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Effect of hexagonal warping of the Fermi surface on the thermoelectric properties of a topological
insulator irradiated with linearly polarized radiation
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We investigate the effect of the hexagonal warped anisotropic Fermi surface on the anomalous thermoelectric
properties of the topological insulator surface illuminated with linearly polarized off-resonant electromagnetic
radiation. Upon irradiation of the TI surface, the linearly polarized (LP) off-resonant radiation couples with
the Dirac surface states. By explicitly finding the off-resonant quasistatic Hamiltonian we show that this
coupling occurs only in the presence of the hexagonal warping of the Fermi surface of the topological
insulator. We calculate the spin texture of the surface states, Berry curvature, Berry phase, orbital magnetic
moment, and magnetization associated with the band structure, which we find strongly depends on the angle
of polarization and the amplitude of radiation. For the anomalous thermoelectric effects generated by the Berry
curvature, it is found that due to the hexagonal warping induced Fermi surface deformation and the radiation
parameter dependent spin texture of the surface states, the transverse Hall, Ettingshausen, Nernst, and thermal
conductivities show significant variation with the change in polarization angle, chemical potential, temperature,
and the amplitude of radiation. As a consequence, the thermoelectric coefficient of performance (ZT ) of the
topological insulator is found to be increased in the presence of LP off-resonant irradiation compared to the
absence of radiation.

DOI: 10.1103/PhysRevB.100.035303

I. INTRODUCTION

The topological insulator surface when irradiated with time
periodic electromagnetic radiation exhibits a type of surface
states called the Floquet-Dirac states [1–5]. This is just like the
space translation symmetry induced Bloch states of the elec-
tron in crystalline solids. The Floquet-Dirac states are a
consequence of the minimal coupling of Dirac electron mo-
mentum with the time periodic vector potential of radiation
which leads to a time periodic electron Hamiltonian on the
surface of the topological insulator. The existence of these
states in the topological insulator has been verified both
theoretically [1–3] and experimentally using the time- and
angle-resolved photoemission spectroscopy [6]. Due to the
existence of Floquet-Dirac states, the topological insulator ex-
hibits radiation polarization controllable photocurrent [7–10],
which is induced by the photodrag effect in the case of the
topological insulator having center of inversion symmetry
(i.e., centrosymmetric) [8] and photogalvanic effect in the case
of noncentrosymmetric TI [8–10]. In the photodrag effect,
the photocurrent on the surface of the irradiated topological
insulator is generated by the in-plane component of the photon
momentum, whereas the photogalvanic effect is induced by
the out-of-plane component of the photon momentum [8]. In
particular, the off-resonant (i.e., the photon energy of radiation
is much greater than the energy bandwidth of TI) illumination
of a topological insulator surface with circular polarized light
(CPL), generates a CPL helicity dependent time reversal
symmetry breaking mass term [11–14] in the quasistatic
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effective Hamiltonian of the Floquet-Dirac states. This causes
the topological insulator to fall into the Floquet-Chern phase
characterized by the Floquet-Chern number, a topological
invariant [3,12]. The interface of two such distinct Floquet-
Chern insulators hosts one-dimensional (1D) spin polarized
chiral states [12]. The CPL irradiation also leads to a CPL he-
licity dependent spin polarized current [15,16], circular photo-
galvanic effect [17], and anomalous Ettingshausen and Nernst
thermomagnetic effects in graphene and topological insulators
[13,14]. The anomalous Ettingshausen thermomagnetic effect
generates a transverse heat current on the application of a
longitudinal electric field on the surface of the topological
insulator, whereas in an anomalous Nernst thermomagnetic
effect a transverse electric current is generated by a tempera-
ture gradient [14]. The anomalous thermoelectric currents are
induced by the nonzero Berry curvature and Berry curvature
corrected nonzero orbital magnetization generated by the self-
rotation of the Dirac electron wave packet around its center
[18], this is in contrast to normal Ettingshausen and Nernst
currents which instead of nonzero Berry curvature occur due
to the presence of nonzero magnetic field in the system [19].

Besides these effects, both theoretical calculations and
angle-resolved photoemission spectroscopy (ARPES) exper-
iments reveal that the circular Fermi surface of the low
energy spectrum (Dirac cone) of the surface states in the
Bi-chalcogenides topological insulators like Bi2Se3, Bi2Te3,
and Sb2Te3 attain a snowflakelike shape at high energy. This
warping of Fermi surface occurs due to the presence of a
C3ν rotational symmetric k-cubic hexagonal warping term
(i.e., k3

x − 3k2
y kx) in the Hamiltonian of the Bi-chalcogenides

topological insulator exhibiting a C3ν rotational symmetry
in the bulk [20–22]. The k-cubic hexagonal warping term
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due to its anisotropic nature in momentum space causes
anisotropic orbital coupling of the electron momentum with
the electromagnetic radiation vector potential. This leads to
the spin shift current [23] in the Bi-chalcogenides topological
insulator irradiated with polarized radiation, change in the
optical absorption and the degree of circular dichroism [24],
and a nonzero photocurrent [7] (which is otherwise zero in the
absence of hexagonal warping).

In this paper we investigate the effect of this anisotropic
hexagonal warping of Fermi surface on the anomalous trans-
verse Nernst, Ettingshausen, and thermal conductivities for
the Bi-chalcogenides topological insulator surface irradiated
with linearly polarized electromagnetic radiation in the off-
resonant regime (i.e., the photon energy of radiation is much
greater than the bandwidth of TI). Previously, these ther-
moelectric properties of the topological insulator have been
studied for the circular Fermi surface of the energy band,
i.e., at low energy of the Dirac electron, for the off-resonant
circularly polarized electromagnetic irradiation of the surface
of TI [13,14]. However, a study of the linearly polarized
off-resonant irradiation in the presence of an anisotropic
hexagonally warped Fermi surface has not been done. We
show here that the hexagonal warping of the Fermi surface
makes the transverse anomalous Nernst and Ettingshausen
thermoelectric effect dependent upon the amplitude and angle
of polarization of the linearly polarized radiation and this
dependence is absent when there is no hexagonal warping of
the Fermi surface.

This paper is organized as follow. In Sec. II we derive
the off-resonant quasistatic Hamiltonian and the spin texture
for the Floquet-Dirac states for the linearly polarized (LP)
irradiation of TI. We calculate the Berry curvature, Berry
phase and anomalous Hall conductivity in Sec. III, and orbital
magnetic moment and magnetization in Sec. IV. We then find
the anomalous transverse thermoelectric conductivities for the
LP irradiation of TI in Sec. V and the figure of merit in
Sec. VI.

II. BASIC FORMALISM AND MODEL FOR AN
OFF-RESONANT IRRADIATED TOPOLOGICAL

INSULATOR

A. Floquet Hamiltonian and the surface states

We consider a Bi2Se3 topological insulator (001) surface
irradiated perpendicularly with linearly polarized light having
polarization at angle θ with respect to the x axes (Fig. 1). The
linearly polarized electromagnetic radiation is described by
the time varying vector potential

�Axy(t ) = Ax(t )x̂ + Ay(t )ŷ

= Eo

ω
cos ωt (cos θ x̂ + sin θ ŷ). (1)

The Eo, ω, and θ in the above equation are the amplitude
of the electric field vector, the angular frequency of the
electromagnetic radiation, and the angle between the x axes
and the electric field vector of the electromagnetic radiation,
respectively. The surface states of the Bi-chalcogenide topo-
logical insulator with nonzero hexagonal warping of the Fermi
surface is described by the following Fu-model Hamiltonian

FIG. 1. Schematic of the topological insulator surface irradiated
with linearly polarized electromagnetic radiation.

[20]:

Ho = h̄νxy(σxky − σykx ) + λh
(
k3

x − 3k2
y kx

)
σz + �σz. (2)

In Eq. (2), νxy ≈ 0.4 × 106 m/s [20–22] defines the Fermi
velocity and λh = 0.250 eV nm3 [20–22] (for Bi2Se3) de-
fines the hexagonal warping parameter for the C3 rotational
symmetric anisotropic k-cubic hexagonal warping term (i.e.,
k3

x − 3k2
y kx). This hexagonal warping term of the surface state

Hamiltonian [Eq. (2)] is a result of C3 rotational symme-
try present in the bulk of the three-dimensional (3D) Bi-
chalcogenide topological insulators [20–22]. � is the band
gap parameter, which originates due to the quantum tunneling
between the surface states residing at the bottom and top
surface of the 3D topological insulator film [25,26]. This band
gap varies with the thickness of the topological insulator film,
and for Bi2Se3 it lies between 0.041 and 0.252 eV [26] for
the film thickness of 5 to 2 quintuple layers (QL), respec-
tively. For numerical calculations we choose � = 70 meV
which corresponds to an ultrathin topological insulator film of
thickness around 3QL [26]. On irradiation of the topological
insulator surface with linearly polarized radiation, the vector
potential �Axy(t ) [Eq. (1)] couples with the momentum of
the Dirac electron via Peierls substitution �p → ( �p − e �A) and
makes the Hamiltonian time dependent. By using this Peierls
substitution in the surface state Hamiltonian given in Eq. (2),
we find the following time dependent Hamiltonian for the
surface states of the topological insulator:

H(t ) = h̄νxy[σxky(t ) − σykx(t )] + �σz

+ λh
[
k3

x (t ) − 3k2
y (t )kx(t )

]
σz, (3)

where kx(t ) = (kx + eAx (t )
h̄ ) and ky(t ) = (ky + eAy (t )

h̄ ). In
Eq. (3), due to the weak value of �B(t ), we have not taken
into account the Zeeman coupling which arises due to the
coupling of the Dirac electron spin and the time varying
magnetic field [ �B(t )] of the electromagnetic radiation. For the
electric field amplitude of order E0 ≈ 109 V/m, the magnetic
field amplitude of the electromagnetic radiation will be of
the order of B0 ≈ 10 T, this magnetic field leads to a gap
generating the Zeeman term in the Hamiltonian of the order
of μBgB0 ≈ 0.001 eV (where μB ≈ 5.78 × 10−5 eV T−1 is
the Bohr magneton and g ≈ 2 is the Landé g factor). On
comparing the Zeeman term with the band gap � = 0.07 eV
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in the problem studied, the energy band gap is negligibly
altered by the Zeeman term, hence the effect of the magnetic
field can be safely ignored in the Hamiltonian [Eq. (3)]. Now,
using Eq. (1), the Hamiltonian of Eq. (3) can be written as

H(t ) = Ho + Hp(t ), (4)

where Ho is the time independent part of Hamiltonian H(t ),
given by Eq. (2) and Hp(t ) is the time dependent part of
Hamiltonian H(t ), given by

Hp(t ) = ah̄νxy(sin θσx − cos θσy) + λh
{
a3 cos3 ωt cos 3θ

+ 3a2 cos2 ωt (cos 2θkx − sin 2θky)

+ 3a cos ωt
[

cos θ
(
k2

x − k2
y

) − 2kxky sin θ
]}

σz,

(5)

where we have defined a = eEo
h̄ω

. Now the time depen-
dent Hamiltonian H(t ) satisfies the following Schrödinger

equation with the eigenstate �(x, y, t ),

H(t )�(x, y, t ) = ih̄
∂

∂t
�(x, y, t ). (6)

This equation cannot be solved explicitly for �(x, y, t ) for
the Hamiltonian H(t ) [Eq. (3)]. But as our Hamiltonian
H(t ) is periodic in time, i.e., H(t ) = H(t + T ) for the time
period T = 2π/ω, it is possible to solve the time dependent
Schrödinger equation [Eq. (6)] using the Floquet formalism
[3,27]. According to the Floquet theory, we can expand the
�(t ) as a Fourier series in time,

�(x, y, t ) =
m=∞∑

m=−∞
e−iεt/h̄e−imωt um(x, y), (7)

ε is the quasienergy eigenvalue for the time independent
eigenstate um where m = 0,±1,±2, . . . is an integer. By
substituting �(t ) into Eq. (6) and after using the orthogonal
properties of function e−imωt , we get the following equation:

Hoδn,nun +
{

ah̄νxy

2
(sin θσx − cos θσy) + λh

[
3a3

8
cos 3θ + 3a

2

[
cos θ

(
k2

x − k2
y

) − 2kxky sin θ
]]

σz

}
(u1+n + un−1)

+3λha2(cos 2θkx − sin 2θky)

4
σz (2un + u2+n + un−2) + λh

a3

8
cos 3θ σz (u3+n + u−(3−n) ) = (ε + nωh̄) δn,n un. (8)

Here, in this work, we have considered the electromagnetic irradiation of the topological insulator surface in the off-resonant
regime, i.e., the photon energy of the electromagnetic radiation is greater than the bandwidth of the topological insulator. In
the off-resonant regime the electron transition between different energy bands cannot occur due to electromagnetic irradiation
of the topological insulator surface (see Refs. [27,28] for a detailed explanation). The Dirac electron states and its transport
properties in the off-resonant irradiated topological insulator surface are mainly affected by the modification of the energy
band structure induced by the second order virtual photon process [27,28], which consists of the process of photon absorption
(emission) followed by the photon emission (absorption) by the electron. This is in contrast to the on-resonant regime, in
which the photon energy of electromagnetic radiation [27,28] is smaller than the bandwidth of the topological insulator,
which consequently induces inter- and intraband electron transition due to the real photon absorption/emission process and
leads to hot carrier transport induced by nonequilibrium distribution of charge carriers in the conduction and valence band
[28].

So for the irradiation in the off-resonant regime we have the condition eEoνxy

ω
<< h̄ω, for this it is appropriate to restrict the

value of n up to n = 0, 1,−1 [13,14,29]. Hence, under the assumption eEoνxy << h̄ω2, we can ignore the un having n > 1 in
Eq. (8), which leads to the three matrix equations in u0, u1, and u−1. These three equations can be further reduced to get the
following effective static Hamiltonian for the off-resonant irradiation of topological insulator:

Heff = h̄νxy(σxky − σykx ) + λh
(
k3

x − 3k2
y kx

)
σz + �σz + 3λha2

2
(cos 2θkx − sin 2θky)σz, (9)

which satisfies the Schrödinger equation given by

Heff u0 = ε u0, (10)

where the u0 is an eigenstate of the Hamiltonian Heff. It
can be seen that Eq. (10) is an easily solvable time inde-
pendent Schrödinger equation which effectively determines
the solution for the time dependent problem represented by
Eq. (6). Note that the time independent effective Hamiltonian
(Heff) of Eq. (9) differs from the static surface Hamiltonian
H0 [Eq. (2)] only by the last term in which the hexagonal
warping parameter λh couples the Dirac surface states to the
electromagnetic radiation through the electric field amplitude
parameter a = eEo

h̄ω
. This coupling goes away in the absence

of hexagonal warping of the Fermi surface (i.e., λh = 0 or
for the low energy Dirac electron). This is in contrast to the

off-resonant circular polarized electromagnetic irradiation of
the topological insulator surface where the Dirac states also
couples with radiation in the absence of hexagonal warping
by generating a time reversal breaking mass term in the
effective static Hamiltonian. In Refs. [13,14] this was studied
in graphene and the topological insulator for the low energy
Dirac electron (i.e., λh = 0). In addition to this, the Hamilto-
nian Heff for the linearly polarized radiation is asymmetric un-
der the transformation θ → −θ of the polarization angle but
symmetric under the transformation θ → θ + π . We find the
eigenstates u0 of the time independent effective Hamiltonian
Heff from Eq. (10) to be

u0(kx, ky, s) = N
[

h̄νxy (ky+ikx )
[εs−M(kx,ky,θ )]

1

]
, (11)
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FIG. 2. The figures show the contour plots for the conduction
band quasienergy ε in momentum space, (a) in the absence of elec-
tromagnetic field, (b) and (c) in the presence of electromagnetic field
(a �= 0) for different polarization angle θ , and (d) energy contours in
the momentum space for θ = 0 for different energies ε.

where M(kx, ky, θ ) = λh(k3
x − 3k2

y kx ) + � + 3λha2

2
(cos 2θkx − sin 2θky) and N is the normalization constant,
given by

N =
[

1 + h̄2ν2
xy

(
k2

x + k2
y

)
(εs − M )2

]−1/2

. (12)

The energy eigenvalue εs for the Hamiltonian Heff is

εs = s

[
h̄2ν2

xy

(
k2

x + k2
y

) + [
λh

(
k3

x − 3k2
y kx

) + �

+ 3λha2

2
(cos 2θkx − sin 2θky)

]2
]1/2

, (13)

where the s = ± denotes the conduction and valence band
of the energy spectrum. Before we proceed further, note that
for the calculations of the physical quantities in this paper,
we will use the photon energy in the off-resonant regime
with value h̄ω = 8 eV [28], which corresponds to a frequency
of radiation ν = 1.93 × 1015 Hz. So that in the off-resonant
regime, i.e., eEoνxy

ω
<< h̄ω, we will assume eEoνxy

ω
in the range

0.1 to 0.9 eV which corresponds to the value of the electric
field parameter a = eEo/h̄ω in the range 0.39 to 3.54 nm−1.
Other parameters which we use for calculations are λh =
0.250 eV nm3, h̄νxy = 0.255 eV nm, and � = 0.07 eV. The
contour plot for the conduction energy band is plotted in the
momentum space in the presence and absence of radiation
in Fig. 2, respectively. The comparison of Fig. 2(a) with
Figs. 2(b) and 2(c) reveals that the linearly polarized elec-
tromagnetic irradiation drastically deforms the Fermi energy
contours in addition to the deformation produced by the
hexagonal warping in the absence of radiation [Fig. 2(a)].

B. Spin texture of the surface states

The spin texture of the surface states is the vector field in
momentum space of expectation values of the spin with orien-
tations as calculated below. Here we find the spin orientation
in the spin texture of the surface states u0 [Eq. (11)], induced
on the surface of the topological insulator illuminated with
linearly polarized electromagnetic radiation, is as follows:

�S = h̄

2
〈u0|�σ |u0〉

= h̄

2
[〈σx〉x̂ + 〈σy〉ŷ + 〈σz〉ẑ], (14)

where for the eigenstates u0 [Eq. (11)] the 〈σx〉, 〈σy〉, and 〈σz〉
are given by

〈σx〉 = 2N 2h̄νxyky

[εs − M(kx, ky, θ )]
, (15a)

〈σy〉 = − 2N 2h̄νxykx

[εs − M(kx, ky, θ )]
, (15b)

〈σz〉 = N 2

{
h̄2ν2

xy

(
k2

x + k2
y

)
[εs − M(kx, ky, θ )]2

− 1

}
. (15c)

We plot the spin texture in Fig. 3 for the surface states
of the topological insulator in the conduction band using
Eqs. (15a)–(15c) in momentum space. In the absence of band
gap and hexagonal warping, the spin texture of Fig. 3(a) shows
that at low energy there is only in-plane spin components
present in the surface states and the states are spin-momentum
locked. This is intrinsically related to the terms of the surface
state Hamiltonian Heff [Eq. (9)], which for � = 0 and λh =
0, contains only σx and σy Pauli matrices (corresponding
to Sx and Sy in-plane components of spin). But for � �= 0
(nonzero band gap) and λh �= 0 (nonzero hexagonal warping)
the Hamiltonian also includes a term consist of a Pauli matrix
corresponding to the z-component of spin, i.e., σz. As a result,
for both � �= 0 and the nonzero hexagonal warping (for λh �=
0), the spin texture exhibits z component of spin in addition
to in-plane components, as shown in Figs. 3(b) and 3(e) (note
that sz/h̄ is nonzero). Furthermore, hexagonal warping of the
Fermi surface leads to a C3 rotation symmetric anisotropic
spin texture [see Figs. 3(b) and 3(e)] of surface states, which is
otherwise isotropic in the absence of hexagonal warping [see
Fig. 3(a)]. On the other hand, we find that the presence of the
linearly polarized electromagnetic irradiation [see Figs. 3(c),
3(d), 3(f), and 3(g)], breaks the C3 rotation symmetry of the
spin texture of the surface states in momentum space. Note
that C3 rotation symmetry [Figs. 3(b) and 3(e)] and broken C3

symmetry [Figs. 3(c), 3(d), 3(f), and 3(g)] possessed by spin
texture, are inherited from the C3 symmetric k-cubic hexago-
nal warping term and C3 symmetry breaking radiation induced
term of the Hamiltonian [Eq. (9)], respectively. Hence, the
linear polarized irradiation provides a possibility of tuning
the spin texture by varying the amplitude and polarization
angle θ . It can be seen from Figs. 4(a)–4(d) that the average
spin components [24] varies periodically but nonsinusoidally
with polarization angle θ . Whereas if we vary the amplitude
parameter a, we find that Sx monotonically increases and
saturates, Sy first increases and then decays down to zero,
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FIG. 3. The figures show the spin texture of the surface states of
the topological insulator in momentum space for zero band gap (� =
0), (a) in the absence of hexagonal warping and the electromagnetic
field (λ = 0, a = 0), (b) in the presence of hexagonal warping and
the absence of the electromagnetic field (λ �= 0, a = 0), and (c) and
(d) in the presence of hexagonal warping and electromagnetic field
(λ �= 0, a �= 0) for different polarization angle θ = 0, π/2. The spin
texture for the nonzero band gap case are shown in (e) for (λ �=
0, a = 0) and (f) and (g) for (λ �= 0, a �= 0).

and Sz monotonically decreases to negligible values (near
zero) as we increase the amplitude of the radiation. We will
see, in the next sections, that both deformation produced in
the Fermi surface and the modification of the spin texture
by the linearly polarized radiation has a major contribution
in determining the effect of irradiation on the thermoelectric
properties of the topological insulator surface. Furthermore,

FIG. 4. The figures shows the average spin components 〈Sx〉,
〈Sy〉, and 〈Sz〉 as a function of (a) and (b) polarization angle θ and
(c) and (d) the radiation amplitude parameter (a).

we will calculate the Berry curvature, Berry phase, and the
anomalous Hall conductivity associated with Floquet-Dirac
surface states induced by the linearly polarized radiation.

III. BERRY CURVATURE, BERRY PHASE, AND
ANOMALOUS HALL CONDUCTIVITY

A. Berry curvature

The nonzero Berry curvature associated with the conduc-
tion and valence energy band in a crystalline materials leads
to the anomalous group velocity of an electron, anomalous
orbital band magnetization, and anomalous thermoelectric
transport [18,30]. We have calculated the Berry curvature ( �s)
using the eigenstates [Eq. (11)] of the Hamiltonian Heff for the
conduction and valence band, which is given below:

�s = i �∇k × 〈uo(kx, ky, s)| �∇k|uo(kx, ky, s)〉 (16)

= − s h̄2ν2
xy

[
� − 2λh

(
k3

x − 3k2
y kx

)]
2
{
h̄2ν2

xy

(
k2

x + k2
y

) + [M(kx, ky, θ )]2
}3/2 ẑ, (17)

where s = + (−) denotes the conduction (valence) band and
Eq. (17) reflects that the Berry curvature for the valence
band is just opposite in sign to the Berry curvature for the
conduction band, i.e., �− = −�+. Furthermore, it can be
seen from Eq. (17) that the Berry curvature is dependent upon
the polarization angle θ of the linearly polarized electromag-
netic radiation with which the topological insulator surface is
irradiated. Equation (17) also shows that the Berry curvature
is θ dependent only in the presence of the hexagonal warping
effect in the band structure, because for the λh = 0 the Berry
curvature [Eq. (17)] becomes

�s = − s h̄2ν2
xy�

2
{
h̄2ν2

xy

(
k2

x + k2
y

) + �2
}3/2 ẑ. (18)

Note this is just the Berry curvature without the hexagonal
warping and the dependence of the angle θ . In the absence of
linearly polarized light, i.e., a = 0, our expression of Berry
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curvature [Eq. (17)] becomes

�s = − s h̄2ν2
xy

[
� − 2λh

(
k3

x − 3k2
y kx

)]
2
{
h̄2ν2

xy

(
k2

x + k2
y

) + [
λh

(
k3

x − 3k2
y kx

) + �
]2}3/2 ẑ,

(19)

which is the same as the Berry curvature of the topological in-
sulator calculated in Ref. [24] in the presence of the hexagonal
warping effect.

Furthermore, as we make kx → 0 and ky → 0 in Eq. (17),

the Berry curvature becomes �s(kx, ky, θ ) = − s h̄2ν2
xy

�2 ẑ, this
means the Berry curvature is inversely proportional to the
square of the band gap �. As a result, when � → 0, the Berry
curvature becomes singular at the center of the Brillouin zone,
i.e., at (kx, ky) = 0, which otherwise is nonsingular if � �= 0.
The above discussed singularity of the Berry curvature reflects
the presence of a sink or source (a topological charge [31,32])
at the origin of parameter space defined by �, kx, ky, i.e., at
(kx, ky,�) = (0, 0, 0), which generates this Berry curvature.
This, just like the singularity of the electrostatic field in real
space, implies the presence of charge at the point of singu-
larity. The topological charge associated with this singularity
is calculated via the flux of Berry curvature over the closed
surface enclosing this singularity in the parameter space di-
vided by factor of 2π , which is nothing but a topological
invariant that does not depend upon the shape of the consid-
ered closed surface, and is hence topological in nature [31].
Furthermore, the Berry curvature of Eq. (17) can be written as
−s h̄2ν2

xy[� − 2λh(k3
x − 3k2

y kx )]/2ε3
s ẑ, which reflects that the

singularity of the Berry curvature occurs at εs = 0. Thus the
singularity of the Berry curvature also implies the presence of
a point of degeneracy in the Brillouin zone, which can be seen
from Eq. (13) where for � = 0 the valence and conduction
band touches at (kx, ky) = (0, 0).

We plotted the contour plots of the Berry curvature in
momentum space in Fig. 5 for the cases � = 0 and � �= 0
in the conduction band. The singularity of the Berry curvature
can be seen clearly at kx, ky = 0 for � = 0 in Figs. 5(a)– 5(c),
which gets removed as we make � �= 0 [see Figs. 5(d)–5(f)].
The Berry curvature in the absence of band gap and radiation
but in the presence of hexagonal warping (i.e., � = 0 and
a = 0) exhibits threefold rotation symmetry in the momentum
space [as shown in Fig. 5(a)] and switches its value from
positive to negative alternatively at the angle of π/6. This
behavior of the Berry curvature in the momentum space is
due to the hexagonal nature of the Fermi surface of the energy
band induced by the presence of a threefold rotation symmet-
ric k-cubic hexagonal warping term in the Hamiltonian Heff.
This threefold symmetry of Berry curvature in the momentum
space breaks as soon as we turn on the electromagnetic
radiation, i.e., a �= 0 [see Figs. 5(b) and 5(c)]. Furthermore,
the presence of the electromagnetic radiation also makes the
Berry curvature polarization angle θ dependent, which can
be seen from Figs. 5(b) and 5(c). The Berry curvature has
asymmetric contours in momentum space and the positions
of the asymmetry arising in the Berry curvature in momentum
space changes with the change in the angle θ of polarization.

The presence of a gap, i.e., � �= 0, reshapes the Berry
curvature contours in the absence of electromagnetic radiation

FIG. 5. (a)–(c) The contour plots of the Berry curvature in mo-
mentum space for the zero band gap (� = 0), (a) in the absence
of electromagnetic field, and (b) and (c) in the presence of electro-
magnetic field (a �= 0) for different polarization angle θ . The Berry
curvature for the nonzero band gap (� �= 0) is shown in (d) in the
absence of the electromagnetic field, and (e) and (f) in the presence
of the electromagnetic field.

(a = 0) [see Fig. 5(d)] as compared to the contours in the
absence of a gap [Fig. 5(a)], but the threefold symmetry can
still be seen in the Berry curvature. For the case � �= 0,
the presence of electromagnetic radiation (a �= 0) leads to
the broken threefold symmetry of the Berry curvature and
its polarization angle θ dependence, as can be seen from
Figs. 5(e) and 5(f). For � �= 0, the presence of radiation also
shifts the position of the Berry curvature peak from kx, ky = 0
[Figs. 5(d)–5(f)]. Which is in contrast to the � = 0 case in
which the Berry curvature peak remains at kx, ky = 0 even in
the presence of the radiation [see Figs. 5(a)–5(c)].

B. Berry phase

When a system adiabatically evolves in time with the state
moving slowly over a closed path in parameter space, the state
gains a gauge invariant phase called the Berry phase [31,33],
which is the flux of Berry curvature on the surface enclosed
by that closed path in parameter space. The Berry curvature
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dependency on the polarization angle θ of linearly polarized
electromagnetic radiation, as calculated in the previous sec-
tion, also causes the Berry phase of the Floquet-Dirac states
in the irradiated topological insulator to depend upon the
angle θ . The Berry phase can be calculated by the surface
integral of the Berry curvature in the first Brillouin zone of
the topological insulator [31]. For the Fermi energy in the
conduction band, we calculated the Berry phase over the
closed path C, represented by a deformed contour in BZ, as
shown in Figs. 2(b) and 2(c). The Berry phase is given by

[31,33]

�B =
∫∫

S
+(kx, ky, θ ) dkxdky, (20)

where S is the area in the positive ẑ direction enclosed by the
closed curve C in the Brillouin zone. By putting kx = k cos α

and ky = k sin α in the Berry curvature + of Eq. (17) and
then using that modified Berry curvature in Eq. (20) we get
the following expression of the Berry phase:

�B(θ, a) = −
∫ 2π

α=0

∫ k f (α)

k=0

h̄2ν2
xy[� − 2λhk3 cos 3α] k dk dα

2
{
h̄2ν2

xyk2 + [
λhk3 cos 3α + � + 3λha2k

2 cos(2θ + α)
]2}3/2

= −π +
∫ 2π

α=0

[
� + λhk3

f (α) cos 3α + (3/2)λha2k f cos(2θ + α)
]

2
{
h̄2ν2

xyk2
f (α) + [

λhk3
f (α) cos 3α + � + 3λha2k f (α)

2 cos(2θ + α)
]2}1/2

dα. (21)

In Eq. (21), k f (α) is the Fermi wave vector and is the positive real root of the following polynomial equation [found by using
Eq. (13)]:

λ2
hk6

f cos2 3α + 3λ2
ha2k4

f cos 3α cos(2θ + α) + 2�λhk3
f cos 3α +

[
h̄2ν2

xy + 9λ2
ha4

4
cos2(2θ + α)

]
k2

f

+3λh� a2 cos(2θ + α) k f + �2 = ε2
f , (22)

where ε f is the Fermi energy. By solving Eq. (21) numerically
we calculated the Berry phase as a function of the polarization
angle θ , which we plotted in Fig. 6(a). Figure 6(a) shows that
the Berry phase sinusoidally varies with polarization angle θ

of the electromagnetic radiation. It can be noted from Fig. 6(a)
that there are exactly six maxima and six minima in the plot
of the Berry phase. This is a consequence of the anisotropic
coupling of off-resonant electromagnetic radiation with the
momentum of the Dirac surface states, because there are
exactly six points in the hexagonally warped Fermi surface
where the length of Fermi momentum is a maximum and
exactly six points where it is a minimum [see contours in
Figs. 2(b) and 2(c)]. Interestingly, the Berry phase calculated
in Eq. (21) can be resolved in the following form, i.e.,

�B = −π + � P + λh Q + λh a2 R. (23)

Where P, Q, and R are the functions of parameters λh, a, ε f ,
θ , obtained after solving the integrals of Eq. (21).

This expression reflects a important relation between the
Berry phase and the spin texture associated with the surface
states of the topological insulator. For the case when there is
no band gap and hexagonal warping, i.e., � = 0 and λh = 0,
the Berry phase is given by �B = −π . Physically, the spin
rotation or parallel transport of a spinor of a fermion on a
closed path by a 2π angle corresponds to the Berry phase of
value ±π . In the topological insulator, this |π | value of Berry
phase corresponds to the occurrence of helical surface states
exhibiting in-plane spin-momentum locked spin texture either
in clockwise or anticlockwise direction [34–36] [as shown in
Fig. 3(a)]. In Fig. 3(a) the spin actually shows rotation by the
2π angle in the momentum space and hence corresponds to π

Berry phase. The usual metals have states having spin texture

in both clockwise and anticlockwise direction and hence
correspond to Berry phase of value zero. On having band gap
in the energy spectrum in the absence of hexagonal warping,
i.e., � �= 0 and λh = 0, the Berry phase value becomes �B =
−π (1 − �/ε f ) [obtained by solving Eq. (21), for which we
get P = π/ε f ] [24]. As already explained in Sec. II B, �

leads to the z component of spin in the spin texture, hence
the occurrence of the out-of-plane spin component in the
spin texture which changes the value of Berry phase [24].
Furthermore, the inclusion of the hexagonal warping (λh �= 0)
and the radiation (a �= 0) individually alter the z component
of spin [see Figs. 3(b)– 3(d) and explanation in Sec. II B],
results in a modification of the Berry phase, as reflected by
Eq. (23). The dependence of Berry phase on the z component
of spin can be more clearly understood by the variation of
Berry phase with the change in the amplitude parameter a of
the radiation, which is plotted in Fig. 6(b). The Berry phase
strongly depends upon the amplitude of the electric field of
the linearly polarized electromagnetic radiation. Figure 6(b)
shows that the Berry phase magnitude (|�B|) increases with
the increase in the value of the amplitude of the electric field
of the electromagnetic radiation. The Berry phase saturates
to the value |π | at high values of the electric field ampli-
tude and has a value less than |π | at low amplitudes of the
electric field. It can be seen from Eq. (21) that the Berry
phase is a sum of a constant factor of −π and an electric
field amplitude parameter a dependent term. This radiation
dependent term effectively reduces as we increase the electric
field amplitude leaving behind the value close to −π for high
electric fields. This happens because the average magnitude
of the z component of spin of the surface states decreases
as we increase the amplitude parameter a [see Fig. 4(d)],
and hence the contribution of the extra terms in Eq. (23)

035303-7



TARUN CHOUDHARI AND NIVEDITA DEO PHYSICAL REVIEW B 100, 035303 (2019)

FIG. 6. The figures shows variation in the Berry phase �B with
(a) polarization angle θ and (b) electric field amplitude parameter
a = eEo/h̄ω.

other than −π (i.e., �, λh, and a dependent terms, which
generates Sz component in spin texture) to the Berry phase
effectively reduces for high a and Berry phase approaches
the value close to −π . This strengthens the fact that Berry
phase and the spin texture are related to each other. The
Berry phase can also be calculated for the case in which
the angle of polarization θ is varied adiabatically. For this,
the Berry phase is given by the following equation: �B =∮ 2π

0 AB(θ )dθ , where AB(θ ) is the Berry connection given
by AB(θ ) = i〈uo(kx, ky, θ )| ∂

∂θ
|uo(kx, ky, θ )〉. We calculated the

Berry connection using the states of Eq. (11), which we find
comes out to be AB(θ ) = 0. So, for cyclic adiabatic variation
of polarization angle θ , the Berry phase is �B = 0. This zero
Berry phase is a consequence of the absence of degeneracy
point in the energy spectrum for any value of θ (i.e., there is
no value of θ for which εs = 0 at finite value of �, kx, ky).

C. Anomalous Hall conductivity

The nonzero Berry phase results in the occurrence of
the anomalous Hall effect in crystalline materials having a
nonzero Berry curvature associated with energy bands. In
the anomalous Hall effect (AHE), there is a generation of
the transverse Hall current in the material by the transport
driven by either a mechanical force, like the electric field,
or a statistical force, like gradient of chemical potential (μ),
i.e., �∇μ. In the case of the electric field, the anomalous
Hall effect is generated by the Berry curvature dependent

anomalous term present in the group velocity of the Bloch
electron [18]. Whereas, in the case of the chemical potential
gradient, AHE occurs due to the Berry curvature induced
correction in the orbital magnetization of the Bloch electrons
[18]. In both cases the Berry curvature plays an important role
in determining the anomalous Hall current.

Now, as we show in Secs. III A and III B, the linearly
polarized electromagnetic irradiation of the topological insu-
lator surface leads to a radiation parameter (amplitude and
polarization) dependent Berry curvature and Berry phase as-
sociated with the Floquet-Dirac surface states. In this section
we analyze the effect of linearly polarized irradiation of TI
surface on the anomalous Hall conductivity associated with
anomalous Hall current, in the presence of nonzero hexagonal
warping of a Fermi surface. Consider on the topological
insulator surface that a transverse Hall current je,x is generated
via AHE in the presence of electric field Ey in the y direction,
which is given by [18]

je,x = σxyEy, (24)

where the σxy is the transverse Hall conductivity given by
the integral of Berry curvature over the momentum space
multiplied by the e2/h̄ [18],

σxy = e2

h̄

∫
(�k) feq

d2�k
(2π )2

, (25)

where (�k) is the Berry curvature and feq = 1/(1 +
e(εs−μ)/kBT ) is the equilibrium Fermi-Dirac distribution func-
tion. For the energy εs [Eq. (13)] and the Berry curvature �s

[Eq. (17)], we can write the above equation in the following
form:

σxy(θ, a, μ, T ) = e2

2πh

∑
s=±

∫∫
feq s(θ, α, k)k dkdα. (26)

In Eq. (26) the sum is over the filled energy bands defined
by s = + (−) for the conduction (valence) energy band. To
illustrate the behavior of the transverse Hall conductivity
analytically, we determine the σxy in the low temperature
regime. For low temperature, i.e., T → 0, Eq. (26) reduces to

σxy(θ, a, μ, T ) = e2

2πh

∑
s=±

∫∫
s(θ, α, k)�(μ − εs)k dkdα,

(27)

where �(μ − εs) is the Heaviside step function. Equation
(27) can be solved analytically for the λ = 0 case only,
i.e., without hexagonal warping of the Fermi surface. So for
the Berry curvature for λ = 0 [Eq. (18)], we find the Hall
conductivity to be σxy = e2

h
�
μ

for μ in conduction and valence
band. This implies that the σxy for μ inside the conduction
and valence band is inversely proportional to the chemical
potential. This means σxy is maximum at the bottom of the
conduction band and the top of the valence band (i.e., for
|μ| = |�|) and it decreases as we move deeper into the
conduction and valence band, i.e., for μ 
 � or μ � −�.
For μ inside the band gap, i.e., −� < μ < �, we find σxy is
constant and is given by σxy = e2/h. Equation (27) implies
the anomalous Hall conductivity at low temperature is the
sum of the Berry phase associated with the filled conduction
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and valence band. At high temperature, the Heaviside step
function �(μ − εs) thermally broadens in the region |μ −
εs| < kBT . To show the dependence of conductivity σxy on
different model parameters, at finite temperature T > 0, we
numerically calculated and plotted the σxy as a function of
polarization angle θ , electric field amplitude parameter a, the
chemical potential μ, and the temperature T in Figs. 7(a)–
7(d).

We find the σxy shows sinusoidal variation as we change the
polarization angle θ , this is a result of the polarization angle
dependency of the Berry curvature s and the Berry phase, on
which the conductivity σxy depends directly. The conductivity
σxy decreases as we increases the amplitude parameter a of
the electric field of the radiation (which is the same as the
variation in the Berry phase with a). The variation of the
σxy as a function of the chemical potential μ is shown in
Fig. 7(c) for the case of zero hexagonal warping (i.e., λh = 0,
black dotted curve), nonzero hexagonal warping with out
any electromagnetic radiation (i.e., a = 0 and λh �= 0, blue
curve), and nonzero hexagonal warping with electromagnetic
radiation (i.e., a �= 0 and λh �= 0, green and red curve for θ =
0 and θ = π/2, respectively). Figure 7(c) shows that the Hall
conductivity σxy has a greater value for the case when there is
no hexagonal warping (black dotted curve) than the case for
which the hexagonal warping is nonzero (blue curve) in both
the conduction and valence band, respectively. This change in
the Hall conductivity σxy for λh �= 0 can be attributed to (i) the
anisotropicity induced by the hexagonal warping in the Fermi
surface of the energy band structure in the Brillouin zone [see
deformed contours in Fig. 2(a)], which is absent for the case of
λh = 0 because of the isotropic circular Fermi surface of the
energy band structure and (ii) the change in the spin texture of
the surface states of the topological insulator induced by the
hexagonal warping. The spin of the electron is locked with its
momentum on the surface of TI. In the absence of hexagonal
warping, the spin texture of surface states shows the presence
of only in-plane components of spin in the surface states [see
Fig. 3(a)] and is isotropic in momentum space. Whereas, in the
presence of hexagonal warping, the spin texture in momentum
space becomes threefold rotation symmetric and shows the
presence of an out-of-plane spin component in addition to
the in-plane components [see Fig. 3(b)]. As the Hall con-
ductivity is determined by the sum of the Berry curvature
s (which intrinsically encodes the spin texture information
of the surface states u0

α) over the states of the valence and
conduction bands, it is strongly affected by both the shape
of the Fermi surface and the spin texture of surface states. As
shown in Fig. 7(c) (black and blue curve) σxy changes if the
hexagonal warping goes from zero to nonzero. In addition to
the anisotropy induced by the hexagonal warping, the Fermi
surface of the energy band and the spin texture are further
modified by the presence of electromagnetic radiation [i.e.,
for a �= 0 see contours in Figs. 2(b) and 2(c) and for the spin
texture see Figs. 3(c) and 3(d)]. The effect of this modification
due to electromagnetic radiation can be seen in the variation
of Hall conductivity σxy with μ for a �= 0 and λh �= 0 [see
Fig. 7(c) green and red curves], for which the conductivity σxy

is less than the Hall conductivity for the case of hexagonal
warping without electromagnetic radiation (i.e., a = 0 and
λh �= 0, blue curve). The effect of the modification of the

FIG. 7. The anomalous Hall conductivity σxy is shown in (a)–
(d) as a function of (a) the polarization angle θ , (b) the radiation
parameter a, (c) the chemical potential μ, and (d) the temperature.
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shape of the Fermi surface and the spin texture by the radiation
is more pronouncedly seen in the anomalous thermoelectric
conductivities about which we will discuss in Sec. V.

Furthermore, the conductivity σxy for all the cases de-
creases to zero as we move deeper into the conduction band or
valence band [see Fig. 10(c) for high positive and low negative
values of μ]. This is similar to the inverse dependence of the
σxy on μ at low temperature as explained before, i.e., for μ

in the conductance and valence band, σxy = e2

h
�
μ

. The only
difference is that here the temperature is greater than zero and
due to thermal broadening of the step function �(μ − εs) of
Eq. (27), the value of the σxy has decreased as compared to the
value at T = 0 [e.g., for μ inside the band gap, at T = 0, we
have σxy = e2/h = 38.7 μA/V but for T > 0, the σxy < e2/h,
see Fig. 7(c)].

IV. ORBITAL MAGNETIC MOMENT AND
MAGNETIZATION

The Bloch electron in a periodic crystal exhibits orbital
magnetic moment in the presence of electromagnetic field
due to the self-rotation of the Bloch electron wave packet
in the semiclassical picture [18,30]. For the eigenstates uo,
the orbital magnetic moment is defined by the following
expression [30,37]:

�mz(kx, ky, θ ) = −i
e

2h̄
〈 �∇kuo| × (Heff − εs)| �∇kuo〉. (28)

By using Eq. (11), we find the orbital magnetic moment as a
function of the polarization angle θ and wave vector (kx, ky)
in the following form:

�mz(kx, ky, θ ) = (−e/2h̄) h̄2ν2
xy

[
� − 2λh

(
k3

x − 3k2
y kx

)]
{
h̄2ν2

xy

(
k2

x + k2
y

) + [M(kx, ky, θ )]2
} ẑ.

(29)

Note that the orbital magnetic moment of Eq. (29) exhibits the
same sign in both the conduction and valence band which is
attributed to the particle-hole symmetry present in the system.
Similar to the Berry curvature, the orbital magnetic moment
of the Bloch electron also depends upon the polarization angle
θ , only in the presence of nonzero hexagonal warping of the
Fermi surface. As can be seen from Eq. (29) for λh = 0, the
magnetic moment becomes

�mz(kx, ky, θ ) = (−e/2h̄) h̄2ν2
xy�[

h̄2ν2
xy

(
k2

x + k2
y

) + �2
] ẑ, (30)

which is independent of the polarization angle θ , and is the
same expression as the orbital magnetic moment found in
Ref. [24] in the absence of the hexagonal warping effect.

Also, for the kx, ky = (0, 0), Eq. (29) shows that the mag-
netic moment is inversely proportional to the band gap �,

i.e., mz = (−e) h̄ν2
xy

2�
. This is different from the Berry curvature,

which at kx, ky = 0, varies as s ∝ 1/�2. Thus, the orbital
magnetic moment also becomes singular at the origin of
the parameter space defined by (h̄ν f kx, h̄ν f ky,�), i.e., at
(h̄ν f kx, h̄ν f ky,�) = (0, 0, 0). But unlike the Berry curvature,
the flux of an orbital magnetic moment vector field over a
closed surface in the parameter space cannot be associated

FIG. 8. The contour plots of orbital magnetic moment mz in
momentum space for zero band gap (� = 0) are shown in (a) in the
absence of the electromagnetic field, and (b) and (c) in the presence
of the electromagnetic field (a �= 0) for different polarization angle
θ . For nonzero band gap (� �= 0) contour plots are shown in (d) in
the absence of electromagnetic field, and (e) and (f) in the presence
of electromagnetic field.

with a topological invariant. The orbital magnetic moment
is inversely proportional to the energy εs [the radius of
the closed spherical surface S in the parameter space de-
fined by (h̄ν f kx, h̄ν f ky,�)], i.e., �mz ∝ cos θ ẑ/εs [found using
(h̄ν f kx, h̄ν f ky,�) = (εs sin θ cos φ, εs sin θ sin φ, εs cos θ ) in
Eq. (30)]. This results in a flux of mz over the surface S,
which is directly proportional to the radius εs of the closed
spherical surface S. Hence, as this flux changes with change in
the size of the surface S, topologically it cannot be associated
with a topological invariant (see Refs. [32,38] for topolog-
ical invariant). Like the Berry curvature, in the absence of
electromagnetic radiation, the orbital magnetic moment also
exhibits threefold rotation symmetry in the momentum space
both in the presence and absence of the band gap (�), see
Figs. 8(a) and 8(d). Here also the presence of electromagnetic
radiation (i.e., a �= 0) breaks this threefold rotation symmetry
[see Figs. 8(b) and 8(c)] and shifts the position of the orbital
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magnetic moment peak in the momentum space [see Figs. 8(e)
and 8(f)].

In the crystalline materials having nonzero Berry curva-
ture, the Bloch electrons thus exhibit the following equilib-
rium orbital magnetization:

M(θ, a) = 1

4π2

∑
s=±

∫∫ [
feq(εs) mz,s(kx, ky, θ )

+ ekBT

h̄
s(kx, ky, θ ) ln(1 + e−(εs−μ)/kBT )

]
dkxdky,

(31)

where in Eq. (31) the first term is the magnetization arising
due to the statistical sum of the orbital magnetic moment
mz,s(kx, ky, θ ) [Eq. (29)] and the second term is the correction
in the magnetization induced by the nonzero Berry curvature
[18,30] [Eq. (17)]. The sum in Eq. (31) is on the conduction
and valence band. Thus, the orbital magnetization occurs
due to both orbital magnetic moment and Berry curvature
(intrinsic property of Bloch states). In the absence of radiation
(for a = 0), the mz and s are nonzero either for nonzero band
gap (�) or hexagonal warping (λh), hence leading to a nonzero
magnetization. But the magnetization can also be generated
via irradiation only, for the case of linearly polarized off-
resonant irradiation, the mz and s are induced due to Fermi
surface deformation produced by the anisotropic coupling of
radiation with Dirac states in the Brillouin zone (i.e., mz,s �=
0 even for � = 0). In contrast, the circularly polarized light
induces magnetization by the generation of time reversal
symmetry breaking band gap in the energy spectrum [14].
The orbital magnetization M(θ, a) has periodic sinusoidal
variation with the change in angle of polarization θ , see
Fig. 9(a) [calculated using Eq. (31)]. Furthermore, it decreases
as the electric field amplitude of the radiation is increased [see
Fig. 9(b)]. This behavior of magnetization is a consequence of
the presence of Sz spin component in the surface states of the
topological insulator which shows exactly the same variation
with change in a [see Fig. 4(d)]. This can be understood from
Eqs. (29) and (17) that both mz and z become zero as band
gap (�) and hexagonal warping (λh) are made zero which
corresponds to the absence of Sz spin component in the surface
states (see Sec. II B for a detailed discussion).

Furthermore, the modification of Fermi surface shape by
the hexagonal warping and the radiation has a significant
effect on the orbital magnetization in the conduction and
valence band. The variation of the orbital magnetization in
the conduction and valence band is shown in Fig. 9(c) in
the absence and presence of hexagonal warping and ra-
diation. In the absence of hexagonal warping [see black
dotted curve in Fig. 9(c)], the orbital magnetization has
greater value than the case in which the Fermi surface
is hexagonally warped [see blue curve in Fig. 9(c)], in
both conduction and valence band. The orbital magnetiza-
tion shows almost no variation with the change of chemi-
cal potential in both conduction and valence band. Whereas
as the hexagonal warping in the Fermi surface is intro-
duced, the orbital magnetization decreases as we rise up
in the conduction band and deep down in the valence band
[see blue curve in Fig. 9(c)]. The orbital magnetization further

FIG. 9. The total orbital magnetization (M) is shown in (a)–(c) as
a function of (a) the polarization angle θ , (b) the parameter a, and
(c) the chemical potential μ.

decreased as the topological insulator surface is irradiated
with the linearly polarized electromagnetic radiation [see red
and green curve in Fig. 9(c)], which is due to additional
deformation of the Fermi surface by the radiation besides the
deformation by the hexagonal warping. The orbital magne-
tization switches sign as we move from conduction band to
valence band. This is because of the dominance of magneti-
zation due to Berry curvature [second term of Eq. (31), which
changes sign between the conduction and valence band] over
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the magnetization due to orbital magnetic moment [first term
of Eq. (31), which does not change sign between conduction
and valence band].

V. ANOMALOUS THERMOELECTRIC CONDUCTIVITIES

The nonzero Berry curvature leads to anomalous group
velocity of the Bloch electron [18,30] and manifests itself
as a correction in the orbital magnetization of the Bloch
electrons in the crystalline material [18,30]. This Berry curva-
ture modified orbital magnetization generates anomalous elec-
tronic and thermal currents (e.g., Nernst and Ettingshausen
current) in the presence of statistical forces induced by the
gradient of the chemical potential and temperature in fer-
romagnetic materials, topological insulators, and topological
Weyl semimetals [14,18,39,40]. In this section we discuss
the effect of the hexagonal warping of the Fermi surface of
TI on the anomalous transverse Nernst, Ettingshausen, and
thermal conductivities of the topological insulator irradiated
with linearly polarized electromagnetic radiation.

A. Anomalous Ettingshausen thermal conductivity

For nonzero Berry curvature �s, according to the theory of
Ettingshausen effect, an anomalous transverse thermal current
can be generated when a longitudinal electric field is applied
on the surface of the topological insulator [18]. Consider a
static electric field Ey applied in the y direction on the surface
of the topological insulator which generates a heat current jQ,x

in the x direction given by [18]

jQ,x = κE
xyEy. (32)

κE
xy is the anomalous Ettingshausen transverse thermal con-

ductivity given by [18,41]

κE
xy = e

h̄

∫
(�k)[(ε − μ) feq+kBT ln(1 + e−(ε−μ)/kBT )]

d2�k
(2π )2

,

(33)

where, for the energy εs [Eq. (13)] and the Berry curvature �s

[Eq. (17)], we can write the above equation in the following
form:

κE
xy(θ, a, μ, T ) = ekBT

2πh

∑
s=±

∫∫
s(θ, α, k)

[
(εs − μ) feq

kBT

+ ln(1 + e− (εs−μ)
kBT )

]
k dkdα. (34)

For qualitative analysis, we determine the κE
xy in the low

temperature limit as we find for σxy. We use Mott relation
κE

xy = (π2k2
BT 2/3e)dσxy(μ)/dμ [18] to obtain the κE

xy in the
low temperature limit T → 0, Eq. (34) becomes

κE
xy = π2

3

ek2
BT 2

2πh

∑
s=±

∫∫
s(θ, α, k)δ(μ − εs)k dkdα. (35)

Equation (35) can be solved analytically for the Berry curva-
ture in the absence of hexagonal warping given in Eq. (17), for
which we find κE

xy = −s(π2k2
BT 2/3e)�/μ2 in the conduction

(s = +) and valence (s = −) band. From this we conclude
that the κE

xy have opposite sign in the conduction and valence

band and it is inversely proportional to the square of μ in both
bands. This means the κE

xy decreases at a faster rate than σxy as
we move deeper into the conduction or valence band. Besides
this, the κE

xy attains maximum value at |μ| = � (i.e., at the top
of the valence band and the bottom of the conduction band).
For μ in the band gap the κE

xy is found to be zero.
To understand the variation of the κE

xy at T > 0, we cal-
culated κE

xy numerically, using Eq. (34), as a function of
θ , electric field amplitude parameter a, temperature T , and
chemical potential μ. Figure 10 is plotted for the same pa-
rameter values as the plots of Fig. 7. Figure 10(a) shows
that the Ettingshausen transverse thermal conductivity κE

xy
varies sinusoidally with the polarization angle θ of the linearly
polarized electromagnetic radiation. This sinusoidal variation
can be thought of as a consequence of the direct dependence of
κE

xy on the θ dependent Berry curvature �s [Eq. (17)]. The con-
ductivity κE

xy as a function of the electric field amplitude
parameter a is shown in Fig. 10(b), for the polarization angle
θ = π/2. The magnitude of the thermal conductivity |κE

xy|
decreases as the amplitude of the electric field is increased
[see Fig. 10(b)]. At low amplitudes of the electric field, i.e.,
low value of a, the |κE

xy| has a greater value as compared to the
value at high values of a. Furthermore, the |κE

xy| saturates to a
constant value for high values of electric field amplitude.

Figures 10(a) and 10(b) imply that the thermal conductivity
κE

xy can be controlled by tuning its polarization angle θ as
well as the amplitude of the linearly polarized electromagnetic
radiation. This control over the thermal conductivity κE

xy using
θ and the amplitude of the electric field for the linearly
polarized electromagnetic off-resonant irradiation of the topo-
logical insulator is possible only because of the presence of
the hexagonal warping of the energy band of the topological
insulator, which couples the electromagnetic radiation to the
electronic momentum in the Hamiltonian [see Eq. (9)] and
leads to a radiation parameter (polarization and amplitude)
dependency. This is in contrast to the circularly polarized
light off-resonant irradiation of the topological insulator for
which the effect of radiation on the electrical and thermal
conductivity can also be seen in the absence of hexagonal
warping of the energy band structure [13,14].

To study how the presence of hexagonal warping in the
energy band affects the thermal conductivity κE

xy can be seen
from Fig. 10(c). Figure 10(c) shows the variation of κE

xy with
chemical potential μ. Figure 10(c) shows that the thermal
conductivity κE

xy has a smaller value for the case when there
is no hexagonal warping (black dotted curve) than the case
for which the hexagonal warping is nonzero (blue curve)
in both the conduction and valence band, respectively. The
conductivity κE

xy [Eq. (34)] is determined by the sum over the
states on the Fermi surface and the Berry curvature s (which
intrinsically encodes the spin texture information of the sur-
face states u0

α), hence this change in the κE
xy on introduction

of hexagonal warping is the result of modification of both
the shape of the Fermi surface and the spin texture of surface
states, as it is for σxy. As shown in Fig. 10(c) (black and blue
curve) κE

xy changes if the hexagonal warping goes from zero
to nonzero. However, this change is not very large because
the hexagonal warping in the Bi-chalcogenides topological
insulators is essentially a k-cubic perturbation to the low
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FIG. 10. The figures show the variation in the anomalous Etting-
shausen thermal conductivity κE

xy with (a) the polarization angle θ ,
(b) the electric field amplitude parameter a, (c) the chemical potential
μ, and (d) the temperature.

energy linear band structure of the surface states. The effects
of modification of Fermi surface shape and spin texture on the
change in thermal conductivity κE

xy are more pronounced in
the presence of electromagnetic radiation (for a �= 0 and λh �=
0). This can be seen from Fig. 10(c) that the Ettingshausen
thermal conductivity κE

xy is either greater or lesser [green and
red curves in Fig. 10(c)] than the thermal conductivity for the
case of hexagonal warping without electromagnetic radiation
(i.e., a = 0 and λh �= 0, blue curve). There are also kinks in the
plots of the conductivity κE

xy in the presence of radiation [see
Fig. 10(c) green and red curves] for the chemical potential
in the range 0.3 < |μ| < 0.4. These kinks are the result of
transition of the Fermi surface contour shape from one form to
another in the energy range 0.3 < εs < 0.4 eV [see contours
in this energy range in Fig. 2(d)].

Furthermore, similar to σxy, the conductivity κE
xy for all the

cases also decreases to zero as we move deeper into the con-
duction band or valence band [see Fig. 10(c) for high positive
and low negative values of μ]. Which can be explicitly under-
stood as the inverse dependence of κE

xy on μ2 at temperature
T = 0 with inclusion of thermal brocading effect of δ(μ − εs)
at temperature T > 0. We have also calculated the thermal
conductivity κE

xy as a function of temperature, which is plotted
in Fig. 10(d), for the temperature range of 50 to 200 K taken in
units of kBT , where kB is the Boltzmann constant. Figure 10(d)
shows that |κE

xy| monotonically increases with the increase in
the temperature T for all three cases (i) without hexagonal
warping (black dotted curve), (ii) with hexagonal warping in
the absence of electromagnetic field (blue curve), and (iii)
with hexagonal warping in the presence of electromagnetic
field (green and red curve).

B. Anomalous transverse Nernst and thermal conductivities due
to a temperature gradient

Now, if instead of electric field Ey we have a temperature
gradient ∇yT in the y direction across the topological insu-
lator surface developed using a cold and hot electrode. Then
there will be a generation of a transverse electric current je,x
in the x direction due to the inverse Ettingshausen effect or
Nernst effect. This is in contrast to the Ettingshausen effect
where there is a generation of transverse heat current due to
the electric field [Eq. (34)]. The Nernst electrical current is
given by [18]

je,x = −αxy∇yT, (36)

αxy is the anomalous transverse Nernst electrical conductivity
given by [18]

αxy = κE
xy

T
. (37)

The behavior of the anomalous Nernst conductivity αxy as
a function of θ , electric field amplitude parameter a, tem-
perature T , and chemical potential μ is the same as the
behavior of κE

xy with the only difference that its magnitude is
rescaled by the temperature T . Hence we have not plotted the
figures for the Nernst conductivity αxy here. In addition to the
Nernst electric current induced by the temperature gradient,
there is also the generation of a transverse heat current due
to the temperature gradient which is given by the following

035303-13



TARUN CHOUDHARI AND NIVEDITA DEO PHYSICAL REVIEW B 100, 035303 (2019)

equation:

jQ,x = −κxy∇yT, (38)

where the κxy is the anomalous transverse thermal conductiv-
ity given by [18,42,43]

κxy = k2
BT

h

∫
(�k)

[
π2

3
+

(
ε − μ

kBT

)2

feq − 2Li2(1 − feq).

− [ln(1 + e−(ε−μ)/kBT )]2

]
d2�k

(2π )2
. (39)

In Eq. (39) the Li2 is the polylogarithm function of order 2.
The κxy can be calculated by using the Berry curvature given
in Eq. (17) which modifies Eq. (39) to

κxy(θ, a, μ, T ) = k2
BT

4π2h

∑
s=±

∫∫
s(θ, α, k)

[(
εs − μ

kBT

)2

feq

− 2Li2(1 − feq) − [ln(1 + e−(εs−μ)/kBT )]2

+π2

3

]
k dkdα. (40)

The thermal conductivity κxy can be found at low temperature
using the Mott relation κxy = (π2k2

BT/3e2)σxy, where the Hall
conductivity σxy is given by Eq. (27), which implies at low
temperature the thermal conductivity κxy differs from the Hall
conductivity only by the constant factor and it is similar to
the Hall conductivity σxy, it also depends upon the number
of filled bands. We have plotted the thermal conductivity κxy

as a function of angle θ , a, μ, and temperature T in Fig. 11.
Just like the Hall conductivity σxy and Ettingshausen thermal
conductivity κE

xy, the thermal conductivity κxy also varies sinu-
soidally with θ [see Fig. 11(a)] and monotonically decreases
with the increase in the amplitude of the electric field of
linearly polarized electromagnetic radiation [see Fig. 11(b)].
Similar to κE

xy, the κxy also saturates to zero at high values of
electric field amplitude. The variation of thermal conductivity
κxy with chemical potential μ is shown in Fig. 11(c). In con-
trast to the Ettingshausen thermal conductivity κE

xy [see Fig.
10(c)], in both the conduction and valence band, the thermal
conductivity κxy is found to be greater in the absence of
hexagonal warping [black dotted curve, Fig. 11(c)] than in the
case of the presence of hexagonal warping without irradiation
[blue curve Fig. 11(c)]. In the presence of hexagonal warping,
κxy gets further reduced when the topological insulator surface
is irradiated with linearly polarized radiation [see red and
green curves in Fig. 11(c)]. Similar to Hall conductivity σxy,
κxy decreases as we move up in the conduction band and
moves down in the valence band because they both depend
upon how much the states of the valence and conduction bands
are occupied (i.e., fully filled or fully vacant energy bands do
not lead to nonzero conductivities). In contrast to κE

xy, the κxy

is positive in both the valence and conduction bands. The
κxy also increases with an increase in temperature both in the
presence and absence of radiation [see Fig. 11(d)].

VI. FIGURE OF MERIT, ZT PARAMETER

How effectively a thermoelectric material converts heat
into electricity is determined by the coefficient of performance

FIG. 11. The anomalous thermal conductivity kxy is shown in
(a)–(d) as a function of (a) the polarization angle θ , (b) the parameter
a, (c) the chemical potential μ, and (d) the temperature.
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FIG. 12. The figure shows variation in figure of merit (ZT ) with
(a) the polarization angle θ and (b) the parameter a. ZT in these
figures is calculated for μ = 0.15 eV.

or the figure of merit (ZT ) given by ZT = σ S2 T/(κe + κl ).
Where S, σ , κe, and κl define the Seebeck power, Hall
electric conductivity, electronic thermal conductivity, and
lattice-thermal conductivity [44,45], respectively, and T is
the temperature. Both bulk and surface states contribute to
thermoelectric efficiency of the topological insulator. But for
the topological insulator thin films, enhancement in the ZT
has been reported due to a significant increase in surface states
contribution to the electrical conductivity σ and Seebeck
coefficient S and due to suppression in the lattice-thermal
conductivity (i.e .,κl � κe). So, for the topological insulator
thin film, the figure of merit because of the surface states is
given by [44–48]

ZT = σs S2
s T

κe,s
, (41)

where σs = σxx, Ss = Sxx = (σyyαxx + σxyαxy)/(σxxσyy +
σ 2

xy), and κe,s = κxx = L2
x/T − S2

xxσxx [45]. To determine
these quantities we use Onsager relations given by σii = e2L0

i
and αii = eL1

i /T , where we have [45]

Ln
i =

∑
s=±

∫
d2 k

(2π )2

(
− ∂ feq

∂εs

)
τ (εs)

(
1

h̄

∂εs

∂ki

)2

(εs − μ)n,

(42)

with n = 0, 1, 2, i = x, y, and τ (εs) as the relaxation time. The
above longitudinal conductivities have been calculated under
constant relaxation time approximation [49,50] for which we
use τ (εs) = τ = 22 fs [51] for TI. The figure of merit ZT is
calculated using Eq. (41) for μ = 0.15 eV which on one hand
shows nonsinusoidal dependence with variation in the angle
of polarization θ [see Fig. 12(a)]. On the other hand, there
is a significant enhancement in the value of figure of merit
ZT from the 0.6 to 1.4 as we increase the value radiation
amplitude parameter a [see Fig. 12(b)]. This value of ZT
in the presence of LP radiation is larger than the case of
the presence of hexagonal warping and the absence of LP
radiation for which ZT is equal to 0.52. The value ZT = 0.52
is not very large as compared to the case of the absence
of both hexagonal warping and LP radiation for which we
have found to be ZT = 0.39 [48]. This enhancement strongly
indicates the possible linearly polarized electromagnetic radi-
ation parameter controllable thermoelectric application of the
topological insulator for the conversion of heat into electricity.

It is important to note here that our results are valid for tem-
peratures less than the Debye temperature of the topological

FIG. 13. The figure shows (a) Berry phase variation with � and
(b) Ettingshausen conductivity (κxy) variation with �.

insulator. The Debye temperature of the Bi2Se3 topological
insulator is around 182–185 K [52,53] and we use the temper-
ature T = 150 K for the calculation of the transverse Nernst,
Ettingshausen, and thermal conductivities. For temperatures
above the Debye temperature the electron-phonon coupling
effects have a pronounced effect on the transport of the Dirac
electron on the surface of the topological insulator, which are
negligible for the temperatures below the Debye temperatures
[54]. Hence for calculation of these conductivities for the tem-
perature above the Debye temperature the electron-phonon
coupling must be included in the model [55].

VII. CONCLUSIONS

In summary, we studied the effect of the hexagonal warping
of the Fermi surface on the anomalous thermoelectric proper-
ties of the topological insulator surface irradiated with linearly
polarized electromagnetic off-resonant radiation. We have
found that the off-resonant linearly polarized (LP) irradiation
induces Floquet-Dirac states on the surface of the topological
insulator only in the presence of hexagonal warping of the
Fermi surface. Interestingly, in the presence of hexagonal
warping, the Berry curvature, spin texture, and orbital mag-
netization associated with surface states induced by the LP
radiation are found to have strong dependence on angle of
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polarization and have broken C3 symmetry in the Brillouin
zone, which are otherwise C3 symmetric in the absence of
LP irradiation. This broken C3 symmetry of Berry curvature
leads to Berry phase which varies sinusoidally with angle of
polarization and monotonically increases with an increase in
amplitude of the LP radiation.

Furthermore, we conclude that both the modification of
the spin texture and Fermi surface by the linearly polar-
ized radiation, in addition to the effects produced by the
hexagonal warping, lead to LP radiation polarization angle
and electric field amplitude controllable anomalous Nernst,
Ettingshausen, and thermal transverse conductivities. These
conductivities have been found to vary sinusoidally with
polarization angle and decrease with an increase in the ampli-
tude of radiation in both conduction and valence band. Both
the anomalous Nernst and Ettingshausen transverse conduc-
tivities have opposite signs in the conduction and valence
band. However, the anomalous transverse thermal conduc-
tivity has the same sign in both the conduction and valence
bands. The variation in these conductivities with radiation
parameter collectively leads to enhancement in the value of
the figure of merit (ZT ). We show ZT varies sinusoidally
with θ and increases significantly from 0.6 to 1.4 as the
amplitude of radiation increases. Hence, we expect that these
linearly polarized radiation parameter controllable anomalous
thermoelectric conductivities of the topological insulator may

find important technological applications for the conversion
of heat into electricity or vice versa in thermoelectronics.
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APPENDIX: RESULTS FOR � < 0

In this Appendix we have shown a few results for the nega-
tive value of �. All the results shown in the above sections
are for � having a positive value but it is also possible to
have a negative value of �. The band gap parameter � varies
with thickness of the topological insulator thin film. The �

sign is to be positive for the film thickness less than 25 Å and
negative for the film thickness in between 25 and 32 Å range
[25,26]. We calculated thermoelectric conductivities for the
negative value of � also. We find all the physical quantities
calculated in this paper change sign with the change in the
sign of �. As shown in Figs. 13(a) and 13(b), the Berry phase
and Ettingshausen transverse conductivities change sign as the
sign of � is changed.

[1] B. M. Fregoso, Y. H. Wang, N. Gedik, and V. Galitski, Phys.
Rev. B 88, 155129 (2013).

[2] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490
(2011).

[3] J. Cayssol, B. Dora, F. Simon, and R. Moessner, Phys. Status
Solidi (RRL) 7, 101 (2013).

[4] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[5] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B

82, 235114 (2010).
[6] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

Science 342, 453 (2013).
[7] A. Junck, G. Refael, and F. von Oppen, Phys. Rev. B 88, 075144

(2013).
[8] H. Plank, L. E. Golub, S. Bauer, V. V. Bel’kov, T. Herrmann,

P. Olbrich, M. Eschbach, L. Plucinski, C. M. Schneider, J.
Kampmeier, M. Lanius, G. Mussler, D. Grützmacher, and S. D.
Ganichev, Phys. Rev. B 93, 125434 (2016).

[9] Y. G. Semenov, X. Li, and K. W. Kim, Phys. Rev. B 86,
201401(R) (2012).

[10] J. D. Yao, J. M. Shao, S. W. Li, D. H. Bao, and G. W. Yang, Sci.
Rep. 5, 14184 (2015).

[11] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[12] H. L. Calvo, L. E. F. Foa Torres, P. M. Perez-Piskunow,

C. A. Balseiro, and G. Usaj, Phys. Rev. B 91, 241404(R)
(2015).

[13] X. Zhou, Y. Xu, and G. Jin, Phys. Rev. B 92, 235436 (2015).
[14] M. Tahir and P. Vasilopoulos, Phys. Rev. B 91, 115311

(2015).
[15] J. W. McIverJ, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and

N. Gedik, Nat. Nano 7, 96 (2012).

[16] J. Sánchez-Barriga, E. Golias, A. Varykhalov, J. Braun, L. V.
Yashina, R. Schumann, J. Minár, H. Ebert, O. Kornilov, and O.
Rader, Phys. Rev. B 93, 155426 (2016).

[17] P. Hosur, Phys. Rev. B 83, 035309 (2011).
[18] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett. 97,

026603 (2006).
[19] H. J. Goldsmid, Introduction to Thermoelectricity (Springer,

Berlin, 2010).
[20] L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
[21] C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S.-C.

Zhang, Phys. Rev. B 82, 045122 (2010).
[22] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo,

X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang,
I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178
(2009).

[23] K. W. Kim, T. Morimoto, and N. Nagaosa, Phys. Rev. B 95,
035134 (2017).

[24] Z. Li and J. P. Carbotte, Phys. Rev. B 89, 165420 (2014).
[25] H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys.

Rev. B 81, 115407 (2010).
[26] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X.

Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan et al., Nat. Phys.
6, 584 (2010).

[27] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.
Rev. B 84, 235108 (2011).

[28] R. Wang, B. Wang, R. Shen, L. Sheng, and D. Y. Xing,
Europhys. Lett. 105, 17004 (2014).

[29] D. A. Lovey, G. Usaj, L. E. F. Foa Torres, and C. A. Balseiro,
Phys. Rev. B 93, 245434 (2016).

[30] M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).

035303-16

https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1103/PhysRevB.88.075144
https://doi.org/10.1103/PhysRevB.88.075144
https://doi.org/10.1103/PhysRevB.88.075144
https://doi.org/10.1103/PhysRevB.88.075144
https://doi.org/10.1103/PhysRevB.93.125434
https://doi.org/10.1103/PhysRevB.93.125434
https://doi.org/10.1103/PhysRevB.93.125434
https://doi.org/10.1103/PhysRevB.93.125434
https://doi.org/10.1103/PhysRevB.86.201401
https://doi.org/10.1103/PhysRevB.86.201401
https://doi.org/10.1103/PhysRevB.86.201401
https://doi.org/10.1103/PhysRevB.86.201401
https://doi.org/10.1038/srep14184
https://doi.org/10.1038/srep14184
https://doi.org/10.1038/srep14184
https://doi.org/10.1038/srep14184
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.91.241404
https://doi.org/10.1103/PhysRevB.91.241404
https://doi.org/10.1103/PhysRevB.91.241404
https://doi.org/10.1103/PhysRevB.91.241404
https://doi.org/10.1103/PhysRevB.92.235436
https://doi.org/10.1103/PhysRevB.92.235436
https://doi.org/10.1103/PhysRevB.92.235436
https://doi.org/10.1103/PhysRevB.92.235436
https://doi.org/10.1103/PhysRevB.91.115311
https://doi.org/10.1103/PhysRevB.91.115311
https://doi.org/10.1103/PhysRevB.91.115311
https://doi.org/10.1103/PhysRevB.91.115311
https://doi.org/10.1038/nnano.2011.214
https://doi.org/10.1038/nnano.2011.214
https://doi.org/10.1038/nnano.2011.214
https://doi.org/10.1038/nnano.2011.214
https://doi.org/10.1103/PhysRevB.93.155426
https://doi.org/10.1103/PhysRevB.93.155426
https://doi.org/10.1103/PhysRevB.93.155426
https://doi.org/10.1103/PhysRevB.93.155426
https://doi.org/10.1103/PhysRevB.83.035309
https://doi.org/10.1103/PhysRevB.83.035309
https://doi.org/10.1103/PhysRevB.83.035309
https://doi.org/10.1103/PhysRevB.83.035309
https://doi.org/10.1103/PhysRevLett.97.026603
https://doi.org/10.1103/PhysRevLett.97.026603
https://doi.org/10.1103/PhysRevLett.97.026603
https://doi.org/10.1103/PhysRevLett.97.026603
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevLett.103.266801
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1103/PhysRevB.95.035134
https://doi.org/10.1103/PhysRevB.95.035134
https://doi.org/10.1103/PhysRevB.95.035134
https://doi.org/10.1103/PhysRevB.95.035134
https://doi.org/10.1103/PhysRevB.89.165420
https://doi.org/10.1103/PhysRevB.89.165420
https://doi.org/10.1103/PhysRevB.89.165420
https://doi.org/10.1103/PhysRevB.89.165420
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1038/nphys1689
https://doi.org/10.1038/nphys1689
https://doi.org/10.1038/nphys1689
https://doi.org/10.1038/nphys1689
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1103/PhysRevB.93.245434
https://doi.org/10.1103/PhysRevB.93.245434
https://doi.org/10.1103/PhysRevB.93.245434
https://doi.org/10.1103/PhysRevB.93.245434
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRevB.53.7010


EFFECT OF HEXAGONAL WARPING OF THE FERMI … PHYSICAL REVIEW B 100, 035303 (2019)

[31] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

[32] S. Shen, Topological Insulators: Dirac Equation in Condensed
Matter, Springer Series in Solid-State Sciences (Springer, Sin-
gapore, 2017).

[33] M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984).
[34] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J.

Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor,
R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).

[35] H. Zhang, C.-X. Liu, and S.-C. Zhang, Phys. Rev. Lett. 111,
066801 (2013).

[36] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J.
Osterwalder, L. Patthey, J. Checkelsky, N. Ong et al., Nature
(Loindon) 460, 1101 (2009).

[37] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[38] S. M. Bhattacharjee, Use of topology in physical problems,

in Topology and Condensed Matter Physics, edited by S. M.
Bhattacharjee, M. Mj, and A. Bandyopadhyay (Springer, Sin-
gapore, 2017), pp. 171–216.

[39] R. Lundgren, P. Laurell, and G. A. Fiete, Phys. Rev. B 90,
165115 (2014).

[40] Q. Chen and G. A. Fiete, Phys. Rev. B 93, 155125 (2016).
[41] T. Qin, Q. Niu, and J. Shi, Phys. Rev. Lett. 107, 236601 (2011).
[42] D. L. Bergman and V. Oganesyan, Phys. Rev. Lett. 104, 066601

(2010).

[43] T. Yokoyama and S. Murakami, Phys. Rev. B 83, 161407(R)
(2011).

[44] P. Ghaemi, R. S. K. Mong, and J. E. Moore, Phys. Rev. Lett.
105, 166603 (2010).

[45] Y. V. Ivanov, A. T. Burkov, and D. A. Pshenay-Severin, Phys.
Status Solidi (b) 255, 1800020 (2018).

[46] M. Tahir, A. Manchon, and U. Schwingenschlögl, J. Appl. Phys.
116, 093708 (2014).

[47] S. Murakami, R. Takahashi, O. A. Tretiakov, A. Abanov, and J.
Sinova, J. Phys.: Conf. Series 334, 012013 (2011).

[48] O. A. Tretiakov, A. Abanov, and J. Sinova, Appl. Phys. Lett.
99, 113110 (2011).

[49] J. E. Cornett and O. Rabin, Phys. Rev. B 84, 205410 (2011).
[50] H. Osterhage, J. Gooth, B. Hamdou, P. Gwozdz, R. Zierold, and

K. Nielsch, Appl. Phys. Lett. 105, 123117 (2014).
[51] T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V.

Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
[52] X. X. Yang, Z. F. Zhou, Y. Wang, R. Jiang, W. T. Zheng, and

C. Q. Sun, J. Appl. Phys. 112, 083508 (2012).
[53] G. E. Shoemake, J. A. Rayne, and R. W. Ure, Phys. Rev. 185,

1046 (1969).
[54] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt

College, London, 1976).
[55] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 90, 195429

(2014).

035303-17

https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1126/science.1167733
https://doi.org/10.1126/science.1167733
https://doi.org/10.1126/science.1167733
https://doi.org/10.1126/science.1167733
https://doi.org/10.1103/PhysRevLett.111.066801
https://doi.org/10.1103/PhysRevLett.111.066801
https://doi.org/10.1103/PhysRevLett.111.066801
https://doi.org/10.1103/PhysRevLett.111.066801
https://doi.org/10.1038/nature08234
https://doi.org/10.1038/nature08234
https://doi.org/10.1038/nature08234
https://doi.org/10.1038/nature08234
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.93.155125
https://doi.org/10.1103/PhysRevB.93.155125
https://doi.org/10.1103/PhysRevB.93.155125
https://doi.org/10.1103/PhysRevB.93.155125
https://doi.org/10.1103/PhysRevLett.107.236601
https://doi.org/10.1103/PhysRevLett.107.236601
https://doi.org/10.1103/PhysRevLett.107.236601
https://doi.org/10.1103/PhysRevLett.107.236601
https://doi.org/10.1103/PhysRevLett.104.066601
https://doi.org/10.1103/PhysRevLett.104.066601
https://doi.org/10.1103/PhysRevLett.104.066601
https://doi.org/10.1103/PhysRevLett.104.066601
https://doi.org/10.1103/PhysRevB.83.161407
https://doi.org/10.1103/PhysRevB.83.161407
https://doi.org/10.1103/PhysRevB.83.161407
https://doi.org/10.1103/PhysRevB.83.161407
https://doi.org/10.1103/PhysRevLett.105.166603
https://doi.org/10.1103/PhysRevLett.105.166603
https://doi.org/10.1103/PhysRevLett.105.166603
https://doi.org/10.1103/PhysRevLett.105.166603
https://doi.org/10.1002/pssb.201800020
https://doi.org/10.1002/pssb.201800020
https://doi.org/10.1002/pssb.201800020
https://doi.org/10.1002/pssb.201800020
https://doi.org/10.1063/1.4894283
https://doi.org/10.1063/1.4894283
https://doi.org/10.1063/1.4894283
https://doi.org/10.1063/1.4894283
https://doi.org/10.1088/1742-6596/334/1/012013
https://doi.org/10.1088/1742-6596/334/1/012013
https://doi.org/10.1088/1742-6596/334/1/012013
https://doi.org/10.1088/1742-6596/334/1/012013
https://doi.org/10.1063/1.3637055
https://doi.org/10.1063/1.3637055
https://doi.org/10.1063/1.3637055
https://doi.org/10.1063/1.3637055
https://doi.org/10.1103/PhysRevB.84.205410
https://doi.org/10.1103/PhysRevB.84.205410
https://doi.org/10.1103/PhysRevB.84.205410
https://doi.org/10.1103/PhysRevB.84.205410
https://doi.org/10.1063/1.4896680
https://doi.org/10.1063/1.4896680
https://doi.org/10.1063/1.4896680
https://doi.org/10.1063/1.4896680
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1103/PhysRevB.68.125210
https://doi.org/10.1063/1.4759207
https://doi.org/10.1063/1.4759207
https://doi.org/10.1063/1.4759207
https://doi.org/10.1063/1.4759207
https://doi.org/10.1103/PhysRev.185.1046
https://doi.org/10.1103/PhysRev.185.1046
https://doi.org/10.1103/PhysRev.185.1046
https://doi.org/10.1103/PhysRev.185.1046
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429

