultrashort optical excitation. Thus, we obtain an isotropic
band shape around a high-symmetry point. The validity of this
assumption is additionally motivated at the end of this section.

To transform a more material-realistic TB model into a
simpler model with high symmetry capable of describing
the characteristics of the carrier and band dynamics close
to the important high-symmetry point, a lot of more- or
less-sophisticated transformation can be done. A simple way
of doing it is to disregard the t2g and to consider only one
d orbital, e.g., dxy, of Ad and one p orbital, e.g., py, of
Ap and give only Vppσ , Vd pσ , and Vddσ finite values. In the
spirit of such a transformation, we use the following effective
tight-binding Hamiltonian to describe the investigated small
band-gap insulator phase:

HTB = ε
p
0 cps†

k cps
k + εc

0

(
cds

k

)†
cds

k

+ 2Vpp[cos(kxex ) + cos(kyey)]
(
cps

k

)†
cps

k

+Vpd e−ik·dpd
(
cps

k

)†
cds

k + Vd peik·dpd
(
cds

k

)†
cps

k

+ 2Vdd [cos(kxex ) + cos(kyey)]
(
cds

k

)†
cds

k , (A1)

where ε
p
0 , εd

0 are the on-site energies; Vpp, Vpd = Vd p, Vdd are
the tight-binding coupling-elements; and dpd is the relative
distance vector between the two effective atoms within the
unit cell. As we do not include spin-orbit coupling, we do
not explicitly write out the spin dependence in the following.
The outcome is a conduction band mainly originating from
a d-type transition metal orbital and a valence band mainly
originating from a p-type chalcogen orbital. In the region
of the examined high-symmetry point, we obtain an angular
symmetric Mexican-hat-shaped band with a small band gap
and a high band mixing. However, assuming a fast angular
redistribution of carrier via electron-phonon scattering as, e.g.,
reported in Ref. [89], the fundamental results of this investi-
gation are also transferable to nonparabolic band structures.

APPENDIX B: BASIS TRANSFORMATION
OF THE PHONON MATRIX ELEMENTS

The Hermitian Hamiltonians in Eq. (1) and (4) are real
and symmetric with real eigenvalues and eigenstates. The
eigenstates form the orthogonal matrix U which describes
the transformation from the orbital basis to the band basis.
Without loss of generality, the orthogonal matrix U can be
written in the form

R =
[

cos(α) − sin(α)
sin (α) cos(α)

]
. (B1)

The basis transformation of the phonon matrix

gpd
pn =

(
0 g0

pn

g0
pn 0

)
(B2)

into cv basis is

gcv
pn = U †gpd

pnU . (B3)

Analytically, we obtain with the representation R for the
orthogonal matrix U

gcv
pn = R−1gpd

pnR =
(

gpd
pn

∣∣
d gpd

pn

∣∣
nd

gpd
pn

∣∣
nd −gpd

pn

∣∣
d

)
, (B4)

where

gpd
pn

∣∣
d = 2 cos(α) sin(α)g0

pn

gpd
pn

∣∣
nd = [cos2(α) − sin2(α)]g0

pn. (B5)

Thus, the basis rotation results in a sign change for the
diagonal matrix elements of the basis transformed matrix for
all values of α.

APPENDIX C: EQUATION OF MOTION IN
THE TIME-DEPENDENT EIGENBASIS

We start from the total Hamiltonian

Htot = Hqp + Hint, (C1)

consisting of a quasiparticle Hamiltonian Hqp and an in-
teraction Hamiltonian Hint. If the quasiparticle part is time
dependent, as discussed in Sec. II B, where Hqp = Heff =
HCohPh + HTB, then the eigenvalues and eigenvectors of this
Hamiltonian have to be calculated for every time step of
the dynamical calculation. Such a time-dependent basis is
associated with a basis transformation of the whole equation
of motion for every time step as discussed in the following.

We start using the eigenbasis of quasiparticle Hamiltonian
Hqp(t0) at a time t0. In this basis the equation of motion for the
reduced density matrix ρ

b1b2
k = 〈cb2†

k cb1
k 〉 is

d

dt
ρ

b1b2
k = dρ

b1b2
k

dt

∣∣∣∣
qp

+ dρ
b1b2
k

dt

∣∣∣∣
int

. (C2)

The quasiparticle part of the equation of motion can be
written as

dρ
b1b2
k

dt

∣∣∣∣
qp

= hb1b2
k ρ

b1b2
k − hb2b1

k ρ
b2b1
k (C3)

and the interaction part can be written in the general form of

dρ
b1b2
k

dt

∣∣∣∣
int

=
∑

�[ρ], (C4)

i.e., a sum over correlation contributions �, which are func-
tionals of the density matrices ρ.

For a time t1 > t0, the equation of motion d
dt ρ̃

b1b2
k in the

new eigenbasis of the system at time t1 takes the form

d

dt
ρ̃

b1b2
k = d

dt
[U †ρ

b1b2
k U ]

= dU †

dt
ρ

b1b2
k U + U † dρ

b1b2
k

dt
U + U †ρ

b1b2
k

dU

dt
,

(C5)

where U is a unitary matrix of the basis transformation
between the eigenbasis at the time t0 and the eigenbasis at the
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time t1. This expression relates the dynamics of the reduced
density matrix in the two different single particle bases at
different times. It contains a correction term that involves the
derivative of the transformation matrix U . We have checked
that this contribution is important only if the character of the
single-particle states changes significantly, which is not the
case during the onset of the phase transition considered here.
We will deal with situations involving more pronounced basis
changes in a separate paper. Neglecting the time derivative of
U yields for the quasiparticle part, we obtain

U † dρ
b1b2
k

dt
|qpU = U †hb1b2

k UU †ρ
b1b2
k U − U †T b2b1

k UU †ρ
b2b1
k U

= h̃b1b2
k ρ̃

b1b2
k − h̃b2b1

k ρ̃
b2b1
k

= dρ̃
b1b2
k

dt
|qp. (C6)

The transformation of the interaction part can be done in
an analogous fashion, but the derivation depends on the level
of approximation employed for the interaction. We assume
here that the interaction part can finally be written in a general
form as

dρ̃
b1b2
k

dt

∣∣∣∣
int

=
∑

�̃[ρ̃]. (C7)

One advantage of such a basis transformation is that ñb
k =

ρ̃bb
k can be interpreted as the occupation of the state |bk〉

at time t1. Therefore, the intuitive physical picture used in
common approximation schemes is preserved. However, the
basis transformation is associated with a transformation of
diagonal density contributions nb

k into off-diagonal coherence

contributions in conjunction with correlated correction terms
in the equation of motion as shown above.

In the case of a sufficiently strong dephasing of the coher-
ences, the off-diagonal contributions in conjunction with the
correction from the correlation contribution can be neglected
in the equation of motion. Then, the carrier occupation adapts
instantaneously to the new band structure. We assume that
the composition of the bands does not change too fast and
approximate the result of this adaptation to be ñb

k ≈ nb
k. We

thus implement the time-dependent basis in the description of
the carrier dynamics using time-dependent band-energies and
wave functions including time-dependent Coulomb-matrix el-
ements due to the basis transformation with a time-dependent
screening. The band dynamics here lead to an additional
redistribution of carriers into the new equilibrium distribution
and a different pronunciation of intra- and interband scattering
pathways.

For example, the Coulomb scattering terms for the occupa-
tion ñb

k at time t1 can be written as

d

dt
ñb

k = 2π

h̄

∑
k2k3

∑
b2b3b4

˜̂W [Ñ in − Ñout]δ(ε̃) (C8)

with ˜̂W = W̃ bb2b3b4
kk2k3k4

(
W̃ bb2b3b4*

kk2k3k4
− W̃ bb2b4b3*

kk2k4k3

)
, (C9)

Ñ in = (
1 − ñb

k

)
ñb2

k2

(
1 − ñb3

k3

)
ñb4

k4
, (C10)

Ñout = ñb
k

(
1 − ñb2

k2

)
ñb3

k3

(
1 − ñb4

k4

)
, (C11)

ε̃ = ε̃b
k − ε̃

b2
k2

+ ε̃
b3
k3

− ε̃
b4
k4

. (C12)
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