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Chiral current-phase relation of topological Josephson junctions:
A signature of the 4π-periodic Josephson effect
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The 4π -periodic Josephson effect is an indicator of Majorana zero modes and a ground-state degeneracy
which are central to topological quantum computation. However, the observability of a 4π -periodic Josephson
current-phase relation (CPR) is hindered by the necessity to fix the fermionic parity. As an alternative to a
4π -periodic CPR, this paper proposes a chiral CPR for the 4π -periodic Josephson effect. This is a CPR of the
form J (φ) ∝ C | sin(φ/2)|, describing a unidirectional supercurrent with the chirality C = ±1. Its nonanalytic
dependence on the Josephson phase difference φ translates into the 4π -periodic CPR J (φ) ∝ sin(φ/2). The
proposal requires a spin-polarized topological Josephson junction which is modeled here as a short link between
spin-split superconducting channels at the edge of a two-dimensional topological insulator. In this case, C
coincides with the Chern number of the occupied spin band of the topological insulator. This paper details
three scenarios of achieving a chiral CPR: By only Zeeman-like splitting, by Zeeman splitting combined with
bias currents, and by an external out-of-plane magnetic field.
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I. INTRODUCTION

In topological superconductors, electron pairs condense
into a collective gapped state that coexists with gapless Ma-
jorana fermions on defects, harboring many unconventional
properties [1–5]. Illustrative examples are one-dimensional
(1D) p-wave superconductors [1] and superconductor/
semiconductor wires (see, e.g., Refs. [6–9]) whose boundaries
host a pair of Majorana zero modes (MZMs). Such 1D
systems possess two ground states related by a permutation
of the Majorana degrees of freedom and corresponding to two
(even and odd) fermionic parities, which offers a platform for
topological quantum computation [1,10,11].

A striking manifestation of topological superconductivity
occurs in Josephson junctions (JJs) of two Majorana wires
brought into electric contact. A change of the Josephson phase
difference by 2π effectively causes swapping the MZMs and
a transition between the ground states. This implies the 4π

periodicity of superconducting properties, as another phase
advance of 2π is needed to recover the same ground state [1].
First proposed for model p-wave superconductors [1,12], such
4π -periodic topological superconductivity is also expected in
hybrid structures of conventional superconductors and spin-
orbit-coupled normal materials, which has been causing a
surge of interest in this and related phenomena, both in theory
(see, e.g., Refs. [13–24]) and in experiment (see, e.g., Refs.
[25–28]).

Most of the recent research on the 4π -periodic Josephson
effect has been dealing with or implies out-of-equilibrium
AC properties of JJs under external driving. If the current-
carrying states have equilibrium occupations, the resulting
periodicity of the Josephson current-phase relation (CPR)
is 2π , i.e., the same as in nontopological JJs, unless the
fermionic parity is constrained [22]. Still, the ability to
access the 4π -periodic Josephson effect through an equilib-

rium CPR despite its conventional periodicity is beneficial, as
such CPRs are the most common characteristics of JJs, and
there exist well-established techniques for their measurement
[29–31]. Furthermore, besides the periodicity of the CPR,
there are other indicators of the 4π -periodic Josephson effect
at equilibrium, such as magnetic oscillations of the critical
current with the doubled period 2�0 = h/e in the magnetic
flux enclosed in the JJ [32]. A different type of the magnetic-
field behavior has been predicted for semiconductor nanowire
JJs [33], where magnetic oscillations of the critical current
indicate the splitting of the MZMs in finite-length wires.

This paper takes a closer look at the CPR of a topological
JJ, aiming to identify the change of its ground state upon
an adiabatic phase advance. We consider a short JJ at the
edge of a two-dimensional topological insulator (2DTI) with
a uniform Zeeman-like spin splitting. A related model was
used earlier in Refs. [34,35] in the context of magnetoelectric
phenomena in quantum spin-Hall insulators. Unlike those
works, here, we focus on spin-polarized 4π -periodic ground
states and topological transitions between them. Our goal is to
demonstrate that the CPR becomes chiral in the sense that the
two spin-polarized ground states carry the current in the same
direction and that such an anomalous CPR reveals the 4π -
periodic Josephson effect. The following sections explain the
details of the calculations and provide an extended discussion
of the results.

II. TOPOLOGICAL JOSEPHSON JUNCTION MODEL

The system consists of a 2DTI and two superconducting
strips placed over its edge (see Fig. 1). The edge region be-
tween the superconducting contacts acts as a Josephson weak
link that can be modeled by an effective 1D Bogoliubov–de
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FIG. 1. Schematic of a topological JJ created by placing two
superconducting strips across the edge of a 2DTI.

Gennes (BdG) Hamiltonian:

H =
[
υsz px − μ + hzsz �(x)

�∗(x) −(υsz px − μ) + hzsz

]
. (1)

Here, �(x) is the pair potential; the normal edge Hamiltonian
consists of the kinetic energy υsz px − μ and the spin-splitting
potential hzsz, where υ, sz, px = −ih̄∂x, μ, and hz are the
edge-state velocity, spin Pauli matrix, momentum operator,
chemical potential, and the spin-splitting energy, respectively.
The origin of the spin splitting depends on the context, e.g.,
the paramagnetism of a magnetically doped 2DTI, the Zeeman
effect of an out-of-plane magnetic field, or the magnetoelec-
tric effect caused by the spin-momentum locking [35].

For a half-space 2DTI, the pair potential �(x) can be
written as [32]

�(x) =
∫ ∞

0 �2D (x, y) f (y)dy∫ ∞
0 f (y)dy

, (2)

where �2D (x, y) is the proximity-induced pair potential under-
neath a superconducting strip and f (y) is the transverse wave
function of the edge state. Equation (2) is thus a weighted
average of �2D (x, y) in the half-space y > 0 with the weight
f (y). We adopt the Bernevig-Hughes-Zhang model [36,37] in
which the edge wave function is given by

f (y) = e−κ+y − e−κ−y, κ± = |A|
2|B| ±

√
A2

4B2
+ M

B , (3)

where κ± are the decay constants depending on the band
structure parameters A,B, and M. Here, A is the strength
of the spin-momentum locking, while M and B are the bulk
band gap and its curvature, respectively. We note that the
edge-state velocity υ in Eq. (1) can be expressed in terms of
the parameters A and M as [32]

υ = |A|sgn(M )/h̄. (4)

The sign of the band gap sgn(M ) is directly related to the
Chern number of a bulk electronic band for given spin ori-
entation. [36,37]

Equation (2) is applicable for an inhomogeneous supercon-
ducting order parameter, which is, for example, the case in
the presence of external magnetic fields or bias currents. In
such cases, the phase of the order parameter varies in space,
so �2D (x, y) is an oscillating function. We assume that the
phase has a uniform gradient in the transverse (y) direction
with opposite signs in the superconducting leads, as depicted

in Fig. 1. Such a situation can be realized either by passing
antiparallel bias currents in the leads or by applying an out-
of-plane magnetic field. This provides the means to tune the
topological superconductivity in JJs (see Secs. IV C and IV D
for a detailed discussion).

In a given contact (say, in the right one), the pair potential
can be written as �2D (y) = �0eiϕ(y), with a constant amplitude
�0 and the nonuniform phase

ϕ(y) = ϕ0 + kS y. (5)

In the case of the bias current, we assume that the phase
gradient kS = ∂yϕ is generated by a uniform current density
j = ρS ∂yϕ in the overlying superconducting strip, so that
kS = j/ρS (where ρS is the superfluid stiffness). The phase
ϕ(y) is counted from its value at the edge, ϕ0. In the other con-
tact, the pair potential has a similar form, �̄2D (y) = �0eiϕ̄(y),
with

ϕ̄(y) = ϕ̄0 − kS y; (6)

only the current direction and the constant ϕ̄0 are different.
From Eqs. (2)–(6) we readily obtain the edge pair poten-

tials in the right and left contacts as

� = |�|ei(ϕ0+ϑ ), �̄ = |�|ei(ϕ̄0−ϑ ), (7)

respectively, where the modulus |�| and the phase ϑ both
depend on the phase gradient [32]:

|�(kS )| = �0
κ+κ−√(

κ+κ− − k2
S

)2 + (κ+ + κ−)2k2
S

, (8)

ϑ (kS ) = arctan
(κ+ + κ−)kS

κ+κ− − k2
S

. (9)

The function |�(kS )| accounts for a partial reduction of the
proximity-induced energy gap by the supercurrent. This is
due to the averaging of the spatial oscillations of the order
parameter superimposed on the exponential decay of the edge
state. The intrinsic phase ϑ (kS ) is another consequence of
the complexity of the order parameter that comes out of
the averaging in Eq. (2). Generally, in noncentrosymmetric
superconductors the phase gradient induces also a nonunitary
triplet order parameter [38,39]. This aspect of the problem will
be discussed elsewhere.

To sum up, we cast the BdG Hamiltonian (1) as

H(x) = hzsz + τ3υsz px + τ1�Re (φ) − τ2�Im (φ)sgn(x),

(10)

where τ1, τ2, and τ3 are the Nambu-Pauli matrices, �Re (φ) and
�Im (φ) are the real and imaginary parts of the pair potential,

�Re (φ) = |�| cos (ϑ + φ/2), (11)

�Im (φ) = |�| sin (ϑ + φ/2), (12)

and φ = ϕ0 − ϕ̄0 is the external phase bias [the average
phase (ϕ0 + ϕ̄0)/2 and the chemical potential have both been
gauged out]. In Eq. (10), the link is reduced to a single
point (x = 0), which is the main approximation for JJs with
the normal spacer much shorter than the superconducting
coherence length.
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III. GROUND-STATE DOUBLET: TOPOLOGICAL
TRANSMUTATIONS AND 4π PERIODICITY

In this section, we examine the transformation properties
of the JJ ground state under an adiabatic phase change from φ

to φ + 2π . In terms of the BdG wave function, this transfor-
mation can be expressed as

�(x, φ) −→ τ3�(x, φ + 2π ), (13)

leaving the Hamiltonian invariant:

τ3H(x, φ + 2π )τ3 = H(x, φ). (14)

That is, the states τ3�(x, φ + 2π ) and �(x, φ) both corre-
spond to the same energy. In nontopological JJs, these two
states are just identical, meaning no degeneracy is associ-
ated with the phase translation φ → φ + 2π . However, in
topological edge JJs, the transformation (13) does produce a
new orthogonal ground state, implying a ground-state doublet
similar to that of Kitaev’s model [1]. The BdG formalism
is quite different from that of Kitaev’s model. To draw par-
allels between them, we map the BdG Hamiltonian to the
Jackiw-Rebbi model describing a paradigmatic topologically
nontrivial 1D fermion system [40]. The map employs a unitary
transformation similar to that in Ref. [32]. The analysis below
generalizes the approach of Ref. [32] to account for the spin
splitting in Eq. (10).

A. Mapping to the Jackiw-Rebbi model

The idea is to make a time-dependent unitary transforma-
tion,

�(x, t ) = U (t ) � ′(x, t ), U (t ) = e−i[τ1�Re (φ)+szhz]t/h̄, (15)

of the BdG equation ih̄∂t�(x, t ) = H(x)�(x, t ), bringing the
BdG Hamiltonian to the form

H′(x, t ) = U †(t )H(x)U (t ) − ih̄U †(t )∂tU (t ) (16)

= U †(t )[τ3υsz px − τ2�Im (φ)sgn(x)]U (t ) (17)

= e2iτ1�Re (φ)t/h̄[τ3υsz px − τ2�Im (φ)sgn(x)]. (18)

Up to the first (time-dependent) factor, the new Hamiltonian
(18) is analogous to that of the Jackiw-Rebbi model for the 1D
Dirac fermion in a soliton background. The imaginary part of
the pair potential �Im (φ)sgn(x) acts as a sharp Jackiw-Rebbi
soliton, while the chiral symmetry τ1H′(x, t )τ1 = −H′(x, t )
ensures the existence of MZMs. The latter are the eigen-
states of the chirality operator τ1, satisfying the equation
H′(x, t )� ′(x, t ) = 0, which in fact is time independent:

[h̄υ∂x − τ s�Im (φ)sgn(x)]� ′(x) = 0, (19)

where τ and s are the eigenvalues of τ1 and sz, respectively.
The solutions of Eq. (19) characterize possible ground states
of the model.

B. Majorana zero modes and ground-state transmutations

Equation (19) has MZM solutions at x = 0. The wave
function is evanescent, �

MZM
(x) ∝ e−k|x|, where the inverse

decay length is given by k = −τ s�Im (φ)/(h̄υ ). The normaliz-
ability condition k > 0 imposes the constraint on the quantum

numbers [32],

τ s = −sgn[υ�Im (φ)] = −sgn[M sin(ϑ + φ/2)] (20)

[see also Eqs. (4) and (12)]. Since the product of the eigen-
values τ and s is fixed, there are only two different quantum
numbers and, consequently, two orthogonal MZMs. It is con-
venient to label them by the eigenvalues τ = ±1. Then, the
two states have opposite spin orientations,

s = ±σ (φ), σ (φ) = −sgn[M sin(ϑ + φ/2)], (21)

and their wave functions are given, up to a normalizing
factor, by

�
MZM

+ (x, φ) =
[

1
1

]
⊗

[
1+σ (φ)

2
1−σ (φ)

2

]
e−| �Im (φ)

h̄υ
x| (22)

and

�
MZM

− (x, φ) =
[

1
−1

]
⊗

[
1−σ (φ)

2
1+σ (φ)

2

]
e−| �Im (φ)

h̄υ
x|, (23)

where ⊗ means the direct product of the Nambu and spin
states.

Let us look at the phase dependence of Eq. (22). With
an adiabatic phase change from φ to φ + 2π , the singular
function σ (φ) in Eq. (21) flips its sign, describing the trans-
mutation of the spin state,[

1+σ (φ)
2

1−σ (φ)
2

]
−→

[
1−σ (φ)

2
1+σ (φ)

2

]
. (24)

This is a topological transition during which the mass term
�Im (φ) in Eq. (19) passes through zero, while a kink phase
profile at the junction switches to an antikink one. The reversal
of the spin state in Eq. (24) is consistent with the Jackiw-
Rebbi model where a kink and an antikink host zero modes
with the opposite spin projections. Up to the unitary rotation
with τ3, the new state coincides with that in Eq. (23):

τ3�
MZM

+ (x, φ + 2π ) = �
MZM

− (x, φ). (25)

Repeating the same transformation yields

�
MZM

± (x, φ + 4π ) = �
MZM

± (x, φ). (26)

That is, there are two orthogonal 4π -periodic ground states
transforming into each other upon an adiabatic 2π phase
advance in a manner similar to that of the ground states of the
lattice model of Ref. [1]. However, here, the superconductivity
is time reversal invariant (in the absence of external fields
and bias currents) due to the spin-momentum locking in the
2DTI. Consequently, the two ground states carry opposite
spin polarizations, producing no net magnetization for hz = 0.
It is worth emphasizing that, while the phase evolution is
adiabatic, the transition between the ground states is discon-
tinuous, which is described by the singular function σ (φ) in
Eq. (21).

C. 4π-periodic Andreev bound states

The MZMs of the transformed Hamiltonian (18) are related
to the Andreev bound states (ABSs) of the original Hamil-
tonian (10). The ABSs are composed of the MZMs residing
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at the adjacent ends of the right and left superconductors.
Here, we construct the 4π -periodic ABSs, using the unitary
map (15) to the Jackiw-Rebbi model. We just need to replace
� ′(x, t ) in Eq. (15) with the stationary MZM solutions (22)
and (23). That is, the ABSs come as the unitary time evolution
of the stationary MZMs:

�
ABS

(x, t ) = U (t )�
MZM

τ (x) (27)

= e−i[τ1�Re (φ)+szhz]t/h̄�
MZM

τ (x). (28)

Clearly, the ABSs carry the same quantum numbers as the
MZMs [see Eq. (21)], so the above relation is reduced to the
multiplication by a time-dependent phase factor:

�
ABS

τ (x, t ) = e−iτ [�Re (φ)+hzσ (φ)]t/h̄�
MZM

τ (x), (29)

from which we identify the ABS energy levels as

E±(φ) = ±[|�| cos(ϑ + φ/2) + hzσ (φ)], (30)

where the sign ± refers to the eigenvalue τ of the chirality
matrix τ1. The ABS levels inherit the transmutation property
of the MZMs [see Eq. (25)],

E+(φ + 2π ) = E−(φ). (31)

This, again, indicates the topological degeneracy associated
with a 2π phase translation. Also, while evolving from E+(φ)
to E+(φ + 2π ), the level passes through zero, so the new
energetically favorable ground state should have a different
fermionic parity [1] compared to the state hosting E+(φ).

IV. CHIRAL CURRENT-PHASE RELATION

A. CPR Preliminaries

In short JJs, a major contribution to the phase-dependent
supercurrent comes from the ABSs [31]. To obtain the CPR,
we use the thermodynamic relation between the supercurrent
J (φ) and the ABS levels,

J (φ) = e

h̄

∂E+(φ)

∂φ
n[E+(φ)] + e

h̄

∂E−(φ)

∂φ
n[E−(φ)], (32)

where n[E±(φ)] is the Fermi occupation number. We will
focus on the zero-temperature case in which the ABS levels
are occupied according to n[E±(φ)] = 1

2 {1 − sgn[E±(φ)]}.
Each contribution in Eq. (32) is a 4π -periodic Josephson

current. However, the topological degeneracy [see Eq. (31)]
makes the net current 2π periodic, as the two contributions
simply swap upon a 2π phase advance. Nevertheless, the CPR
(32) is a characteristic of the 4π -periodic Josephson effect
since the current is carried by the doublet of the 4π -periodic
ground states. The latter are represented by the occupied
branches of the ABS levels. In this paper, the notion of the 4π -
periodic Josephson effect refers not to the periodicity of the
CPR but to the topological properties of the current-carrying
states.

At zero temperature, Eq. (32) reads

J (φ) = − e

h̄

∂E+(φ)

∂φ
sgn[E+(φ)]. (33)

We note that the derivative of the ABS level E+(φ) (30) is
continuous at the singularities of σ (φ); hence,

J (φ) = e|�|
2h̄

sin

(
ϑ + φ

2

)
sgn

[
cos

(
ϑ + φ

2

)
+ hz

|�|σ (φ)

]
.

(34)

Generally, the shape of the CPR J (φ) depends on both the spin
splitting energy hz and the phase gradient kS . The latter enters
through the modulus |�| (8) and the phase θ (9).

B. Case hz �= 0 and kS = 0

It is instructive to discuss first the effect of only the spin
splitting hz, setting

kS = 0, |�| = �0, θ = 0 (35)

in Eqs. (30) and (34). The corresponding ABSs levels and
CPR are then given by

E±(φ) = ±{�0 cos(φ/2) − hzsgn[M sin(φ/2)]}, (36)

J (φ) = e�0

2h̄
sin

(
φ

2

)
sgn

[
cos

φ

2
− hz

�0
sgn

(
M sin

φ

2

)]
.

(37)

Figure 2 shows the ABS levels and CPR for two rep-
resentative cases, hz < �0 and hz > �0. For a small spin
splitting [see Fig. 2(a)], the ABS levels cross near the odd
integers of π , experiencing also jumps of 2hz when the phase
passes through 2πN , where N = 1, 2, . . . . The level crossing

E

E

a
hz 0.25

2 Π 4 Π
Φ

E

E

b
1.25hz

2 Π 4 Π
Φ

c1.25hz

0.25hz

J

2 Π 4 Π
Φ

FIG. 2. ABS levels E±(φ)/�0 for different spin splittings,
(a) hz = 0.25 and (b) hz = 1.25, both in units of �0, and (c) cor-
responding CPRs J (φ) in units of e�0/(2h̄). Other parameters are
kS = 0 and M < 0.
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is the signature of the MZMs at the adjacent ends of the
right and left superconductors, while the jumps indicate the
transmutation of the spin state discussed in Sec. III B. To
better understand this topological singularity let us take a
closer look at the phase dependence of the ABS level E+(φ).
When the phase approaches 2π , the level evolves into a bulk
state with the spin ↑. When the phase passes 2π , the phase
profile at the junction switches from a kink to an antikink,
binding a bulk state with the spin ↓, which now becomes an
ABS with the energy E+(φ). In the presence of the field hz, the
energies of the two bulk spin states differ by 2hz, hence a finite
energy jump at 2π . It is worth noting that the topological spin
transmutation differs from the quantum phase transitions that
occur in ferromagnetic links when a quantum level crosses the
midgap energy [41].

As is also clear from Fig. 2(a), the current is carried by
the occupied (negative-energy) branches of the crossing levels
E−(φ) and E+(φ). The level dispersions have opposite slopes,
so the currents carried by E−(φ) and E+(φ) flow in opposite
directions. Figure 2(c) shows the corresponding CPR (for
hz = 0.25�0) with the usual sign reversal at the crossing point
and the 2π periodicity due to the ground-state degeneracy [the
occupied levels E±(φ) map to E∓(φ) in the next 2π phase
interval].

For hz < �0, the CPR (37) reproduces the prediction of
Ref. [34] for short JJs within the scattering matrix approach.
In fact, the calculation of the CPR in Ref. [34] is more general
in several respects. One of them is the treatment of the inverse
magnetoelectric effect in the superconducting leads. It gives
an extra contribution to the current, proportional to the spin
splitting hz and resulting in an overall shift of the CPR. This
paper focuses only on the ABS contribution as a probe of the
topological ground states. The omission of the bulk current is
justified here, as in short JJs the phase-dependent contribution
to the CPR comes mostly from the ABSs, and an overall shift
of the CPR does not alter its shape.

The junction behavior changes qualitatively as the spin
splitting hz becomes equal to or exceeds the bare gap energy
�0 [see Fig. 2(b)]. In this regime, the level crossing and the
spin transmutation both occur at 2πN , with a sharp switching
from one 4π -periodic ground state to the other. This is a
realization of the topological transition discussed in Sec. III B.
In Eqs. (36) and (37), the transitions are accounted for by the
discontinuous function sgn[M sin(φ/2)]. In this respect, the
above results differ from the analysis of Ref. [34].

Remarkably, within each phase interval between
2π (N − 1) and 2πN , the current is carried by one fully
spin polarized ground state. The corresponding CPR has
a chiral character in the sense that the current flows in
one direction independently of the applied phase bias [see
Fig. 2(c) for hz = 1.25�0]. The superflow direction is
determined solely by the sign of the velocity of the edge
channel that hosts the occupied ABS, or, in other words, by
the edge-channel chirality. It is associated with the Chern
number C of the occupied spin band of the 2DTI. Indeed, for
|hz| > �0 Eq. (37) yields

J (φ) = −e�0

2h̄
C

∣∣∣∣sin
φ

2

∣∣∣∣, C = sgn(M)sgn(hz ). (38)

Precisely speaking, C is the first Chern number of the 2DTI
valence band for the antiparallel spin projection on vector
h = [0, 0, hz]. The data in Fig. 2 are plotted for hz > 0 (hence,
the spin-down ground state) and inverted bulk band gap M <

0 [36,37]. In this case, C = −1.
We may inquire what would be different in nontopological

JJs such as short links between 1D BCS superconductors with
spin-split parabolic bands. In the regime hz > �0, there would
be two occupied ABSs corresponding to a left and a right
mover of the normal metal, each fully spin polarized. The
currents carried by the left- and right-moving ABSs cancel
each other, meaning that for hz > �0 there would be no ABS
contribution to the CPR.

The chiral CPR (38) reveals the topological transmutations
of the 4π -periodic ground states and is therefore an indic-
ator of the 4π -periodic Josephson effect. Still, the actual
period of the CPR is 2π , so the topological 4π periodicity
is hidden. Nevertheless, the 4π periodicity shows up unmis-
takably in the singular V-shaped minima of J (φ), as indicated
in Fig. 2(c). In fact, in order to extract the 4π periodic CPR,
one just needs to flip the sign of J (φ) in every other 2π

phase interval. There is, however, an issue with the threshold
hz = �0. In practice, it requires strong magnetic fields or
unusually large values of the g factor. In the following, we
seek to lower this threshold by applying bias currents or an
external magnetic field.

C. Case of hz < �0 and kS �= 0

Instead of increasing the spin splitting hz, one can lower
the pair potential by passing bias currents through the super-
conducting strips, as depicted in Fig. 1 (see also Ref. [42]). We
assume that in each strip the bias current has a uniform density
j = ρS kS (see also Sec. II). The dependence on j translates
into the kS dependence of the modulus |�| (8) and the phase
θ (9). The corresponding ABS levels and CPR are given by
Eqs. (30) and (34) with the independent parameters hz and
kS . We fix the spin splitting, choosing hz < �0, and vary
continuously the phase gradient. Figure 3 shows the results for
two representative values of the phase gradient, kS <

√
κ+κ−

and kS >
√

κ+κ−.
For a small phase gradient, the main change in the behavior

of the ABS levels and CPR is the shift of the topological
singularities from 2πN to 2πN − 2θ (kS ) [see Figs. 3(a) and
3(c) for kS = 0.5

√
κ+κ−]. At the same time, the gap energy

|�(kS )| (8) decreases, reaching at a certain kS the threshold for
the full spin polarization,

hz = |�(kS )| = �0κ+κ−√(
κ+κ− − k2

S

)2 + (κ+ + κ−)2k2
S

. (39)

In this regime, the current is carried by the spin-polarized
ground states with discontinuous transitions between them at
2πN − 2θ (kS ) [see Fig. 3(b)]. The behavior resembles the
case of the strong spin splitting in Fig. 2(b). The crucial
difference is the value of hz, which is 5 times smaller here.
This becomes possible because the actual threshold (39) is
lower than hz = �0. Even for hz � �0, there is a value of kS

at which the condition (39) is still met. Note that proximity-
induced gap |�(kS )| does not collapse provided, of course,
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E

E

a
kS 0.5

2 Π 4 Π
Φ

E

E

b
kS 1.55

2 Π 4 Π
Φ

J
1.55kS

0.5kS

c

2 Π 4 Π
Φ

FIG. 3. ABS levels E±(φ)/�0 for fixed spin splitting
hz = 0.25�0 and different phase gradients, (a) kS = 0.5 and
(b) kS = 1.55, both in units of

√
κ+κ−, and (c) corresponding CPRs

J (φ) in units of e�0/(2h̄). Other parameters are κ−/κ+ = 0.25 and
M < 0.

that the bias current remains below the critical value for the
superconducting strips.

In the regime |hz| � |�|, the CPR (34) transforms to

J (φ) = −e|�|
2h̄

C

∣∣∣∣sin

(
θ + φ

2

)∣∣∣∣, (40)

which is a generalization of Eq. (38) with the same Chern
number C. The chiral CPR (40) is plotted in Fig. 3(c) for kS =
1.55

√
κ+κ−. Again, the V-shaped minima of J (φ) indicate

the topological transitions between the 4π -periodic ground
states.

D. Out-of-plane magnetic field (hz �= 0 and kS �= 0)

We have seen that the presence of both the spin splitting
and the phase gradient should allow for a less restrictive
realization of the chiral CPR. Still, the analysis above implies
an independent control of hz and kS , which can have both
advantages and disadvantages. Perhaps the simplest situation
is when hz and kS are generated and controlled at once.
This can be achieved by applying an external magnetic field
perpendicular to the 2DTI/superconductor structure. In this
case, both hz and kS can be related to the strength B of the
applied field as

hz = 1

2
gμBB, kS = πLB

�0
. (41)

E

E

a
0.1B

2 Π 4 Π
Φ

E

E

b
B 0.2

2 Π 4 Π
Φ

J
B 0.2

B 0.1

c

2 Π 4 Π
Φ

FIG. 4. ABS levels E±(φ)/�0 for magnetic field strengths
(a) B = 0.1 and (b) B = 0.2, both in units of Bspin, and (c)
corresponding CPRs J (φ) in units of e�0/(2h̄). Other parameters
are Bspin/Borb = 10, κ−/κ+ = 0.25, and M < 0.

Here, hz is the usual Zeeman energy, while the expression for
kS reflects the orbital magnetic-field effect on the supercon-
ducting contacts [32]. Above, g is the Landé g factor, μB is the
Bohr magneton, �0 = h/(2e) is the magnetic flux quantum,
and L is the width of one superconducting strip. Earlier, the
interplay of the spin and orbital magnetic-field effects was
studied in connection with thermal [43,44] and electric [45]
transport in low-dimensional semiconductor/superconductor
hybrids.

The scale for the “spin” magnetic field is set by the bare
energy gap �0:

hz

�0
= B

Bspin
, Bspin = 2�0

gμB
. (42)

For a typical proximity-induced gap �0 = 0.1 meV and the
electron spin g factor g = 2, one has Bspin ≈ 1.73 T, which is
much higher than the critical fields of most superconducting
materials. As for the “orbital” magnetic field, its scale is set
by the characteristic edge-state width (κ+κ−)−1/2:

kS

(κ+κ−)1/2
= B

Borb
, Borb = �0

πL(κ+κ−)−1/2
. (43)

For the typical length scales (κ+κ−)−1/2 ≈ 10 nm and L ≈
1μm, we have Borb ≈ 0.1 T (see also Ref. [32]). That is,
the orbital magnetic field is at least an order of magnitude
smaller than the spin one. We also assume that Borb is much
smaller than the critical fields of the superconducting contacts,
allowing us to disregard the pair-breaking effect in Eq. (8).
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The magnetic-field dependence of the ABSs and CPR is
obtained by inserting the expressions for the Zeeman energy
(42) and the phase gradient (43) into Eqs. (30) and (34).
As before, we focus on the phase dependence. The ratio of
the spin and orbital fields is fixed to Bspin/Borb = 10. The
results are shown in Fig. 4. The ABS levels and CPR are
clearly similar to the case of the independently controlled
hz and kS . We again see the topological transitions between
the two ground states [Fig. 4(b)], resulting in the chiral CPR
[Fig. 4(c)]. Most important, the threshold (39) for the full spin
polarization is reached at the field value B = 0.2Bspin, much
smaller than the spin field in Eq. (42).

In conclusion, it may be helpful to outline an experimental
scheme to test the proposed theory. The phase drop φ at the
JJ can be controlled in a superconducting quantum interfer-
ence device setup, allowing a contactless measurement of the
CPR. To achieve the spin splitting, it is necessary to apply
a magnetic field at the JJ, permitting at the same time an
independent control of φ. According to the estimates above,
the transition to the chiral CPR should occur at a rather
modest field B ≈ 0.35 T. This sets the lower margin for the
critical fields of the superconducting contacts. This margin is
sensitive to the characteristic edge-state width (κ+κ−)−1/2.
Choosing a 2DTI material with a larger (κ+κ−)−1/2 should

further lower the threshold for achieving the chiral CPR.
The estimate B ≈ 0.35 T holds for HgTe quantum wells with
superconducting Nb contacts [32] whose upper critical field is
well above that value.

Finally, we may also note that the chiral CPR can be
viewed as an extreme case of the directional asymmetry of
the Josephson current in spin-orbit-coupled JJs (see, e.g.,
Refs. [46,47]). Still, what is essential here is not the direc-
tional asymmetry per se, but the singularity of the chiral
CPR caused by the parity switching. This reveals two distinct
ground states of the junction which always harbor a pair of
MZMs. Therefore, the chiral CPR is linked to the underlying
MZMs. Akin to Kitaev’s model [1], each MZM is protected
by the fermionic parity of the corresponding ground state.
These topological aspects distinguish the chiral Josephson
effect studied here from the anomalous Josephson effect in
spin-orbit-coupled JJs.
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