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Spin fluctuations after quantum quenches in the S = 1 Haldane chain:
Numerical validation of the semi-semiclassical theory
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We study quantum quenches in the S = 1 Heisenberg spin chain and show that the dynamics can be described
by the recently developed semi-semiclassical method based on particles propagating along classical trajectories
but scattering quantum mechanically. We analyze the nonequilibrium time evolution of the distribution of the
total spin in half of the system and compare the predictions of the semi-semiclassical theory with those of a
non-Abelian time-evolving block decimation (TEBD) algorithm which exploits the SU(2) symmetry. We show
that while the standard semiclassical approach using the universal low-energy scattering matrix cannot describe
the dynamics, the hybrid semiclassical method based on the full scattering matrix gives excellent agreement with
the first-principles TEBD simulation.
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I. INTRODUCTION

Understanding nonequilibrium dynamics in interacting
quantum many-body systems is one of the major challenges
in today’s statistical physics [1–4]. The formation of current-
carrying steady states [5–8], the details of the thermalization
process [9,10], entropy production [11–15], or the interplay
with disorder [16–20] and topology [21–24] are just a few
examples of the intriguing open questions which, due to recent
breakthroughs in quantum simulation, can now be investi-
gated experimentally.

While experimental results are abounding [25–30], avail-
able theoretical tools are quite limited in number and power.
One-dimensional systems represent in this regard an excep-
tion and a theoretical testing ground for all methods and
investigations, especially since in one dimension powerful
analytical and numerical methods such as Bethe Ansatz [31],
bosonization [32,33], density matrix renormalization group
(DMRG) [34,35] exist to study equilibrium properties in de-
tail. These methods can be extended to nonequilibrium steady
states (NESSs) [36,37], while dynamics under nonequilibrium
conditions can be efficiently simulated by the time-dependent
DMRG [38] and the time-evolving block decimation (TEBD)
algorithms [39]. However, in dynamical simulations, “exact-
ness” or precision is typically lost after relatively short times
due to the rapidly increasing entanglement of the state.

Recently, a semi-semiclassical approach (SSA) has been
proposed to study generic, gapped one-dimensional quantum
systems at longer times and small quasiparticle densities
(i.e., small or slow quenches), and demonstrated on the sine–
Gordon model [40]. As a generalization of the original semi-
classical approach of Sachdev, Young, and Damle [41,42], the

semi-semiclassical method treats trajectories of quasiparticles
classically, but it accounts for the precise quantum evolution
of the internal degrees of freedom fully quantum mechan-
ically, and allows one to capture the associated quantum
entanglement generation as well as simultaneous probabilistic
processes. Though approximate, the SSA method is versatile,
conceptually simple, and has also been extended to study
dynamics in NESSs within the nonlinear sigma model [43].

Here we investigate quasiparticle creation and spin prop-
agation after a quantum quench within the Haldane-gapped
phase of the the antiferromagnetic spin-1 Heisenberg chain
and compare the predictions of the semi-semiclassical method
with TEBD simulations in detail. In particular, we consider
the S = 1 Haldane chain with a time-dependent biquadratic
interaction J2(t ):

Ĥ (t ) =
∑

i

J1 �Si · �Si+1 + J2(t )(�Si · �Si+1)2 . (1)

Here J2(t ) = J2γ (t ), and the function γ (t ) changes from 1 to
0 around t = 0. We start from the ground state of H (−∞)
and perform infinite volume TEBD (iTEBD) simulations [39]
to obtain the full time-dependent wave function of the chain,
|ψ (t )〉. To reach sufficiently long times comparable with
the quasiparticle collision times, we need to exploit non-
Abelian symmetries in our simulations. Using TEBD with
non-Abelian symmetries enables us to reach times as large
as t ∼ 10 × J−1

1 for sudden quenches, where already clear
signatures of quasiparticle collisions can be observed.

The quench protocol described above generates a gas of
(entangled pairs of) quasiparticles in the final state. Cutting
the infinite chain into two at time t and then measuring the
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FIG. 1. Visualization of the quench protocol. The biquadratic
coupling J2 is turned off at t = 0 within a switching time tQ. Later,
at time t, the system is cut in two parts and the total spin S of the left
part is measured. The statistics of the measurement is described by
the spin distribution P(S, t ).

spin distribution on one side, P(S, t ), we can explore the
propagation and collision of these quasiparticles (Fig. 1 and
Fig. 2). We can, in particular, compute P(S, t ) in terms of the
SSA and compare it to the results of TEBD simulations to
find an astonishing agreement. As we shall also demonstrate, a
theory based on completely reflective quasiparticle collisions
[42,44–47] is not able to account for the observed behavior,
and the full SSA is needed to get agreement with TEBD
computations.

The paper is structured as follows. In Sec. II, we overview
the basics of the microscopic non-Abelian iTEBD simulations
and the SSA method. In Sec. III, the short-time ballistic
behavior after the quench is analyzed. Then, in Sec. IV, we
discuss the collision dominated regime of the dynamics. In
Sec. V, we develop a perturbative quench theory and test its
scope of validity. Our conclusions are summarized in Sec. VI.

FIG. 2. The semiclassical quasiparticle picture. (a) World lines
of the excited quasiparticle pairs. Entanglement structure of the gas
is indicated by arched red stripes. At t = 0, singlet pairs with zero
total momentum are excited. After the quench, the quasiparticles
collide with each other; the scattering events are denoted by stars.
(b) Visualization of the spin structure if the system is cut in two parts.
The topological edge spins are denoted by large green arrows, while
the quasiparticle spins are denoted by small red arrows. At the cut,
the two “virtual” edge spins form a singlet. The total spin of the left
part contains contributions of the edge spins, the quasiparticles, and
vacuum fluctuations.

II. BASIC CONCEPTS AND NUMERICAL METHODS

Before presenting the main results, let us shortly review the
two methods used to investigate the quench dynamics.

A. Non-Abelian TEBD lattice simulations

Here we discuss our non-Abelian TEBD algorithm only
briefly, since our flexible and general way of treating non-
Abelian symmetries in matrix product state (MPS) simula-
tions will be presented in a separate publication [48].

The postquench dynamics of the system is described by the
microscopic many-body Schrödinger equation,

i∂t |�(t )〉 = Ĥ (t )|�(t )〉, (2)

which we solve numerically by means of the infinite chain
time-evolving block decimation (iTEBD) algorithm [39]. The
TEBD algorithm describes the real-time dynamics of the
system based on the MPS description of the quantum state
|�(t )〉 [35,49],

|�〉 =
∑
{σl }

(
. . . M[l−1]

σl−1
M[l]

σl
. . .

) |{σl}〉 , (3)

where the |σl〉 with σl = {0,+,−} refer to the three quantum
states of spin Sl at site l .

The MPS factorization of the quantum state |�〉 relies on
Schmidt decomposition [50]. Let us now focus on the case
where |�〉 is a spin singlet, and cut the chain into two halves
between sites l and l + 1, i.e., treat the Hilbert space of the full
chain as the product of its left and right halves. The Schmidt
decomposition of |�〉 then reads as [51,52]

|�〉 =
∑

tl

�
[l]
tl√

2Jtl + 1

Jtl∑
ml =−Jtl

|tl , ml〉left|tl , ml〉right , (4)

where |tl , ml〉left and |tl , ml〉right are the so-called Schmidt
pairs [53]. Here tl labels multiplets, while ml refers to internal
states within this multiplet having a total spin Jtl . The values
�

[l]
tl /

√
2Jtl + 1 > 0 are the so-called Schmidt values and are

independent of the internal label ml .
The non-Abelian MPS (NA-MPS) representation of |�〉

can be constructed by relating neighboring left Schmidt states
while moving the cut position forward by one site:

|tl , ml〉left =
∑

tl−1,ηl

A[l] tl
tl−1 ηl

∑
ml−1,σl

Cml ηl
ml−1 σl

× |tl−1, ml−1〉left|σl〉 . (5)

Here the tensor Cml ηl
ml−1 σl

contains the Clebsch–Gordan coeffi-
cients 〈Jtl−1 , ml−1; Sl , σl |Jtl , ml〉, while the superindex ηl →
{Jtl−1 , Sl , Jtl } runs over allowed values of the three spins [54].
An iterative application of Eq. (5) yields the non-Abelian MPS
(NA-MPS) representation Eq. (3) with(

M[l]
σl

)tl ,ml

tl−1,ml−1
=

∑
ηl

(A[l] )tl
tl−1 ηl

C ml ηl
ml−1 σl

, (6)

corresponding to the two-layer NA-MPS structure sketched
in Fig. 3. The tensors A[l] describe the transformation at the
level of multiplets, and the contraction of the index ηl between
A[l] and C ensures that the values of the three representation
indices in the two tensors match.
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The upper layer of the tensors A[l] contains all impor-
tant physical information on the state |�〉 and our TEBD
time-evolver operators act only on this upper NA-MPS layer
(see Appendix A). In other words, all expensive contractions
within the Clebsch–Gordan layer are eliminated.

Here we use the infinite-chain TEBD algorithm that applies
for translation invariant states [39]. In this case, both the
tensors A[l] and the Schmidt values �

[l]
tl are independent of the

site index l . Numerically, this one site translation invariance
is, however, lowered to a two-site translation invariance due
to the Suzuki–Trotter time evolution scheme [55,56], i.e., the
tensors on the even and odd sublattices are slightly different.

The TEBD simulation provides the time-dependent ten-
sors A(t ) tl

tl−1 ηl
and the Schmidt values �(t )tl (for details, see

Appendix A). The distribution of the total spin of the half
chain is then simply related to the Schmidt values:

P(S, t ) =
∑

tl | Jtl =S

|�(t )tl |2 . (7)

As shown in later sections, this distribution contains the essen-
tial information on the spin structure and spin entanglement of
excited quasiparticles in the postquench state.

B. The semi-semiclassical approach

The numerical resources required for TEBD grow ex-
ponentially in time, and make the microscopic simulations
tractable only for short times. However, the single-site-
resolved knowledge of the quantum state is not necessary for
answering many questions. The model Eq. (1) is known to
be gapped [57,58], and its low-energy excitations are S = 1
triplet quasiparticles [58] described by the O(3) nonlinear
sigma model, an integrable relativistic field theory. Low
energy quasiparticles therefore have a (close to) relativistic
dispersion,

ωq =
√


2 + c2q2 , (8)

where the gap and the “speed of light” are given in terms of
the microscopic parameters of the Hamiltonian as [58]


 ≈ 0.4105 J1 , c ≈ 2.472 J1a . (9)

The finite gap ensures that, in the case of small quenches, the
postquench state is a dilute gas of quasiparticles.

From the locality and the translation invariance of the
Hamiltonian, we can also conclude that shortly after the
quench the state consists of spatially localized uncorrelated
quasiparticle pairs. Moreover, since the quench protocol con-
serves SU(2), these quasiparticle pairs must form SU(2)
singlets. These assumptions form the basis of the semi-
semiclassical approximation [40], where the quasiparticles’
spatial degrees of freedom are treated classically in a Monte
Carlo sampling of the possible world-line configurations,
while their internal spin states are are constructed as an NA-
MPS state, and followed at the quantum level. As sketched
in Fig. 2, the evolution of the quasiparticle spin states can
be described by consecutive application of the two-particle
S-matrix at collision events—if the gas is dilute enough.

The condition for the applicability of semiclassical ap-
proach is that the mean interparticle distance must be larger

FIG. 3. Two layer structure of the SU(2) invariant non-Abelian
matrix product state. The lower layer contains the Clebsch–Gordan
coefficients and is unaffected by time evolution. Representation in-
dices are shown as bubbles within the tensors: These indices indicate
the sparse block structure of these tensors.

than the Compton wavelength of the particles [59]:

ρ−1 > c/
 . (10)

As we shall see, this condition is satisfied even for relatively
large quenches in our model.

This semi-semiclassical formalism allows us to compute
the time-dependent spin distribution of a half chain, P(S, t ).
Half-chain spin fluctuations have two sources in the SSA:
(1) cutting the vacuum state of an infinite Haldane chain into
two gives rise to a non-trivial spin distribution, P0(S0), and
(2) quench generated quasiparticles carry spins (and entangle-
ment) across the cut.

To determine the first contribution, we first constructed
the postquench ground state with J2 = 0 using TEBD, cut it
into two, and determined P0(S0) from the Schmidt values. As
shown in Table I, we clearly observe the presence of two topo-
logically protected spin-1/2 end spins after the cut [60,61]:
These yield a triplet state with almost 74% probability and a
singlet state with more than 24% likelihood.

This can be understood as follows: constructing the density
operator of a half chain from the ground-state configuration of
the infinite chain corresponds to cutting suddenly the infinite
chain into two half chains, i.e., a sudden quench. Before the
cut, the ground state is a singlet and the two topologically
protected spin −1/2 end spins also form a singlet. Would we
separate slowly (but not infinitely slowly) the chain into two

TABLE I. Left: Ground-state spin structure of a semi-infinite
spin-1 Haldane chain. Right: Slopes of the probability distributions
at short times, rS = dP(S, t )/dt |t=0, as predicted by the semiclassical
theory, and as extracted from the TEBD simulations for quench
duration tQ = 1.6/J1.

S0 P0(S0 ) S (rS/r0)SC (rS/r0 )TEBD

0 0.2426 0 1 1
1 0.7388 1 1.535 1.549(22)
2 0.0186 2 −2.481 −2.502(20)

3 −0.054 −0.0572(9)
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half chains at the center, we would create another singlet pair
of end spins at the cut. Since the end spins at ±∞ and the ones
at the cut are independent, this implies that the topologically
protected half spins of the resulting semi-infinite chain will be
independent, and thus form a triplet with probability 3/4 and
and a singlet with probability 1/4. Performing a sudden cut
slightly changes this picture, since it generates with a small
probability quasiparticles across the cut. The latter alter the
total spin of the half chain, although the probability of these
processes is around ∼2% according to our numerical results.

Semi-semiclassics can be used to determine the second
contribution, that of pairs of quasiparticles created by the J2

quench. This gives rise to the quasiparticles’ spin distribution,
Pqp(Sqp). Assuming that the spin orientation of the quasipar-
ticles is independent of those of the vacuum fluctuations, we
obtain the total half-chain spin distribution [62]:

P(S, t ) =
∑

S0

∑
Sqp

δS∈S0⊗Sqp (2S + 1)
P0(S0)

2S0 + 1

Pqp(Sqp; t )

2Sqp + 1
.

(11)

The distribution Pqp(Sqp) can, in general, be determined
only numerically. However, as described in the next two
sections, we have simple analytical expressions at very short
times as well as in the limits of completely reflective and
completely transmissive scatterings, valid for very cold and
very hot gases of quasiparticles, respectively.

III. SHORT-TIME BALLISTIC BEHAVIOR

First we analyze the initial change of P(S) shortly after the
quench, where the quasiparticle picture gives simple predic-
tions. As discussed before, the initial state is a superposition
of states containing randomly localized spin-singlet quasi-
particle pairs with random velocities ±v and a quasiparticle
density ρ. The distribution of the magnitude of the velocity,
f (v), depends on the details of the quench. The total spin of
the left half chain changes when the first S = 1 quasiparticle
crosses the position of the cut and carries spin from one half
to the other. The probability of this happening within time t is
simply

Q(t ) = ρ

∫ c

0
vt f (v)dv ≡ t

2τ
, (12)

because the quasiparticle of velocity v can come from an
interval of length |v|t on either side, touching the cut, but it
must move to the right direction. The collision time τ above
is defined as the ratio of the mean interparticle spacing and the
mean velocity.

For short times, we can neglect multiple crossings. After
the first singlet pair has reached the cut position, the spin of
the half chain changes from 0 to 1 (see Fig. 5), so in Eq. (11)
we have

Pqp(Sqp = 1; t ) = t/(2τ ) + . . . , (13a)

Pqp(Sqp = 0; t ) = 1 − t/(2τ ) + . . . , (13b)

FIG. 4. (a) The initial relative rates rS/r0 extracted from the
microscopic simulation of the Heisenberg chain as a function of
the quench magnitude, J2/J1. Data for sudden quench are shown
as symbols, while the dotted lines indicate the semi-semiclassical
predictions. The relative rates for a smooth quench (tQ = 1.6/J1) are
also plotted for S = 3 as empty squares. (b) Short-time behavior of
the P(S, t ) spin distribution for sectors S = {0, 1, 2} in the case of a
sudden quench J2/J1 = 0.12. Dotted black lines show linear fits used
to determine the initial rates. (c) Short-time behavior of P(S = 3, t )
for a sudden quench with J2/J1 = 0.12 and a smooth quench with
tQ = 1.6/J1 and J2/J1 = 0.33.

and we find

P(0, t ) = P0(0) −
(

P0(0) − P0(1)

9

)
t

2τ
+ . . . ,

P(S, t ) = P0(S) + 2S + 1

6

×
(

P0(S − 1)

2S − 1
− 2 P0(S)

2S + 1
+ P0(S + 1)

2S + 3

)
t

τ
+ . . . .

(14)

Using the vacuum spin probabilities in Table I, we can
compute, independently of f (v), the ratios of the slopes rS =
dP(S,t )

dt |
t=0 of the initial linear time dependencies with the

result shown in Table I.
We have confronted these predictions with microscopic

TEBD simulations, shown in Fig. 4. The short-time P(S, t )
functions are plotted for S = 0, 1, 2 in Fig. 4(b) as functions
of time for a representative sudden quench. The relative
rates rS/r0 extracted from these and similar curves obtained
with various quench sizes are displayed in the Fig. 4(a). In
accordance with the quasiparticle picture, the relative rates
are independent of the quench size. The agreement with the
quasiparticle prediction is excellent for S = 0, 1, 2, while
there is a small deviation for sudden quenches for S = 3.

The latter can be attributed to the difficulty of extracting the
universal initial rate due to transient oscillations (cf. upper
curve in Fig. 4(c), comparing the results for a sudden and a
finite time quench for S = 3). The oscillations are not present
for smooth finite time quenches, and for these we get excellent
agreement with the semiclassical prediction. This agreement
between the prediction of the quasiparticle picture and the
numerics gives strong evidence that the quasiparticle picture
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FIG. 5. Visualization of quasiparticle spin dynamics in the fully
reflective limit. Initially the pairs form singlet pairs, indicated by
colored shading. In this limit, singlet bonds between neighboring
particles, indicated by arcs, remain intact.

is correct. In the following sections, we test the validity of the
semiclassical description at longer times.

IV. COLLISION DOMINATED REGIME

At later times after the quench, several particles can cross
from one half chain to the other from both directions. More-
over, one has to take into account the effect of collisions.
In this section, after considering two analytically tractable
limiting cases, we apply the semi-semiclassical method and
compare its results with the TEBD numerics.

A. Simple limits

Let us first consider two limits, those of completely reflec-
tive and completely transmissive collisions, in which we can
compute the spin distribution function analytically.

1. Completely reflective limit

In the universal low-energy limit, the two-particle scat-
tering matrix of gapped models with short range interaction
is a permutation matrix, corresponding to perfect reflection
of the incoming quasiparticles. This limiting S-matrix was
used in early works [42,44–47] on the semiclassical method
to describe the dynamics at low temperatures. The S-matrix
for the O(3) nonlinear sigma model, describing our spin
Hamiltonian, is exactly known, and also describes perfectly
reflective processes in the limit of small relative rapidities (see
Appendix B).

The initial state consists of pairs of quasiparticles that
form spin singlets, and in this reflective limit, neighboring
quasiparticle pairs remain singlets even after many collisions
(see Fig. 5). If we cut the system into two half chains, the
quasiparticle contribution to the total spin of the left part at
a given time is Sqp = 0 if the cut lies between pairs, while
Sqp = 1 if the cut breaks a pair. It is easy to see that the first
situation is realized if the number of quasiparticles crossing
from one half to the other up to the given time is even, and
the second if this number is odd. The crossing number can
be computed using the straight lines in Fig. 5 (the would-be
trajectories of noninteracting particles). The total number of
crosses from the left and right, n+ and n−, follow independent

FIG. 6. Quasiparticle spins in the fully transmissive (ultrarela-
tivistic) limit. Members of entangled quasiparticle pairs are marked
by specific symbols on the worldlines. Interaction between quasipar-
ticles is negligible in this limit: The particles simply cross each other
without changing their spins.

Poisson distribution,

p(n+, n−) = 1

n+! n−!
q(t )n++n−e−2q(t ) , (15)

where q(t ) = 1
2ρ t

∫ c
0 dvv f (v) = Q(t )/2 = 1/(4τ ) is the

probability that a trajectory crosses the cut from the left (or
from the right). The probabilities of having even (Sqp = 0) or
odd (Sqp = 1) number of crossings are then

Prefl
qp (Sqp, t ) =

∞∑
n+,n−=0

p(n+, n−)
1 + (−1)Sqp (−1)n++n−

2

= 1

2
(1 + (−1)Sqp e−t/τ ) . (16)

Note that expanding for short time, we recover the expressions
in Eqs. (13). Substituting the above result into Eq. (11) the
total spin distribution can be computed in the totally reflective
limit.

2. Completely transmissive (ultrarelativistic) limit

Very high-energy quasiparticles do not interact with each
other. This can also be verified on the exact S-matrix of the
nonlinear sigma model in Appendix B, in the limit of very
large rapidity differences, i.e., of ultrarelativistic quasiparti-
cles. In this limit, the original spin singlets remain singlets,
but now the members of a pair keep moving away from each
other following the light cone (see Fig. 6). Since quasiparticles
crossing the cut are independent of each other, the quasiparti-
cle spin distribution is given by

Ptrans
qp (Sqp; t ) =

∑
N

Pspin(Sqp|N ) Pcross(N ; t ) , (17)

where Pcross(N ; t ) = Q(t )N

N! e−Q(t ) is the Poisson probability dis-
tribution of the number of world lines that cross the cut
from any side, while Pspin(S|N ) = (2S + 1) MS|N/3N is the
distribution of the total spin of N particles with random spin
orientations. Here MS|N counts the multiplets of spin S in the
N-particle space, and it can be calculated iteratively from the
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FIG. 7. Spin distribution after a sudden quench as a function of t/τ . Symbols are results of microscopic simulations on the Heisenberg
chain for different values of the quench magnitude J2/J1 ∈ [0.12, 0.36]. The values of τ for different quench magnitudes were found by
searching the best collapse of the curves. Panels (b)–(f) display the probabilities of each spin separately. The green dotted curves show the
prediction in the fully reflective limit, while red dash-dotted lines show the fully transmissive values. The results of the microscopic simulation
differ significantly from both limits, but are well described by the semi-semiclassical simulation performed using a cutoff parameter E0 = 4J1.

Panel (a) shows the curves P(S; t ) for all spin sectors together. Here colored lines show the corresponding semi-semiclassical simulation.

recursion relation,

MS|N = MS+1|N−1 + (1 − δS,0)(MS|N−1 + MS−1|N−1), (18)

with initial condition MS|0 = δS,0. Solving these equations
iteratively, we can quickly compute Ptrans

qp at any time.

B. Hybrid semiclassical dynamics

In general, the scattering is neither fully reflective nor fully
transmissive. The result of each collision is instead a superpo-
sition of possible outgoing states with respective amplitudes
given by the scattering matrix. In the O(3) nonlinear sigma
model, the total spin and also its z component are conserved
in the scattering of the S = 1 quasiparticles, but transmissive
and reflective processes as well as quasiparticle spin flips all
occur with finite scattering amplitude. In the Sz

T = 0 scattering
channel, for example, a superposition of transmissions and
reflections occur for incoming particles (+,−), but even the
process (+,−) −→ (0, 0) is allowed.

The two-body scattering matrix is exactly known for the
O(3) nonlinear sigma model. In our hybrid semiclassical
method, we use this S-matrix: Whenever there is a collision
of quasiparticles, we act on the two colliding quasiparticle
spins by the corresponding O(3) S-matrix. This goes beyond
standard semiclassical treatments not only by allowing non-
trivial scattering processes, but also by treating the spin part
of the many-body wave function fully quantum mechanically
[40]. Here the quantum state of the spin part—not includ-
ing the topological end spins—is described by an NA-MPS,
where the vertical, physical legs—in contrast to the micro-
scopic simulations—stand for the quasiparticles’ spins. For a
given world-line configuration, the action of the S-matrices
are taken into account by means of the TEBD algorithm
[39,40]. The quasiparticle part of the spin fluctuations can be

calculated similarly to Eq. (7) for each world-line configura-
tion, and the final Pqp(Sqp, t ) distribution can be determined
by averaging over many world-line configurations.

Apart from the S-matrix, the other main input for the
method is the momentum distribution of the quasiparticles,
which is not easy to measure or calculate. In our simulation,
we used the distribution

n(q) ∝ q2

sinh2(ωq/2E0)
, (19)

with ωq =
√


2 + q2c2 the quasiparticle dispersion relation
and E0 a tunable cutoff parameter. This particular functional
form is motivated by the perturbative calculation outlined in
Sec. V.

We compare the results of the semi-semiclassical method
with the microscopic TEBD numerics for sudden quenches
in Fig. 7. Different symbols correspond to quenches of dif-
ferent magnitude. In the SSA, the distribution of scattering
matrices depends exclusively on the velocity distribution of
quasiparticles, which is, in turn, determined exclusively by
the microscopic quench protocol. In the perturbative limit, we
expect this distribution to be independent of the amplitude of
the quench. The amplitude of the quench is only supposed to
influence the density of the quasiparticles created, and thus the
collision time. Therefore, we expect that the functions P(S, t )
can be scaled on the top of each other by rescaling time.

This is indeed what we find by studying sudden quenches
of different sizes, J2/J1 ∈ [0.12, 0.36], for which the curves
P(S, t ) collapse when plotted against t/τ (see Fig. 7). For
smaller quenches, the collision time τ is determined from the
early time slope of the functions in Eq. (14), while for larger
quenches, where transient oscillations are superposed at early
times, we just rescaled the curves to achieve the best collapse.
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(a)

(c) (d)

(b)

FIG. 8. Spin distribution in the semi-semiclassical simulation with different cutoff parameters. The dashed green lines show the fully
reflective limit, while the red dash-dotted line shows the transmissive limit. The semi-semiclassical simulation results in spin distributions
between these two limits, depending on the value of the cutoff. For small cutoff, the results are close to the reflective limit, while for large
cutoff the transmissive limit is approached.

Remarkably, the same rescaling factor worked for all different
spin values in each case.

The resulting curves can be compared to semiclassical
predictions. The first observation is that neither of the special
limits can reproduce the results of the microscopic numeri-
cal simulation [cf. green dotted and red dash-dotted curves
in Figs. 7(b)–7(f)]. In particular, the standard semiclassical
method based on totally reflective collisions cannot account
for the postquench dynamics, and the numerically determined
time evolution lies between the predictions of completely
reflective and completely transmissive computations.

Remarkably, however, the semi-semiclassical results give
excellent agreement with the TEBD data. We recall that there
is a single free parameter in the semiclassical calculation, the
cutoff parameter E0. The same choice, E0 = 4J1, gave the best
agreement for all spin values S. This cutoff is close to the
quasiparticles’ bandwidth [58].

The effect of the cutoff on the semi-semiclassical spin
distributions for S = 1, . . . , 4 is illustrated in Fig. 8. A very
small cutoff leads to slow quasiparticles with predominantly
reflective scattering, and dynamics close to the standard semi-
classical prediction of Sec. IV A. For large cutoffs, on the
other hand, the majority of the quasiparticles is ultrarelativis-
tic and collide mostly by transmissive scattering. Varying E0,

the SSA interpolates between these two limiting cases.

V. PERTURBATIVE QUENCH THEORY

In this section, we develop a perturbative description of the
quench in terms of an effective field theory and compare its

implications with the results of our TEBD simulations and
the semi-semiclassical interpretation thereof. Certain details
of the derivations are given in Appendix C.

Our first step is to replace the original Hamiltonian Eq. (1)
by a phenomenological quasiparticle Hamiltonian, and to
express the postquench Hamiltonian as

Ĥ0 =
∑
q,σ

ωq b†
q,σ bq,σ . (20)

Here the operators b†
q,σ create quasiparticles of momentum

q, energy ωq, and spin σ = ±1, 0. As discussed earlier,
switching off J2 creates singlet pairs of quasiparticles with
opposite momenta. This is implemented within our effective
field theory by the term [63]

Ĥ =
∑
q,σ

{
ωq(t )b†

q,σ bq,σ + 1

2
gq(t )(−1)σ

× (b†
q,σ b†

−q,−σ + bq,σ b−q,−σ )

}
, (21)

with the time-dependent dispersion and pair creation ampli-
tudes

ωq(t ) = ωq + J2λ(t ) 
q , gq(t ) = J2λ(t ) gq . (22)

Here λ(t ) describes the time-dependent profile of the quench
with λ(t → −∞) = 1 and λ(t → ∞) = 0. The precise mo-
mentum dependence of the couplings 
q and gq depends on
microscopic details of the Hamiltonian Ĥ0 and the perturbing
quench operator. At leading order in perturbation theory, the
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momentum distribution of quasiparticles is determined by the
quasiparticle dispersion ωq, the specific form of λ(t ), and by
the pair creation amplitude, gq. This latter typically vanishes
in the limit q → 0 linearly, reflecting the fact that low-energy
quasiparticles behave as hard-core bosons.

Being quadratic, the simple model outlined above can
be treated analytically, and can be used to determine the
momentum distribution of the quasiparticles analytically. For
small and smooth quenches we find

n(q) ∝ |gq|2 J2
2

ω2
q

∣∣∣∣ d̃λ

dt
(2ωq)

∣∣∣∣2

, (23)

where the tilde denotes the Fourier transform. Note that λ(t )
does not depend on the amplitude of the quench, only on its
duration and shape. Quite naturally, the quasiparticle density
is proportional to the squared magnitude of the quench. Con-
sequently, the collision rate 1/τ defined in Eq. (12) is also just
proportional to J2

2 .
This prediction is checked in Fig. 9(a), where we plot

the inverse collision times extracted from TEBD as functions
of J2/J1 for three different quench speeds. The quadratic
dependence is valid up to J2/J1 ≈ 1/3 which is just the so-
called AKLT point [60], suggesting that perturbation theory
holds for quenches even up to this size. Also, slower, more
adiabatic quenches create less quasiparticles, reflected in a
lower collision rate.

As the quench magnitude J2 only appears in the prefactor
in Eq. (23), the normalized velocity distribution is predicted
to be independent of it in this perturbative regime. The energy
density should therefore be proportional to the quasiparti-
cle density with a proportionality factor depending on the
shape of λ(t ). As a consequence, the product of the collision
time and the energy density ρe should be independent of the
size of the quench if perturbation theory holds. This prediction
is tested in Fig. 9(b), where we plot the product ρeτ against
J2/J1 for various quench durations. Here the quasiparticle
energy density was measured in the TEBD simulation by
taking the difference of the postquench and the vacuum energy
densities. It can be seen that the product is indeed approx-
imately constant up to J2/J1 ≈ 1/3, i.e., in the domain of
perturbation theory identified above.

To make a more quantitative comparison between TEBD
and our semiclassical method, we specify the shape of the
quench as

λ(t ) = 1
2 [1 − tanh(t/tQ)]. (24)

We furthermore assume a simple linear dependence of gq

around q = 0 (see Appendix C) and use a relativistic dis-
persion relation ωq with the microscopic parameters given in
Eqs. (9). With these approximations, we obtain the quasipar-
ticle momentum distribution used in our semi-semiclassical
simulations, Eq. (19) with E0 = tQ:

n(q) ∝ J2
2

q2

sinh2(πtQωq)
. (25)

With this distribution, we can compute the product of the
energy density and the collision time for different quench
durations tQ. The results are shown in Fig. 10 together with
the TEBD data for quenches with J2/J1 = 0.24. There is a

(a)

(b)

FIG. 9. Checking basic predictions of perturbation theory. Dif-
ferent symbols show data for different quench times tQ. (a) The fitted
inverse collision time τ−1 as a function of the quench magnitude
J2/J1. The vertical dashed line indicates the AKLT point, J2/J1 =
1/3. Perturbation theory predicts quadratic dependence of τ−1 on
J2/J1 that seems to be valid up to the AKLT point. The inset shows
the same data but with quadratic scale on the horizontal axis. (b) The
product of the energy density ρe and the collision time τ as a function
of the quench magnitude J2/J1. Perturbation theory predicts this
value to be constant for a given value of TQ, which seems to hold
up to the AKLT point. The error bars arise from the uncertainity of
the fitted value of τ , while the relative error of the measured energy
density is small.

reasonable agreement for not very fast quenches. This demon-
strates convincingly that the semiclassical picture based on
relativistic quasiparticles with perturbatively computed mo-
mentum distribution provides a valid qualitative and quanti-
tative description of the postquench dynamics.

Let us close this section by verifying the consistency con-
dition Eq. (10) of the SSA. Even though we cannot measure
the particle density directly, we can set an upper bound on it
using the energy density:

ρ � ρe/
 . (26)

This implies that the semiclassical condition Eq. (10) is cer-
tainly satisfied if

cρe < 
2 (27)

holds. We checked that this inequality was always satisfied
in our simulations, except for the largest sudden quench with
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FIG. 10. The product of the energy density ρe and the collision
time τ as a function of the quench time tQ for J2/J1 = 0.24. The
continuous red line shows the prediction of the relativistic minimal
model. While the simple prediction largely fails for small quench
times tQ, for larger tQ the agreement is reasonable.

J2/J1 = 0.36, where cρE/
2 ≈ 1.2 was found. However, for
sudden quenches Eq. (26) strongly overestimates the particle
density, i.e., Eq. (10) is expected to be valid even in this largest
sudden quench.

VI. SUMMARY

In this paper, we have studied numerically the statistics of
spin transfer after a quantum quench in the Haldane chain, and
compared it with the predictions of the SSA, developed in Ref.
[40]. As we demonstrate, the probability distribution P(S, t ) of
transferred spins, extracted from non-Abelian TEBD quench
simulations, contains a surprising amount of information: In
addition to detecting the presence of topologically protected
end states [60,61], it gives insight to the internal spin structure
and velocity distribution of quasiparticles as well as to the
nature of their collisions.

Application of SU(2) symmetries allows us to reach suf-
ficiently large bond dimensions in the range of 2000 mul-
tiplets corresponding to 10 000 states [48], and to reach
long enough simulation times to overlap with the range of
validity of semi-semiclassics, and to observe effects related
to quasiparticle collisions. We find that spin distributions, as
computed through our full TEBD simulations, are in perfect
agreement with those determined from the SSA: The short-
time behavior of P(S, t ) reveals the presence of spin S = 1
quasiparticles traveling ballistically, while at longer times
we enter a collision-dominated regime, where collisions are
neither reflective [42,45–47] nor transmissive [64]. In this
regime, it appears to be absolutely necessary to incorporate
the coherent time evolution of the spin wave function, and to
follow its quantum mechanical evolution, as performed by the
hybrid SSA.

For a sudden quench, the functions P(S, t ) are found to
be universal functions of t/τ , with τ the collision time. This
universal scaling can also be simply explained within the
semi-semiclassical theory: the size of the quantum quench has
a direct influence on the quasiparticle density, � ∼ J2

2 , and
thus the scattering rate, 1/τ ∼ ρ, however, it does not change
the velocity distribution of the quasiparticles and the structure

and distribution of scattering matrices. Therefore, the statistics
of collisions and the statistical time evolution of the wave
function is independent of the size of the quench if time is
measured in units of collision time.

The precise velocity distribution does depend, however,
on details of the quench protocol and the quench time tQ.

Correspondingly, for finite time quenches, we observe an
explicit dependence of the functions P(S, t ) on the quench
time (quench protocol). This explicit dependence is very
well captured by simply changing the energy cutoff of the
quasiparticles’ velocity distribution, E0 ∼ 1/tQ. This latter
correspondence, and the velocity distributions used in our
semi-semiclassical simulations, have both been motivated by
a perturbative field theoretical quantum quench theory, pre-
sented in Sec. V.

The extension of perturbative quench regime as well as the
range of validity of our SSA appear to be astonishingly large.
First, 1/τ , directly proportional to the density of quasiparticles
is found to scale as ∼J2

2 up to quench sizes of J2/J1 ≈
0.3, a value very close to the AKLT point at J2/J1 = 1/3.

Second, our assumption of a quench-size independent velocity
distribution is also verified by direct measurements of the
quasiparticles’ energy density on the Haldane chain. Also
quite remarkably, our perturbative field theoretical calculation
assuming a simple relativistic quasiparticle spectrum yields
a quantitative estimate for the dimensionless energy density
ρeτ ∼ ρe/ρ, in very good agreement with our full TEBD
spin chain simulations for quench times tQ � 0.5/J1. This
is, again, quite astonishing, since sudden quenches gener-
ate many quasiparticles presumably outside the regime of
our effective field theory. Apparently, however, quasiparticles
close to the gap appear to play the dominant role in the spin
transport studied here.

In our semi-semiclassical simulations, we have used the
S-matrix of the O(3) nonlinear sigma model, an integrable
field theory describing the large distance behavior of the
Haldane chain. This approximation is not entirely necessary:
In principle, one can determine the exact S-matrix from MPS
simulations [65,66], and we could have used the exact S-
matrix of the S = 1 Heisenberg chain [66], extracted from
DMRG simulations, and thereby incorporate effects associ-
ated with irrelevant operators. However, although we expect
this approximation to become inappropriate at very long times
[6,10], we could not see any sign of this breakdown even
for the largest timescales we could reach with our TEBD
simulations, t ∼ 10 × J−1

1 .
The calculations presented here have thus two general con-

clusions: On the one hand, they show that semi-semiclassical
calculations are simple (although not entirely controlled)
methods, which are able to capture important features of
nonequilibrium quantum dynamics at timescales much above
the microscopic time scales. On the other hand, our studies re-
veal the power and richness of full counting statistics and full
distributions, such as P(S, t ), containing precious information
on correlations, equilibration and dynamics [67–72].
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APPENDIX A: NA-TEBD

The MPS-based calculations of the time evolution—both
the microscopic simulations of the S = 1 chain and the hybrid
semi-semiclassical simulations—were performed by a vari-
ant of the standard TEBD algorithm [39] that exploits the
presence of the non-Abelian SU(2) symmetry; we call our
variant of the algorithm NA-TEBD, and our code is similar
to the approaches described in Refs. [52,73–75], but by the
introduction of the η-legs the generalization to other non-
Abelian symmetries becomes easier [48,54].

In the TEBD algorithm, the time evolution of the MPS
wave function is simulated by consecutive application of two-
site unitary evolvers [39], based on the Trotter–Suzuki de-
composition [55,56]. Considering now the SU(2) symmetric
case, the evolvers like U σl σl+1

σ ′
l σ

′
l+1

, acting on the neighboring sites

l and l + 1, preserve the SU(2) symmetry, and one naturally
would like to exploit this property. Formally, one should
contract the legs σl , σl+1 of the tensor U with the ones of
the Clebsch–Gordan tensors in the two-layer NA-MPS (see
Figs. 3 and 11). However, if the SU(2) symmetry is preserved
by the two-site evolver, then after the application of it, the
Clebsch-layer of the NA-MPS should remain the same, i.e.,
only the tensors A[l] and A[l+1] change. Using the standard
orthogonality relations of the Clebsch–Gordan coefficients,
we can determine the “symmetric” version of the two-site
evolver that can be directly applied on the legs ηl and ηl+1 of
the tensors A[l] and A[l+1]. This “symmetric” evolver is defined
as [see also Fig. 11(a)]

[Usym]ηl ηl+1

η′
l η

′
l+1

=
∑
ml−1
ml

m′
l

ml+1

∑
σl

σl+1
σ ′

l
σ ′

l+1

1

2Jl+1 + 1
U σl σl+1

σ ′
l σ

′
l+1

× Cml ηl
ml−1 σl

Cml+1 ηl+1
ml σl+1

(
C

m′
l η′

l

ml−1 σ ′
l

)∗(
C

ml+1 η′
l+1

m′
l σ ′

l+1

)∗
.

(A1)

The resulting tensor can be determined and stored before the
simulation procedure, and later can be directly applied on the
upper layer of the NA-MPS. It is important to remark that
the blocks of the resulting tensor [Usym]ηl ηl+1

η′
l η

′
l+1

are specified by

eight irreducible representation (“total spin”) indices that are
{Jl−1, Sl , Jl , Sl+1, Jl+1, S′

l , J ′
l , S′

l+1}.
After the determination of Usym, the standard TEBD al-

gorithm as described in Ref. [39] can be used to evolve the
upper layer of the NA-MPS without any relevant modifica-
tion as shown in Fig. 11(b). In other words, the layer of

FIG. 11. (a) Graphical representation of the defining Eq. (A1).
The blocks of the resulting [Usym]ηl ηl+1

η′
l η

′
l+1

tensor are specified by eight

irreducible representation indices. (b) The NA-TEBD algorithm. The
symmetric evolvers Usym are directly applied on the upper layer of the
NA-MPS.

Clebsch–Gordan coefficients does not appear during the sim-
ulations, making our NA-TEBD code fast and efficient.

Numerical details

The rapidly growing truncation error (the weight of dis-
carded Schmidt states) that spoils the accuracy of TEBD
simulations leads to a short cutoff time beyond which results
get unreliable. In our simulations, we defined this cutoff
time where the truncation error reached 10−7. To reach long
enough times (t � τ ), the MPS bond-dimension was set up
to MSU(2) = 2000, i.e., 2000 multiplets (around 10 000 states)
with the largest Schmidt values were kept.

APPENDIX B: THE RELATIVISTIC S-MATRIX

In the hybrid semi-semiclassical simulations, the relativis-
tic S-matrix of the low-energy field theory of the S = 1
Heisenberg model (namely, the O(3) nonlinear sigma model)
was used to describe the collision events. We used the same
S-matrix as in Ref. [43], but we transformed it in the more
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convenient form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 + σ3 0 0 0 0 0 0 0 0
0 σ3 0 σ2 0 0 0 0 0
0 0 σ1 + σ3 0 −σ1 0 σ1 + σ2 0 0
0 σ2 0 σ3 0 0 0 0 0
0 0 −σ1 0 σ1 + σ2 + σ3 0 −σ1 0 0
0 0 0 0 0 σ3 0 σ2 0
0 0 σ1 + σ2 0 −σ1 0 σ1 + σ3 0 0
0 0 0 0 0 σ2 0 σ3 0
0 0 0 0 0 0 0 0 σ2 + σ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

Here the (incoming and outgoing) basis states are
{|+ +〉, | + 0〉, |+ −〉, |0+〉, |00〉, |0−〉, |− +〉, | − 0〉, |− −〉},
where {+, 0,−} stand for the eigenvalues Sz = {1, 0,−1}
of the particles. In the two-particle basis states, we used the
convention that the left and right spin states always stand
for the particles in the left and right positions, both in the
incoming and outgoing states. The values σi depend on the
relative rapidity θrel = θ1 − θ2 of the colliding particles as

σ1 = 2iπθrel

(θrel + iπ )(θrel − 2iπ )
,

σ2 = θrel(θrel − iπ )

(θrel + iπ )(θrel − 2iπ )
,

σ3 = −2iπ (θrel − iπ )

(θrel + iπ )(θrel − 2iπ )
. (B2)

APPENDIX C: PERTURBATIVE DESCRIPTION
OF THE QUENCH

In this Appendix, we provide some details on the quench
dynamics within our effective field theory, presented in
Sec. V.

We shall assume in what follows that our initial quench
state is a squeezed state [76,77]. Using that our time-
dependent Hamiltonian Eq. (21) is quadratic, one can show
that the wave function remains a squeezed state upon time
evolution:

|�(t )〉 ∼ e
∑

q>0,σ (i�q,σ (t )+(−1)σ Kq (t )b†
q,σ b†

−q,σ )|0〉 . (C1)

The exponential form corresponds to independent pairs of
quasiparticles.

Our task is to determine the full time evolution of
the functions Kq(t ) throughout a quantum quench. First
we observe that different momentum modes decouple as

|�(t )〉 = ∏
q>0 |�q(t )〉, with

|�q(t )〉 =
√

1 − |Kq|2ei�q

∞∑
n=0

1

n!
Kn

q (b†
qb†

−q)n|0〉 . (C2)

The time-dependent Schrödinger equation leads to an equa-
tion for the pair creation amplitude Kq,

iK̇q(t ) = 2ωq(t )Kq(t ) + gq(t )(1 + Kq(t )2) . (C3)

Within first-order perturbation theory, we can neglect the
nonlinear Kq(t )2 term in this equation. Using the initial values
of the parameters, ωq(t → −∞) = ωq + J2
q and gq(t →
−∞) = J2gq, and exploiting that in the limit t → −∞ we
initialize the system in its stationary vacuum state, we find
the following initial conditions:

lim
t→−∞ Kq(t ) = − J2gq

2(ωq + J2
q)
= −J2gq

2ωq
+ O

(
J2

2

)
. (C4)

In general, one needs to solve Eq. (C3) numerically. However,
we can easily obtain its approximate analytical solution up to
leading order in J2,

lim
t→∞ Kq(t ) = J2gq

2ωq
e−2iωqt

∫ ∞

−∞
dt ′λ̇(t ′)e2iωqt ′ + O

(
J2

2

)
. (C5)

Using this expression, we find that the density of quasiparti-
cles created by the quench is just given by Eq. (23).

For the particular quench profile,

λ(t ) = 1
2 [1 − tanh(t/tQ)], (C6)

the Fourier transformation can be performed analytically with
the result

n(q) = π2

4

J2
2 g2

qt2
Q

4 sinh2(πωqtQ)
. (C7)

For slow enough quenches, the denominator cuts off the
momentum distribution at low momenta, so we can substitute
gq with its small momentum behavior, gq ≈ g |q|, and we
obtain the momentum distribution Eq. (25).
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