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Large-scale molecular dynamics investigation of geometrical features in nanoporous Si

Laura de Sousa Oliveira* and Neophytos Neophytou
School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom

(Received 13 March 2019; revised manuscript received 12 June 2019; published 9 July 2019)

Nanoporous materials are of broad interest for various applications, in particular, advanced thermoelectric
materials. The introduction of nanoscale porosity, even at modest levels, has been known to drastically reduce a
material’s thermal conductivity, in some cases even below its amorphous limit, thereby significantly increasing
its thermoelectric figure of merit ZT. The details of the important attributes that drive these large reductions,
however, are not yet clear. In this work, we employ large-scale equilibrium molecular dynamics to perform an
exhaustive atomistic-scale investigation of the effect of porosity on thermal transport in nanoporous bulk silicon.
Thermal transport is computed for over 50 different geometries, spanning a large number of geometrical degrees
of freedom, such as cylindrical pores and voids, different porosities, diameters, neck sizes, pore/void numbers,
and surface-to-volume ratios, placed in ordered fashion, or fully disordered. We thus quantify and compare
the most important parameters that determine the thermal conductivity reductions in nanoporous materials.
Ultimately, we find that, even at the nanoscale, the effect of merely reducing the line-of-sight of phonons, i.e.,
the clear pathways that phonons can utilize during transport, plays the most crucial role in reducing the thermal
conductivity in nanoporous materials, beyond other metrics such as porosity and surface/boundary scattering.
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I. INTRODUCTION

Nanoporous materials, particularly nanoporous Si-based
materials, have received significant attention in the past
three decades for a variety of applications [1], including
photonic [2], optoelectronic [3] and microelectronic devices
[4], data storage [5], functionalized sensors and filters for
chemical/biological applications [6], and more recently as
thermoelectric materials [7–9]. With regards to thermoelectric
materials, good performance is determined by low thermal
conductivities. The thermoelectric performance is quantified
by the dimensionless figure of merit ZT, defined as ZT =
(S2σ )/κ , where T is the temperature, S is the Seebeck coef-
ficient, σ is the electrical conductivity, and κ is the thermal
conductivity.

Interest in Si-based nanoporous materials for thermoelec-
tric applications is largely due to their two orders of magnitude
lower thermal conductivity compared to bulk. Such reductions
have been observed over the last few years in several other
Si-based nanostructures as well, e.g., in rough Si nanowires
[10,11], thin films [12,13], and Si-based alloys and super-
lattices [14]. Recent works have also shown that the room
temperature thermal conductivity of Si-based nanoporous ma-
terials can even be reduced beyond the materials’ amorphous
limit [9,15,16]. These observations are attributed to strong
phonon-boundary scattering and make Si-based nanoporous
materials excellent candidates for next-generation thermo-
electric applications, as ZT is inversely proportional to the
material’s thermal conductivity. Specifically, for nanoporous
materials the thermal conductivity reported values are in the
range of 1–2 W m−1 K−1 (drastic reduction compared to the
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bulk, κbulk ∼ 150 W m−1 K−1), with a ZT of ∼0.4 [9] (drastic
increase compared to bulk Si, ZTbulk ∼ 0.01). Moreover, sev-
eral experimental and theoretical works indicate that porosity
can also be designed in such a way as not to degrade the
thermoelectric power factor, S2σ , and possibly even increase
it in some cases [9,15,17–19]. Since the mean free paths of
electrons and phonons are different, carefully designed poros-
ity allows for the reduction of thermal conductivity, while
maintaining a significant degree of crystallinity, and thus
retaining high power factors [20]. To optimize the porosity in
this way, we need to understand in detail the mechanisms by
which geometrical variations in porosity reduce the thermal
conductivity.

The effect of pore/void geometry and arrangement on ther-
mal conductivity is complex. Several computational studies
have addressed various geometrical aspects of porosity, e.g.
variations in pore surface area [21–24], pore numbers [23,25],
sizes [21,23,25,26], shapes [23,27], distances [21,22,26],
boundary roughness [24,25,27,28], and amorphicity [22,29].
Molecular dynamics (MD) [21,22,25,29–31], often coupled
with lattice dynamics [22,32], and Monte Carlo (MC)
Boltzmann transport equation (BTE) solvers [12,23,24,33]
are the most commonly used computational approaches to
investigate thermal transport on nanoporous materials.

However, while studies to date have reported on different
individual phenomena, a clear and complete understanding
of the physical mechanisms that degrade the thermal con-
ductivity, in the combined context of porosity, disorder, pore
placement, pore clustering, etc. has not yet been reached.
All those attributes will of course reduce the thermal con-
ductivity, but the importance of each mechanism is not clear
yet. This is also evident from the conflicting results that one
encounters in the literature, especially with regards to the
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FIG. 1. (a) The fractional thermal conductivity as a function of porosity, computed along the x axis for the geometries considered in this
study. A three-dimensional representation of a simulation cell is included as an inset in (a). The color coding in (a) corresponds to that shown
in the geometries in (b). For uniform distributions [top left in (b)], a distinction is made between systems with pores in blue (cylindrical holes)
vs. voids in red (spherical holes). The examples of simulated systems shown in (b) are chosen to illustrate the variability in the geometries
considered. Variations in the geometries include changes in the number of pores/voids and in the void/pore diameter (top left figures in red and
blue), as well as staggered (or offset) voids/pores (top right figures in cyan), clusters of voids/pores both aligned and misaligned (center right
and left figures in magenta, respectively), and geometries with randomly distributed voids (bottom left), and randomly distributed and sized
voids (bottom right). The figures in (b) correspond to a cross section of the xy plane, i.e., perpendicular to z, and include the periodic images
along y.

relative strength of phonon scattering mechanisms, such as the
effect of surface area versus the distance between the pores,
the pore size, porosity, pore misalignment and randomization
(which could produce nonpropagating diffuse phonon modes
[21,22]), etc. For this, large-scale atomistic simulations of em-
bedded nanopores with relatively large domains are needed, in
order to capture the effect of nanometer-scaled pores within
3D domains.

In this work, we employ molecular dynamics simulations
to perform an exhaustive investigation of the effect of thermal
conductivity in nanoporous Si. For this, we have computed
the thermal conductivity of over 50 different nanoporous
structures (each simulated for at least 10 initial configurations)
using the Green–Kubo approach within equilibrium molecular
dynamics (EMD). To capture a wide array of geometrical
degrees of freedom and phonon scattering lengths we employ
relatively very large (for MD) domain sizes, of up to ∼108 nm
in length, with typically ∼160 000 atoms. We consider cylin-
drical pores as well as voids (spherical pores—referred to
as voids in the paper), and examine a series of geometrical
degrees of freedom, e.g., porosity, diameter, neck size (i.e.,
distance between pores), pore number, and surface-to-volume
ratio. In order to identify the most important geometrical
features that are responsible for the reduction in the thermal
conductivity we investigate multiple distributions, including
uniform, staggered, clustered and fully randomized cylin-
drical and spherical pore distributions. While all of these
have their degrading influence on thermal conductivity, we
conclude that it is the reduction in the line-of-sight of phonons
which has the strongest effect. In other words, as in a particle-
like phonon picture, it is the blocking of phonon trajectories
in the transport direction (which shows up in staggered and
disordered configurations), that has the most marked effect
on the thermal conductivity. The paper is organized as fol-
lows: Sec. II describes the computational Approach, Sec. III
describes the Results and Discussion, and finally we conclude
in Sec. IV.

II. APPROACH

The focus of this study is to elucidate the main features
that affect the flow of phonons as they propagate through
nanoporous geometries with various pore/void arrangements.
The geometries we simulate range from uniform distribu-
tions of pores and voids with various sizes and numbers
of pores/voids, to staggered, clustered, simultaneously stag-
gered and clustered, and randomly distributed (and sized)
pores/voids, as illustrated in Fig. 1. We employ classical
equilibrium molecular dynamics (EMD) to perform thermal
transport calculations. Molecular dynamics (MD) allows for
substantially larger system sizes than first principles ap-
proaches, and is therefore the most commonly used atomistic
approach for thermal transport. It also has the advantage of
capturing the anharmonicity of interatomic interactions which
is implicit in MD through the choice of the potential. On
the other hand, particle-based real-space approaches (such as
Monte Carlo) often require simplifying assumptions about
the nature of relaxation times, or that predictions be fitted
to experimental or theoretical data. The use of molecular
dynamics bypasses the need to estimate and instead allows
us to investigate scattering mechanisms which are implicit in
the choice of potential, as well as the atomistic details of the
physical structure. By not treating phonons as particles, MD
can also capture wave effects, such as coherence/decoherence,
and merge the phonon nature of waves and particles. (Note
that purely real-space wave methods, such as implementations
of the nonequilibrium Green’s function method for phonons,
commonly do not include anharmonicity, which overempha-
sizes the wave nature [34].) In EMD, the use of periodic
boundary conditions accommodates mean free paths (MFP)
larger than the size of the simulation cell, and provides the
complete thermal conductivity tensor in a single simulation.
In this work, we simulate systems of ∼108 nm in length
with a 5.43 nm2 cross section. The simulated geometries have
approximately 160 000 atoms, which is above the ∼64 000
atom thermal conductivity convergence threshold suggested
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in Ref. [35] for pristine single crystalline Si. A plot of system
size convergence is offered in Ref. [36]. The selected length
is also sufficiently large to capture the influence of pores in a
wide range of configurations.

To extract the thermal conductivity we use the Green–Kubo
method [37,38], a widely used and well-established equilib-
rium molecular dynamics (EMD) approach. The Green–Kubo
formalism relies on the assumption that the same mechanisms,
or processes, by which a system responds to a stimulus or
perturbation (e.g., temperature gradient) are also responsible
for its response to local fluctuations (e.g., in the heat flux)
in equilibrium. Mathematically, this means the first element
in the thermal conductivity tensor, corresponding to thermal
transport along the x-direction, can be calculated as

κxx = V

kBT 2

∫ ∞

0
〈Jxx(t )Jxx(t + τ )〉dτ, (1)

where V is the volume of the simulated region, T is the
temperature, and Jxx is the first element of the heat-flux (or
heat current) tensor. The expression 〈J(t )J(t + τ )〉 is the non-
normalized heat-current autocorrelation function (HCACF), t
designates the simulation time, and τ the autocorrelation time.
The HCACF can be computed as the inverse Fourier transform
of the same transform of the heat current (as a function
of simulation time) multiplied by its complex conjugate, or
numerically as

〈J(t )J(t + τ )〉 ≡
N−m∑
n=0

JnJn+m

N − m
, (2)

where Jn is the value of J at the nth time step, and Jn+m is J at
the (n+m)th time step, for n = 0, 1, 2, . . . , N and m = 0, 1, 2,
…., M. Here, N and M are the maximum number of steps in the
simulation and in the HCACF, respectively. The random-walk
nature of the error in the autocorrelation function further
means that the error in the estimated thermal conductivity,
which is a function of the integral of the autocorrelation
function, grows over time. In practice, the HCACF is therefore
truncated at an earlier time. Oftentimes, a compromise has to
be made between an earlier cutoff that reduces the error in
the thermal conductivity, but could possibly neglect slower
relaxation processes or vice versa. For systems which have
large phonon MFPs, the HCACF converges to zero at a slower
rate, which results in a higher error, and thus, variability in
thermal conductivity for the different trajectory simulations.
We have opted to truncate the HCACF at 150 ps for most
systems, with the exception of the pristine geometry for which
the cutoff was selected at 500 ps. A more thorough discussion
on the topic of error mitigation can be found in Ref. [39],
and a discussion/justification on cutoff selection, can be found
in Ref. [36]. Moreover, the results were averaged for at least
10 sets of simulations (sometimes more) to mitigate the large
uncertainty in the Green–Kubo approach. Simulations are ∼
5.4 × 5.4 × 108.6 nm3, corresponding to a 10 × 10 × 200
supercell of the eight atom Si unit cell [see inset in Fig. 1(a)],
i.e., ∼160 000 atoms, with the x axis corresponding to the [1
0 0] direction.

Simulations were performed with the large-scale molecular
dynamics software LAMMPS [40], using the Stillinger–Weber
(SW) potential [41]. This potential has been widely used to

model heat transfer in silicon [35,42], and while it is known
to overestimate thermal conductivity [43], it has successfully
been used to describe elastic constants and thermal expan-
sion coefficients and offers a reasonable match for phonon
dispersion relations [44], especially for acoustic phonons. As
is common practice, we report on the fractional change in
thermal conductivity between the porous systems compared
to the pristine system, κporous/κ0. In this work, we consider
both systems with spherical and cylindrical holes, which
are henceforth designated as voids and pores, respectively.
Thus voids (spherical holes) are empty spheres within the 3D
domain, while pores (cylindrical holes) are empty cylindrical
porous regions that are “etched” from the top all the way to
the bottom of the material. In the presence of voids, in a 3D
domain, phonons can flow around them in “3D” pathways. In
the cylinderlike pore case, phonons will have to essentially
flow around them in “2D” pathways. The pores/voids are
created by deleting atoms in the minimized pristine geometry.
After the pores are introduced, each system in a set (i.e.,
for a given geometry) is then independently given a thermal
energy equivalent to ∼300 K, so that each system in a set
has its own initial configuration. This is done by generating
an ensemble of velocities with a Gaussian distribution using a
different random seed (and thus rescaling the velocity) each
time. The systems are then allowed to equilibrate to room
temperature within an isothermal, isobaric ensemble (NPT),
which allows them to thermally expand. In the next step,
the systems are equilibrated in the microcanonical ensemble
(NVE) for an additional 125 ps, with a 0.5 fs interval (as in
the previous step). Finally, the simulations are resumed in the
microcanonical ensemble at a 2 fs time step for an additional
10 ns during which we record the heat-flux for the HCACF
calculation. Ultimately the HCACF is computed for a 20 fs
time step, having confirmed that the choice of time step in no
way changes our results compared to smaller steps.

III. RESULTS AND DISCUSSION

A wide number of geometries (upwards of 50, each simu-
lated at least 10 times) were considered in this study. A table
of the geometries and corresponding thermal conductivities
can be found in Ref. [36]. We compute porosity as the fraction
of the number of atoms removed from a porous geometry
to that of the pristine system (equivalently, porosity is the
fractional volume of the pores/voids to the total volume of
the system). As explained in the Approach section, the ther-
mal conductivity of the porous systems is normalized to the
pristine channel thermal conductivity, κ0, which is estimated
at 347.8 ± 34.7 W m−1 K−1 with the Stillinger-Webber poten-
tial. Note that it is standard process to show normalized results
in this kind of studies, since different potentials, each with
their own advantages, provide different values for the thermal
conductivity [22,29,42]. Unlike the porous systems, for which
the cutoff was selected at 150 ps, the pristine system thermal
conductivity is cut off at 500 ps. This is because large mean
free paths, in the order of several hundreds of nanometers, are
present in pristine silicon, but cease to be prevalent in porous
materials, especially as porosity increases since the mean free
paths are then mostly determined by the pores (see Ref. [36]
for a more in-depth discussion on the choice of cutoffs).
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The thermal conductivity versus porosity for all of our
simulated geometries is shown in Fig. 1(a). In this figure we
include some characteristic structure families as depicted in
Fig. 1(b), i.e., geometries in which the pores are distributed
uniformly, staggered, clustered, simultaneously staggered and
clustered, randomized in terms of position, and randomized
in terms of position and size [notice that the colouring of the
geometries corresponds to the colouring of the data points in
Fig. 1(a)]. Following the arrows in Fig. 1(b), our intent is
to explore the different effects due to geometry, but also the
incremental influence of each feature. Porosity is known to
have a significant influence on the thermal conductivity, and
this is what we also observe in our simulation results, where
even for small porosities, a drastic reduction in κ is observed.
This agrees with other works in the literature, for example, He
et al. [22] find a reduction of about an order of magnitude in κ

at 7% porosity for a 20 nm thin film with cylindrical pores, in
good agreement with experiments [12]. In Fig. 1, we observe
that the simulated systems approach a tenfold decrease in
thermal conductivity at porosities as low as 2%. This is a large
decrease, but it is well known that the thermal conductivity in
nanoporous materials deviates significantly from macroscale
porous materials, which follow the Eucken model in which
κ is reduced linearly with porosity [24,29]. However, we
note that in our simulations, in most cases, pores/voids are
closely packed perpendicular to the transport direction, clearly
forming planes/surfaces of high thermal resistance where
the pores/voids are concentrated (through periodic boundary
conditions in the y direction), which will have a more drastic
effect on κ along the x direction. As a result, the systems
studied in this work are anisotropic. These plane barriers
which, even at low numbers of pores/voids, hinder phonon
propagation along the x direction, and thus the sharp drop in
Fig. 1(a) for the systems with very low porosities, <0.5%.
However, this is done on purpose, since our intent is not to
provide thermal conductivity predictions, but investigate the
most important details that determine κ reductions in porous
materials. Below, we proceed to a more detailed analysis of
the results of all simulations, beginning with the effect of
void/pore surface area on thermal conductivity.

Influence of void surface-to-volume ratio. We first consider
the effect of surface area in systems with voids, by computing
the surface-to-volume ratio, ρ, defined as the total surface of
the pores/voids to the total volume of the geometry (including
the empty voids/pores) [22,45]. In Fig. 2(a), multiple systems
with voids with equivalent porosity (∼0.45%), but different
surface areas, are depicted. To increase the surface area while
maintaining the porosity constant, we increase the number of
voids while reducing their radius, as indicated in the schemat-
ics of Fig. 2(a). In this way, at the same porosity, we consider
the effect of increasing surface area [Fig. 2(b)], but also the
resultant effect of increasing the number of voids [Fig. 2(c)],
both of which influence phonon scattering. Smaller voids are
less effective scatterers compared to larger voids, but the
larger number of voids/pores decreases the distance between
scattering events, thereby reducing the overall phonon MFP.
For systems of similar porosity (∼0.45%), in Fig. 2(a), we
plot the thermal conductivity versus the surface-to-volume
ratio, ρ, and in Fig. 2(c) versus the number of scatterers.
The coloring of the data points corresponds to the geometry

FIG. 2. Effect of surface area and number of voids on thermal
conductivity. The geometries considered are shown in (a). Four
systems (in purple, magenta, brown, and cyan) have near equivalent
porosities of φ ∼ 0.45%, but different surface areas. We include
a fifth (blue) system with lower porosity, φ = 0.34%, but with
a surface area in the vicinity of the other systems’ surface area.
(b) The thermal conductivity of these geometries as a function of
the surface-area-to-volume ratio ρ. The porosities of the geometries
are displayed next to each data point, and the colors in (b) match
the colors of the actual geometries shown in (a). (c) The thermal
conductivity vs the number of voids. The radii of the voids for each
of the geometries is as indicated. In both (b) and (c), the black dashed
lines show linear fits to the data.

coloring in Fig. 2(a): this includes four systems with φ ∼
0.45%, and a fifth geometry with a lower φ = 0.34% (in
dark blue), but with a surface area comparable to the other
four systems. As expected, we find that there is a clear trend
with κ decreasing as the surface area increases, and as the
number of scatterers increase as well. More specifically, the
results in Fig. 2(b) suggest that by doubling the surface area,
there is an approximate 19% decrease in thermal conductivity
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FIG. 3. The effect of surface area on the thermal conductivity
for porous geometries. The geometries considered are depicted in (a)
and (b), with (a) small ∼1.2% and (b) large ∼10.1% porosities, re-
spectively. (c) The thermal conductivity as a function of the surface-
area-to-volume ratio for the two sets of geometries. The colors in
(c) match the corresponding geometries in (a) and (b), whereas
the different symbols indicate the thermal conductivity along the
different cartesian directions of the simulation cell, x, y, and z. The
anisotropy between κx (square symbols), κy (rhombus symbols), and
κz (hexagon symbols), is due to the anisotropy in the different phonon
paths imposed by the pore locations. Considering all directions is
revealing of the effect the distance between pores, in addition to
surface area, exerts on thermal transport.

(although we note that due to the nature of the MD simulations
a larger uncertainty is associated with lower porosity results,
as quantified by the reported error). The results in Fig. 2
indicate that surface area and number of defects can be
more useful metrics in determining κ compared to porosity
in these nanoscale systems. Indeed, the fifth geometry we
consider (in dark blue, with the lower φ = 0.34%), has lower
κ/κ0 compared to the light-blue larger porosity structure,
indicating that the surface area could be a stronger predic-
tor in determining κ rather than the porosity. Other works
[21,22,29], have also reported on the effect of pores/voids’
surface area on thermal conductivity. Lee et al. [21] alternately
varied the pore diameter and the distance between pores, with
their results indicating in addition that surface area has a
greater impact on thermal transport than the distance between
pores.

Influence of pore surface-to-volume ratio and geometry
asymmetry. We next consider the same effect of surface
area/scatterer number, but in systems with cylindrical pores
(see Fig. 3). Two sets of systems are compared, one with small

porosity φ = 1.2% (blue and green), and one with higher
porosity φ = 10% (orange and cyan), shown in Figs. 3(a) and
3(b), respectively. Here, in order to investigate the effect that
the distance between pores exerts on the thermal conductivity,
we consider also transport along the y and z directions in
addition to transport along the x direction. We then have the
following situations: (i) while travelling along x (left-to-right),
phonons directly scatter on “surfaces” of closely packed
pores, (ii) while travelling along y (bottom-to-top), phonons
scatter on pores less closely packed (blue, green, and orange),
and (iii) while travelling along z (into the page), phonons
travel along the surfaces of pores. Since, for each geometry,
the surface area and total number of scatterers per volume is
maintained in all directions, differences between transport in
x, y, and z are therefore due to the anisotropic geometry and
the spacing between the pores that the phonons encounter.
In Fig. 3(c), we compare the thermal conductivity of these
systems versus their surface-to-volume ratio. For each of the
systems in Fig. 3(a), clearly, transport along z (hexagons)
has the least disruption in k, followed by transport along y
(rhombus), and then along x (for the geometries in blue, green
and orange), in which case phonons directly traverse the pore
“wall” regions. Comparing the blue and green systems which
have the same porosity and similar surface areas, we observe
that along x and y [square and rhombus blue/green symbols
in Fig. 3(c)], they have comparable thermal conductivities.
Phonons in the blue system encounter fewer, but larger (more
effective) scatterers. Phonons in the green system encounter
more scatterers, more closely packed along y (and x), but
smaller, which makes each individual pore less effective [46].
Finally, the thermal conductivity is similar in the two systems.
In the z direction (hexagons), however, since the phonons
travel along the pore surfaces and interact with them continu-
ously, the larger pore number (and surface area) in the green
system reduces thermal conductivity more strongly.

In the case of larger porosity systems (orange and cyan),
we have many more pores and the structures seem more
isotropic. Within each geometry, the differences between
transport directions are not as severe; in fact, for the geometry
in cyan, transport along x is symmetric to transport along
y (the pores are equidistant in both directions). Comparing
the orange to the cyan systems, we find the following: (i)
along x, in the orange system, phonons encounter dense
“surfaces” of pores with a smaller distance between them. In
the cyan case, phonons encounter less “dense” surfaces, with
larger distance between the pores perpendicular to transport,
but increased number of pores. The larger number of pores
compensates the smaller diameters, but still, the thermal con-
ductivity of the cyan system, with more space for phonons to
go through the pores, is slightly higher by 18% (compared to
the orange system). (ii) On the other hand, along y the thermal
conductivity in the orange system is higher compared to the
cyan by ∼62%. Phonons in the orange system have larger
areas, “completely” free of pores to travel, whereas phonons
in the cyan system encounter more surfaces in their path. (iii)
Along z (into the page, hexagonal symbols), in a similar man-
ner, the orange system supports larger uninterrupted areas,
while the cyan system forces phonons to travel more closely
along the pore surfaces, and thus thermal conductivity is lower
in the cyan system by ∼48%.
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From these observations, we can clearly state not only that
surface area is an important parameter that influences thermal
conductivity (given observations for transport along z and
to some extent y), but it also makes a large difference how
closely packed the pores are with respect to phonon transport
(given observations for transport along x and to some extent
y). Transport in the x direction (square symbols) is degraded
the most when phonons encounter a dense “surface” of pores,
with small pathways for phonons to pass through, which
introduces large thermal resistance (compared to encountering
more pores and more surfaces). This effect is referred to in
the literature as reducing the phonons’ line-of-sight, a term
indicating whether particlelike phonons have a long direct
path from one side of the material to the other, without
interruptions [47,48]. Concerning transport perpendicular to
the pores, line-of-sight has a stronger influence compared to
the number of pores and surface area in systems with closely
packed pores.

Along z, phonons travel along the pores, and thus interact
and are affected by the surface area continuously as they
propagate. The closer the surface is to the phonons, the
more its influence is expected to be. When pores are further
apart, even if their diameter is larger (blue/orange), their
influence is reduced compared to closely packed pores with
phonons travelling along them (green/cyan). Thus it is not
only if phonons scatter on the pores directly themselves, but
surface scattering when travelling along pores also affects the
thermal conductivity, in a similar manner to how surfaces
reduce electron mobility [49]. Indeed, nanowires are known to
significantly reduce thermal transport due to scattering along
the boundaries [31,46,50].

Influence of pore asymmetry in transport direction. In
Fig. 4, we generalize some of the observations from Fig. 3 by
simulating and plotting the directional thermal conductivity of
multiple geometries of uniformly distributed pores (as in the
inset of Fig. 4) as a function of porosity. Transport in the x
direction (square symbols) results in the lowest thermal con-
ductivity compared to transport along y or z for all porosities.
Clearly, phonons in x encounter a dense “surface” of voids,
which reduces the line-of-sight, and introduces large thermal
resistance, by not allowing phonons enough space to get
through. Consequently, phonons propagating perpendicular
to the pores along y (rhombus symbol), have higher thermal
conductivity compared to the x direction (square symbol).
Along the z direction (into the page, hexagon symbols),
the conductivity is the highest. Although here the phonons
travel along surfaces which still have a significant degrading
influence, they do not encounter any direct scattering along
their transport direction. Thus, clearly, although surfaces can
slow down phonons, the most important detrimental effect in
their propagation in nanoporous materials is the reduction in
their mean free path by reducing their line-of-sight—in other
words, obstructing phonon propagation.

Influence of staggering. To further investigate the impor-
tance of line-of-sight on phonon transport, we placed pores
and voids such that they are offset, and compared the results to
a similar system where the pores/voids are uniformly aligned
[see system schematics in Fig. 5(a)]. Voids were placed such
that they were offset perpendicular to x, i.e., offset in y and z
[see Fig. 5(a)(ii)]. We find that staggering in the positions of

FIG. 4. Asymmetric thermal transport in porous systems. The
thermal conductivity of geometries with pores is evaluated for uni-
formly distributed pore systems in all three directions, i.e., in x
(square symbols), y (rhombus symbols), and z (hexagon symbols).
Porosity, along each cartesian direction (z, y, and x, from top to bot-
tom) is plotted in logarithmic scale, and the shaded regions highlight
fits to the corresponding error bars, while the dashed-grey lines show
fits through the data. The error bars show the standard error of all
simulations in a given geometry set. At equivalent porosity, pores
offer greater resistance when transport is perpendicular (i.e., in the
x and y directions) to them. The relative gap in thermal conductivity
between transport along y and z increases as porosity increases. The
insets show (on the upper/right) an overview of a cross section of a
simulation cell for an indicative geometry (the simulation domain is
indicated by the black outline, and periodic boundary images along y
are also shown). A representation of a pore geometry (only pores are
considered in this figure) is also represented as an inset (lower/right).
The directions we consider are labelled accordingly.

the voids does not have a significant influence in the thermal
conductivity [see blue and orange data points in Fig. 5(b)
for φ = 0.5% and φ = 5%, respectively]. This is because in
the case of voids the phonons can propagate around them
more easily. The discrepancy between uniformly aligned and
offset scatterers, however, has a stronger effect on systems
with pores, which restrict phonons to flow around them only
in the xy plane. For a low 2% porosity, relocating pores
as to reduce the line-of-sight for phonons travelling in the
x direction, results in a decrease of ∼25% in the thermal
conductivity (see magenta systems and data points in Fig. 5).
The effect of line-of-sight reduction in staggered geometries
compared to uniform geometries is illustrated in Fig. 5(c).
Clearly the phonon pathways and areas in which they can flow
uninterruptedly are reduced in the staggered geometry.

We point out that to lower the uncertainty of this estimate,
both systems being compared were simulated for sets of 20
simulations. At higher porosity (5%), the effect of staggering
on the thermal conductivity is seemingly less marked, with
only a 15% difference, which is however within the statistical
error of our simulations (see the grey data for φ = 5%). This is
to be expected, because at higher porosities, the average mean
free path has already been significantly reduced by pores/void
scattering, in which case phonon trajectories are randomized
more similarly in both the aligned and staggered cases.

To investigate the influence of phonon relaxation times
on the staggered (versus aligned) pore geometries, in the
inset in Fig. 5(b), we show the evolution of the cumulative
integral of the HCACF, from which the thermal conductivity
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FIG. 5. The effect of staggering (offset placement of voids/pores)
on the thermal conductivity. In (a) systems with uniformly distributed
voids (i and ii) and pores (iii and iv) are placed so they are offset
to each other as shown: voids are offset in the y and z directions,
whereas pores are only misaligned the y direction. In this way,
phonons propagating along x will “feel” the misalignment, but not
when propagating along y. (b) The thermal conductivity of these
geometries—for comparisons between staggered pores and voids
geometries vs aligned pore/void systems. The colors in the plot
match the geometries in (a), with aligned voids labelled by circles,
aligned pores labelled by squares, and offset pores and voids both
labelled by crosses. The inset in (b) shows the evolution of the
thermal conductivity along the HCACF time for the pore geometries.
The dashed lines correspond to the staggered geometries, and the
solid lines to the aligned geometries. The thermal conductivity values
in the main plot of (b) for the pores (magenta and grey) correspond
to the HCACF value at 150 ps in the inset. (c) Illustration of phonon
line-of-sight in (i) aligned and (ii) staggered pores. In both cases, the
shaded regions show examples where the propagation of phonons
is unimpeded, i.e., the line-of-sight of phonons. In the staggered
systems (ii), the grey lines become thinner than in the aligned pore
system of (i). In other words, the aligned pores have a wider range of
unimpeded regions that allow phonons to propagate.

is calculated. The integral of the HCACF is equivalent early
on until around 10 ps for the corresponding staggered and
aligned systems. After that point they diverge: the integral
of the staggered systems plateaus (dashed lines), while that
of the aligned systems continues to grow (solid lines). This

indicates that both aligned and staggered systems undergo
similar relaxation phonon processes for fast relaxing phonons
(i.e., phonons which thermalize fast—those with short mean
free paths). The difference in thermal conductivity arises
due to slow relaxation time processes (long mean free path
phonons) that are only still present in the aligned systems.
This suggests that it’s the suppression of larger mean free path
phonons that affects the thermal conductivity in the staggered
pores geometries. The short MFP phonons thermalize and are
randomized before they meet the next scatterer, whereas the
long MFP phonons travel in-between the pores in the aligned
case, but scatter straight on the pores when they are staggered.
Our observations agree with other works in the literature, at
similar porosities as well [22]. As a side note, we have also
computed the thermal conductivity in the z direction, parallel
to the pores for the lower porosity system in magenta. There,
for an unexpected reason, staggered pore geometries had a
lower thermal conductivity as well, by 21%. This is within
the statistical error of the simulations, otherwise this would
suggest that staggering affects transport perpendicular to the
pores as well.

Influence of pore clustering. To continue towards building
our understanding of disorder in nanoporous materials, we
proceed by performing simulations in systems that contain
clusters of voids/pores, either aligned or misaligned, as one
might encounter in a realistic material. In order to clearly
demonstrate the effect of clustering on κ , and get a quan-
titative understanding of its importance, we first begin by
comparing the thermal conductivity of two systems with
equivalent porosity, but different void arrangements as shown
in Fig. 6(a), systems (i) and (ii). System (i) in Fig. 6(a)
exhibits clustering perpendicular to the transport direction,
i.e., x, similar to systems discussed so far. System (ii) in
Fig. 6(a) has equivalent porosity, but the distance between
voids is equivalent in all directions such that the system is
purely isotropic. The thermal conductivity of system (i) is
∼35% lower than that of system (ii). This is as expected,
since system (i) has reduced the line-of-sight for phonons, by
creating a wall or barrier of voids.

Next, we proceed with simulating the systems in Figs. 6(b),
where we consider the effect of clustering along the trans-
port direction. In disordered nanoporous materials clustering
happens in a statistical fashion, and increases local resistance,
which reduces the overall κ . This is a well-defined effect that
we have investigated using ray-tracing Monte Carlo simula-
tions in the past for much larger pore sizes and geometries
[24,28]. Here, as a first step, in Fig. 6(b), we consider the
effect of clustering on aligned systems, so as to isolate the
effect from others at play in randomized systems. We start
from a geometry of spread out voids (left column)/pores
(right column), shown in Fig. 6(b), and we then compress
the positions of the voids/pores such that they are placed very
closely together. We consider situations where the placement
remains aligned, and where the placement is staggered.

Figure 6(c) shows the first 50 picoseconds of the HCACF
integral for the systems shown in Fig. 6(b) (with the same col-
oring identification). The converged thermal conductivity val-
ues (extracted at 150 ps) are also indicated in the right panel
of Fig. 6(c) as a function of porosity for pores and voids alike.
When it comes to phonon scattering on voids/pores, multiple
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FIG. 6. Effect of pore/void clustering on thermal conductivity in
anisotropic geometries. (a) Schematic of wo systems with equivalent
void size and system volume (and thus porosity). The thermal
conductivity of system (i) in the x direction, which corresponds
to a clustering of the voids perpendicular to transport (due to
periodic boundary conditions in y and z), is ∼35% lower than
that of system (ii), where the voids are truly uniformly distributed.
(b) Simulated geometries of aligned systems for both voids and
pores, and equivalent porosity and void/pore size geometries with
arrays of clusters and offset arrays of clusters. (c) (Left) The cumu-
lative thermal conductivity as it evolves in HCACF time up to 50 ps.
(Right) The estimated converged thermal conductivity extracted at
the 150 ps cutoff for the clustered and aligned systems of pores and
voids in (b), color coded accordingly.

scattering events are needed to fully thermalize phonons.
For this reason, larger cluster sizes are more effective in
thermalizing phonons [46]. On the other hand, spread out
pores (or voids) are highly effective in scattering phonons with
mean free paths equal and greater than the distance between
them, but isolated pores are less effective scatterers than the
clusters. Both effects work against each other, and no further
degradation in the thermal conductivity of the void geometries
is observed in our simulations by clustering defects. In fact,
looking at the thermal conductivity [in Fig. 6(c)] of the void
systems of Fig. 6(b), left column, we observe that the spread-
out system (orange), has a lower thermal conductivity than the
aligned clustered system (brown). It is only when the voids
are staggered (blue system), rather than aligned, in which
case the line-of-sight is somewhat reduced, that the thermal
conductivity of the clustered system is reduced. Still, however,
only to the levels of the spread-out pore system (orange) (i.e.,
the results are within each other’s error bars). Thus, in the
void systems, we consider both clustering and staggering have
a negligible effect on the final thermal conductivity (at fixed

porosity). This is mainly because the line-of-sight reduction
is not strong, owing it to the phonons being able to propagate
around the voids.

We consider now the systems with pores (in magenta,
orange, cyan and green) in the right column of Fig. 6(b).
Again, as in the case of voids, while clustering still keeps
the pores aligned, it produces similar thermal conductivity
reductions as having the pores spread uniformly along the
channel transport length (compare the cyan and orange to the
magenta-spread out systems/lines) at 50 ps in Fig. 6(c) and in
the right panel of Fig. 6(c) (at 150 ps). The variations in ther-
mal conductivity between these three systems are within each
other’s statistical error and not remarkably different. Stag-
gering the clustered pores (green system), however, yields a
significant ∼43% decrease in thermal conductivity compared
to the uniformly distributed case [magenta—right column of
Fig. 6(b)]. Thus we reach here the conclusion that beyond
defect scattering, the effect of reducing the line-of-sight due
to staggering (or equivalently randomly placing pores in a
more realistic experimental scenario) is more important in
lowering the thermal conductivity. The quantitative distinction
between the larger reductions (and consequently line-of-sight
reductions) for staggered pores compared to staggered voids,
is geometrical—pores introduce a barrier in the z direction
(out of page) and allows only 2D passages around them,
whereas voids still allow 3D passages around them.

An interesting point arises when considering the trends
of the cumulative integral of the HCACF [see the left-hand
plot in Fig. 6(c)]. We can observe that for both voids and
pores, in the uniform systems the cumulative integral mono-
tonically increases (lower orange line and magenta line).
(The void systems have lower thermal conductivity because
of their higher porosity.) On the other hand, the clustered
systems plateau faster, after an initial sharp increase in the
HCACF integral. We can infer from this result that slow
processes (i.e., large mean free paths) thermalize much faster
in the clustered geometries compared to the corresponding
aligned geometries. Placing voids/pores at regular intervals
contributes to annihilating larger mean free path phonons,
whereas by spreading out the pores/voids we hinder mid- to
short-MFP phonons more effectively. In the case of staggered
systems of voids and pores [geometries in dark blue and green
in Fig. 6(b), respectively], the HCACF behavior is initially
similar to the equivalent clustered systems (in brown for
voids, and orange or cyan for pores), with the exception that
there is a marked dip in the autocorrelation function after
∼0 ps, corresponding to slightly anticorrelated behavior in
the heat flux, and which reduces the thermal conductivity.
This interesting effect is a characteristic of some liquid and
amorphous materials [51–53], and could possibly be due to
oscillatory behavior in the HCACF resulting from ballistic
phonons moving back and forth [54]. It is interesting that
our results suggest that voids/pores materials exhibit anticor-
related heat-flux behavior, suggesting liquid, amorphous, or
oscillatory behavior, which we will be investigating in future
work. However, the basic result we want to outline from
this study, is that even down to the nanoscale, the intuitive
line-of-sight argument, comes to be an important (if not the
most important) feature in understanding thermal conductivity
in pore/void filled materials.
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FIG. 7. (a) Schematic of randomized types of geometries: base-
line uniformly distributed voids (i), randomly distributed voids with
fixed radius at 1.56 nm (ii), randomly distributed voids with fixed
radius at 0.5 nm (iii), and randomly distributed voids with a randomly
distributed void size based on a normal distribution with a mean
of 1 nm and a standard deviation of 0.2 nm. Three realizations
of each of the indicative random systems in (a) were simulated
(the schematic in (a) are for 5% porosity). (b) Fractional thermal
conductivity of randomized void systems at different porosity. The
geometry types are colored according to the schematic in (a). Circles
(in red) show the thermal conductivity for uniform geometries at
different porosities, and the random systems are represented with
crosses. Notice that for type (iii) simulations at 15% porosity, the
variability between the three sets of simulated systems is so small
that all thermal conductivities overlap and only a single (light blue)
point appears visible, when in fact there are three.

Influence of void size and position randomization. Finally,
in order to address the degree of disorder that one would
encounter in a realistic system with voids, we consider void
systems with random positions and sizes. The anticipation is
that the effects we described above, clustering, surface area vs.
volume, and line-of-sight reduction, all will simultaneously be
present in disordered systems. In Fig. 7, the following geome-
tries are compared: (i) uniform distributions (at φ = 5%, 10%,
and 15%), (ii) random position distributions with a fixed void
radius of 1.56 nm (at φ = 5% porosity), (iii) random position
distributions with a fixed void radius of 0.5 nm (at φ = 5%,
and φ = 15%), and (iv) random position distributions with a
randomly distributed void size based on a normal distribution
with a mean, μ = 1 nm, and a standard deviation, σ = 0.2
nm (at φ = 5%, 10%, and 15%). Three sets of realizations
were simulated for geometries (ii)–(iv). Looking at the 5%
porosity, we find that randomizing void distribution [system
type (ii)], while maintaining void size, yields only a small
additional reduction (4%–12%, within error bars) in thermal
conductivity compared to the aligned structure—see blue data
points in Fig. 7(b). This is consistent with results found for
staggered and clustered systems, both of which seem to pref-

erentially reduce large phonon mean free paths. The randomly
distributed and sized systems, labelled (iv) in Fig. 7(a) and
colored in green, show a greater reduction in thermal conduc-
tivity (29%–40%). However, randomly distributed systems
of smaller nanovoids, fixed at ∼0.5 nm (i.e., like the light-
blue structure in Fig. 7, labelled (iii) in Fig. 7(a), show an
even greater reduction in thermal conductivity (69%–71%).
Several effects could contribute to this: smaller voids increase
surface area (and thus scattering), but they also increase the
total number of scatterers. Thus there is a balance between
sparsity (sparse scatters reduce the average phonon mean
free path) and clustering (which more effectively thermalizes
phonons).

In addition, we observe that the effect of having more
(and smaller) voids on lowering thermal conductivity seems to
increase with porosity. We see this by comparing the overall
reduction in thermal conductivity of randomized geometries
compared to uniform distributions as the porosity increases.
This can be seen by considering how sets (iii) and (iv),
in light-blue and green, respectively, in Fig. 7(b), decrease
thermal conductivity more effectively as porosity increases,
compared to the respective pristine systems. A more detailed
plot including the percentage decrease in thermal conductivity
for each set is shown in Ref. [36]. Regarding the effect of void
size, smaller voids do not become more influential at higher
porosities [comparing systems (iii) and (iv), again in light-
blue and green in Fig. 7]. At φ = 5% and 15% porosities,
we can see that reducing the size of the voids (iii) decreases
the thermal conductivity an additional 29%–42% at φ = 5%,
but only an additional 20%−23% at φ = 15%. At higher
porosities, the average phonon mean free path has already
been significantly reduced (overall lower thermal conductiv-
ity), which could explain why reducing void size can only
change the thermal conductivity so much (from 60%–63% to
83% at 15% porosity compared to a change from 29%−40%
to 69%−71% at 5% porosity). Similarly, the reduced spread
in the data for the three systems (in light blue) at 15% porosity
(compared to 5% porosity), suggests that not only the minutia
of the size distribution has a weaker effect at higher porosities,
so does the void position distribution. That said, our data
suggest that in absolute terms, smaller randomized voids can
still be effective in scattering shorter mean free path phonons
(at higher porosities).

Mean free path analysis. Lastly, we compute the phonon
thermal conductivity accumulation function, kaccum, for the
pristine Si material using lattice dynamics, and perform a sim-
ple resistive MFP analysis based on Matthiessen’s rule to esti-
mate the effect of each MFP in the case of the nanostructures.
This will allow us to better connect the actual geometrical
features with the phonon MFPs. This calculation is performed
using lattice dynamics and the phonon Boltzmann transport
equation (BTE) solved under a relaxation time approximation
(RTA) as implemented in the open-source package ALAMODE

[55]. A 2 × 2 × 2 supercell (of 64 atoms) is used for all of
the phonon and interatomic force constant (IFC) calculations.
The selected atomic displacements are of 0.01 and 0.04 Å
for the harmonic and anharmonic IFCs, respectively, and
cubic interaction pairs up to the second nearest neighbor are
considered. The Brillouin zone is sampled with a 30 × 30 ×
30 q-point mesh for all calculations. We perform this for the
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FIG. 8. (a) Normalized thermal conductivity accumulation func-
tion computed for pristine Si using the Stillinger-Webber potential
(black line), and from first principles (blue line) [56]. The inset
in (a) shows the derivative of the Stillinger-Weber accumulation
function, i.e., the contribution of each mean free path to the thermal
conductivity. (b) Thermal conductivity accumulation functions for
the uniform pore geometries. The functions were computed using the
expression shown in (b) by finding C such that kporous,10 μm matched
the thermal conductivity computed from molecular dynamics. The
pristine geometry accumulation function is shown in black. The
colors in (b) match those in Table S1 in Ref. [36].

perfectly crystalline pristine system for the Stillinger-Weber
(SW) potential we use.

The normalized thermal accumulation function, kaccum/

kbulk, for the SW potential calculated at 300 K (black line)
is shown in Fig. 8(a). For comparison, we also show
the kaccum/kbulk computed using first principles, with an
18 × 18 × 18 q-point grid at 277 K, by Esfarjani et al. [56]
(blue line). The shape of the two functions is very similar,
however, the SW function is shifted towards higher MFPs,
a consequence of the higher thermal conductivity that this
potential provides. In spite of this difference, the normalized
thermal conductivity accumulation follows a distribution that
is universal in shape for the same type of materials, regardless
of the approach used to compute it [57–60]. (The value for
the kbulk, given by the SW potential using the BTE (with

ALAMODE) is 592.85 W/mK, ∼4 times larger compared to
the value obtained with first principles. This is well known
for this potential, and in agreement with other works [56].
This would mean that defects will have a larger effect in the
thermal conductivity computed using SW rather than other
potentials, but qualitatively, we can still draw conclusions on
the influence of defects on MFPs.

To estimate the effect of each MFP in the case of the nanos-
tructures, as it is computationally very expensive to perform a
similar analysis for the larger nanostructures, we performed a
simple resistive MFP analysis based on Matthiessen’s rule as
follows.

(1) We begin by computing the contribution of �i to the
thermal conductivity of the pristine system, kpristine,i by differ-
entiating kaccum. This is shown in the inset of Fig. 8(a). (The
equivalent plot of the inset in Fig. 8(a) for the first-principles
calculation shown in Fig. 8(a) (in blue) can be found in the
same Ref. [56]).

(2) We then use Matthiessen’s rule to combine the pore
scattering MFP to each pristine MFP, �i, and thus evaluate the
contribution of the combined MFP to the thermal conductivity
(in the x direction) of a porous geometry, kporous,i, as

1

kporous,i
= �i

kpristine,i

(
1

�i
+ C

d

)
, (3)

where kpristine,i is the contribution of �i to the thermal conduc-
tivity of the pristine system, as aforementioned. Above, d is
the distance between pores along the transport direction x and
C is a scattering strength measure of the defects encountered
every d . In effect, C is determined by the details of the pore
arrangement within each “clustered wall” of pores, and is
linked to local porosity and disorder (the larger the local
porosity and disorder, the larger the local resistance, and the
larger C is).

(3) We adjust the scattering strength/resistance parameter,
C, to map to the thermal conductivity MD results for some
example nanostructures. That is, we find C for each indi-
vidual structure such that we get the MD calculated thermal
conductivity at the end of the accumulation function. The
corresponding accumulation functions are shown in Fig. 8(a),
for characteristic structures [some geometries are shown in
Fig. 9(b)]. This is a first order indication of how each MFP
is affected in the case of the nanostructures. The colors in
Fig. 8(b) are chosen to match those of the uniform geometries
in Ref. [36] as well (Table S1).

Note that, for the pristine geometry, even at 10 μm, kaccum

is lower than kbulk. For this reason, the projected values of
kaccum for the nanostructures [i.e., the points plotted on the
right side of Fig. 8(b)] are normalized to kaccum at 10 μm, i.e.,
the thermal conductivity of the pristine Si obtained with MD
is matched to kbulk. We further remark here that we obtain
the same results using a smooth, interpolated, kaccum (and
thus kpristine) as we do with the actual kaccum, despite its step
function shape at high MFPs, which translates in the spikes in
the inset of Fig. 8(a).

Next, we observe how the C parameters relate to the
geometrical details of the defected areas that allow phonon
propagation. In Fig. 9(a), we plot the C parameter (which
provides the strength of the scattering defect “line”) versus

035409-10



LARGE-SCALE MOLECULAR DYNAMICS INVESTIGATION … PHYSICAL REVIEW B 100, 035409 (2019)

FIG. 9. (a) Relationship between the scattering parameter C and the square of the pore diameter, D. The data correspond to uniformly
distributed (stars) and staggered (circles) pore geometries. A linear fit through the data (black line), which is forced to go through the origin,
is also plotted. (b) Examples of some of the geometries included in (a) and their corresponding d and D. (c) Expected value for the thermal
conductivity accumulation function of the nanostructures computed for C = sD2, for the uniform pore geometries. All results are within the
95% confidence interval of the simulated thermal conductivities (star symbols and corresponding error bars).

the area of the defects in uniform nanostructured families
indicated with the star symbols (i.e., the local porosity, in the
vicinity of the pore regions), showing very good correlation.
A linear dependence is observed with D2, such that C = sD2,
where s is the slope of the fit and D is the pore diameter.
For example, the structures in magenta and grey [Fig. 9(b)(i)],
have their defect “walls” at the same distance d , but the pore
radius increases from 0.87 to 1.37 nm (thus reducing the
region available for phonon propagation), and that is clearly
reflected on the C value, which is approximately halved. Both
geometries fall closely near the linear fit, as do geometries
with different d , and similar D [see the green and magenta
geometries in Fig. 9(b)(iii), for example]. It is quite interesting
that this linear fit is achieved with only one parameter C for
each structure, which can very well also be linked back to
the underlying geometry, and specifically to the geometrical
details of the defected (i.e., porous) areas that allow phonon
propagation.

In the case of staggering, where the line-of-sight is further
reduced, to match the kaccum function, the C parameter must
be higher (shown by the colored magenta and grey circles),
clearly indicating the increase in the effective resistance of
the “defect wall” that the phonons encounter. Notice that the
magenta and grey circles correspond to the same color stars,
which are the equivalent, nonstaggered systems. The colors
in the above figure are again chosen to match those of the
geometries in Ref. [36] [this includes all geometries in Table
S1 (stars) and the pore geometries in Table S4 (circles)].

In one final illustration, we use the extracted s from the
linear fit in Fig. 9(a) (C = sD2) to compute kaccum for the
nanostructures (which gives a slightly different C in each
case). In Fig. 9(c), the simulated conductivity of the nanos-
tructures is shown along with their 95% confidence interval
from MD (error bars) on the right, using the same colors.
Here, s is found to be 0.105 nm−2. This is just to show that
quite accurate predictions can also be obtained for other simi-
lar nanostructures as well, in correlation to simple geometrical
details. We also find that the void systems exhibit a similar
relationship and we include the analysis of the uniform void
geometries in Ref. [36]. In general, one can think of analysing
the C or s values for structures with more complex topologies,

and that will provide an indication of the strength of the
relative local scattering/resistance that is introduced. This
analysis, however, shows again how simple considerations,
such as Matthiessen’s rule and the particle picture can provide
adequate understanding of heat transport even down to the
nanoscale.

IV. CONCLUSION

In conclusion, we used large-scale equilibrium molecular
dynamics together with the Green–Kubo formalism to ex-
amine thermal transport in over 50 Si nanoporous/nanovoid
geometries, incrementally varying their degree of disorder,
from uniformly distributed, to staggered (or offset), clustered,
clustered and staggered, randomly distributed, and randomly
distributed and sized pores. Porosity, surface-area, pore size,
neck size, and pore number have all been examined as
well. Our goal was to clarify the effect of small, systematic
variations in pore/void geometry on thermal conductivity in
order to determine the most effective mechanisms in reduc-
ing thermal conductivity. We show that surface area and
pore/void density is a more significant metric in estimating
thermal conductivity reduction compared to porosity and pore
sizes, with the exception when large pores are placed in
such a way as to block the passage of phonons, an effect
referred to as the reduced line-of-sight. It turns out that the
most drastic reductions in thermal conductivity in nanoporous
materials can be explained by this effect at first order. For
transport perpendicular to pores, staggered pores reduce the
line-of-sight more and are thus more effective in reducing
the thermal conductivity compared to aligned pores, an effect
that is more marked at lower porosities. Unlike staggered
pores, staggered voids are not as effective in reducing the
line-of-sight, as phonons can flow around them in 3D. We
also show that the clustering of pores/voids itself does not
seem to influence the overall thermal conductivity compared
to an equivalent uniform system, unless the clusters are in a
staggered geometry, in which case the line-of-sight is reduced.
Clustering, however, contributes to annihilating larger mean
free path phonons, something observed from the HCACF. In
the case of fully randomized void geometries, in terms of
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void position and size, we find that having more (and smaller)
randomized voids lowers the thermal conductivity compared
to the uniform system. The strength of this effect seems to
increase with porosity, in agreement with macroscale Monte
Carlo works as well [24], although the details of the size
and position distributions seem to have a weaker effect at
high porosities. Finally, we also show that transport along
the pores, i.e., parallel to them, is more susceptible to the
distance between the pores, as they reduce the “clean” regions
for phonon flow. In that case, smaller but densely packed
pores reduce thermal conductivity more effectively compared
to larger but spread out pores. Ultimately, the basic result
we want to outline from this study, is that even down to the
nanoscale, the intuitive line-of-sight argument comes to be
maybe the most important feature in understanding thermal
conductivity in pore/void filled materials. As a consequence,
we find that a simple model, based on Matthiessen’s rule and

simple geometrical considerations, yields thermal conductiv-
ity accumulation function results for (uniformly distributed
pores and voids) nanostructured geometries which agree with
the MD simulations. It is interesting that such an understand-
ing is drawn from wave-based MD simulations.
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[30] D. Şopu, J. Kotakoski, and K. Albe, Phys. Rev. B 83, 245416

(2011).
[31] X. Cartoixà, L. Colombo, and R. Rurali, Nano Lett. 15, 8255

(2015).
[32] R. Guo and B. Huang, Int. J. Heat Mass Transfer 77, 131 (2014).
[33] Z. Aksamija, in ICHMT Digital Library Online (Begel House

Inc., 2015).
[34] H. Karamitaheri, M. Pourfath, H. Kosina, and N. Neophytou,

Phys. Rev. B 91, 165410 (2015).
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