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Photon statistics of a double quantum dot micromaser: Quantum treatment
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A semiconductor single-atom micromaser consists of a microwave cavity coupled to a gain medium, a double
quantum dot driven out of equilibrium by a bias voltage. The masing threshold of this system was recently
probed by measuring photon statistics in the cavity [Y-Y. Liu et al., Phys. Rev. Lett. 119, 097702 (2017)].
In this paper, we develop an in-depth, rigorous understanding of this experiment and related works. First, we
use a semiclassical theory and study transmission spectroscopy. This approach allows us to derive the masing
threshold condition for arbitrary temperature and voltage bias, and expose microscopic principles required for
realizing photon gain and thereby a photon amplifier. Next, by employing the quantum master equation approach
we extend the Scully-Lamb quantum theory of a laser to the present setup, and investigate the statistics of emitted
photons below and above the masing threshold as a function of experimentally tunable parameters. Although our
focus is primarily on hybrid quantum dot circuit - quantum electrodynamics systems, our approach is adaptable
to other light-matter systems where the gain medium consists of a mesoscopic structure.
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I. INTRODUCTION

Photon statistics and other characteristics of light provide
critical information for understanding fundamental concepts
in light-matter interaction [1–7] and for developing novel
devices [2,8–12]. Particular systems that recently attracted
significant experimental and theoretical interests are semi-
conducting quantum dots integrated with a superconducting
qubit architecture [13–25]. These so called quantum dot
circuit quantum electrodynamics (QD-cQED) setups offer
several advantages over standard light-matter (radiation field-
atom) systems given their (i) tunability [2], (ii) scalability
[26–28], and (iii) versatility [29–32]. QD-cQED devices com-
bine mesoscopic systems (quantum dots) with quantum optics
components. They offer a rich platform for the study of light-
matter phenomena, as one can investigate both electronic and
photonic properties therein.

Recent remarkable experiments realized parallels to sin-
gle atom and double-atom masers in QD-cQED systems
[1,11,12]. It is to be noted that single atom masers have
been previously realized with Rydberg atoms [33], optical
cavities coupled to either natural or artificial atoms [34–37],
and superconducting junctions [38,39].

Considering QD-cQED systems in a nonequilibrium
steady state (NESS), several complementary quantities can
be experimentally observed and theoretically computed.
Recently, in addition to electronic properties, the photonic
sector has been thoroughly probed [1,11] with measurements
reporting on photon transmission, phase response, photon

number, and the statistics of emitted photons. The behavior
of the electronic degrees of freedom in QD-cQED systems
is examined through the NESS charge current, associated
current fluctuations, and the quantum dots occupation number
[22,23]. Altogether, concurrent studies of the photonic and
electronic sectors expose effects related to light-matter inter-
action.

The realization of masers in QD-cQED systems calls for
a rigorous theoretical description. Particularly, the observa-
tion of masing, and measurements of photon statistics in
double-quantum-dot (DQD) masers are missing a careful,
fundamental quantum analysis. In our previous work [40],
we investigated the photonic and electronic properties of a
DQD setup employing the nonequilibrium Green’s function
(NEGF) approach. However, given the perturbative nature of
the analysis in the light-matter interaction energy, the work
was limited to the below-masing threshold regime [26,40].

In this paper, we employ the Lindblad quantum master
equation (QME) approach and perform a careful and com-
prehensive study of light amplification and masing in a cavity
coupled DQD setup, see Fig. 1. The QME method allows us to
investigate in a unified manner the statistics of photons in the
cavity as we transit from below to above the masing threshold
by tuning the light-matter coupling from a small to large
parameter. This should be contrasted to the NEGF treatment
[40], which is limited to weak light-matter couplings, thus
to systems operating below the masing threshold. Tradition-
ally, the Lindblad QME approach has been applied to study
systems under an infinite voltage bias, therefore supporting
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FIG. 1. Schematic representation of the model considered in this
work. A double quantum dot (splitting ε and tunneling element
tc) is bridging metal electrodes (coupling strength �L,R), which are
maintained at different chemical potentials (μL , μR) but at the same
temperature T . Additionally, the DQD is coupled to a photonic
mode, with its own decay channels κL,R, and a phononic bath. In
transmission spectroscopy, the cavity response is probed using a
(weak) input signal, a driving field E cos(ωdt ), and measuring the
transmitted photon flux. We study here the impact of the nonequi-
librium electronic medium, that is, the voltage-biased quantum dot
junction on the photonic sector.

a unidirectional source-drain current [23]. In contrast, in this
paper we extend our investigation to the case of a finite voltage
bias, which allows us to observe the passage of the electronic
bath from a dissipative element to a driving, gain medium.
Given that the source-drain bias can be experimentally tuned,
our results, capturing voltage-bias dependent physics, shall be
useful for understanding and further developing DQD based
masers. The Lindblad QME further allows us to critically
examine the detrimental (yet not fatal) impact of substrate
phonons on photon amplification, considering it in the limit
of weak electron-phonon interaction. The Lindblad QME is
perturbative in the system-bath coupling parameter; the cou-
pling of the DQD to the metals is included only in the resonant
tunneling limit. Nevertheless, this approximate aspect of the
theory does not pose a fundamental limitation on describing
light amplification and masing.

We perform transmission spectroscopy under the semiclas-
sical approximation, which limits us to the below-threshold
masing regime. Furthermore, we study photon statistics using
a full quantum approach and observe the entire development
of the photon statistics from thermal to Poissonian as we
transit from below to above the masing threshold. The two
calculations, transmission spectroscopy and photon statistics,
agree on the threshold condition, and they provide comple-
mentary information on light amplification and masing in our
setup.

The paper is organized as follows. In Sec. II, we describe
the Hamiltonian of the DQD maser, including the external
reservoirs (fermionic and bosonic). In Sec. III, based on
a semiclassical treatment, we present analytical results and
simulations for photon transmission and phase response in
the system. In order to rigorously examine the rich nature of
photon statistics in the cavity, we resort to a fully quantum ap-
proach in Sec. IV, by developing the quantum theory of lasers
due to Scully and Lamb [41,42]. We show that the statistics
of photons evolves from thermal (with an effective tempera-
ture) to Poissonian when experimentally tunable parameters
are varied, such as bias voltage, level detuning, light-matter
coupling, cavity decay rate. In Sec. V, we summarize our work

and provide an outlook of future challenges. Technical details
are delegated to Appendix.

II. MODEL HAMILTONIAN

We consider an open light-matter quantum system with the
total Hamiltonian Ĥ consisting of a matter part Ĥmatter which
is driven to an NESS by an external voltage bias, a cavity
(transmission line resonator) coupled to photon baths, all in-
cluded in Ĥlight, and a light-matter interaction term Ĥmatter-light,

Ĥ = Ĥmatter + Ĥlight + Ĥmatter-light. (1)

The matter component Ĥmatter consists of a double quantum
dot placed between two fermionic leads maintained at differ-
ent chemical potentials. Electron tunneling between the dots
takes place via a direct coherent coupling. The quantum dots
further interact and exchange energy with substrate phonons.
The matter Hamiltonian therefore consists of the following
components:

Ĥmatter = ĤDQD + ĤDQD-lead + ĤDQD-phonon, (2)

where the bare dots Hamiltonian is

ĤDQD = ε

2
τ̂z + tcτ̂x. (3)

The metal leads are included in

ĤDQD-lead =
∑

k,α=L,R

εkα ĉ†
kα

ĉkα

+
∑

k

[λkLĉkL|L〉〈0| + λkRĉkR|R〉〈0|] + H.c.,

(4)

and the phononic interaction Hamiltonian is

ĤDQD-phonon =
∑
qν

ωqν b̂†
qν b̂qν +τ̂z

∑
qν

λqν (b̂qν + b̂†
qν ). (5)

Here, ε is the detuning parameter and tc is the direct tunneling
term. τ̂z = |L〉〈L| − |R〉〈R| and τ̂x = |L〉〈R| + |R〉〈L| repre-
sent the z and x components of the Pauli matrix, expressed in
terms of the localized single electron orbitals, |L〉 and |R〉. We
limit ourselves to the Coulomb blockade regime; this implies
that at any instant, the DQD is restricted to three possible
configurations, namely, the null-electron subspace, denoted
by |0〉, and the single-electron subspace, with an electron
localized either on the left or the right dot, denoted by |L〉
and |R〉, respectively. We set the energy of the unoccupied
electronic state at zero.

For the DQD-lead Hamiltonian, ĉ†
kα

(ĉkα ) is the creation
(annihilation) operator for fermions with wave vector k in the
αth lead (α = L, R). λkα is the coupling constant between the
DQD and the fermionic bath. Similarly, for the DQD-phonon
part, b̂†

qν (b̂qν ) is the bosonic creation (annihilation) operator
for phonons with wave vector q and mode ν. λqν denotes the
corresponding interaction energy between the DQD and the
phonons.

The photonic component consists of a cavity photon mode
of frequency ωc. This so-called primary mode (creation oper-
ator â†) is coupled to two additional secondary photon baths
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(K = L, R), which mimic the two ends of a long microwave
transmission line (creation operator â†

jK ). The cavity along
with the photon baths Hamiltonian is given by

Ĥlight = ωcâ†â +
∑

j,K=L,R

ω jK â†
jK â jK +

∑
j,K=L,R

ν j â
†
jK â + H.c.

(6)

Here, we invoke the rotating wave approximation (RWA)
assuming (i) weak coupling of the cavity to the ports and (ii)
that the ports support modes in resonance with the cavity. At
low temperature the contribution of anti rotating wave terms
should be small.

Light (cavity)-matter(DQD) interaction is given by the
standard dipole coupling term,

Ĥmatter-light = g τ̂z (â + â†), (7)

where g is the light-matter coupling constant.
This model is extremely compound—and rich—offering

different regimes of operation (weak/strong coupling of
the DQD to the leads, phonons, cavity mode, weak/strong
dissipation of the cavity mode to secondary modes, linear
response/far from equilibrium operation).

In what follows, we first diagonalize the DQD Hamiltonian
in Eq. (3) and work in the diagonalized basis. This new
eigenbasis relates to the localized states |L〉, |R〉 via an unitary
transformation,

|g〉 = cos

(
θ

2

)
|L〉 + sin

(
θ

2

)
|R〉,

|e〉 = − sin

(
θ

2

)
|L〉 + cos

(
θ

2

)
|R〉. (8)

Here, |g〉, |e〉 represents the ground and excited states for the
DQD, and θ = arctan(−2tc/ε). In the energy basis, the full
Hamiltonian transforms to

ĤDQD = �

2
(d̂†

e d̂e − d̂†
g d̂g), (9)

and

ĤDQD-lead =
∑

k

(λkLĉkL λkRĉkR)

(
cos

(
θ
2

) − sin
(

θ
2

)
sin
(

θ
2

)
cos

(
θ
2

)
)(

d̂†
e

d̂†
g

)

+ H.c., (10)

ĤDQD-phonon =
∑
qν

ωqν b̂†
qν b̂qν +

∑
qν

λqν[cos θ (d̂†
e d̂e − d̂†

g d̂g)

− sin θ (d̂†
e d̂g + d̂†

g d̂e)](b̂qν + b̂†
qν ), (11)

Ĥmatter-light = −g sin θ (d̂†
e d̂gâ + d̂†

g d̂eâ†). (12)

Here, d̂†
e,(g) = |e〉〈0|, (|g〉〈0|) is the creation operator for the

excited, (ground) state and � = √
ε2 + 4t2

c is the DQD renor-
malized frequency. We also define the eigenenergies of the
DQD as εg = −�/2 and εe = �/2. To arrive at this matter-
light Hamiltonian, we perform the rotating wave approxima-
tion assuming that the cavity frequency ωc is in resonance
(or close to resonance) with the DQD energy gap �. The
RWA amounts to throwing away terms that are responsible
for processes oscillating at the frequency � + ωc, since their

contribution is smaller compared to “rotating wave” � − ωc

frequency processes. As mentioned above, this approximation
is good when the DQD and cavity frequencies are close by,
and the coupling g is small. We later interrogate the masing
behavior beyond threshold, that is at large g. Nevertheless,
since we always operate the system close to the resonance
condition, rotating wave terms are expected to dominate over
nonrotating terms even for large g. Unlike the DQD-cavity
coupling, the RWA is not justified for the DQD-phonon
Hamiltonian since the frequency spectrum of the phonon bath
can be off-resonant with the DQD energy gap. Note that
the cavity Hamiltonian in Eq. (6) is not modified under the
diagonalizing transformation.

In what follows, considering this DQD setup, we first dis-
cuss photon transmission spectroscopy using a semiclassical
approach. This discussion is followed by a quantum treatment
for photon statistics.

III. SEMICLASSICAL THEORY OF PHOTON
TRANSMISSION, PHASE SPECTROSCOPY

A. Threshold condition for masing

We first investigate the cavity response using transmission
spectroscopy, calculating the transmission amplitude and the
phase response for emitted microwave photons. In transmis-
sion spectroscopy measurements, the cavity is driven with a
coherent microwave field; the output field is measured via
heterodyne detection [22]. In this section, we assume that
light-matter interaction is weak, and that the driving field is
weak. The resulting QME then correspond to the semiclassical
limit, as we explain below.

We employ the quantum master equation approach to
derive an expression for the transmission. We write down an
equation of motion for the reduced density matrix for the
DQD + cavity mode, ρ = Trreservoirs[ρtotal] by tracing out all
reservoirs’ degrees of freedom, that is the electronic, photonic
and phononic reservoirs. We make use of the standard set
of approximations, namely, the system-bath decoupled initial
condition for the density matrix, the Markov approximation,
and a weak-coupling treatment between the system and the
different reservoirs. Similar approximations have been used
in other studies of QD-cQED systems when exploring full-
counting statistics, transport and photonic properties [43–53].
We then arrive at the following equation:

ρ̇ = −i[Ĥ0(t ), ρ] + Lelectron[ρ] + Lphoton[ρ] + Lphonon[ρ].

(13)

The first term represents the quantum coherent time evolution
governed by the Hamiltonian Ĥ0(t ) = ĤDQD + Ĥmatter−light +
ωcâ†â + i

√
κLE cos(ωdt )(â† − â). The last term in Ĥ0(t ) is a

coherent driving term, and represents the transmission spec-
troscopy measurement [22,23] with E being the amplitude of
the applied electric field and ωd the driving frequency. The last
three terms in the QME correspond to different Liouvillians
capturing the effects of the electronic, photonic, and phononic
reservoirs, respectively. The electronic Liouvillian collects the
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effect of the two metals on the system,

Lelectron[ρ] =
∑

α=L,R,n=e,g

Lαn[ρ], (14)

where

Lαn[ρ] = 1

2
�αn(θ )[ fα (εn)D[d̂n, ρ] + (1 − fα (εn))D[d̂†

n , ρ]].

(15)

Here,

�Le(Rg)(θ ) = �Le(Rg) cos2

(
θ

2

)
,

�Lg(Re)(θ ) = �Lg(Re) sin2

(
θ

2

)
. (16)

�αn = 2π
∑

k |λkα|2δ(ε − εkα ) is the spectral function (or hy-
bridization) of the electronic lead α with the state n. For
simplicity, it is chosen to be flat (wide-band limit). fα (εn) =
[exp (β(εn − μα )) + 1]−1 is the Fermi distribution for the lead
α with chemical potential μα and inverse temperature β =
1/kBT . The dissipator D[Ô, ρ] for an operator Ô is defined as

D[Ô, ρ] = 2 Ô† ρ Ô − {Ô Ô†, ρ}. (17)

We can similarly write down expressions for Lphoton[ρ] and
Lphonon[ρ]. Assuming the cavity is in contact with a very low
temperature transmission line, the photonic Liouvillian is

Lphoton[ρ] = κ

2
D[â†, ρ], (18)

where κK = 2πFK |ν|2 is the cavity decay rate per port (K =
L, R), and κ = κL + κR is the total decay rate. Here, FK is the
density of states of the K th photonic bath and ν is the average
coupling between the cavity and photon bath modes. Lastly,
the Liouvillian due to the phonon environment is given as

Lphonon[ρ] = γu

2
D[d̂†

g d̂e, ρ] + γd

2
D[d̂†

e d̂g, ρ]

+γφ

2
D[(d̂†

e d̂e − d̂†
g d̂g), ρ]. (19)

Here, γu, γd , and γφ are the phonon pumping, relaxation and
pure dephasing rate constants, γu = 2 sin2(θ ) nth(�) J (�),
γd = 2 sin2(θ ) [1 + nth(�)] J (�) and γφ = 2 cos2(θ ) [1 +
2nth(0)] J (0). Recall that the DQD frequency is defined
as � = εe − εg. The phononic rate constants are given
in terms of nth(ω) = 1/(eβ h̄ω − 1), the Bose-distribution
function with inverse temperature β = 1/kBT , and
J (ω) = 2π

∑
ν,q λ2

qνδ(ω − ωqν ), which is the phonon
spectral function. It is chosen to be of the following form
[22,23,54,55]:

J (ω) = jpiezo

(
ω

ω0

)
e−ω2/ω2

D

[
1 − sin

( ω

ωD

)]
, (20)

where ωD and ω0 are the scaling parameters, jpiezo is the
coupling strength. Using this form of the spectral density, the
pure dephasing rate constant can be evaluated when approach-
ing the zero frequency limit, γφ = 4

βω0
jpiezo cos2(θ ). Typical

parameter values are given in the Table I.
We now write down equations of motion for the population

and coherences of the DQD states and the photon mode

TABLE I. Typical parameter values from experiments [22,23].

Cavity loss rate κ 0.0082 μeV 2.0 MHz
Light-matter coupling g 0.2050 μeV 50 MHz
Cavity frequency ωc 32.5 μeV 7.86 GHz
Elastic tunneling tc 16.4 μeV 3.96 GHz
detuning ε 20 μeV 4.84 GHz
Drain tunneling rate �R 16.56 μeV 4.0 GHz
Source tunneling rate �L 16.56 μeV 4.0 GHz
jpiezo (unknown) 5.96 μeV 1.44 GHz
Scaling frequency ω0 32.8 μeV 7.9 GHz
Phonon bath cutoff ωD 35 μeV 8.46 GHz
Temperature T 8 mK 0.16 GHz

under the semiclassical approximation given by 〈d̂†
e d̂gâ〉 ≈

〈d̂†
e d̂g〉〈â〉. We receive

ρ̇ee = (
�c

Le + �s
Re

)
ρ00 − (

�̄c
Le + �̄s

Re + γd
)
ρee + γuρgg

+ ig sin θ (ρge〈â〉 − H.c.), (21)

ρ̇gg = (
�s

Lg + �c
Rg

)
ρ00 − (

�̄s
Lg + �̄c

Rg + γu
)
ρgg + γdρee

− ig sin θ (ρge〈â〉 − H.c.), (22)

ρ̇eg = −i�ρeg − ig sin θ (ρee−ρgg)〈â〉 − (
1
2�eff + 2γφ

)
ρeg,

(23)

〈 ˙̂a〉 = −iωc〈â〉 − 1
2 (κ〈â〉 − 2ig sin θρeg) + √

κLE cos(ωdt ).

(24)

Here we use the following compact notation, �c
Le(Rg) =

�Le(Rg)(θ ) fL(R)(εe(g) ), �s
Lg(Re) =�Lg(Re)(θ ) fL(R)(εg(e) ); the

superscripts follow from the sin (s) and cos (c) functions in
Eq. (16). The bar symbol replaces the Fermi function f by
1− f . For example, �̄c

Le(Rg) =�Le(Rg)(θ )[1− fL(R)(εe(g) )].

�eff = (�̄s
Lg + �̄c

Rg + �̄c
Le + �̄s

Re + γu + γd ) is the effective
damping constant and is a function of the different tuning
parameters of the electronic medium (DQD+leads) such as
the chemical potentials, temperature of the electronic leads,
coupling energy between the DQD and the electronic and
phononic environments.

We next solve the above set of equations in steady state
by moving to a rotating frame with respect to the driving
frequency ωd and assuming 〈â〉(t ) ≈ 〈â〉sse−iωd t and ρeg(t ) ≈
ρss

eg e−iωd t . We get

ρss
eg = g sin(θ )(ρgg − ρee)

(ωd − �) + i
(

1
2�eff + 2γφ

) 〈â〉ss. (25)

Substituting this expression into the equation of motion 〈 ˙̂a〉
in Eq. (24) and solving it in steady state, we obtain the
transmission function

t (ωd ) ≡
√

κR〈â〉ss

E
= i

√
κLκR

(ωd − ωc) + i(κL + κR)/2 − χel(ωd )
,

(26)

035412-4



PHOTON STATISTICS OF A DOUBLE QUANTUM DOT … PHYSICAL REVIEW B 100, 035412 (2019)

where we identify χel(ω) as the charge susceptibility, given as

χel(ω) = g2 sin2(θ )

(ω − �) + i
(

1
2�eff + 2γφ

)(ρss
gg−ρss

ee

)|g=0. (27)

The population of the DQD states, ρss
gg, ρ

ss
ee, are evaluated

in the nonequilibrium steady state and in absence of light-
matter interaction. The susceptibility, which contain informa-
tion about population imbalance in the DQD, has a nontrivial
dependence on experimentally tunable parameters. Note that
arriving at Eq. (26) following Eq. (24) is valid only in the limit

κ � 2 Im[χel (ωd )]

= −2g2 sin2(θ )
(

1
2�eff + 2γφ

)
(ωd − �)2 + (

1
2�eff + 2γφ

)2

(
ρss

gg − ρss
ee

)|g=0. (28)

We identify the masing threshold at the point when the
inequality becomes an equality. When using the NEGF
formalism, a masing threshold limit for a similar model had
been derived in our previous work [40], based on the causality
condition for the Green’s function.

We rewrite the transmission as t (ωd ) = |t (ωd )|eiφ(ωd ); gain
in the cavity photon is |t (ωd )| > 1 and the phase response
is included in φ(ωd ). It is immediately clear from Eq. (26)
that to achieve photon gain one has to counteract two dif-
ferent sources of dissipation: the cavity decay to the ports
(rate constant κ) and the imaginary component of the elec-
tronic medium induced charge susceptibility. At equilibrium,
ρgg > ρee, Im[χel(ω)] < 0, which immediately implies that
photon gain is impossible to achieve in this limit since in
addition to the photon bath, the electronic degrees of freedom
further act as a dissipative channel for cavity photons.

It is only when the DQD is driven far from equilibrium
that population inversion happens, Im[χel(ω)] changes sign,
and photon gain is achieved. Therefore, by driving the DQD
out of equilibrium, one can realize a photon amplifier. More
interestingly, one can further derive a sum rule for the trans-
mission function, following the definition in Eq. (26), given as

∫ ∞

−∞

dωd

2π
t (ωd ) =

√
κLκR

2
, (29)

valid in the regime κ � 2 Im[χel(ωd )], as mentioned before.
The general analytical expression for the transmission func-
tion, the threshold condition and the sum rule are the first set
of central results of this paper.

B. Numerical results for photon transmission

We present numerical results for photon transmission as
a function of experimentally tunable variables: voltage bias,
DQD parameters, driving frequency; values for relevant pa-
rameters are given in the Table I. Unless otherwise stated,
we set the Fermi energy of the electronic leads at zero,
and symmetrically adjust the voltage around it, μL = −μR =
�μ/2. We set the temperature of all the baths to be the same.
For the spectral function of the electronic leads we use the
wideband approximation and choose symmetric couplings,
�L = �R = �. In simulations, we divide the cavity loss rate
κ symmetrically to the left and right ports, κ/2 = κL = κR.
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FIG. 2. Transmission spectroscopy for cavity photon: (a) abso-
lute value of transmission |t (ωd )| and (b) phase φ(ωd ) as a function
of the incoming frequency ωd in the absence of the cavity-matter
coupling g = 0 MHz (red, dashed-dotted), in the presence of the
DQD, which is maintained at equilibrium �μ = 0 (black, dotted), or
driven out of equilibrium �μ = 100 μeV (blue, dashed). Parameters
are ε = 20 μeV and tc = 16.4 μeV; other parameters are reported in
Table I.

As confirmed by Eq. (26), this assumption does not impact
the threshold condition.

In Fig. 2(a), we plot the absolute value of the photon
transmission |t (ωd )| as a function of the incoming coherent
microwave frequency ωd . The corresponding phase φ(ωd ) is
displayed in Fig. 2(b). We observed the following. First, in
the absence of the matter-cavity interaction, the transmission
is exactly unity at the cavity frequency ωd = ωc and it dis-
plays a broadening proportional to κ (dashed-dotted line).
Correspondingly, the phase response is zero at the resonant
frequency ωc and asymptotically it reaches ±π/2 in the off-
resonant regime (ωd � ωc).

Once the cavity-matter interaction is switched on—yet
keeping all the baths at equilibrium with the same temper-
ature and chemical potentials—the maximum value of the
transmission drops below unity with corresponding frequency
value shifting from the bare cavity frequency ωc (dotted
line). This shift is due to charge fluctuations in the dots,
and it is directly proportional to the real part of the charge
susceptibility Re[χel(ω)]. The broadening of the transmission
function is related to the difference between κ and Im[χel(ω)];
recall that the latter is negative when it acts as a dissipative
medium. Since at equilibrium Im[χel(ω)] < 0, the broadening
is large. In other words, the increased broadening at equilib-
rium compared to the isolated cavity-matter case implies that
the electronic component acts as a dissipative channel for the
cavity photons. It is easy to note that the phase response is
zero when the transmission is maximal.

Next, the DQD is voltage biased. Once it is driven suf-
ficiently far from equilibrium (here �μ = 100 μeV > ωc),
the absolute value of the transmission exceeds unity (dashed
line). This enhancement is accompanied by a reduction in
broadening as Im[χel(ω)] > 0 due to population inversion in
the DQD states. This can also be understood from the sum
rule formula in Eq. (29), which indicates that a reduction in
broadening leads to an enhancement in the peak value of the
transmission.

To better understand the photon signal, we display in Fig. 3
the transmission amplitude, phase, and the real and imaginary
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FIG. 3. (a) Absolute value of transmission |t (ωc )|, (b) phase
φ(ωc ), (c) real part of the charge susceptibility, χ ′

el(ωc ), and (d) imag-
inary part of the charge susceptibility, χ ′′

el (ωc ). Calculations are
performed in the presence of phonons as a function of the external
bias voltage �μ. Here, ε = 20 μeV and �μ = 100 μeV, with other
parameters reported in the Table I.

components of the charge susceptibility, all as a function of
bias voltage �μ at the (fixed) cavity frequency ωc. In the
close to equilibrium regime, �μ < ωc, the absolute value of
the transmission is less than unity, as expected, while it shows
an enhancement for higher bias �μ > ωc. This shows as a
sudden dip in the phase. The sudden jump takes place when
both the real and imaginary components of the χ [ωc] change
sign. In particular, when χ ′′(ωc) becomes positive, photon
gain is observed. The transmission function is asymmetric
in voltage; for a positive detuning (ε > 0) and positive bias
(μL > μR), the charge current through the quantum dots is
assisted by photon emission to the cavity. This process is re-
flected by the transmission value exceeding unity, |t (ωc)| > 1.
This signature is also reflected as a sudden peak in the real
and the imaginary components of the charge susceptibility
[panels (c) and (d)]. In contrast, for a negative bias (μL < μR),
charge current is assisted by photon absorption, and therefore
the transmission value always stays below 1.

In Fig. 4, we plot the photon signal at the cavity frequency
as a function of the detuning ε of the DQD for a large
bias voltage. Both absolute value of transmission and the
phase display the peak (|t (ωc)| > 1) and dip (|t (ωc)| < 1)
structure. In the transmission amplitude, for positive detuning
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no phonon
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)
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FIG. 4. (a) Absolute value of transmission |t (ωc )| and (b) phase
φ(ωc ) at the cavity frequency ωc as a function of the detuning ε. The
parameters are tc = 20 μeV and �μ =100 μeV; other parameters
are reported in Table I.

FIG. 5. Contour plot of the absolute value of transmission |t (ωd )|
as a function of the probing frequency ωd and DQD detuning ε

(a) without and (b) with substrate phonons. Here, tc = 16.4 μeV and
�μ = 200 μeV, with other parameters reported in the Table I.

ε > 0 (negative detuning ε < 0), electron transport through
the DQD is assisted by light, reaching resonance condition
via the emission (absorption) of photons and thereby reflected
as a peak (dip). At large detuning, the cavity and matter units
effectively decouple and the transmission value settles to unity
with zero phase response.

The unfavorable role of the phonon environment is il-
lustrated in Fig. 5. Here, we display a contour plot for the
absolute value of transmission as a function of incoming
frequency ωd and detuning ε in the absence (a) or presence (b)
of phonons. Ignoring the substrate phonons reduces the broad-
ening and results in a further gain in the photon signal. Nev-
ertheless, we find that the transmission can exceed unity even
under the dissipative action of phonons. It should be reminded
that in this work electron-phonon interaction is assumed
weak; Lindblad dissipators agree with treatments based on
second order system-bath perturbation theory. Specifically,
the additive nature of the Lindblad dissipators in the different
baths reflects the absence of bath-cooperative effects. As such,
phonons are detrimental to photon gain since they assist in
the dissipation of electronic excitations within the DQD. In
contrast, when cooperative photon-electron-phonon processes
are realized (through strong coupling interactions), phonon-
assisted gain, beyond the strict resonance condition, � = ωc,
is achieved [12].

So far, we have considered the semiclassical limit. We
acquired the threshold condition and analyzed photon amplifi-
cation below threshold. However, a full quantum approach is
required to understand the properties in the above-threshold
regime, which is related to the masing phenomenon. We
address this issue in the next Sec. IV.

IV. QUANTUM THEORY OF PHOTON STATISTICS:
SCULLY-LAMB APPROACH

In this section, we focus on the statistics of the cavity mode
and follow its behavior as we transit from below to above the
masing threshold. Unlike the discussion of Sec. III, we do not
perform here a transmission spectroscopy analysis, therefore
we do not include the drive field in our equations of motion.
We define the reduced density operator for the cavity photon
(ph) as ρph(t ) = Trmatter+phonon+photon-bath[ρ(t )] and investigate
its population dynamics, pm(t ) = 〈m|ρph(t )|m〉. Here, we in-
tegrate over all electronic, phononic and photonic degrees
of freedom—besides the cavity mode. We further define the
DQD-cavity reduced density operator, with matrix elements
such as ρeg;nm(t ) obtained by tracing the total density matrix
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over the reservoirs (metals, phonon substrate, photon baths),
but leaving the DQD electronic states with the cavity as
the subsystem. Following the standard QME procedure, as
done before, we obtain an equation of motion for the cavity
population

d

dt
pm = ig sin θ [

√
m + 1(ρge;m+1,m − ρeg;m,m+1)

+√
m(ρeg;m−1,m − ρge;m,m−1)]

+ κ (1 + n̄)[(m + 1)pm+1 − mpm]

+ κ n̄[mpm−1 − (m + 1)pm]. (30)

The first term (explicit g dependence) describes coherent
evolution and it consists of joint cavity and DQD density

matrix elements. The latter part (explicit κ dependence) is due
to the interaction of the cavity mode with the transmission
line (photon bath) and it is responsible for the decay of cavity
photons with rate κ . Here, n̄ = [ exp(β h̄ωc) − 1]−1 is the
Bose-Einstein distribution function of the photon mode at the
photon bath temperature T = 1/(kBβ ) and frequency ωc.

In order to close equation (30), we need to express the joint
cavity - DQD density matrix elements ρge;m+1,m and ρeg;m,m+1

in terms of the cavity mode populations pm. To achieve that,
we write down equations of motion for these elements, then
make a crucial approximation that the DQD relaxes to the
nonequilibrium steady state much faster than the cavity mode,
which is indeed the case within our parameters, κ , g 
 �.
The equations for these combined density matrix elements are

ρ̇gg;m,n = −iωc(m − n)ρgg;m,n + ig sin θ [
√

mρeg;m−1,n − √
nρge;m,n−1] + (

�s
Lg + �c

Rg

)
ρ00; m,n

−(�̄s
Lg + �̄c

Rg

)
ρgg;m,n − γu ρgg;m,n + γd ρee;m,n, (31)

ρ̇ee;m−1,n−1 = −iωc(m − n)ρee;m−1,n−1 + ig sin θ [
√

mρge;m,n−1 − √
nρeg;m−1,n] + (

�c
Le + �s

Re

)
ρ00; m−1,n−1

−(�̄c
Le + �̄s

Re

)
ρee;m−1,n−1 + γu ρgg;m−1,n−1 − γd ρee;m−1,n−1, (32)

ρ̇eg;m−1,n = −iωc(m−n−1)ρeg;m−1,n − i�ρeg;m−1,n + ig sin θ [
√

mρgg;m,n − √
nρee;m−1,n−1]

−
(

1

2
�eff + 2γφ

)
ρeg;m−1,n, (33)

ρ̇ge;m,n−1 = −iωc(m−n + 1)ρge;m,n−1 + i�ρge;m,n−1 + ig sin θ [
√

mρee;m−1,n−1 − √
nρgg;m,n]

−
(

1

2
�eff + 2γφ

)
ρge;m,n−1, (34)

and

ρ̇00;m,n = (
�̄s

Lg + �̄c
Rg

)
ρgg;m,n + (

�̄c
Le + �̄s

Re

)
ρee;m,n − (

�c
Le + �s

Lg + �c
Rg + �s

Re

)
ρ00;m,n. (35)

To close the equations, we also make use of the following two equations:

(ρph)m,n = ρ00;m,n + ρgg;m,n + ρee;m,n, (36)

(ρph)m−1,n−1 = ρ00;m−1,n−1 + ρgg;m−1,n−1 + ρee;m−1,n−1. (37)

We now employ the adiabatic approximation and solve for the steady state of the DQD. We first set ρ̇00;m,n = 0 in Eq. (35) and
express ρgg;m,n or ρee;m,n in terms of (ρph)mn using Eqs. (37). We then find

ρ00;m,n = ā

d + ā
(ρph)mn + b̄ − ā

d + ā
ρee;m,n,

ρ00;m,n = b̄

d + b̄
(ρph)mn + ā − b̄

d + b̄
ρgg;m,n. (38)

Here, ā, b̄, and d depend on the various parameters of the DQD, electronic and phononic baths; their expressions are given in
Appendix. We next substitute the solution for ρ00;m,n into Eqs. (31)–(34) to get closed set of equations, which can be written in
the following matrix form:⎛
⎜⎝

ρ̇gg;m,n

ρ̇ee;m−1,n−1

ρ̇eg;m−1,n

ρ̇ge;m,n−1

⎞
⎟⎠ =

⎛
⎜⎝

a11 0 ig sin θ
√

m −ig sin θ
√

n
0 a22 −ig sin θ

√
n ig sin θ

√
m

ig sin θ
√

m −ig sin θ
√

n a33 − i(� − ωc) 0
−ig sin θ

√
n ig sin θ

√
m 0 a33 + i(� − ωc)

⎞
⎟⎠
⎛
⎜⎝

ρgg;m,n

ρee;m−1,n−1

ρeg;m−1,n

ρge;m,n−1

⎞
⎟⎠+

⎛
⎜⎝

b1 pm

b2(ρph)m−1,n−1

0
0

⎞
⎟⎠

(39)

where once again a11, a22, a33, b1, and b2 are combination of
parameters related to previously defined constants, ā, b̄, etc.

Explicit expressions are given in the Appendix. In the steady
state limit, we set the left side of Eq. (39) to zero and invert
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the matrix to obtain ρeg;m−1,m and ρge;m,m−1, as required by
Eq. (30), which are solely expressed in terms of the cavity
mode population,

ρeg;m−1,m =
ig sin(θ )

√
m
(

Ã
2 pm−1 − Ãb

2 pm

)[
1 + i(�−ωc )

a33

]
1 + C̃mg2 sin2(θ ) + (�−ωc )2

a2
33

,

ρge;m,m−1 =
ig sin(θ )

√
m
(
− Ã

2 pm−1 + Ãb
2 pm

)[
1 − i(�−ωc )

a33

]
1 + C̃mg2 sin2(θ ) + (�−ωc )2

a2
33

.

(40)

The combined constants Ã, Ãb, and C̃ are given in Appendix.
These set of equations are substituted into Eq. (30) and we
reach our central equation,

d

dt
pm = m[Apm−1 − Ab pm]

1 + mC + (�−ωc )2

a2
33

− (m + 1)[Apm − Ab pm+1]

1 + (m + 1)C + (�−ωc )2

a2
33

+ κ (1 + n̄)[(m + 1)pm+1 − mpm]

+ κ n̄[mpm−1 − (m + 1)pm]. (41)

The constants A, Ab, and C, expressed in terms of a11,
a22, a33, b1, and b2 are included in Appendix. The small-
letter constants combine the electronic decay rates and the
phonon-induced energy relaxation constants. Note that A and
Ab have the dimension of inverse time (rate) whereas C is
dimensionless. These coefficients quadratically depend on
the light-matter coupling g. The coefficient A corresponds to
gain, Ab to dissipation, and C > 1 captures light amplification
leading to masing.

Equation (41), our central result, is quite compound, and
we now discuss the behavior of the photon statistics in steady
state in two cases. First we focus on the below-threshold
regime and compare our result with the previously obtained
semiclassical prediction. Then, we go back to the general
result but simplify it at low temperature, thereby deriving
closed expressions for photon statistics. We further explain
below through Fig. 6 the physical information contained in
A and Ab, which are composite bias-driven light-matter rates
determining the onset of masing in the system.

Below-threshold behavior. For simplicity, we consider the
resonance situation ωc = �. When C 
 1, which takes place
when g is smaller than bias-dependent electronic excitation
and relaxation processes (see Appendix), one can ignore the
denominator in the first two terms of Eq. (41) and get

d

dt
pm = m[Apm−1 − Ab pm] − (m + 1)[Apm − Ab pm+1]

+ κ (1 + n̄)[(m + 1)pm+1 − mpm]

+ κ n̄[mpm−1 − (m + 1)pm]. (42)

This equation can be solved in steady state by invoking the
detailed balance principle [41], namely,

m[Apm−1 − Ab pm] + κ[n̄mpm−1 − (1 + n̄)mpm] = 0. (43)

We then receive the solution for the photon mode population
as

pm =
[

1 − A + κ n̄

Ab + κ (1 + n̄)

][
A + κ n̄

Ab + κ (1 + n̄)

]m

. (44)

FIG. 6. Schematic representation of charge transfer processes
that contribute to photon gain, A. For simplicity, the phonon and
photon baths are not shown in this sketch. The states of the DQD
are depicted in the energy representation, εg,e, with the gap � [see
Eqs. (8)–(12)]. In the absence of phonons, ā and b, which are defined
in Appendix, correspond to the rates of populating the excited state
(inward arrows) and rates of depleting the ground state (outward
arrows), respectively. The dissipation rate of cavity photons to the
electronic medium is given by Ab ∝ b̄a; these processes are not
explicitly depicted here; they can be visualized by reversing all the
charge transfer processes (arrows) in the diagram.

The normalization condition (or in other words, the validity of
the solution) requires that

A + κ n̄

Ab + κ (1 + n̄)
� 1

⇒ A − Ab � κ. (45)

We conclude that Eq. (44) is valid as long as A − Ab � κ ,
which precisely matches the threshold condition obtained
using the semiclassical analysis in Eq. (28). This is the below-
threshold regime. The steady state photon mode distribution
(44) is given by an exponentially decaying incoherent ther-
mal distribution, pm ≈ e−βeff m, with an effective temperature
Teff = 1/kBβeff defined as

Teff ≡ h̄ωc

kB ln
[Ab+κ (1+n̄)

A+κ n̄

] . (46)

As expected, Teff reduces to the photon-bath temperature
T when the light-matter interaction is switched off, with
A, Ab = 0.

We can further generalize the threshold condition (45) by
relaxing the resonance requirement ωc = �. In the general
case, the photon mode population is obtained by replacing
A → A

[1+ (�−ωc )2

a2
33

]
and Ab → Ab

[1+ (�−ωc )2

a2
33

]
in Eq. (44). This gener-

alized threshold condition again matches with the correspond-
ing semiclassical prediction.

General solution. We go back to Eq. (41) and solve it,

pm = p0

m∏
j=1

⎡
⎢⎣

κ n̄ + A

1+ jC+
(

�−ωc
a33

)2

κ
(
1 + n̄

)+ Ab

1+ jC+
(

�−ωc
a33

)2

⎤
⎥⎦. (47)

This solution describes both below- and above-threshold
regimes. Assuming a resonance setup, � = ωc, and that the
temperature is low such that photon bath-induced excitation
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of the cavity are missing, n̄ ≈ 0, one simply obtains

pm = p0

m∏
j=1

A

Ab + κ (1 + jC)
. (48)

The maximum probability appears at the number

m∗ = 1

κC
(A−Ab−κ ). (49)

The condition m∗ > 0 corresponds to the above threshold
regime; Again we find that A − Ab � κ is the threshold con-
dition.

The population distribution in this lasing regime is sharply
peaked about m∗, which is equivalent to the average photon
number 〈m〉, with the fluctuation about the average given
as σ 2 = A

κC = m∗ + Ab+κ
κC . The corresponding Fano factor is

σ 2/〈m〉 = 1 + Ab+κ
A . In the limit A � Ab + κ , the Fano factor

reduces to 1, which implies a Poisson distribution.
The physical content of A and Ab can be visualized via

Fig. 6, where we sketch charge transfer processes that con-
tribute to photon gain A. For simplicity, substrate phonons
are ignored in this picture (compare Fig. 6 to Fig. 1). In the
absence of phonons, A ∝ g2bā, with ā being proportional to
�c

αe fα (εe), α = L, R, and b related to the removal of elec-
trons from the ground state to both leads, �c

αg[1 − fα (εg)],
see Appendix for more details. Altogether, A corresponds to
populating the electronic excited state εe, with the simulta-
neous depletion of electrons from the ground level εg to the
metals. This electronic decay process is complemented by the
excitation of the cavity mode.

In contrast, Ab ∝ g2ab̄. This combination describes the
reversed process to A: it consists of electron transfer from
the leads to the ground state, the simultaneous removal of
electrons from the excited state to the leads, with the de-
excitation of the cavity mode. This term therefore corresponds
to photon decay due to energy dissipation to the electron
medium. Cavity photons further decay at a rate constant κ .
Altogether, the total dissipation rate is Ab + κ , and masing is
achieved only when photon gain overcomes the total dissi-
pation, i.e., when we satisfy the condition A � Ab + κ . This
situation takes place when the metals are voltage-biased far
enough from equilibrium. Finally, we note that in the weak
electron-phonon coupling limit considered in this work the
presence of phonons does not fundamentally alter this picture.
In Fig. 7, we present the statistics of photons with various
experimentally controllable parameters, κ , �μ, g, ε based on
Eq. (48).

By tuning these parameters, we follow the crossover of the
photon statistics from thermal [panels (a), (c), (e), and (g)] to
Poissonian [panels (b), (d), (f), and (h)]. We further plot the
Wigner distribution in the (q, p) plane for the corresponding
density matrices,

W (q, p) = 1

π h̄

∫ ∞

−∞
dye− i2yp

h̄

∞∑
m=0

pm〈q − y|m〉〈m|q + y〉

= 1

π3/2

∞∑
m=0

pm

2mm!

∫ ∞

−∞
dye−2iyp e−(q2+y2 )

× Hm(q − y) Hm(q + y), (50)

FIG. 7. Photon statistics below [(a), (c), (e), and (g)] and above
the masing threshold [(b), (d), (f), and (h)]. [(a) and (b)] g =
100 MHz and �μ = 200 μeV. [(c) and (d)] κ = 1 MHz and �μ =
200 μeV. [(e) and (f)] g = 100 MHz and κ = 1 MHz. [(g) and (h)]
g = 100 MHz, κ = 1 MHz, and �μ = 200 μeV. Other parameters
are tc = 16.4 μeV, ε = 20 μeV, n̄ = 0, and ωc = �, see also the
Table I. The inset in each panel shows the Wigner distribution in the
(q, p) plane.

with pm given by Eq. (48) and Hm(x) the Hermite polynomials
of order m. The Wigner function clearly exposes the two
distinct regimes as far as photon statistics is concerned. Given
the control over the crossover between the different regimes,
this setup can be potentially used as a quantum device that
works both as a photon amplifier or a maser.

V. CONCLUSIONS AND OUTLOOK

In this paper, we analyzed the photonic properties of a QD-
cQED system both below and above the masing threshold.
Light amplification and masing were achieved by driving
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the quantum dots out of equilibrium by voltage bias. With
calculations, we showed that the QD-cQED setup could serve
as an excellent quantum device, both as a microwave amplifier
and a maser as was demonstrated in recent experiments.
We found a rich dependence of the threshold condition on
experimentally tunable parameters, such as the voltage bias,
detuning, and photon decay rates. Our work also showed that
these experimental knobs could be used to switch the device
from a normal microwave amplifier to a maser.

In both below and above the masing threshold, we derived
analytical expressions for photon statistics and demonstrated
via simulations the thermal (with an effective temperature)
and Poissonian distributions. In addition, we found that the
threshold condition obtained via the semiclassical approach
precisely matched quantum calculations. It should be empha-
sized that this work critically extends our previous NEGF-
based study [40], which was limited to describing quantum-
dot circuit-QED setups below the masing threshold.

Summarizing our results. (i) We extended the Scully-Lamb
quantum theory of the laser to the present setup, with a voltage
bias driven electronic gain medium. The coupling of the cavity
to the DQD was included to all orders; photonic and phononic
loss mechanisms were further taken into account. (ii) We
derived a threshold condition for masing using semiclassical
and quantum theories. The two approaches yield the same
condition. (iii) We investigated the transmission signal and
statistics of emitted photons in relation to recent experiments
and demonstrated the function of an amplifier as well as the
transition of the photon statistics from a thermal distribu-
tion into a Poissonian one. Tunable parameters include bias
voltage, DQD level splitting, DQD-cavity coupling, electron
tunneling rates, dissipation rate and temperature.

It remains a challenging task to understand the backaction
of photonic properties on the electronic degrees of freedom,
and we aim to address this point in the future. Investigating
lasing effects without working in the Born-Markov limit
(thereby weak system-bath coupling) remains a significant
challenge. Finally, scaling up the system to include multiple
double-quantum dots will impact its masing performance, a
subject that we leave for future investigation.
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APPENDIX: DEFINITIONS OF
CONSTANTS USED IN SEC. IV

We include here expressions for different constants defined
in Sec. IV on photon statistics, see Eqs. (39) and (40). We
first define combinations of the electronic rate constants, as
induced by the metal electrodes

ā = �̄s
Lg + �̄c

Rg, b̄ = �̄c
Le + �̄s

Re,

a = �s
Lg + �c

Rg, b = �c
Le + �s

Re, (A1)

d = �c
Le + �s

Lg + �s
Re + �c

Rg = a + b.

We further define the following combination of phonon-bath
and electron-bath induced processes,

a11 = (a − γd )

(
ā − b̄

b̄ + d

)
− (ā + γu + γd ),

a22 = (b − γu)

(
b̄ − ā

ā + d

)
− (b̄ + γu + γd ),

a33 = −
(

1

2
�eff + 2γφ

)
, (A2)

b1 =
[
γd + (a − γd )b̄

b̄ + d

]
,

b2 =
[
γu + (b − γu)ā

ā + d

]
.

The coefficients that appear in Eq. (39) are

Ã = 2b2

a22a33
, Ãb = 2b1

a11a33
, C̃ = 2(a11 + a22)

a11a22a33

A = g2 sin2(θ )Ã,

Ab = g2 sin2(θ )Ãb,

C = g2 sin2(θ )C̃. (A3)

These combinations depend in a nontrivial manner on the fun-
damental parameters of the c-QED setup. It is also important
to notice that A and Ab have the dimension of inverse time; C
is dimensionless.

In the absence of phonons these expressions simplify to

Ã = 2bā

bā + b̄ā + ab̄
, Ãb = 2ab̄

bā + b̄ā + ab̄
. (A4)

Therefore

Ã ∝ bā = (
�c

Le + �s
Re

)(
�̄s

Lg + �̄c
Rg

) =
[
�Le fL(εe) cos2 θ

2
+ �Re fR(εe) sin2 θ

2

][
�Lg(1− fL(εg)) sin2 θ

2
+ �Rg(1− fR(εg)) cos2 θ

2

]
(A5)
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and

Ãb ∝ ab̄ = (
�s

Lg + �c
Rg

)(
�̄c

Le + �̄s
Re

) =
[
�Lg fL(εg) sin2 θ

2
+�Rg fR(εg) cos2 θ

2

][
�Le(1− fL(εe)) cos2 θ

2
+�Re(1− fR(εe)) sin2 θ

2

]
.

(A6)

We construct A and Ab from Ã and Ãb, respectively. We recognize that A embodies photon generation in the cavity, enabled by
the bias-driven electronic system, while Ab describes the decay of cavity photons by energy dissipation to the metals.

We furthermore simplify C̃ in the absence of phonons,

C̃ = ā + b̄ + 2a + 2b

(ab̄ + bā + āb̄)(ā + b̄)
, (A7)

with C ∝ g2C̃. Therefore the limit C 
 1 corresponds to g2 being much smaller than electronic processes in the metals, g2 

āb + b̄a + āb̄.
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