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Quench dynamics of spin in quantum dots coupled to spin-polarized leads
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We investigate the quench dynamics of a quantum dot strongly coupled to spin-polarized ferromagnetic leads.
The real-time evolution is calculated by means of the time-dependent density-matrix numerical renormalization
group method implemented within the matrix product states framework. We examine the system’s response to
a quench in the spin-dependent coupling strength to ferromagnetic leads as well as in the position of the dot’s
orbital level. The spin dynamics is analyzed by calculating the time-dependent expectation values of the quantum
dot’s magnetization and occupation. Based on these, we determine the time dependence of a ferromagnetic-
contact-induced exchange field and predict its nonmonotonic buildup. In particular, two timescales are identified,
describing the development of the exchange field and the dot’s magnetization sign change. Finally, we study the
effects of finite temperature on the dynamical behavior of the system.
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I. INTRODUCTION

The investigations concerning dynamical properties of
quantum impurity systems are of great importance for the
development of nanoscale and, in general, condensed-matter
physics. Precise control and manipulation of spin and charge
degrees of freedom in such systems, as well as an under-
standing of the relevant timescales, is a necessary requirement
for further applications in spintronics [1,2] or for quantum-
information processing [3,4]. In addition, the analysis of
dynamical behavior of various quantum impurity models
provides important knowledge about the charge and spin
transport through nanostructures, and sheds new light on the
effects of decoherence and dissipation [5].

A quantum impurity system can be regarded as composed
of a confined, zero-dimensional subsystem interacting with an
infinitely large environment. A prominent example that has
recently been the subject of vast theoretical and experimen-
tal explorations is a system composed of quantum dots or
molecules attached to external leads. Current nanofabrication
techniques allow in particular for engineering devices consist-
ing of multiple quantum dots in various geometrical arrange-
ments and with precisely tuned parameters. This provides an
unprecedented opportunity for experimental investigations of
many important effects present in such systems, including the
Kondo effect [6,7], superconducting correlations and Andreev
transport [8,9], quantum interference effects, as well as vari-
ous charge and spin transport phenomena among many others
[10–12].

In addition to examinations of the steady-state transport
properties of quantum dot systems, there have been an increas-
ing number of experiments conducted in the strong-coupling
regime, where the dynamics and relaxation [13–16] as well as
different quench protocols and the Kondo physics have been
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investigated in a time domain [17,18]. From a theoretical point
of view, the dynamical properties of low-dimensional systems
have been attracting considerable attention [19–24]. However,
an accurate description of the dynamics in such systems
poses a considerable challenge due to electronic correlations.
Recently, there have been significant advances in this regard
[25–33], especially by resorting to various renormalization
group schemes [34–44].

In this paper, we address the problem of dynamical be-
havior of quantum dots attached to spin-polarized leads, and
we focus on the strong-coupling regime, when electron cor-
relations can give rise to the Kondo effect [45,46]. Pertur-
bative approaches fail to capture strong correlations due to
infrared divergences; therefore, we turn to Wilson’s numerical
renormalization group (NRG) method [47]—a very accurate,
nonperturbative method for calculating transport properties
of quantum impurity systems, including quantum dots cou-
pled to external leads. As we are interested in charge and
spin dynamics, we use the extension of NRG introduced by
Anders and Schiller, namely the time-dependent numerical
renormalization group (tNRG) method [48,49]. This method
was subsequently generalized by Nghiem and Costi to finite
temperatures, multiple quenches, and the possibility of study-
ing time evolution in response to general pulses and periodic
driving [50–52]. While tNRG has already provided valuable
insight into the dynamics of Kondo-correlated molecules and
quantum dots attached to nonmagnetic leads [43,53–55], the
time-dependent behavior of local observables of correlated
impurities with spin-polarized contacts remains rather unex-
plored. The goal of this paper is to fill this gap.

Quantum dots coupled to ferromagnetic electrodes have
already been extensively studied in the case of stationary-
state transport properties [56–59]. In particular, the compe-
tition between Kondo correlations and ferromagnetism was
shown to result in many nontrivial spin-related phenomena,
such as the exchange-field-induced suppression of the Kondo
correlations [60–65]. Motivated by the above advances, we
analyze the time-dependent properties of a single quantum
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dot strongly coupled to ferromagnetic leads subject to a
quantum quench. More specifically, we consider two types of
quantum quenches: the first one concerns the quench in the
spin-dependent coupling strength, whereas the second type of
quench is associated with a change in the dot’s orbital level
position. We study the time evolution of the dot’s magnetiza-
tion and the occupation number following the quench. Finally,
we also take into consideration finite-temperature effects and
analyze their impact on spin dynamics.

We show that the time evolution of the dot’s magnetization
and occupation strongly depends on the initial conditions
of the system. In particular, for the quantum dot initially
occupied by a single electron, we find a range of time where
the time evolution of magnetization exhibits a nonmonotonic
behavior—magnetization shows oscillations as a function of
time with a sign change. The corresponding sign change is
also clearly visible in the time dependence of the induced
exchange field. We show that this nonmonotonic buildup is
a consequence of the qualitatively different time evolution of
spin-resolved occupations of the quantum dot. It turns out
that while the charge dynamics is mainly governed by the
coupling to the majority-spin subband of the ferromagnet, the
spin dynamics is determined by the coupling to the minority-
spin band. Finally, we demonstrate that all these effects can
be smeared out by thermal fluctuations once the inverse of
temperature becomes comparable with the timescale when the
interesting physics occurs.

This paper is structured as follows. Section II consists
of a Hamiltonian description of the considered system, an
overview of the quench protocol, and a summary of the
numerical renormalization group method used for calculations
of time-dependent expectation values of local observables.
In Sec. III we present the numerical results and relevant
analysis for the quenches in the coupling strength and orbital
level position. We also present and discuss the effects of
finite temperature on dynamical behavior. Finally, the work
is concluded in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

We consider a single-level quantum dot coupled to a spin-
polarized ferromagnetic lead [56–59], as shown in Fig. 1.
The system is described by the single-impurity Anderson

Γσ

ε U

FIG. 1. Schematic of the considered system. A single-level quan-
tum dot, with on-site energy ε and Coulomb correlations U , is
attached to an effective reservoir of spin-polarized electrons with the
spin-dependent coupling strength �σ .

Hamiltonian, which can be generally written as

H = HQD + HLead + HTun. (1)

The quantum dot Hamiltonian is given by

HQD = εn + Un↑n↓, (2)

where the quantum dot occupation is expressed as, n = n↑ +
n↓ = d†

↑d↑ + d†
↓d↓, with d†

σ (dσ ) being the dot’s fermionic
creation (annihilation) operator for an electron with spin σ

and energy ε. The Coulomb correlation energy between the
two electrons occupying the dot is denoted by U . The fer-
romagnetic lead is modeled as a reservoir of noninteracting
quasiparticles,

HLead =
∑
kσ

εkσ c†
kσ ckσ , (3)

where c†
kσ (ckσ ) is the creation (annihilation) operator of an

electron with momentum k, spin σ , and energy εkσ . Finally,
the tunneling Hamiltonian reads

HTun =
∑
kσ

Vσ (c†
kσ dσ + H.c.), (4)

where the tunnel matrix elements are denoted by Vσ and
assumed to be momentum-independent. The spin-dependent
coupling between the quantum dot and the lead is expressed
as �σ = πρσ |Vσ |2, with ρσ being the spin-dependent density
of states of the ferromagnetic electrode. By introducing the
spin polarization of the lead p, the coupling strength can be
written in the following manner: �↑(↓) = �(1 ± p), with �↑(↓)

denoting the coupling to the spin-up (spin-down) electron
band of the ferromagnetic lead and � = (�↑ + �↓)/2.

It is also worth noting that the considered model is equiv-
alent to a quantum dot coupled to the left and right leads at
equilibrium with the magnetic moments of the leads forming
a parallel alignment. By performing an orthogonal transfor-
mation, one can show that the quantum dot couples only to an
even linear combination of the electrode’s operators, with an
effective coupling strength � and average spin polarization p
[66].

B. Quench protocol

In this paper, the primary focus is on understanding the
spin-resolved dynamics of the system subject to a quantum
quench. In general, the time-dependent Hamiltonian describ-
ing the evolution after the quantum quench can be written as

H (t ) = θ (−t )H0 + θ (t )H, (5)

where θ (t ) is the step function. Here, the Hamiltonian H0

is the initial Hamiltonian of the system. At time t = 0, the
system becomes quenched, i.e., its Hamiltonian suddenly
changes, and it evolves according to H . The two Hamiltonians
are thus given by Eq. (1) with appropriately changed param-
eters. The time evolution of an expectation value of a local
operator O(t ) can then be found from

O(t ) ≡ 〈O(t )〉 = Tr{e−iHtρ0eiHt O}, (6)

where ρ0 denotes the initial equilibrium density matrix of the
system described by H0.

035404-2



QUENCH DYNAMICS OF SPIN IN QUANTUM DOTS … PHYSICAL REVIEW B 100, 035404 (2019)

In the following, we study two types of quantum quenches.
In the first case, the quench concerns the coupling strength
�. It is assumed that for t < 0, the quantum dot is decoupled
from the lead (�0 = 0) and the quench takes place at t = 0,
suddenly changing the Hamiltonian from H0 to H , with the
spin-dependent coupling to ferromagnetic contact �σ being
abruptly switched on. The second type of quench that we
investigate involves a change in the dot’s orbital level position
ε0 → ε, while the coupling strength remains intact.

For those two quenches, we determine the time dependence
of the expectation values of the dot’s magnetization and
occupation. The former can be found from

Sz(t ) = n↑(t ) − n↓(t )

2
, (7)

which can be easily expressed with the use of the quantum
dot’s operators as n↑(t ) = d†

↑(t )d↑(t ) and n↓(t ) = d†
↓(t )d↓(t ),

whereas the latter is simply equal to n(t ) = n↑(t ) + n↓(t ).

C. NRG implementation

To account for various many-body effects and analyze the
spin-resolved dynamics in the most accurate manner, we use
Wilson’s numerical renormalization group method [47,67] to
find the eigenspectrum of the Hamiltonian (1). At first, the
conduction band of the lead is logarithmically discretized with
a discretization parameter �. Consequently, the discretized
band is mapped on a tight-binding chain with exponentially
decaying hopping between the consecutive sites, forming the
Wilson chain [67]. After this transformation, the Hamiltonian
(1) can be explicitly written as

H = HQD +
∑

σ

Vσ ( f †
0σ dσ + d†

σ f0σ )

+
∞∑

n=0

∑
σ

ξn( f †
nσ fn+1σ + f †

n+1σ fnσ ). (8)

Here, the operator f †
nσ creates an electron of spin-σ at the nth

site of the Wilson chain, while ξn denotes the hopping inte-
grals between the sites n and n + 1, respectively [47,67]. The
Hamiltonian H0 is also given by Eq. (8) with appropriately
adjusted parameters.

We diagonalize both Hamiltonians, H and H0, using NRG
[68] in N iterations and keeping up to NK energetically
lowest-lying eigenstates retained at each iteration of the NRG
procedure. These states are referred to as kept and labeled
with the superscript K . For a few first sites of the Wilson
chain, n < n0, all the states are kept. However, once the size
of the Hilbert space exceeds NK , which happens at a certain
iteration n = n0, one needs to truncate the space by discarding
the high-energy eigenstates. These states are referred to as
discarded and labeled with the superscript D. In addition, all
the states of the last iteration n = N are also considered as
discarded states.

The discarded states |ns〉D at iterations n < N are comple-
mented by the state space of the rest of the chain spanned by
the environmental states |ne〉 [48,49]. The resulting states

|nse〉D ≡ |ns〉D ⊗ |ne〉 (9)

allow us to find the full many-body eigenbases∑
nse

|nse〉D0 D
0〈nse|=1 and

∑
nse

|nse〉D D〈nse|=1 (10)

of the two Hamiltonians, H0 and H , respectively. Here, the
summation over the Wilson shells n involves only the shells
where discarded states are designated, i.e.,

∑
n ≡ ∑N

n�n0
.

The above eigenbases, due to the energy-scale separation,
are good approximations of the eigenstates of the full NRG
Hamiltonians [48,49]

H0|nse〉X
0 
 EX

0ns|nse〉X
0 , (11)

H |nse〉X 
 EX
ns|nse〉X , (12)

where X = K (X = D) denotes a kept or a discarded state.
The discarded states of the Hamiltonian H0 are furthermore

used to construct the full density matrix of the system at
temperature T ≡ 1/β [69],

ρ0 =
∑
nse

e−βED
0ns

Z
|nse〉D

0
D
0 〈nse|, (13)

where

Z ≡
∑
nse

e−βED
0ns (14)

is the partition function. Note that the energies ED
0ns are

independent of the environmental index e. Tracing out the
environmental states introduces the weight factor wn ≡ dN−nZn

Z
of a given iteration [69],

ρ0 =
∑

n

dN−nZn

Z︸ ︷︷ ︸
wn

∑
s

e−βED
0ns

Zn
|ns〉D

0
D
0 〈ns|

︸ ︷︷ ︸
ρ0n

, (15)

with

Zn ≡
∑

s

e−βED
0ns (16)

denoting the partition function of a given iteration and d being
the local dimension of the Wilson site. Consequently, the
density matrix can be written in a compact form as

ρ0 =
∑

n

wnρ0n. (17)

The time-dependent expectation value 〈O(t )〉 of an oper-
ator O [cf. Eq. (6)] can be written using the complete NRG
bases as

〈O(t )〉 =
∑
nn′n′′

∑
ss′e

D〈nse|wn′′ρ0n′′ |n′s′e〉D

× D〈n′s′e|O|nse〉D ei(ED
ns−ED

n′s′ )t . (18)

Note that this formula involves a triple summation over the
Wilson shells: one summation results from the definition of
the full density matrix ρ0 [cf. Eq. (17)], whereas the other
two stem from the completeness relation [cf. Eq. (10)]. To
make this formula computationally more efficient, such that
one could make the calculations in a single-sweep fashion, we
use the identity

∑
nn′ ≡ ∑XX ′ �=KK

n , in which the double sum

035404-3
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FIG. 2. Matrix product illustration of (a) kept (|ns〉K ) and (b) dis-
carded (|ns〉D) state at Wilson shell n. The bottom legs label the local
states |σn〉. The blocks Kn (Dn) represent the kept (discarded) state
space at Wilson shell n.

over the states of the Wilson chain is changed into a single sum
over n with an additional summation over the combination of
kept and discarded states, except when both states are kept
[43]. Then, the formula for the expectation value, Eq. (18),
becomes

〈O(t )〉 =
XX ′ �=KK∑

n

∑
n′

∑
ss′e

X〈nse|wn′ρ0n′ |ns′e〉X ′

× X ′ 〈ns′e|O|nse〉X ei(EX
ns−EX ′

ns′ )t . (19)

This formula can be directly evaluated by using NRG in the
time domain [51]; however, it is more convenient to perform
the time-dependent calculations in the frequency space and
then apply the Fourier transformation back to the time domain
[70]. The frequency-dependent expectation value 〈O(ω)〉 of a
local operator O is given by

〈O(ω)〉 =
XX ′ �=KK∑

n

∑
n′

∑
ss′e

X〈nse|wn′ρ0n′ |ns′e〉X ′

× X ′〈ns′e|O|nse〉X δ
(
ω + EX

ns − EX ′
ns′

)
. (20)

It is interesting to note that the calculations of the frequency-
dependent expectation value can be performed in a similar
fashion to the calculation of the spectral function within
conventional NRG [67,69,71,72].

D. Calculation procedure

All the calculations can be conveniently performed in
the matrix product states language [70,73,74]. An exemplary
illustration of a kept or a discarded state |ns〉X is presented in
Fig. 2. Using MPS diagrammatics, the frequency-dependent
expectation value of an operator O given by Eq. (20) can
be calculated in an iterative fashion, where the data points
corresponding to ω = EX ′

ns′ − EX
ns are collected in appropriate

energy bins on a logarithmic scale. The part of the expression
for 〈O(ω)〉 preceding the Dirac δ function can be estimated
from the MPS diagrams shown in Fig. 3. In calculations, it is

(a) For n n

(b) For n < n

FIG. 3. Matrix product state diagrams for the calculation of a
contribution to the frequency-dependent expectation value of an
operator O after the quantum quench, as given by Eq. (20). The first
diagram (a) shows the contribution relevant for n′ � n, whereas the
second diagram displayed in (b) presents the contribution for n′ < n.
These contributions need to be summed over the states s and s′ and
iterations n and n′. For the contribution presented in (b) there is an
additional weight factor given by dn′−n due to the environmental
states. The green squares represent the state space of the initial
Hamiltonian H0, whereas the blue squares represent the states of the
final Hamiltonian H .

important to consider separately the case of n′ � n and n′ < n,
depending on whether the density matrix ρ0 gives the contri-
bution at iterations equal to or larger than n or smaller than n.
In the first situation, one needs to evaluate the MPS diagrams
shown in Fig. 3(a). On the other hand, in the second case of
n′ < n, the corresponding diagram is illustrated in Fig. 3(b).
Note that in this situation, the trace over the environmental
states results in a weight factor given by dn′−n. Notice also that
at T = 0, i.e., for the ground state, only the first MPS diagram,
which is shown in Fig. 3(a), is relevant. All these contributions
need to be summed over the states and the Wilson shells,
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as given explicitly in Eq. (20). Eventually, one obtains the
spectral representation of an expectation value of O(t ) given
by a sum of Dirac delta peaks with the corresponding weights
Oj ,

O(ω) ≡ 〈O(ω)〉 =
∑

j

O jδ(ω − ω j ). (21)

The delta peaks consist of one large contribution at ω → 0,
which corresponds to the long-time-limit value of O(t ). The
collected delta peaks are then log-Gaussian broadened with
a broadening parameter b (except for the point at ω → 0)
and Fourier-transformed back into the time domain to finally
obtain

O(t ) =
∫ ∞

−∞
O(ω)e−iωt dω. (22)

As far as NRG technicalities are concerned, in calculations
we assumed the discretization parameter � = 2, we set the
length of the Wilson chain to be N = 80, and we kept at
least NK = 2000 energetically lowest-lying eigenstates at each
iteration. Moreover, to increase the accuracy of the data and
suppress the band discretization effects, we employ Oliveira’s
z-averaging [75] by performing calculations for Nz = 8 differ-
ent discretizations.

In Figs. 4 and 5 we show exemplary results for the quan-
tum dot occupation number and magnetization, respectively,
obtained for a quench performed in the dot’s level position.
The initial Hamiltonian H0 has the orbital level set to the
particle-hole symmetry point, ε0 = −U/2, while for the fi-
nal Hamiltonian H the level is set at resonance ε = 0. The
collected delta peaks obtained from the calculations along
with their weights, cf. Eq. (20), are shown in the top panels
of Figs. 4 and 5. The black arrows at ω = 0 indicate the
zero-energy peak corresponding to the long-time-limit value
of the corresponding expectation value. In the next step, the
delta peaks are broadened using the logarithmic Gaussian
kernel with the broadening parameter b [69]. The broadened
data are presented in Figs. 4(b) and 5(b) for different values of
the broadening parameter. It can be seen that upon increasing
the value of b, the artefacts resulting from the discretization
of the conduction band become damped, in a similar manner
as in the approach proposed by Anders and Schiller [48,49],
where a damping factor was introduced. Note, however, that
the zero-frequency peak is not subject to broadening. The
broadened data are subsequently Fourier-transformed to ob-
tain the time-dependent expectation value. The time evolution
of the dot’s occupation number and magnetization is presented
in Figs. 4(c) and 5(c), respectively, for a few selected values of
b. Note that the case of b = 0 corresponds to obtaining O(t )
directly from discrete data without broadening. However, to
suppress the discretization artefacts and obtain smooth data,
in the next sections we use the broadening parameter equal to
b = 0.3.

III. RESULTS AND DISCUSSION

In the following, we present and discuss the behavior of
the dot’s magnetization and occupation as a function of time
considering quenches both in the coupling strength and the

FIG. 4. The results for quench preformed in the dot’s level posi-
tion from ε0 = −U/2 to ε = 0. Panel (a) presents the weights nj of
collected delta peaks corresponding to the frequency-dependent local
operator n(ω) = ∑

j n jδ(ω − ω j ). Panel (b) shows the absolute value
of the collected δ peaks after the logarithmic-Gaussian broadening
(without the point at ω → 0) for different values of the broadening
parameter b, as indicated, plotted as a function of frequency ω on the
logarithmic scale. The time dependence of n(t ) for the considered
quench is shown in (c). The inset in (c) presents the dependence
of n(t ) in the linear scale. The green arrow in (c) indicates the
long-time-limit value of the dot’s occupation. The parameters are
T = 0, U = 0.12 (in units of band half-width), � = U/10, p = 0.5,
and � = 2, NK = 2000, Nz = 8.

position of the dot’s orbital level. This allows us to investigate
the buildup of the exchange field in the system and study its
dependence on the model parameters and temperature.
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FIG. 5. The same as in Fig. 4 calculated for the dot’s magnetiza-
tion Sz(t ). The vertical dotted line in (b) marks the frequency at which
the spectral density Sz(ω) changes sign: For ω/U � 0.2, Sz(ω) > 0
(solid lines), while for ω/U � 0.2, Sz(ω) < 0 (dashed lines). The
green arrow in (c) indicates the long-time-limit value of the dot’s
magnetization.

A. Quench in the coupling strength

In this section, we consider an initially (t < 0) unpolarized
quantum dot decoupled from the lead, i.e., Sz(t < 0) = 0 and
�0 = 0. The initial occupation number depends only on the
position of the dot’s energy level ε, which in an experimental
setup can be tuned by changing the electrostatic potential of
the corresponding gate. At time t = 0, the coupling � be-
tween the quantum dot and the ferromagnetic lead is abruptly
switched on. Because of that, the spin-resolved charge fluctu-
ations between the dot and the lead become allowed, resulting
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0.2
0.3
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0.3

FIG. 6. The quantum dot magnetization Sz(t ) after the quench
from an isolated and spin-unpolarized quantum dot to the coupled
regime, as a function of time and the dots’ energy level ε/U for dif-
ferent values of the coupling strength �, as indicated. The horizontal
green-dashed lines separate regimes with different initial occupation
number n. The black dotted lines indicate the timescale associated
with the development of the exchange field t = 1/|εexch|. The
calculations were performed for T = 0, U = 0.12 (in units of band
half-width), p = 0.5, and the following NRG parameters: � = 2,
NK = 2000, Nz = 8, and b = 0.3.

in a spin-dependent renormalization of the quantum dot level,
which gives rise to its finite magnetization.

1. Quantum dot’s magnetization

The quantum dot magnetization Sz(t ) as a function of
time and the position of the dot’s energy level ε is shown in
Fig. 6 for a few values of the coupling strength �. The time
evolution is calculated for a wide range of position of the dot’s
energy level, −1.5 � ε/U � 0.5, therefore we are able to
analyze in the full parameter space how the initial occupation
of the quantum dot influences the spin dynamics after the
quench in the coupling. In general, one can clearly distinguish
three regimes with the quantum dot initially occupied by
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zero (n = 0), one (n = 1), and two (n = 2) electrons. The
different occupation regimes are correspondingly indicated
and separated with dashed lines in Fig. 6. Clearly, Sz(t =
0) = 0 for all dot occupations, since finite magnetization can
build up only due to spin-resolved fluctuations between the
dot and ferromagnetic reservoir. Thus, one should expect
Sz(t > 0) �= 0. With an even number of electrons occupying
the quantum dot in the initial state, the time-dependent magne-
tization Sz(t ) develops in time acquiring only positive values
for n = 0 (ε > 0) and negative values for n = 2 (ε < −U )
occupation numbers. Except for the opposite sign (direction
of the magnetization), the time evolution of magnetization
is identical in both occupation regimes. Apparently, when
the quantum dot is either empty or doubly occupied, the
growth of the magnetization should not be possible. However,
finite coupling � renormalizes and broadens the dot’s energy
level, which for the initially empty quantum dot results in
a small growth of occupation n(t > 0) > 0, while for the
initially doubly occupied dot it leads to the corresponding
decrease of the occupation n(t > 0) < 2. Moreover, the spin
dependence of the coupling strength lifts the degeneracy of
singly occupied states, which as a consequence gives rise to a
finite magnetization of the quantum dot.

This nonzero magnetization is a direct manifestation of the
so-called exchange field that builds up in the quantum dot
coupled to a reservoir of the spin-polarized electrons [56]. The
exchange field can be defined as εexch = δε↑ − δε↓, where
δεσ is the renormalization of the spin-σ dot level caused by
the spin-dependent charge fluctuations. The renormalization
can be estimated within the second-order perturbation theory
as [56–59]

εexch = 2p�

π
Re[φ(ε) − φ(ε + U )], (23)

with φ(ε) = �(1/2 + iε/2πT ), where �(z) is the digamma
function. At zero temperature, the formula for the exchange
field simply becomes εexch = 2p�

π
ln| ε

ε+U |. Now, it can be
clearly seen that εexch changes sign exactly at the particle-
hole symmetry point, ε = −U/2. Consequently, for ε >

−U/2 (ε < −U/2) one finds εexch < 0 (εexch > 0), which
immediately implies that Sz(t ) > 0 [Sz(t ) < 0] in the corre-
sponding transport regime. This behavior is clearly visible in
Fig. 6 in the even dot occupation regimes.

Let us now consider the most interesting regime where
initially the quantum dot is occupied by a single electron,
i.e., for −U < ε < 0. As can be seen, the general tendency of
the behavior of Sz(t ) in the long-time limit is consistent with
the behavior of the exchange field discussed above. Exactly
at the particle-hole symmetry point, the charge fluctuations
are the same for both spin directions such that δε↑ = δε↓ and
εexch = 0 [56,57]. This is why for ε = −U/2 the magne-
tization does not develop and the dot remains unpolarized
irrespective of time evolution, Sz(t ) = 0. However, when the
energy of the orbital level is moved away from the particle-
hole symmetry point, the time evolution of magnetization
Sz(t ) shows a qualitatively different dependence. For shorter
times, 0.1 � t� � 1, the magnetization points in the direction
opposite to its long-time-limit value. Around t ≈ 1/�, the
sign change of magnetization occurs and subsequently Sz(t )
grows and saturates at longer times; see Fig. 6. One could

expect that the timescale for the development of the dot’s
magnetization (the exchange field) is simply given by t ∼
1/εexch. This is, however, not entirely correct. We would like
to point out that the estimation of the magnetization develop-
ment timescale simply by t = 1/|εexch| (see the black dotted
lines in all panels of Fig. 6) does not fit to the numerically
calculated dependence. It is clearly visible that the dynamics
of the exchange field development is strongly influenced by
the coupling strength and does not scale linearly with �.

The comparison of the results for Sz(t ) when the coupling
strength � is varied brings further important observations. In
the empty or doubly occupied dot regime, the magnitude of
magnetization becomes enhanced with increasing coupling
strength. This is associated with an increase of level broad-
ening and renormalization effects as � is increased. These ef-
fects enlarge the occupation of the odd-electron states, which
is responsible for enhancement of |Sz(t )|; see Fig. 6. However,
as the occupation of odd-electron states becomes enhanced
in the even valleys, the same happens for even-occupation
states in the odd-electron valley. More precisely, in the singly
occupied dot regime, as the coupling strength increases, the
occupation of even-electron states becomes enhanced at the
cost of the odd states. Consequently, in this transport regime
one observes an opposite effect, i.e., the larger the coupling
becomes, the smaller is the magnetization that develops in
time.

In addition, in the strong-coupling regime also the Kondo
correlations come into play. Their role is reflected in the fact
that now one needs to detune the dot level more from the
particle-hole symmetry point to obtain a considerable magne-
tization. As is known from the studies of equilibrium transport
properties of quantum dots [56–59,64], the Kondo resonance
becomes suppressed when detuning from the particle-hole
symmetry point becomes so large that the following condition
is fulfilled: |εexch| � TK , where TK is the Kondo temperature.
This fact also has strong consequences for the dynamical
behavior of the system. Finite values of Sz(t ) develop only
when the above inequality becomes satisfied, as otherwise
the spin of the dot forms a delocalized singlet state with
conduction electrons and the magnetization does not develop.

It is important to note that the variation of the coupling
strength also has an important impact on the corresponding
timescales for the development of the dot’s magnetization.
For smaller values of the coupling, see Fig. 6(a), it takes a
longer time for the magnetization to fully develop, whereas
for stronger couplings this timescale becomes reduced; see
Fig. 6(d).

2. Buildup of exchange field

Let us now focus on the timescales associated with the
development of the dot’s magnetization and the associated ex-
change field. To estimate the magnitude of the exchange field,
we compare the value of the time-dependent magnetization
calculated with tNRG to the static magnetization of a similar
system coupled to normal metallic leads in the presence of an
external magnetic field B, i.e., Sz(t ) = 〈Sz(B)〉. The 〈Sz(B)〉
dependence is calculated with the static NRG procedure for
a wide range of magnitudes of external magnetic field B,
separately for each presented coupling strength �. To solve
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FIG. 7. Top row: The quantum dot magnetization Sz(t ); bottom row: the induced exchange field εNRG
exch (t ) after the quench in the coupling

strength plotted as a function of time calculated for different couplings, as indicated. The vertical lines in (a) and (b) indicate the timescale
associated with the exchange field, t = 1/|εexch|; cf. Eq. (23). The inset in (c) presents the timescale thmax associated with the half-maximum
value of |εNRG

exch (t )| plotted as a function of �, whereas the inset in (d) shows a closeup of εNRG
exch (t ) for times where the sign change of the

exchange field occurs. The parameters are the same as in Fig. 6 with the quantum dot’s energy level equal to ε = −U/4.

this model at equilibrium, we assume vanishing spin polar-
ization of the leads p = 0 and add the Zeeman energy term
HB = gμBBSz to the quantum dot Hamiltonian HQD, with
gμB ≡ 1. We then associate the Zeeman energy that results in
magnetization 〈Sz(B)〉 = Sz(t ) with the exchange field energy
εNRG

exch . In this manner, we are able to evaluate the time
dependence of the generated exchange field εNRG

exch (t ).
Figure 7 presents the time evolution of the magnetiza-

tion [Figs. 7(a) and 7(b)] together with the evaluated ex-
change field [Figs. 7(c) and 7(d)]. In this figure, the energy
of the orbital level is set to ε = −U/4, corresponding to
the regime where finite magnetization develops and its sign
change as the time elapses is visible; cf. Fig. 6. To get informa-
tion about the relevant timescales, we plot the dependence of
the quantities of interest versus tU [Figs. 7(a) and 7(c)] and t�
[Figs. 7(b) and 7(d)]. In addition, we also mark the timescale
associated with exchange field, t = 1/|εexch|, with vertical
lines.

It can be seen in the time evolution of magnetization
that, independently of the coupling strength, a minimum
occurs at times 1 � tU � 10 or 10−1 � t� � 1, where the
magnetization points in the opposite direction compared to
its long-time-limit value. Subsequently, a strong growth of
magnetization is present and the saturation is reached around
tU � 102 or t� � 10. The comparison of this behavior

between panels (a) and (b) indicates that the buildup of
magnetization, i.e., the time at which magnetization starts
growing, to a good approximation scales linearly with �.
Moreover, the saturation of magnetization also exhibits the
dynamics strongly dependent on �, and for most consid-
ered values of the coupling, the maximum magnetization is
achieved at times 10 � t� � 102; see Figs. 7(a) and 7(b).

Let us now discuss the time evolution of the evaluated
exchange field εNRG

exch (t ). First of all, one can see that the
sign of the exchange field is opposite to that of the induced
magnetization, i.e., we find εNRG

exch > 0 for 10−1 � tU � 10
and εNRG

exch < 0 for tU � 10; see Fig. 7(c). Furthermore, as
in the case of magnetization decreasing the coupling strength
generally results in larger values of Sz(t ), it has an opposite
effect on the generated exchange field. It can be seen that
the maximum value of |εNRG

exch (t )| decreases with lowering
�. This is in fact quite intuitive—the larger the coupling to
the ferromagnetic contact becomes, the larger is the generated
exchange field. Note, however, that for weaker couplings a
relatively low exchange field is sufficient to induce large
magnetization in the quantum dot; see Fig. 7(c).

To identify the relevant timescales for the sign change
and the buildup of the exchange field, in Fig. 7(d) we show
εNRG

exch (t )/� plotted as a function of t�. As can be seen in the
inset, which presents the closeup of εNRG

exch (t ) where the sign
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FIG. 8. Left column: The time-dependent magnetization Sz(t );
right column: the generated exchange field εNRG

exch (t ) after the quench
from an isolated quantum dot to the coupled regime calculated for
different values of coupling strength � and the lead’s spin polariza-
tion p, as indicated. The parameters are the same as in Fig. 7.

change occurs, εNRG
exch (t ) ≈ 0 for t� ≈ 1, i.e., the sign change

of the exchange field develops for times of the order of t ≈
1/�. On the other hand, it is also visible that the time at which
|εNRG

exch (t )| reaches its maximum does not scale linearly with
�. To estimate what the scaling is, we determine the time thmax

at which the absolute value of the exchange field reaches half
of its maximum value, |εNRG

exch (thmax)| ≡ max{|εNRG
exch (t )|}/2.

In the inset of Fig. 7(c), we present both thmax� and thmax�
2

as a function of the coupling strength. As results from these
curves, the time associated with the development of the ex-
change field scales rather as thmax ∝ 1

�2 and not as thmax ∝ 1
�

.
This result is in fact quite counterintuitive, since from Eq. (23)
one could expect linear scaling of εNRG

exch (t ) with the coupling
strength.

3. Influence of spin polarization

The influence of the spin polarization p of the ferromag-
netic contact on the spin dynamics is also nontrivial. Figure 8
presents the time evolution of the magnetization (left column)
and the exchange field (right column) for different values
of p and �. For relatively small values of spin polarization,

i.e., p � 0.3 [see panels (a) and (b) in Fig. 8], neither the
magnetization nor the exchange field exhibits the sign change
as a function of time. This effect emerges once the spin
polarization becomes considerable; see the curves for p � 0.5
in Fig. 8. Moreover, with increasing p, the values of Sz(t )
and εNRG

exch (t ) opposite to their long-time limits are increased.
Interestingly, the highest value of magnetization is obtained
for rather small values of �, almost independently of the spin
polarization p. Larger values of the coupling strength result in
a faster dynamics (the saturation occurs at earlier times), but
on the other hand, the long-time-limit value of magnetization
gets lowered. With increasing p, it is evident that the long-
time limit of magnetization and exchange field is enhanced,
even for strong couplings; see Fig. 8. Furthermore, one can
clearly see that the magnitude of the exchange field becomes
enhanced upon increasing the spin polarization. In addition,
for large values of p the exchange field εNRG

exch (t ) depends
more on the value of the coupling �; cf. Figs. 8(b) and 8(j).

4. Quantum dot’s occupations

Because one of the most interesting effects discussed here
is the sign change of magnetization and the associated ex-
change field, let us now focus on discussing the mechanism
responsible for this effect. It turns out that the analysis of the
expectation values of the corresponding occupation operators
n(t ), n↑(t ), and n↓(t ) can provide more detailed information
about the spin dynamics of the system. Figure 9 presents the
dot’s occupations n(t ), n↑(t ), and n↓(t ) calculated for different
values of the ferromagnetic contact’s spin polarization. For
comparison, we also show the time evolution of the dot’s
magnetization Sz(t ). Clearly, increasing the spin polarization
results in higher values of magnetization in the long-time
limit. However, as already emphasized in the previous section,
the most interesting dynamics takes place at times around t ≈
1/�, and it is generally associated with the difference between
the spin-resolved couplings �↑ and �↓ to the ferromagnetic
contact.

First of all, one can see that the decrease of the total occu-
pation n(t ) after the quench is similar, both qualitatively and
quantitatively, for all considered values of p. This decrease
is a consequence of the renormalization of the quantum dot
level and its broadening due to the coupling to the external
reservoir. Note that in the figure ε = −U/4, such that n(t >

0) < 1. It is thus clear that once the coupling is turned on,
the total occupation number of the dot becomes lowered as
the time elapses and it happens at a short timescale, i.e., n(t )
starts decreasing when t� ≈ 10−1, and for t� ≈ 1 the total oc-
cupation is already approximately equal to its long-time value;
see Fig. 9. It is, however, very important to consider how this
precisely happens as far as the spin-resolved occupations are
concerned. Because for finite p the spin-up level is coupled
more strongly than the spin-down one, it is the spin-up level
that reacts first to the switching-on of the coupling. Thus, at a
short timescale, the occupation decrease is mostly conditioned
by the coupling �↑, which leads to lowering of the occupation
of the spin-up dot level. However, eventually, the opposite
spin component with weaker coupling �↓ comes into play and
determines the dynamics of the system, lowering its occupa-
tion accordingly, as the magnetization grows and saturates for
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FIG. 9. The time-dependent expectation value of the local op-
erators, n(t ), nσ (t ), and Sz(t ), after the quench in the coupling
strength calculated for selected values of the spin polarization of
ferromagnetic contact p. The other parameters are the same as in
Fig. 7 with � = U/10.

longer times. This can be clearly seen in Fig. 9, especially for
larger spin polarizations—the drop of the total occupation is
mainly due to the decrease of n↑(t ), such that one observes
n↑(t ) < n↓(t ) in a certain range of time. However, as the time
goes by, the spin dependence of charge fluctuations finally
results in equilibration, such that n↑(t ) > n↓(t ).

In other words, the charge dynamics of the system is gov-
erned by the stronger coupling to the majority-spin subband
�↑, whereas the spin dynamics is determined by the weaker
coupling to the minority-spin subband �↓. Consequently, one
observes a sign change of the magnetization (and the induced
exchange field) with the time range of magnetization opposite
to its long-time-limit value increased upon enhancing the spin
polarization p; see Fig. 9.
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FIG. 10. The time-dependent expectation value of local opera-
tors after the quench in the coupling strength calculated for different
values of the dots’ energy level ε, as indicated, and for other
parameters the same as in Fig. 7 with � = U/10.

In Fig. 10 we show the relevant time evolution of the
local operators after the quench performed in the coupling
strength calculated for four different positions of the dot’s
energy level. When in the initial state the quantum dot is
empty, see the case of ε = U/4 in Fig. 10(a), the total occu-
pation grows from n(t = 0) = 0 to around n(t → ∞) ≈ 0.25
in the long-time limit. Finite occupation after the quench is
possible due to the renormalization and broadening of the
dot’s energy level. Due to the spin-dependent coupling, the
occupation of the spin-up component is higher with respect
to the spin-down one, i.e., n↑(t ) > n↓(t ), which holds for all
times t > 0. As a consequence, the magnetization acquires
only positive values Sz(t ) > 0 and does not change sign at any
positive time. A similar behavior is in fact observed for ε � 0.
For ε = 0 [see Fig. 10(b)], the initial occupation is nonzero,
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i.e., n(0) = 2/3. Then, switching on the coupling to the lead
results in the renormalization that decreases the average oc-
cupation number, such that n(t → ∞) ≈ 1/2. Note, however,
that when the coupling is turned on, the total occupation first
starts increasing slightly and then decreases to reach one-half.
The behavior of n(t ) is reflected in the dependence of the
spin-resolved occupations. The occupation of n↑(t ) exhibits
small fluctuations as a function of time, but in the long-time
limit it acquires a value relatively close to the initial one,
n↑(t → ∞) ≈ 0.4. On the other hand, the evolution of n↓(t ) is
strongly correlated with the total occupation n(t ). As a result,
in this transport regime, the dot’s magnetization is always
positive.

However, when the energy of the orbital level is lowered
further such that in the initial state the dot is occupied by
a single electron, the spin dynamics gets qualitatively new
features; see Figs. 10(c) and 10(d). As already explained
earlier, now the important effect of the renormalization and
broadening due to switching-on of the coupling is that the
average occupation of the quantum dot is decreased [n(t ) < 1]
with respect to the initial state. Moreover, the evolution of the
system is now governed by two timescales: while the first one,
t ∼ 1/�↑, is responsible for charge dynamics, the second one,
t ∼ 1/�↓, determines the magnetization dynamics. The inter-
play between the two spin-resolved components of occupation
results in the oscillations of magnetization as a function of
time with the corresponding sign change.

B. Quench in the orbital level position

In this section, we consider the quench performed in
the position of the quantum dot orbital level. The dot is
coupled to the ferromagnetic lead before the quench, and
the coupling strength remains unchanged, i.e., �0 = �. The
parameter that is abruptly switched at time t = 0 is the dot’s
energy level ε0 → ε. We study the time evolution of the dot’s
occupation number (Fig. 11) and magnetization (Fig. 12) after
the corresponding quench. We consider four different initial
energy levels ε0, and the corresponding expectation values are
calculated for a wide range of final level position ε. Here, it is
important to note that the value of ε0 determines the quantum
dot initial occupation number and magnetization.

As can be seen in Fig. 11, the short time evolution of
the occupancy is mainly dependent on the initial occupation.
In all the considered cases, the occupation monotonically
approaches saturation at times t ≈ 1/�. Further behavior for
times t � 1/� is qualitatively similar across all values of ε0

considered, and for all final level positions ε approaches the
long-time limit. We note that there might occur a small de-
viation of the long-time-limit value from the thermodynamic
value, which depends on the difference in energy between the
initial and final Hamiltonians. This is associated with the fact
that the larger this difference is, the more difficult it is for
the system to dissipate energy in the long-time limit, which
is a direct consequence of the fact that the system does not
fully thermalize on the finite Wilson chain [43,76]. When the
quench has a relatively large energy difference, i.e., |ε0 − ε| �
U , an oscillatory behavior is visible right after attaining the
maximum value at times 1 � t� � 10 for ε/U � −1 and
ε/U � 0.5; see Figs. 11(c) and 11(d).
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FIG. 11. The time-dependent occupation number n(t ) after per-
forming the quench in the quantum dot’s orbital level position from
ε0 to ε. The other parameters are the same as in Fig. 7 with � =
U/10.

The quench dynamics is even more interesting when the
time evolution of the quantum dot’s magnetization Sz(t ) is
considered. Now, the initial position of the dot’s energy level
ε0 strongly determines the behavior of the magnetization for
short times (t� � 10−1). In general, independently of the
initial conditions, for the final values of the energy level
above the particle-hole symmetry point, i.e., ε > −U/2, the
quantum dot acquires magnetization, which is parallel to
the magnetization of the ferromagnet. For the particle-hole
symmetry point (ε = −U/2), the exchange field vanishes and
the magnetization does not develop. On the other hand, for
the dot level position below the particle-hole symmetry point,
ε < −U/2, the exchange field changes sign and the quantum
dot is magnetized in the opposite direction.

Let us now discuss the system’s dynamics in more detail
and focus on the influence of the initial condition, i.e., the
value of ε0, on the time dependence of the dot’s occupation
and magnetization. For the orbital level set above the Fermi
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FIG. 12. The time-dependent magnetization Sz(t ) of the dot after
performing the quench in the orbital level from ε0 to ε. The other
parameters are the same as in Fig. 7 with � = U/10.

level, see Fig. 11(a) where ε0 = U/2, the initial occupation of
the quantum dot is small but finite, n(0) ≈ 0.1, which results
in a finite magnetization in the direction of the magnetization
of the ferromagnetic lead; see Fig. 12(a). At times t� � 10−1,
the magnetization starts to grow. Further time dependence
of Sz significantly depends on the final level position ε. For
ε > 0, the quantum dot increases mildly and monotonically
its occupation number, and, accordingly, the magnetization
grows in a similar manner. However, when 0 > ε > −U/2,
the magnetization buildup is rapid compared to the previous
regime, which is due to a higher occupation number n(t ) ≈ 1.
Here, the dynamics of charge and spin are very similar as
both average expectation values saturate at times t ≈ 1/�.
On the other hand, for ε < −U/2, the system magnetizes in
the opposite direction. Now, when the initial position of the
dot level is shifted toward lower energies, see Figs. 11(b)
and 11(c) and Figs. 12(b) and 12(c), one can observe two
effects. First, the initial magnetization is stronger as ε0 is
lowered, which is due to an increased occupation at the initial

state. This is visible down to the particle-hole symmetry
point; cf. Figs. 11(d) and 12(d). Secondly, the long-time-limit
magnetization is strongly enhanced. When lowering the initial
position of the orbital level further, the quench is performed
from the lower-energy state, and therefore it is easier for the
system to achieve the thermal average in the long-time limit.

Finally, we consider the case when the dot is set at
the particle-hole symmetry point in the initial state, where
Sz(t = 0) = 0. In general, in this case the spin dynamics is
antisymmetric with respect to detuning from the particle-hole
symmetry point; see Fig. 12(d). The quantum dot is initially
spin-unpolarized, Sz(0) = 0, and for a wide range of the
final position of the orbital level energy ε it starts to build
up magnetization for times 10−1 � t� � 1 in the opposite
direction to its long-time-limit value. Consequently, for times
1 � t� � 10, there is at least one sign change present in the
case of 0 < ε/U < −1 (except for the particle-hole symmetry
point and its vicinity). Moreover, an oscillatory behavior of
the magnetization takes place in the case of stronger quenches,
i.e., for ε > 0 or ε < −U . In the above regimes of ε, the
absolute value of the long-time limit of magnetization is also
lower compared to the magnetization in the singly occupied
regime; see Fig. 12(d). The long-time-limit value of the dot’s
magnetization is fully suppressed in the cases of a doubly
occupied and empty quantum dot Sz(t → ∞) = 0, which is
visible for ε = U/2 and ε = −3U/2 in Fig. 12(d).

C. Finite-temperature effects

Let us now consider the influence of finite temperature T
on the dynamics of the system, which undergoes quenches
discussed in the preceding sections. We focus on the most
interesting case with a single electron occupying the quantum
dot. Figure 13 presents the time evolution of local opera-
tors after the quench in the coupling strength calculated for
different values of temperature T expressed in units of �

(kB ≡ 1). It can be seen that at zero temperature the dot
occupation decreases slightly due to the fact that the system is
detuned from the particle-hole symmetry point (ε = −U/4 in
the figure). The different time dependence of the spin-resolved
occupations results in finite magnetization, which changes
sign around t ≈ 1/�, as explained in the previous sections.
When the temperature is increased, the long-time value of the
magnetization becomes strongly suppressed, and for temper-
atures of the order of the coupling strength, Sz(t ) ≈ 0. This
is associated with the fact that the spin-resolved charge fluc-
tuations become overwhelmed by thermal fluctuations, which
essentially suppress the system dynamics once t � 1/T . More
specifically, upon increasing the temperature, the difference in
the total occupation between the initial and final states drops
strongly; see Fig. 13(b). For T = 0, the quench modifies the
occupation number from n(t = 0) = 1 to n(t� > 10) ≈ 0.85,
while for finite temperatures the difference between the initial
and long-time-limit value of the occupation is much smaller
due to enhanced thermal fluctuations. Moreover, thermal fluc-
tuations are responsible for decreasing the difference in the
occupation of the spin-up and spin-down components, which
is clearly visible when one compares panels (c) and (d) in
Fig. 13. This altogether leads to the suppression of the dot’s
magnetization and, consequently, the induced exchange field.
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FIG. 13. The expectation values of local operators after the
quench in the coupling strength from �0 = 0 to � = U/10 plotted
as a function of time and calculated for different temperatures, as
indicated. The other parameters are the same as in Fig. 7.

The case when the quench is performed in the dot’s orbital
level is presented in Fig. 14. We consider the scenario when
initially the system is tuned to the particle-hole symmetry
point. Therefore, the initial magnetization is equal to Sz(t =
0) = 0, while the occupation number is given by n(t = 0) =
1. Then, the orbital level is detuned from this point to ε = 0,
such that finite magnetization builds up in the dot as the time
elapses. At first, the dependence is qualitatively very similar to
the previous case, where the coupling strength was quenched;
cf. Figs. 13(a) and 14(a). The long-time limit of magnetiza-
tion drops as temperature is increased in a similar fashion.
However, there is a qualitative difference, since now a higher
temperature is necessary to fully suppress the magnetization.
This is related to the energy difference between the initial and
final Hamiltonians describing the quench, which in the case of
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FIG. 14. The same as in Fig. 13 calculated for the quench in
the quantum dot occupation from ε0 = −U/2 to ε = 0. The other
parameters are the same as in Fig. 7 with � = U/10.

quench in the orbital level position is larger than in the previ-
ous quench by around one order of magnitude. The influence
of finite temperature is clearly visible in Fig. 14(b), where the
long-time-limit value of the occupation is enhanced with T .
As far as the spin-dependent components are concerned, the
effect of thermal fluctuations is relatively weak on the spin-up
occupation, while it mainly increases the occupation of the
spin-down occupation; see Figs. 14(c) and 14(d). Altogether,
finite temperature balances both spin-resolved components
of the dot’s occupation and leads to the drop of the dot’s
magnetization; see Fig. 14(a).

IV. CONCLUSIONS

In this paper, we have examined the spin-resolved quench
dynamics of a correlated quantum dot attached to a reser-
voir of spin-polarized electrons. The considerations were
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performed by using the time-dependent numerical renormal-
ization group method in the matrix product state framework.
We studied the system dynamics by considering two types
of quantum quenches: the first one was performed in the
coupling strength, whereas the second one was performed in
the position of the dot’s orbital level. The emphasis was put
on the analysis of the time-dependent expectation values of
local operators, such as the dot’s occupation number and mag-
netization. By comparing the induced magnetization with the
expectation value of the dot’s spin for nonmagnetic contacts
in the presence of magnetic field, we were able to estimate
the magnitude of the generated exchange field and analyze its
buildup in time. Moreover, by implementing the full density
matrix of the system, we have also examined the effects of
finite temperature on spin dynamics.

In the case of quench performed in the coupling strength,
we carried out a detailed analysis of the influence of the quan-
tum dot initial occupation on the time evolution of the dot’s
magnetization and occupation. In particular, we found a time
range where a sign change occurs during the nonmonotonic
buildup of magnetization and the associated induced exchange
field. We identified two timescales describing this nontrivial
spin dynamics, and we explained this effect by performing
a detailed analysis of the time dependence of expectation
values of spin-resolved quantum dot occupations. It turned
out that while the charge dynamics is mainly governed by
the coupling to the majority-spin subband of the ferromagnet,
the spin dynamics is mostly determined by the minority-spin-
subband coupling. This results in a qualitatively different time
dependence of spin-resolved quantum dot occupations, which
is revealed through the corresponding sign change of the
magnetization.

Furthermore, the case of quench performed in the dot’s
orbital level position was considered. Similarly to the first
type of quench, we accentuated the influence of the system’s
initial conditions on the system’s dynamical behavior. De-
spite the relatively clear and simple time dependence of the
quantum dot total occupancy, we found the spin dynamics
to be nontrivial. In particular, we showed that the system
quenched from the particle-hole symmetry point exhibits a
nonmonotonic behavior of magnetization that can include
multiple sign changes.

In addition, we have analyzed the influence of finite
temperature on both types of the considered quenches. The
thermal fluctuations strongly suppress the dynamics of the
system for times t � 1/T . More specifically, finite tempera-
ture is responsible for balancing the spin-up and spin-down
components of the quantum dot occupation, which is clearly
visible as a drop of the dot’s magnetization.

Finally, we note that while the exchange field in the long-
time limit can be seen as an effective magnetic field acting
on the dot [63], at shorter times, of the order of t ≈ 1/�,
it results in an interesting dynamical behavior of the system
involving a sign change of the quantum dot magnetization. In
this case, an intuitive analogy to a simple application of an
external magnetic field is rather unjustified.
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