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Fractional quantum Hall states at half-integer filling factors have been observed in many systems beyond the 5
2

and 7
2 plateaus in GaAs quantum wells. This includes bilayer states in GaAs, several half-integer plateaus in ZnO-

based heterostructures, and quantum Hall liquids in graphene. In all cases, Cooper pairing of composite fermions
is believed to explain the plateaus. The nature of Cooper pairing and the topological order on those plateaus
are hotly debated. Different orders are believed to be present in different systems. This makes it important to
understand experimental signatures of all proposed orders. We review the expected experimental signatures
for all possible composite-fermion states at half-integer filling. We address Mach-Zehnder interferometry,
thermal transport, tunneling experiments, and Fabry-Pérot interferometry. For this end, we introduce a uniform
description of the topological orders of Kitaev’s sixteenfold way in terms of their wave functions, effective
Hamiltonians, and edge theories.
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I. INTRODUCTION

Experimental discovery of the fractional quantum Hall
effect (FQHE) [1] has started a new chapter in condensed
matter physics and opened the field of topological matter.
One major development was the observation of a quantized
Hall plateau at the filling factor ν = 5

2 [2,3]. This has led to
many innovative theoretical ideas. One of them is non-Abelian
statistics of elementary excitations [4–7] which may open a
path to topological quantum computing [8,9]. Another related
idea is topological superconductivity [10–12].

A powerful approach to quantum Hall physics involves
composite fermions [13]. In particular, odd-denominator
FQHE can be understood as the integer quantum Hall effect of
composite fermions. Such an explanation fails for half-integer
states, where composite fermions are subject to zero effective
magnetic field. Instead, a gapped half-integer liquid can be
seen as a superconductor built from Cooper pairs of composite
fermions [14].

Different pairing channels give rise to different topolog-
ical orders. The correspondence is not one to one. Indeed,
pairing can occur in an infinite number of angular momen-
tum channels. At the same time, topological order depends
only on the types of anyons in the system and their mutual
statistics. Kitaev’s classification [15] reveals 16 possibilities.
Understanding which ones are relevant for available materials
has proved a major challenge.

The bilayer state at ν = 1
2 in GaAs [16,17] is believed

to be the Abelian 331 liquid [18–21]. The nature of the
single-layer 5

2 liquid in GaAs remains controversial. The
existing experimental results are consistent with the non-
Abelian PH-Pfaffian liquid [22–27] at charge densities n ∼
2–3 × 1011 cm−2. Yet, numerics [28–33] supports the non-
Abelian Pfaffian [4] and anti-Pfaffian orders [25,34]. Besides,
some experiments [35–37] were interpreted as compatible
with the Abelian 113 and 331 states [18,38,39]. To make
matters even more puzzling, experimental evidence [40,41]

exists for a different topological order at low-electron den-
sities n < 0.5 × 1011 cm−2. Little is known about the fragile
7
2 state in GaAs [42,43] and several recently discovered half-
integer states in ZnO [44,45]. It was argued that the SU(2)2

topological order is present in graphene [46,47]. A recent ther-
mal conductance experiment [48] also supports a topological
order from Kitaev’s classification in the spin-liquid material
α-RuCl3. Thus, several of the 16 theoretical possibilities are
currently seen as viable candidates for real materials. Not
enough evidence exists to dismiss the remaining orders of
Kitaev’s sixteenfold way. This makes it crucial to understand
possible experimental signatures of all 16 orders and provides
the main motivation for this paper.

Not all available experimental probes are equally useful
to distinguish the 16 topological orders. For example, the
quasiparticle charge of e/4 was reported by several groups on
the 5

2 plateau in GaAs [35–37,49–54]. This does not shed light
on the topological order since the same quasiparticle charge
is predicted in all 16 states. Similarly, the preponderance of
the experimental evidence [55–59] points at a spin-polarized
FQHE liquid in GaAs at n ∼ 2–3 × 1011 cm−2. All 16 topo-
logical orders are compatible with a fully polarized liquid.
One can get more information from quasiparticle tunneling
[35–38,54,60,61], thermal conductance [14,62–65], upstream
noise experiments [66–71], and interferometry [9,52,72–94].
These are the types of experiments we consider below. In-
terferometry in the Mach-Zehnder geometry [95] exhibits
particularly interesting behavior.

Kitaev’s classification addresses a neutral system, such as
a spin liquid [15]. Its extension to a charged FQHE system
involves subtleties which we handle below. A simultaneous
discussion of 16 topological orders requires their uniform
description. Simple wave functions are known for some of the
orders, such as Pfaffian [4] and PH-Pfaffian [24]. We use the
known wave functions for the Pfaffian and 113 states to gen-
erate similar wave functions for all other topological orders.
This is possible due to mother-daughter relations among all
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non-Abelian states and among all Abelian states. The same
mother-daughter relations give a simple way to construct edge
theories for all 16 orders and to iteratively generate effective
Hamiltonians in a coupled-stripe construction. Coupled-wire
constructions have already been used for half-integer states
[96–98]. Our iterative approach is different.

The paper is organized as follows. In Sec. II, we begin
by introducing our construction of topological orders for
half-integer FQH liquids. In particular, we formulate mother-
daughter relations among the orders and show a way to
systematically generate wave functions for multiple orders.
Then, in Sec. III, we show explicitly that the resulting topo-
logical orders satisfy the sixteenfold way. Based on this result,
we address multiple experimental signatures of all orders in
Secs. IV, V, and VI. The physics of Mach-Zehnder interfer-
ometry is especially rich and subtle. Its discussion occupies
Sec. V, with the more technical points being addressed in the
Appendix. We summarize experimental signatures in Table VI
in Sec. VI. In Sec. VII, we relate different topological orders
iteratively and construct their effective Hamiltonians from a
system of coupled quantum Hall stripes in the Pfaffian state.
Any other topological order of the sixteenfold way could also
be used as a starting point instead of the Pfaffian order. We
conclude our work in Sec. VIII.

II. TOPOLOGICAL ORDERS OF THE SIXTEEN FOLD WAY

We focus on an FQHE system with a filling factor ν =
n + 1

2 , where n is an integer. In the simplest picture, n filled
spin-resolved Landau levels do not affect topological prop-
erties; FQHE physics is due to one half-filled spin-resolved
Landau level. It is unclear if such picture captures the relevant
microscopic physics. For example, Coulomb interaction of
electrons in different Landau levels is strong in GaAs at
ν = 5

2 . This results in Landau-level mixing (LLM) effects
[29–32,99–102]. In a uniform system without LLM, Pfaffian,
and anti-Pfaffian FQHE liquids have exactly the same en-
ergy [25,34]. Arbitrarily weak LLM breaks this degeneracy.
Moreover, it was argued that strong LLM can help stabilize
the PH-Pfaffian order [24,103]. The above picture also as-
sumes a single-component (in particular, spin-polarized) wave
function. The existing evidence does support spin-polarized
half-integer states in ZnO [44] and in GaAs [55–58] at the
electron densities n ∼ 2–3 × 1011 cm−2. At the same time,
the accepted description of the 1

2 state in bilayers assumes a
two-component wave function with equal populations of the
two layers [18].

The above points reflect great difficulty of writing a re-
alistic wave function for an experimentally relevant system.
This difficulty becomes even more daunting if one attempts
to incorporate disorder effects. Such effects are present in
all samples and may be crucial for the nature of topological
order [24,104–107]. On the other hand, if the topological
order is known, much of the physics does not depend on the
details of the wave function. Thus, it is useful to have simple
representative wave functions for each of the 16 topological
orders of the sixteenfold way. Such trial wave functions have
been written for some of the orders, for example, Pfaffian
[4]. As we will see, very similar trial wave functions emerge
for all other composite fermion orders in half-integer FQHE.

Of course, their construction sheds no light on which order
is present in any given experimental system. This question
can only be answered in a laboratory. In Secs. IV and V, we
address the relevant experimental signatures in detail.

In what follows, we will focus on the simplest setting of
a single half-filled spin-polarized Landau level ν = 1

2 . Any
disorder and LLM effects are neglected. The only exception
will be the PH-Pfaffian wave function which greatly simplifies
in a system with Landau-level mixing.

Wave functions of electrons in the lowest Landau level are
significantly constrained by the analyticity requirement [108].
They can be represented as

�(z1, . . . , zN ) = �(z1, . . . , zN ) exp

(
−

N∑
i=1

|zi|2
4l2

B

)
, (1)

where zk = xk + iyk are the positions of N electrons, lB is
the magnetic length, and �(z1, . . . , zN ) is a holomorphic
function. We will choose a polynomial �. The polynomial is
homogeneous since the degree of each monomial is propor-
tional to the angular momentum. A single-electron wave func-
tion with �(z) ∼ zk describes charge density concentrated
along a ring of radius r ∼ √

k [109]. Hence, the polynomial
�(z1, . . . , zN ) describes electrons on a disk of radius R ∼√

kmax, where kmax is the highest power of zi in �. The total
degree k = ∑

ki of each monomial zk1
1 . . . zkN

N in � satisfies
the relation k ≈ N2/[2ν].

This leads us to another constraint that the wave func-
tion should produce the correct charge density. At ν = 1

2 ,
the simplest choice, compatible with the correct density, is
�(z1, . . . , zN ) = �flux = �i< j (zi − z j )2. This yields an ac-
ceptable wave function for bosons but not for electrons. To
fix the statistics, �flux must be multiplied by an antisymmetric
factor �cf (z1, . . . , zN ). To maintain the correct density in the
thermodynamic limit N → ∞, the factor should change the
degree k of � by o(N2).

The two factors �flux and �cf have a natural interpretation
in the composite fermion picture [13]. Note that experimental
evidence exists for composite fermions at ν = 5

2 in GaAs
[58,110]. The former factor �flux describes two flux quanta
attached to each electron. The resulting composite fermions
move in a zero effective magnetic field. Their wave function is
�cf . It describes Cooper pairing of composite fermions. The
most famous example is p-wave pairing in the Pfaffian state
[14,111–113]. A trial wave function takes the form

Pf

(
1

zi − z j

)∏
i< j

(zi − z j )
2 exp

(
−

N∑
i=1

|zi|2
4l2

B

)
, (2)

with �cf = Pf( 1
zi−z j

). As was observed by Moore and Read
[4], the above choice of the bulk wave function determines
the nature of the gapless edge modes. There are two of them:
a charged boson and a neutral Majorana fermion.

In general, pairing between composite fermions can be
described by an effective Bardeen-Cooper-Schrieffer (BCS)
mean-field Hamiltonian. For spinless fermions, we have

HBCS =
∑

k

[
ξkc†

kck + 1

2
(�∗

kc−kck + �kc†
kc†

−k )

]
. (3)
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Here, ξk = k2

2m − μ, with m and μ labeling the effective mass
of a composite fermion and the chemical potential of the
system, respectively. The fermionic creation operator c†

k and
destruction operator ck satisfy the anticommutation relation
{ck, c†

k′ } = δk,k′ . The pairing function is denoted as �k. When
μ > 0, the system is in the weak-pairing phase [14]. In
Ref. [114], Dubail and Read modeled the gap function for
the complex l-wave pairing as �k = �̃(kx ± iky)l . By ana-
lyzing the entanglement spectrum in some specific cases, they
showed that this kind of pairing between spinless fermions
should lead to l chiral Majorana fermions at the edge.

The edge structure establishes the connection of wave
functions with Kitaev’s sixteenfold way. As shown by
Kitaev [15], different topological orders in topological su-
perconductors of composite fermions differ by the number
of Majorana modes on the edge. Moreover, since the bulk
is gapped, the universal low-energy physics is determined by
the edge structure. As a consequence, all experimental probes,
addressed in this paper, involve edge physics. Thus, we begin
our discussion of topological orders with a review of their
edge structures. This will uncover mother-daughter relations
between various orders and will allow us to generate relevant
wave functions in a straightforward way.

A. Mother-daughter relations for non-Abelian orders

As shown by Wen and Zee [60,115], an Abelian topo-
logical order for a fractional quantum Hall state can be
characterized by a K matrix and a charge vector t . Although
the Pfaffian order is non-Abelian, one can view it as a direct
product between SU(2)2 Ising anyon and an Abelian U(1)
bosonic sector. The latter is characterized by a 1 × 1 matrix
K = (2) and t = 1, so that ν = tT K−1t = 1

2 . The K matrix
determines the Abelian modes on the edge. In particular, their
number equals the dimension of the matrix. Thus, the Pfaffian
edge contains only one Abelian Bose mode, in addition to
a Majorana fermion from the Ising sector. The direction of
those modes is determined by the sign of the magntic field
and is called “downstream.” We will generally assume that
downstream is counterclockwise [116].

To generate a chain of topological orders, we particle-
hole (PH) conjugate [25,34] the Pfaffian order. On the edge,
this means reversing the direction of all Bose and Majorana
edge modes (downstream → upstream) and adding an integer
downstream Bose mode. We obtain the anti-Pfaffian order
with an upstream Majorana and a 2 × 2 diagonal K matrix
encoding two Abelian modes: K11 = 1, K22 = −2. The charge
vector t = (1, 1)T . In terms of edge physics, the first element
of the charge vector corresponds to the contribution from the
ν = 1 edge and the second element comes from the reversed
ν = 1

2 FQHE edge. We denote the two corresponding charged
modes as {φ0, φ1}. Disorder on the edge equilibrates the two
modes. The appropriate language for edge physics involves
then two linear combinations of φ0,1: an overall charged
mode that propagates downstream and a neutral upstream
boson [25,34]. Specifically, we consider a change of the basis
(φρ, φn)T = W (φ0, φ1)T . The K matrix and the charge vector
transform as

K → (W −1)T KW −1, t → (W −1)T t . (4)

PH-Pfaffian Pfaffian

Anti-Pfaffian SU(2)2

Anti-SU(2)2
...

FIG. 1. Illustration of generating non-Abelian topological orders
for the ν = 5

2 fractional quantum Hall state by particle-hole conjuga-
tion (vertical arrows) and neutral-mode flipping (horizontal arrows).
The topological orders can be related iteratively via a coupled-stripe
construction in Sec. VII. The red solid lines correspond to the first
construction (CW1) and the blue dashed lines correspond to the
second construction (CW2).

One can easily check that the filling factor ν is invariant under
the transformation. The W matrix in this case is given by

W =
(

1 1
1 2

)
. (5)

The transformed K matrix is diagonal with K11 = 2, K22 =
−1, and the charge vector becomes t = (1, 0)T .

Our second trick is flipping the neutral modes. Indeed,
the SU(2)2 edge structure can be obtained by flipping the
directions of the neutral modes (Majorana fermion ψ and the
bosonic mode φn). As a result, ψ and φn get the same down-
stream chirality as φρ . The flipping of the bosonic neutral
mode corresponds to changing the sign of K22: −1 → 1. This
trick can also be seen as negative-flux attachment [117].

By repeating the above processes, a chain of non-Abelian
topological orders can be generated iteratively as shown in
Fig. 1. The K matrices for the topological orders obtained
with particle-hole conjugation are diagonal with K11 = 1,
K22 = −2, and Kii = −1 (i � 3), the charge vector being t =
(1, 1, 0, . . . , 0)T . We rewrite the K matrices in the basis of
a single downstream charged mode and multiple upstream
neutral modes. This is achieved by using the following W
matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0
1 2 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

With the transformation from Eq. (4), the K matrix transforms
into

K =

⎛
⎜⎜⎜⎜⎝

2 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎠. (7)

Here, the negative sign indicates that all neutral modes have
opposite chirality with respect to the charged mode. This gives
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K=8 order

113 order 331 order

Anti-331 order ...

(Anti-K=8 order)

FIG. 2. Illustration of generating Abelian topological orders by
particle-hole conjugation (vertical arrows) and neutral-mode flip-
ping (horizontal arrows). It is reminded that the spin-polarized 113
order is topologically equivalent to the anti-K = 8 state [39]. The
topological orders can be related iteratively with the coupled-stripe
construction of Sec. VII.

a natural description of a disorder-dominated phase [118]. To
flip all the bosonic neutral modes, one simply changes all
negative matrix elements from −1 to 1.

B. Mother-daughter relations for Abelian orders

Using the techniques of the previous subsection, a chain
of Abelian topological orders can also be generated. As illus-
trated in Fig. 2, we start with the K = 8 state to obtain the
anti-K = 8 state by particle-hole conjugation. Note that the
edge modes of the anti-K = 8 state cannot be equilibrated by
weak disorder in the T → 0 limit [39].

The polarized version of the 113 order is topologically
equivalent to the anti-K = 8 state [39]. Neutral-mode flipping
produces the 331 order from the 113 order. Then, the anti-331
order [38] can be obtained by particle-hole conjugation. As
in the non-Abelian case, the K matrices can be diagonalized
in the form (7) with the corresponding charge vector t =
(1, 0, . . . , 0)T .

C. Construction of wave functions

One curious aspect of the existing proposals for quantum
Hall states at half-integer filling factors is a great diversity of
their names: Pfaffian, anti-Pfaffian, 331, SU(2)2, K = 8, and
so on. This diversity reflects a great variety of the methods
used to introduce those topological orders. The 331 state
was discovered with a generalization of the Laughlin wave
function for two flavors of electrons [18]; the Pfaffian state
emerged from a connection with a conformal field theory
(CFT) [4]; SU(2)2 was introduced with a parton construction
[119]; K = 8 can be understood as a quantum Hall state of
bosons [115]; the anti-Pfaffian topological order was obtained
with particle-hole conjugation [25,34]. Yet, the connection
with the sixteenfold way shows that all those orders are close
relatives. This is reflected by the mother-daughter relations
between the orders. Below we will use those relations to
generate a wave function for each order in a systematic way.

The structure of the wave functions will also motivate
the prescription for finding allowed quasiparticle types and
their mutual statistics. The prescription assumes that a CFT
describes the edge of the system. An operator or operators
are selected to describe electrons in CFT [120]. All possible

quasiparticles correspond to other CFT operators whose oper-
ator product expansions (OPE) with the electron operators are
single valued.

This prescription is broadly used, but its justification is
not obvious. Indeed, the edges of realistic systems are never
described by a CFT because different edge modes have differ-
ent velocities, and numerous irrelevant and sometimes even
relevant perturbations enter the Hamiltonian. In our case,
the prescription will be placed on a firmer footing by the
analysis of bulk wave functions for excited states. Of course,
the best proof of the prescription consists in verifying that it
reproduces the properties of the sixteenfold way. We confirm
that in the next section.

We begin with non-Abelian states and briefly extend our
arguments to the Abelian case. As is customary, we consider
wave functions in the first Landau level. Any such wave func-
tion is the product of an analytic function with the exponential
factor exp(−∑

i |zi|2/4l2
B) [108]. We generate wave functions

in an iterative way. The iterative procedure involves neutral-
mode flipping and particle-hole conjugation. We illustrate
these two tricks with constructions of the PH-Pfaffian and
anti-Pfaffian liquids from the Pfaffian state.

The wave function of the Pfaffian state is well known:

�Pf ({zi}) = Pf

{
1

zi − z j

}∏
i< j

(zi − z j )
2 exp

(
−

∑
i

|zi|2/4l2
B

)
,

(8)
where zk = xk + iyk is the position of an electron, and lB
is the magnetic length. The complex analytic factor can be
reinterpreted as a correlation function G = 〈��kÔ〉 of the
electron operators �k = ψ (zk ) exp[2iφ(zk )] in the conformal
field theory [4] with the Lagrangian density

L = 2

4π
[i∂yφ∂xφ + (∂xφ)2] + ψ (∂y − i∂x )ψ, (9)

where y plays the role of the imaginary time; the operator Ô
is localized far away from the system and compensates the
electrical charge to ensure that the correlation function of the
fields exp(2iφ) is nonzero.

The CFT interpretation makes it easy to identify quasiparti-
cles. We define wave functions of excited states as correlation
functions Gq = 〈��kq̂(ξ0)〉, where q̂ creates a quasiparticle
(from now on we ignore the neutralizing operator Ô). q̂ is
constructed from the operators of the CFT (9). For example,
the twist field σ of the Majorana part of the CFT corresponds
to q̂ = σ exp(iωφ). The parameter ω determines the charge
of the excitation. It can be found from the requirement that
the wave function is a single-valued function of the electron
positions. This identifies ω = 1/2 + n and the quasiparticle
charge is e/4 + ne/2.

The PH-Pfaffian wave function is obtained with the help
of complex conjugation of the Pfaffian factor in (8). This
structure of the wave function reflects a close connection with
the Pfaffian order. For example, all density-density correla-
tions are exactly the same for the Pfaffian and PH-Pfaffian
wave functions since the absolute values of the wave functions
coincide.

The resulting wave function �PH is no longer holomorphic
and hence does not describe electrons in a single Landau level.
Given strong LLM in realistic systems, this does not create a
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problem. Nevertheless, it is important for us to discuss how
wave functions can be transformed into a holomorphic form.
This involves projection to the lowest Landau level [24]:

�PH →
∫

{d2ξi}〈{zi}|{ξi}〉�PH({ξi}), (10)

where 〈{zi}|{ξi}〉 = �i exp[−(|ξi|2 − 2ξ̄izi + |zi|2)/4l2
B], and

the bar denotes complex conjugation. The wave function
before projection can be understood as a correlation function
of the CFT that differs from (9) by the opposite sign in front
of i∂x in the Majorana part of the action. This corresponds to
neutral-mode flipping or, alternatively, negative-flux attach-
ment. Excited states can again be represented in terms of
the correlation functions with the insertion of quasiparticle
operators. One can also multiply the wave function by a
real rotationally invariant function R({ξi}) of the coordinates
before the projection to the lowest Landau level. This is not
expected to affect topological properties. Physically allowed
quasiparticles can be found from the single valuedness of
the wave function before the lowest Landau level projection.
Indeed, the integral (10) is not well defined, if �PH({ξi}) is not
single valued.

Recent numerical work [121] suggests that the simplest
projection procedure generates a gapless state from �PH. One
possibility is that a factor R({ξi}) should be introduced before
projection. Another possibility is that LLM is essential for
maintaining a gap in the PH-Pfaffian liquid.

The CFT prescription [120] assumes that the ground-state
wave functions it generates are separated by a gap from all
excitations. This assumption is plausible and is supported
by several well-understood examples. Nevertheless, it can
only be proven by identifying a Hamiltonian for which the
CFT-generated wave function is the gapped ground state.
This explains the importance of Sec. VII below, where we
use the same mother-daughter relations as in this section to
generate effective Hamiltonians for all topological orders of
the sixteenfold way. We are working on an extension of our
approach to translationally invariant Hamiltonians.

The role of the particle-hole (PH) symmetry in the PH-
Pfaffian state is another subtlety. The PH-Pfaffian topological
order is consistent with the PH symmetry, but it is not pro-
tected by that symmetry, and so the corresponding ground-
state wave functions do not have to be particle-hole symmet-
ric. Moreover, it was argued [103] that a PH-symmetric wave
function, which would naturally emerge in Son’s picture of
massless Dirac fermions, must be gapless. A gapped state with
the PH-Pfaffian order requires massive Dirac fermions [103].
This means the absence of the microscopic PH symmetry.

The transition from the Pfaffian to PH-Pfaffian state
is a template for neutral-mode flipping in our construc-
tion of wave functions for all topological orders. We start
with a wave function of the form �unflipped = �i< j (zi −
z j )2�neutral({zi}). The flipped wave function is obtained by the
complex conjugation of the expression for �neutral: �flipped =
�i< j (zi − z j )2�̄neutral({zi}). If the resulting wave function re-
mains nonanalytic after the removal of the exponential factor
exp(−∑

i |zi|2/4l2
B), it has to be projected to the lowest Lan-

dau level. Particle-hole conjugation is somewhat trickier. We
illustrate it with the transition from the Pfaffian to anti-Pfaffian
order.

The particle-hole conjugate wave function [25]

�aP({zi})

=
∫

{d2ξi}�̄Pf ({ξi})
∏
i< j

(ξi − ξ j )
∏
i< j

(zi − z j )
∏
i, j

(ξi − z j )

× exp

(
−

∑
i

|ξi|2/4l2
B

)
exp

(
−

∑
i

|zi|2/4l2
B

)
, (11)

where the Vandermonde factor V = �i< j (ξi − ξ j )�i< j (zi −
z j )�i, j (ξi − z j ) expresses the wave function of a filled Landau
level. Since the filling factor is 1

2 , the numbers of the zi and ξi

variables are the same. We rewrite the Vandermonde factor as

V =
∏
i< j

(ξi − ξ j )
2
∏
i< j

(zi − z j )
2

∏
i, j (ξi − z j )∏

i< j (ξi − ξ j )
∏

i< j (zi − z j )

=
∏
i< j

(ξi − ξ j )
2
∏
i< j

(zi − z j )
2|C|2

×
∏

i< j (ξ̄i − ξ̄ j )
∏

i< j (z̄i − z̄ j )∏
i, j (ξ̄i − z̄ j )

, (12)

where C =
∏

i, j (ξi−z j )∏
i< j (ξi−ξ j )

∏
i< j (zi−z j )

. Thus,

�aP =
∫

{d2ξi}|R|2
[

Pf

{
1

ξ̄i − ξ̄ j

}]

×
[∏

i< j (ξ̄i − ξ̄ j )
∏

i< j (z̄i − z̄ j )∏
i, j (ξ̄i − z̄ j )

]⎡
⎣∏

i< j

(zi − z j )
2

⎤
⎦,

(13)

where the real factor |R2| = |C|2�i< j |ξi −
ξ j |4 exp[−∑

i(2|ξi|2 + |zi|2)/4l2
B] ensures convergence and

is not expected to influence topological properties of the
wave function. Each term in the square brackets in Eq. (13)
can be understood as a correlation function of a conformal
field theory. The Pfaffian term in the first square brackets
is a correlator of the antiholomorphic Majorana fermions
ψ . The quadratic term in the third square brackets is a
correlation function of the Bose fields exp(2iφ) in the theory
with L = 2

4π
[i∂yφ∂xφ + (∂xφ)2]. The middle term is the

correlation function 〈� exp[iθ (ξm)]� exp[−iθ (zn)]〉 in the
antiholomorphic theory with L = 1

4π
[−i∂yθ∂xθ + (∂xθ )2].

Thus, the topological properties of the wave function are
encoded in the correlator

GaP =
〈∏

m

ψ (ξm) exp[iθ (ξm)]

×
∏

n

exp[−iθ (zn)] exp[2iφ(zn)]

〉
. (14)

The insertion of a quasiparticle operator into the above corre-
lation function must yield a single-valued function of ξm and
zn. Consider an operator q̂ = σ exp(iω1θ ) exp(iω2φ). Single
valuedness with respect to ξ fixes ω1 = 1/2 + n1. Hence,
single valuedness with respect to z implies ω2 = 1/2 + n2.
This, of course, agrees with the standard prescription for
quasiparticles (cf. Sec. III).
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Equations (11)–(14) set a template for particle-hole conju-
gation in our construction. The key step is the transformation
(12) which allows expressing the wave function via a correla-
tor of the type (14).

One can now repeat neutral-mode flipping and particle-
hole conjugation in turn a desired number of times to generate
wave functions for the eight non-Abelian orders. In such
iterative procedure, the projection to the lowest Landau level
should only be performed once on the last step, if the wave
function does not become holomorphic after the removal
[122] of exp(−∑

i |zi|2/4l2
B). For example, an SU(2)2 wave

function is produced from �aP by neutral-mode flipping; an
anti-SU(2)2 wave function is produced by additional particle-
hole conjugation; and so on.

The approach to the Abelian orders is the same. Thus, all
that is left to do is to specify the wave function for the mother
state. The K = 8 state is best understood as a quantum Hall
state of bosons [115]. For that reason, we use the 113 state
as the mother topological order. A convenient wave function
for that order can be found in the Supplemental Material for
Ref. [39]:

�113 =
∫ ∏

{d2ξi}
[ ∏

i< j

(ξ̄i − ξ̄ j )
4
∏
i, j

(ξi − z j )
2

×
∏
i< j

(zi − z j ) |R113|2
]
, (15)

where the real factor |R113|2 ensures convergence. This wave
function corresponds to the hierarchical construction with the
K matrix

K =
(

1 2
2 −4

)
.

We rewrite the complex factor in Eq. (15) as∏
i< j

(ξ̄i − ξ̄ j )
4
∏
i, j

(ξi − z j )
2
∏
i< j

(zi − z j )

=
∏

i< j (ξ̄i − ξ̄ j )4 ∏
i< j (z̄i − z̄ j )∏

i, j (ξ̄i − z̄ j )2

∏
i< j

(zi − z j )
2

×
∏
i, j

|ξi − z j |4
∏
i< j

|zi − z j |−2. (16)

The real factor in the third line is not expected
to affect topological properties. The second line
can be understood as the correlation function
〈� exp[2iθ (ξm)]� exp[−iθ (zn)] exp[2iφ(zn)]〉 in the theory
with the Lagrangian density

L = 2

4π
[i∂yφ∂xφ + (∂xφ)2] + 1

4π
[−i∂yθ∂xθ + (∂xθ )2].

(17)
Quasiparticle operators q̂ = exp(iω1θ ) exp(iω2φ) must have
single-valued OPE with exp(2iθ ) and exp(−iθ ) exp(2iφ). The
first condition allows ω1 = ± 1

2 . The second condition then
fixes ω2 = 1/2 + n. This corresponds to the quasiparticle
charge e/4 + ne/2. Again, the results agree with the standard
prescription.

The 331 order can next be obtained with neutral-mode
flipping along the same lines as in the non-Abelian case; the

anti-331 order can be obtained from the 331 wave function
with particle-hole conjugation; and so on.

D. Quasiparticle operators

Based on the diagonal K matrix in Eq. (7) and the t
vector or, alternatively, on the edge theories of the preced-
ing subsection, it is straightforward to determine the scaling
dimensions for different types of quasiparticles. Here, we
separately discuss the non-Abelian orders and the Abelian
orders.

A note about notations. In the previous subsection, we
did not explicitly consider edge theories with more than two
Bose modes, and we used the notations θ and φ for the
modes. In this section, we will need multiple edge modes.
We will denote all Bose fields as φindex, where index = ρ for
the charged mode, and index = ni or simply i for a neutral
mode, where i = 1, . . . , N numbers the Bose neutral modes.
To label topological orders, we will use the Chern number
νC = (2N + mψ )C, where mψ = 0 for the Abelian orders,
mψ = 1 for the non-Abelian orders, and C = +1/ − 1 for the
orders with downstream/upstream neutral modes.

1. Non-Abelian orders

The simplest edge theory for the order with the Chern
number νC has the Lagrangian density

LνC = − 2

4π
∂xφρ (∂t + vρ∂x )φρ + iψ (∂t + vnsign[νC]∂x )ψ

− 1

4π

N∑
i=1

∂xφi(sign[νC]∂t + vn∂x )φi. (18)

For non-Abelian orders, the most relevant operator for elec-
tron takes the following form:

�e = e2iφρ e±iφn j or �e = ψe2iφρ . (19)

Here, the subscript j runs from 1 to N , where N is the
number of neutral bosonic modes on the edge. For e/2 and
e/4 quasiparticles, the operators are determined by requiring
them to be local with all possible electronic operators. Hence,
the most relevant operators for such quasiparticles are

�e/2 = eiφρ , �e/4 = σeiφρ/2
N∏

i=1

e±iφn j /2
. (20)

The twist field σ has the conformal dimension [123] hσ = 1
16

and satisfies the fusion rule σ × σ = ψ + I . Therefore, we
determine the scaling dimensions for each type of quasiparti-
cles [38,61] as

�e = 3/2, �e/2 = 1/4, �e/4 = (N + 1)/8. (21)

From Eq. (21), it is noticed that the e/4-quasiparticle operator
is the most relevant among all above operators at N < 1
(PH-Pfaffian and Pfaffian orders). For N = 1, the e/4 and e/2
quasiparticles are equally relevant [anti-Pfaffian and SU(2)2

orders]. For N > 1, the e/2 quasiparticle becomes the most
relevant [example: anti-SU(2)2 order].

Note that different electron operators (19) do not anticom-
mute. This can be fixed by introducing Klein factors. We will
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not explicitly include them in the equations below since they
are of little importance to our calculations.

2. Abelian orders

The simplest edge theory for the order with the Chern
number νC has the Lagrangian density

LνC = − 2

4π
∂xφρ (∂t + vρ∂x )φρ

− 1

4π

N∑
i=1

∂xφi(sign[νC]∂t + vn∂x )φi. (22)

For Abelian orders, the Ising anyonic sector is absent. There-
fore, the most relevant electronic operator (except in the
K = 8 state) takes the following form:

�e = e2iφρ e±iφn j . (23)

For e/2 and e/4 quasiparticles, the most relevant operators are
now given by

�e/2 = eiφρ , �e/4 = eiφρ/2
N∏

i=1

e±iφn j /2
. (24)

As a result, the scaling dimensions for each type of quasipar-
ticles are determined [38,61] as

�e = 3/2, �e/2 = 1/4, �e/4 = N/8 + 1/16. (25)

From Eq. (25), we conclude that the e/4 quasiparticle is the
most relevant for topological orders with N � 1 (K = 8, 113,
and 331 orders). For N > 1, the e/2 quasiparticle is the most
relevant (example: anti-331 order). Electrons are gapped in
the K = 8 state. The charge q = ne/4 excitation is described
by �q = exp(inφρ ).

III. FRACTIONAL STATISTICS

After generating different topological orders for the ν = 5
2

FQH state in the previous section, we would like to check that
all of them are connected with Kitaev’s sixteenfold way [15].
Our present goal is twofold. First, we would like to describe
quasiparticle statistics for all orders from the previous section.
This is needed for the analysis of experimental probes. In
the process, we achieve the second goal: explicitly observe
a connection of all orders with Kitaev’s classification.

In Kitaev’s original proposal, all particles are neutral.
Hence, we need to separate the neutral and charged sectors of
the theory. Thanks to a simple form of the K matrix in Eq. (7),
this task is not hard. The only charged field is φρ . As far as the
contributions of the neutral fields to quasiparticle operators
are concerned, there are three different classes of particles:
the vacuum (I ) class of the particles whose operators contain
only φρ , the fermion (ε) class in which the charged part is
multiplied by an operator with Fermi statistics, and the vortex
(σ ) class. The products of charged fields and neutral Bose
operators are included in the (I ) class. Every quasiparticle
operator is a product of some exponent of the form exp(isφρ ),
and a “neutralized” part. We identify the neutralized e/4
quasiparticles and the neutralized electron as the vortex and
the fermion, respectively. Following Ref. [15], the Chern num-
ber νC is defined as the net number of the Majorana fermions

moving downstream. Since each neutral bosonic mode can
be fermionized and split into two Majorana fermions, each
downstream Bose mode contributes 2 to the Chern number
νC , and each upstream Bose mode contributes −2.

A. Sixteenfold way for Abelian topological orders

We introduce operators of neutral fermions

ε =
N∏

i=1

einiφi , (26)

where we label neutral Bose fields as φi. Physically, these
operators are the neutral parts of various electron operators.
Furthermore, ni is a set of integers which satisfies

N∑
i=1

ni ≡ 1 (mod 2). (27)

We identify vortices σ as the neutral parts of the e/4-
quasiparticle operators:

σ =
N∏

i=1

ei( 1
2 +li )φi . (28)

Two vortices are said to be of the same type if they differ by an
even number of fermions (equivalently, a boson). Otherwise,
they are different types of vortices.

1. Topological spin

We start with computing the topological spin of the
fermion and the vortex separately. Following the convention
in Ref. [15], we define the topological spin of a particle a as

ϑa = e2π i(ha−h̄a ). (29)

The symbols ha and h̄a denote the holomorphic and antiholo-
morphic conformal dimensions of the operator for the particle,
respectively. Physically, the topological spin is directly related
with the phase θa induced from exchanging two identical
particles as

eiθa = ϑa. (30)

Consider first the case of a positive Chern number νC . Since
the K matrix has been diagonalized in Sec. II, the conformal
dimension of a holomorphic vertex operator V = ei

∑
i αiφi is

h =
∑

i

(Ki+1 i+1)−1

(
α2

i

2

)
=

∑
i

α2
i

2
. (31)

Here, Ki+1 i+1 = 1 is the diagonal matrix element, correspond-
ing to the ith neutral mode φi. The same exactly scaling
dimension h̄ is obtained as a function of {αi} for an anti-
holomorphic vertex operator V = ei

∑
i αiφi in a theory with a

negative Chern number.
Based on the definition in Eq. (29), the topological spin of

ε in Eq. (26) is evaluated as

ϑε = exp

[
i sgn(νC )π

N∑
i=1

n2
i

]

= exp

[
i sgn(νC )π

N∑
i=1

ni

]
= −1. (32)
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For σ , the topological spin is determined as

ϑσ = exp

[
iπ sgn(νC )

N∑
i=1

(
1

2
+ li

)2
]

= eiπ sgn(νC )N/4 exp

[
iπ sgn(νC )

N∑
i=1

li(li + 1)

]

= eiπνC/8 (33)

since li(li + 1) is even for any integer li. Therefore, both ϑε

and ϑσ agree with the results by Kitaev [15].

2. Fusion rules

Kitaev’s fusion rules between a vortex and a fermion
are satisfied automatically due to our definition of the two
different types of vortices. Now, we show that the fusion rules
for vortices can be grouped into two different cases. The result
of fusing two vortices is given by

σ1 × σ2 ∼
N∏

i=1

ei(1+li+mi )φi . (34)

To determine the nature of the resulting particle, we evaluate
its topological spin. From Eq. (29), we have

ϑ = exp

[
iπ

N∑
i=1

(1 + li + mi )
2

]
= exp

[
iπ

N∑
i=1

(1 + li + mi )

]
.

(35)

If σ1 differs from σ2 by a boson, then
∑N

i=1(li + mi ) is an even
integer. Hence, ϑ = eiNπ . For odd N , ϑ = −1 which indicates
that σ1 and σ2 fuse to a fermion. On the other hand, ϑ = 1
when N is even. Hence, the two vortices fuse to a boson. In
summary, we have

σ × σ = ε (when N is odd),

σ × σ = I (when N is even). (36)

When σ1 and σ2 are two different types of vortices, then∑N
i=1(li + mi ) becomes an odd integer. In this case, we have

the following fusion rules:

σ1 × σ2 = I (when N is odd),

σ1 × σ2 = ε (when N is even). (37)

For the Abelian topological orders proposed in Sec. II, all
neutral modes have the same chirality. Hence, the Chern
number satisfies |νC | = 2N . The cases of odd N and even
N correspond to νC ≡ 2 (mod 4) and νC ≡ 0 (mod 4), respec-
tively. One can easily check that the fusion rules in Eqs. (36)
and (37) agree with Kitaev’s results.

3. Braiding rules

The phase accumulated from exchanging two identical
particles can be determined from Eqs. (30), (32), and (33).
In our discussion of interferometry, a slightly different phase
is essential. We define φab

c as the phase, accumulated by a
particle of type a making a full counterclockwise circle [116]

about a particle of type b. The two particles are in the fusion
channel c. At a = b one gets

φεε
I = 2θε = 0, (38)

φσ1σ1
c = φσ2σ2

c = 2θσ = πνC

4
(mod 2π ). (39)

For nonidentical particles, the exchange phase is not
uniquely defined. For this reason, at a �= b, we only consider
the encircling phases φab

c . Let the neutral parts of the particles
be described by the vertex operators Va = ei

∑
i liφi and Vb =

ei
∑

j m jφ j . Since the K matrix is diagonal, the correlation
function for the two particles (and a distant additional vertex
to ensure a nonzero answer) in the edge CFT is

〈Va(z)Vb(w)〉 = (z − w)
∑N

i=1
limi

Ki+1 i+1 . (40)

Thus,

φab
c = 2π

N∑
i=1

limi

Ki+1 i+1
(mod 2π ). (41)

Moving a fermion around a vortex. Consider encircling a
vortex by a fermion. This process induces the phase

φσε
c = 2π sgn(νC )

N∑
i=1

ni

(
1

2
+ li

)
(mod 2π )

= π sgn(νC )
N∑

i=1

ni (mod 2π )

= π. (42)

In the last step, we used the fact that
∑

i ni is odd since ε is a
fermion. Compare this with the rules from Tables 2 and 3 in
Ref. [15], which are summarized as follows:

νC ≡ 0, 8 (mod 16) : Reε
m = Rεm

e = 1, Rmε
e = Rεe

m = −1,

νC ≡ ±4 (mod 16) : Reε
m = Rεe

m = Rεm
e = Rmε

e = eiπνC/8,

νC ≡ ±2 (mod 4) : Raε
ā = Rεa

ā = Rāε
a = Rεā

a = e−iπνC/4.

(43)

For all three cases, the phase factor accumulated by a fermion
on a complete circle around σ equals

RσεRεσ = −1. (44)

This is consisent with the π phase (42).
Moving vortices. Since the topological spin for the vortex

agrees with Ref. [15], the phase (33) induced from exchanging
two identical vortices must be consistent with the braiding
rules from Ref. [15]. Furthermore, the same phase is induced
if one of the vortices differs from the other by a boson.

When the difference between the vortices is a fermion, the
phase induced by moving one of them around the other is

φσ1σ2
c = 2πsgn(νC )

N∑
i=1

(
1

2
+ li

)(
1

2
+ mi

)
(mod 2π )

=
(πνC

4
+ π

)
(mod 2π ). (45)
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The corresponding braiding rules in Ref. [15] are

νC ≡ 0, 8 (mod 16) : Rem
ε = eiπνC/8, Rme

ε = −eiπνC/8,

νC ≡ ±4 (mod 16) : Rem
ε = Rme

ε = 1,

νC ≡ ±2 (mod 4) : Raā
ε = Rāa

ε = e−iπνC/8. (46)

For all three cases, the phase, accumulated on a full circle, is

Rσ1σ2
c Rσ2σ1

c = ei(π+πνC/4), (47)

which agrees with the phase from Eq. (45). Thus, we have
verified that all topological spins, fusion rules, and phases
are consistent with Ref. [15]. Furthermore, the results in
Eqs. (32), (33), (42), and (45) are invariant under the change
of νC → νC ± 16. Therefore, we conclude that the Abelian
topological orders in Fig. 2 agree with Kitaev’s sixteenfold
way.

B. Sixteenfold way for non-Abelian topological orders

The non-Abelian topological orders introduced in Sec. II
can be viewed as direct products between an Ising conformal
field theory and an Abelian U(1) sector. The Abelian sector is
still described by the K matrix in Eq. (7). Here, we examine
the extra contribution from the Ising CFT. To prevent confu-
sion with the vortex σ , we change the notation for the spin
field in the e/4-quasiparticle operator to χ . As a reminder, the
fusion rules for χ are χ × ψ = χ and χ × χ = ψ + I [9].
Here, ψ is the Majorana field with the conformal dimension
1
2 . The phase induced from exchanging two χ is given by

θ
χχ
I = −π

8
sgn(νC ), θ

χχ

ψ = 3π

8
sgn(νC ). (48)

Here, νC is the Chern number of the non-Abelian topological
order which differs from Chern number of the associated U(1)
Abelian sector by ±1.

1. Topological spin

The neutral fermion ε is identified as

ε =
N∏

i=1

einiφi or ε = ψ

N∏
i=1

eimiφi . (49)

Here,
∑

ni is odd, whereas
∑

mi is even. From this definition,
we automatically have θε = −1. The non-Abelian vortex is

σ = χ

N∏
i=1

ei( 1
2 +li )φi . (50)

Based on the above definition, one can easily verify that σ ×
σ = ε + I and σ × ε = σ . These fusion rules are consistent
with Table 1 in Ref. [15]. Although N only counts the modes
of the U(1) Abelian sector, ϑσ = eiπνC/8 is still satisfied since
the conformal dimension of χ is 1

16 . This contributes an
additional factor of eiπsgn(νC )/8 to the topological spin.

2. Braiding rules

For the fermion in Eq. (49) and the vortex in Eq. (50), the
phase induced by moving one of them around the other is

φσε
σ = 2π sgn(νC )

N∑
i=1

ni

(
1

2
+ li

)
(mod 2π )

or φσε
σ = sgn(νC )

[
2π

N∑
i=1

mi

(
1

2
+ li

)
− π

]
(mod 2π ).

(51)

In the second case, the additional π phase comes from moving
χ around ψ . In both cases, the results reduce to

φσε
σ = π. (52)

Finally, the phase accumulated by exchanging a pair of non-
Abelian vortices can be decomposed into two parts:

θσσ
β = θ

χχ

β1
+ θ

σAσA
β2

. (53)

In the above equation, σA represents the Abelian vortices
obtained from σ by detaching χ . Also, β1 and β2 should fuse
into β, where β, β1, and β2 can be either I or ε = ψ . Let us
first assume that the two Abelian vortices σA are described
by identical operators. It is then meaningful to ask about the
phase, accumulated when their positions are exchanged.

We start with the scenario of νC > 0. If νC ≡ 1 (mod 4),
then the two possible triplets for (β, β1, β2) are (I, I, I ) and
(ε, ψ = ε, I ). Then, one has

θσσ
I = θ

χχ
I + θ

σAσA
I = −π

8
+ π

8
(νC − 1) = π

8
(νC − 2),

θσσ
ε = θ

χχ

ψ + θ
σAσA
I = 3π

8
+ π

8
(νC − 1) = π

8
(νC + 2).

(54)

When νC ≡ 3 (mod 4), the two possible triplets for (β, β1, β2)
become (I, ψ, ε) and (ε, I, ε). Thus,

θσσ
I = θ

χχ

ψ + θσAσA
ε = 3π

8
+ π

8
(νC − 1) = π

8
(νC + 2),

θσσ
ε = θ

χχ
I + θσAσA

ε = −π

8
+ π

8
(νC − 1) = π

8
(νC − 2).

(55)

Similarly, one can also calculate θσσ
I and θσσ

ε for negative νC .
For all the four cases, the results can be rewritten as

θσσ
I = π

8

(
ν2

C − νC − 1
)

(mod 2π ), (56)

θσσ
ε = π

8

(
ν2

C + 3νC − 1
)

(mod 2π ), (57)

which agree with the braiding rules listed in Table 1 in
Ref. [15]. For encircling one vortex around another vortex,
one has

φσσ
I ≡ −πνC

4
(mod 2π ), (58)

φσσ
ε ≡ 3πνC

4
(mod 2π ). (59)

To finish our discussion, we need to address the situation in
which the Abelian parts σA of the two vortices differ. Since we
no longer consider identical operators for the two excitations,
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ground

probe

I

source

FIG. 3. Dashed lines show upstream neutral modes. Solid lines
show the charged mode. The neutral mode is excited at the hot spot
in the source.

it is only meaningful to ask about the phase, accumulated
when one anyon makes a complete circle around the other.
The results turn out the same as in the above equations (58)
and (59).

To conclude, we have demonstrated that the sixteenfold
way is satisfied for all the topological orders introduced in
Sec. II. This important feature will be useful when we discuss
interferometry in Sec. V.

IV. EXPERIMENTAL SIGNATURES

A. Upstream modes

The simplest experimental signature is the presence or
absence of upstream neutral modes. It can be tested by probing
upstream noise in the setup [70] of Fig. 3. The source in Fig. 3
is maintained at a finite voltage, while the chiral charged mode
enters it at zero voltage. Thus, a nonequilibrium hot spot
[124–126] forms at the point where the chiral charged mode
enters the contact. Energy, dissipated in the hot spot, is carried
by the upstream neutral mode toward the probe and heats it.
This results in excess noise in the probe. Other related setups
[67,68] were also proposed and used to observe upstream
neutral modes.

Clearly, energy can only go upstream in the states with the
negative Chern number νC . A subtlety involves a possibility
of upstream energy transport due to edge reconstruction [61],
if the edge is not long enough. This issue has been tackled
experimentally by comparing the upstream noise at ν = 5

2 in
GaAs with the upstream noise at ν = 7

3 and 8
3 [68]. There is

a topologically protected upstream mode at ν = 8
3 but not at

ν = 7
3 (see Ref. [65] for a review of the 8

3 and 7
3 states in

GaAs). Thus, if, in a given device, upstream noise is seen at
ν = 8

3 but not at ν = 7
3 , then the device can probe topologi-

cally protected upstream transport at other close filling factors.

B. Thermal Hall conductance

The thermal Hall conductance provides a complementary
probe of the neutral modes. The existing thermal transport
experiments cannot tell upstream modes from downstream
modes [62,127] since the experiments cannot determine the
sign of the thermal conductance coefficient. Hence, to find the

Chern number, one also has to test the presence of upstream
modes. Thus, the thermal transport approach is most powerful
if combined with the approach from the previous subsection.

In this type of experiment, the Hall bar is connected with
two heat reservoirs at different temperatures. One defines
the thermal Hall conductance as gQ = dJQ/dT = κT where
κ is the thermal conductance coefficient and JQ is the heat
current. In an FQH system, the thermal energy is mainly
carried by the edge modes. These edge modes are essentially
one-dimensional ballistic channels. In the limit of a long
propagation length, it was shown that κ = cκ0, where κ0 =
π2k2

B/(3h) and c denotes the central charge of the topological
order which is related to the net number of the downstream
modes [14,63,64]. A negative c corresponds to upstream heat
transport.

For the ν = 5
2 FQH system, there are two downstream

bosonic modes from the filled lowest Landau level. Also,
an additional downstream charged bosonic mode exists for
the second Landau level with ν = 1

2 . Finally, each topolog-
ical order has its unique neutral sector. In other words, the
central charges for different topological orders are different.
For Abelian orders, all neutral modes are bosonic. Each
contributes ±1 to the central charge, depending on the prop-
agation direction. Hence, the thermal conductance coefficient
is given by

κ = (2 + 1 ± N )
π2k2

B

3h
= (3 ± N )

π2k2
B

3h
, (60)

where the minus sign corresponds to upstream neutral modes.
On the other hand, a single Majorana mode exists at the edge
of a non-Abelian system. The central charge of the Majorana
mode is ± 1

2 . Therefore, one has

κ =
[

3 ±
(

N + 1

2

)]
π2k2

B

3h
. (61)

The positive (negative) sign corresponds to topological orders
with downstream (upstream) neutral modes. Recently, the
thermal conductance of κ = 2.5κ0 was reported in a ν = 5

2
FQH system in GaAs [62] in agreement with the predictions
[24] for the PH-Pfaffian state. Equations (60) and (61) apply to
long edges in thermal equilibrium. See Refs. [62,65,127,128]
for a discussion of finite-size effects in some of the states.

C. Tunneling

A very different approach to probe topological order is
tunneling transport [35–37,54]. Imagine that a constriction is
created in an FQH liquid (Fig. 4). Quasiparticles can then
tunnel through the constriction. To estimate the tunneling
conductance, one uses the scaling dimensions (21) and (25)
of the quasiparticle operators �q, where q stands for the
quasiparticle type. At low temperatures, the linear conduc-
tance can be found from the renormalization group (RG)
and is determined by the scaling dimension of the most
relevant tunneling operator ��†

qu�qd , where �qu,qd denote
the quasiparticle operators on the upper and lower edges on
the two sides of the constriction QPC. Under the action of
RG, � grows as E2�q−1, where E is the energy cutoff. Thus,
�eff (T ) ∼ T 2�q−1 at the energy scale set by the temperature.
The conductance G ∼ |�eff (T )|2 ∼ T 4�q−2 = T 2g−2 [60].
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Qqp

QPC

FIG. 4. Quasiparticle tunneling in the quantum point contact
(QPC) is shown by the dashed line.

The tunneling exponents g are listed in Table VI. The
most relevant quasiparticle is the e/2 particle in most states,
and hence g = 1

2 for a majority of the states. Smaller values
of g correspond to νC = 0, ±1, and ±2, that is, the K = 8,
Pfaffian, PH-Pfaffian, 331, and 113 states. We generally
expect that the tunneling amplitudes �1,2 are higher for
lower-charge particles. Thus, unrenormalized tunneling
amplitudes are expected to be higher for e/4 quasiparticles
than for e/2 quasiparticles. The dominant low-energy
tunneling process depends on the renormalized amplitudes.
At |νC | < 3, the most relevant tunneling operator is that of
e/4 particles and hence they dominate tunneling. At νC = ±3,
the e/4- and e/2-tunneling operators have the same scaling
dimension, so it is plausible that the e/4 tunneling dominates.
On the other hand, at |νC | � 7, the e/4-tunneling operator
is marginal or irrelevant. Hence, the e/2 tunneling is more
important. The case of 3 < |νC | < 7 is subtle. Both the e/4
and e/2 tunneling are relevant in the RG sense, yet, the
e/2-tunneling operator has a lower scaling dimension. What
sort of particles dominate depends then on the ratio of their
unrenormalized tunneling amplitudes.

The above discussion tacitly assumed that the neutral
modes do not interact with the charged mode. As we explain
below, the results for the tunneling exponents do not depend
on this assumption. This point is well known for positive
Chern numbers [60]. For negative Chern numbers and in
the absence of disorder, the exponents are nonuniversal [60].
The PH-Pfaffian state (νC = −1) is an exception to this rule
since no RG-relevant interaction between a single upstream
Majorana mode and the charged mode exists in that case
[24]. For νC < −2, the universality of the tunneling exponents
is guaranteed by disorder [25,34,38]. Thus, only the 113
state with νC = −2 should show a dependence of tunneling
exponents on the interaction of the upstream neutral and
downstream charged modes. Even in that case, the interaction
effect is weak [39] and will be neglected below.

The predicted scaling is only observed in the absence of
Coulomb interaction across the constriction [38,129], edge
reconstruction [130,131], and dissipation [132]. Otherwise,
one expects a nonuniversal g that exceeds the ideal theoretical
value. In a very clean sample, momentum-resolved tunneling
[133,134] would give detailed information about the structure
of the edge.

D. Fabry-Pérot interferometry

In order to directly probe the fractional statistics of anyons
in the fractional quantum Hall system, it is necessary to

Γ1

QPC 1 QPC 2

Γ2

FIG. 5. A Fabry-Pérot interferometer with two quantum point
contacts. Quasiparticles traveling along the edge tunnel at the two
contacts with the amplitudes �1 and �2. The number of the quasipar-
ticles in the antidot (dark circle in the middle) is controlled by the
gate voltage.

braid quasiparticles and examine the consequences. An ex-
perimental technique based on a Fabry-Pérot interferometer
was proposed by Chamon et al. for Abelian states [80].
Later, the same technique was generalized to study ν = 5

2
fractional quantum Hall systems [9,72,73] and many other
FQH states [82–87]. In this section, we review Fabry-Pérot
interferometry for all states introduced in Sec. II. The key
feature is the topological even-odd effect [72,73] which was
originally predicted for the Pfaffian state, but can easily be
seen to occur in all non-Abelian states. Depending on the
details, it can also be mimicked by Abelian orders [88].

In Fig. 5, we sketch a Fabry-Pérot interferometer with two
quantum point contacts (QPC). Quasiparticles traveling along
an edge can tunnel to the opposite edge at the contacts, with
the corresponding tunneling amplitudes �1 and �2. These
values are controlled by tuning the voltage on the gates that
define the QPCs. In the middle of the interferometer, an
antidot is created by applying a voltage to the central gate.
By tuning the voltage there, the number of quasiparticles in
the antidot can be adjusted. In the experiment, an interference
pattern in the tunneling current due to two possible tunneling
paths is measured.

In the following discussion, we will only focus on the
weak-tunneling regime. We assume that both �1 and �2 are
small, such that the backscattering current between the upper
and lower edges of the interferometer is determined by the
single-particle tunneling probability. To the lowest order in �1

and �2, the tunneling probability is given by [9,73]

p = r[|�1|2 + |�2|2 + 2u|�1||�2| cos (φAB + φs + δ)], (62)

where φAB denotes the Aharonov-Bohm phase and φs is
the statistical phase, accumulated by a quasiparticle that
makes a full circle around the interferometer. We define δ =
arg(�2/�1). r = r(V, T ) and u = u(V, T ) depend on micro-
scopic details. They satisfy one important constraint. Indeed,
the current must flow from higher voltage to lower voltage ir-
respective of the Aharonov-Bohm phase φAB. In other words,
the current cannot change sign as a function of φAB. This
means that the combination

s = 2|u�1�2|
|�1|2 + |�2|2 (63)
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must satisfy the inequality

s � 1. (64)

1. Tunneling operators

Equation (62) tacitly assumes that only one type of quasi-
particle is allowed to tunnel. This is never the case and the
Hamiltonian of an interferometer assumes the form

H = Hedges +
∑

α

(
�α

1 T α
1 + �α

2 T α
2 + H.c.

)
, (65)

where Hedges describes the edges [see Eqs. (18) and (22)];
�α

1,2 and T α
1,2 are the tunneling amplitudes and the tunneling

operators for quasiparticle type α at QPC1 and QPC2. The
index α covers both electric and topological charges.

We have argued in Sec. IV C that quasiparticles of only
one electric charge can be expected to dominate tunneling.
This charge is either e/4 or e/2. The e/2 case is easy since
there is only one allowed most relevant tunneling operator
T = exp(i[φu

ρ − φd
ρ ]/2), where the indices u and d refer to

the upper and lower edges. Thus, we come back to Eq. (62).
The situation is more complex for e/4 particles, provided that
νC �= 0.

One complication is a possibility that e/4 and e/2 particles
dominate tunneling at the two different QPCs. To avoid that
issue, we will assume that QPC1 and QPC2 are identical.
In particular, |�α

1 | = |�α
2 |. This assumption will also be used

in our discussion of Mach-Zehnder interferometry below.
Second, in all Abelian orders with νC �= 0, there are two
topologically distinct e/4 quasiparticles. Thus, two different
tunneling operators must be included at each QPC. This will
be of great importance in subsequent sections.

We observe that one tunneling operator is sufficient in
Eq. (65) for e/2 tunneling in all states and for e/4 tunneling
in all non-Abelian states and in the K = 8 state (νC = 0).
All other Abelian orders (integer νC �= 0) should be described
by Hamiltonians that include tunneling of two sorts of e/4
quasiparticles.

One more subtlety involves a possibility of several equally
relevant quasiparticle operators for e/4 particles. For example,
at νC = 4, such operators are Q+ = exp(iφρ/2) exp(i[φ1 +
φ2]/2) and Q− = exp(iφρ/2) exp(−i[φ1 + φ2]/2). A tunnel-
ing operator T α

i can include contributions from all such quasi-
particle operators, consistent with label α. This point is of
little consequence at |νC | � 2, but affects possible values of s
[Eqs. (63) and (64)] at |νC | > 2. Naively, any value of 0 � s �
1 is allowed and s → 1 at V, T → 0. The argument is based
on the renormalization group treatment of the Hamiltonian
(65). Indeed, the renormalization group procedure decreases
the distance between any two points on each step. When
the distance becomes shorter than the ultraviolet cutoff, the
points can be seen as merging. Hence, if the thermal and
voltage lengths h̄vρ,n/T and h̄vρ,n/eV exceed the interferom-
eter size, the renormalization group procedure stops after the
two tunneling contacts end up in the same spatial point. For
identical T1 and T2, this implies u(V, T ) = 1. Hence, s = 1 at
|�1| = |�2|.

The above argument works, provided that the edge actions
are given by equations of the type (18) and (22). A realistic
system may well not be described by this type of an action

even in the scaling limit, where all irrelevant operators can be
ignored. Indeed, relevant perturbations are missing in our sim-
plest equations for the edge actions. One such perturbation is
present at any νC . It is the random potential that couples to the
charged mode: w(x)∂xφρ . Such perturbation can be eliminated
from the Hamiltonian density vρ

2π
(∂xφρ )2 + w(x)∂xφρ by the

variable shift φρ → φρ + π
∫

w(x)dx/vρ . The shift changes
the relative phases of �1 and �2 and has no effect on the
range of s. Similar perturbations are among various relevant
perturbations that involve neutral modes. For example, the
perturbation Pn = wn(x)∂xφ1 is allowed. Such perturbations
do not affect the range of s at |νC | � 2. This changes at
|νC | > 2. Indeed, Pn can be eliminated by a shift of φ1. This
changes the relative phases of the contributions, containing
Q1 and Q2, in the tunneling operators. As a result, T1 and T2

cease being identical. This undermines the argument for the
possibility to reach s = 1.

We now turn to the analysis of the current through the
interferometer. First, we consider the situation, in which the
tunneling process is dominated by the e/4 quasiparticles.

2. Non-Abelian topological orders

Suppose an e/4 quasiparticle is sent to the interferometer
as a probe particle. The braiding phase it accumulates around
the antidot is given by

φs = nπ

4
+ φσα

β . (66)

Here, ne/4 is the total charge inside the interferometer (i.e., n
is the number of e/4 quasiparticles), α denotes the topological
charge inside the interferometer, and β is the fusion outcome
between σ and α. The phase φσα

β comes from the neutral
degrees of freedom. The first term nπ/4 comes from the
Abelian charged sector which is the same in all 16 states. As
a reminder, we quote the results for φσα

β from Sec. III:

φσσ
I ≡ −πνC

4
(mod 2π ), (67)

φσσ
ψ ≡ 3πνC

4
(mod 2π ), (68)

φσψ
σ = π (69)

φσ I
σ = 0. (70)

When the number n of trapped quasiparticles is odd, then
α = σ . Since σ × σ = ψ + I , there are two possible fusion
channels for the vortices. Both channels contribute to the
measured backscattering current. Moreover, the probabilities
of having β = ψ and I are the same. From Eqs. (58) and (59),
the phase difference between the two cases is determined as

�φ = φσσ
ψ − φσσ

I = 3πνC

4
−

(
−πνC

4

)
≡ π (mod 2π ).

(71)

Therefore, the two fusion channels correspond to the opposite
values of the cosine term in the probability (62). Hence,
the tunneling current does not depend on the magnetic flux
enclosed by the two QPCs.

On the other hand, α can be either I or ψ when n is even.
Nevertheless, the antidot must be in one of the superselection
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states, but not in their superposition. In Sec. III, we found
that φσψ

σ = π and φσ I
σ = 0 (the second equation is, of course,

trivial). Furthermore, these two values are independent of νC .
Therefore, we conclude that for all non-Abelian topological
orders satisfying the sixteenfold way, the flux-dependent term
in the tunneling current is given by

n is odd : I� = 0, (72)

n is even : I� = er

2
|�1||�2| cos

(
γ + nπ

4
+ Nψπ

)
. (73)

Here, Nψ = 1 if the antidot has the topological charge ψ ,
Nψ = 0 otherwise. Also, we have defined γ = φAB + δ. The
above expresses the celebrated even-odd effect.

3. Abelian topological orders with flavor symmetry

It has been argued that the even-odd effect was observed
experimentally at ν = 5

2 [50,52]. At this time, the interpre-
tation of the experiment remains ambiguous [135], in part,
because the even-odd effect may also be observed [88] in the
Abelian 331 state. Below, we argue that all the Abelian orders
in the sixteenfold way can demonstrate the same effect if they
have the exact flavor symmetry for the two species of quasi-
particles σ1 and σ2. The K = 8 order is an exception since
it has only one quasiparticle type. The flavor symmetry is
defined as the equivalence of the two quasiparticle types. This
implies two properties: (i) the two species of quasiparticles
have the same tunneling amplitudes at the QPC; and (ii) the
probabilities of their presence in the antidot are the same. For
us, only (i) matters.

Suppose the antidot contains a total number of n quasipar-
ticles, such that n1 of them are the first species of vortex and n2

of them are the second species of vortex. Then, the condition
n = n1 + n2 must hold. Due to the exact flavor symmetry, the
topological charge of the probe particle can be either σ1 or
σ2 with the same probability. Depending on the species of the
probe particle, the phase from encircling the antidot is given
by

φ1 = nπ

4
+ n1φ

σ1σ1
c1

+ n2φ
σ1σ2
c2

, (74)

φ2 = nπ

4
+ n1φ

σ2σ1
c2

+ n2φ
σ2σ2
c1

. (75)

In Sec. III, we proved that φσ1σ1
c1

= φσ2σ2
c1

= πνC/4 and
φσ1σ2

c2
= φσ2σ1

c2
= πνC/4 + π . Thus, we obtain

φ1 = nπ

4
+ (n1 + n2)

πνC

4
+ n2π, (76)

φ2 = nπ

4
+ (n1 + n2)

πνC

4
+ n1π. (77)

The phase difference between the two cases is given
by �φ = φ1 − φ2 = (n2 − n1)π . When n is odd, �φ ≡
π (mod 2π ) which implies that the measured backscattering
current would have no oscillating pattern. On the other hand,
�φ ≡ 0 (mod 2π ) when n is even. Hence, constructive inter-
ference is present. Now, the evenness of n means that n1 and
n2 can be either both even or both odd. From Eqs. (76) and
(77), we see that a change in the parity of n1 and n2 shifts both
φ1 and φ2 by a phase of π . This phenomenon is identical to the
result for non-Abelian topological orders where two different
topological charges of the antidot are possible at each even n,

and correspond to two phases that differ by π . Therefore, we
conclude that all topological orders satisfying the sixteenfold
way can demonstrate the even-odd effect if the Abelian orders
have an exact symmetry for the e/4 quasiparticles.

4. e/2-quasiparticle tunneling

We complete our discussion of Fabry-Pérot interferome-
tery by examining the tunneling current when the tunneling
process is dominated by the (e/2, I ) quasiparticles. In this
scenario, the braiding phase from moving an (e/2, I ) quasi-
particle around an e/4 particle is πn/2. Hence, the periodic
term for the backscattering current is given by [85]

Ie/2 ∝ cos

(
2π�

2�0
+ nπ

2

)
, (78)

where �0 = hc/e and � is the magnetic flux. In other words,
the backscattering current can tell nothing about the nature of
the topological order.

V. MACH-ZEHNDER INTERFEROMETRY

In this section, we consider a more complicated setup than
a Fabry-Pérot interferometer. A Mach-Zehnder interferometer
[89,95] is harder to fabricate, but it offers two advantages
over other approaches to interferometry. First, it produces sub-
stantially different signatures for different topological orders
of the sixteenfold way. Second, this approach is immune to
complications from fluctuations of the quasiparticle charge
inside the interferometer [90]. If such fluctuations happen
on a shorter timescale than a typical time interval between
tunneling events at the point contacts in the interferometer,
then the fluctuations would destroy or greatly modify the in-
terference picture in any device. Slow fluctuations still greatly
affect the behavior of a Fabry-Pérot interferometer [91], while
a Mach-Zehnder device is not sensitive to them.

The physics of a Mach-Zehnder interferometer is consid-
erably more involved than in the experimental setups from
the previous section. It was addressed for some topological
orders before [24,74–79,89,93]. Our present goal is to review
the expected signatures in all states of the sixteenfold way. We
will consider not only the tunneling current, but also the low-
frequency noise in the interferometer. At weak tunneling, the
noise and the current are not independent probes in the Fabry-
Pérot setup. Indeed, at T = 0, the noise S = ∫

dt〈I (0)I (t ) +
I (t )I (0)〉 reduces to the Schottky formula S = 2qI , where q
is the charge of tunneling quasiparticles [75]. Interestingly,
the noise exhibits a much more complicated behavior in the
Mach-Zehnder setup. This happens due to the memory of the
previous tunneling events.

Below, we focus on zero temperature, so that quasiparticles
can only tunnel from the edge with the higher electrochemical
potential (edge 1) to the edge with the lower electrochemical
potential (edge 2). A systematic treatment for systems at a
finite temperature [75,136] can be found in Appendix.

A typical setup for a Mach-Zehnder interferometer is illus-
trated in Fig. 6. In the figure, the arrows show the propagation
of charged modes along the quantum Hall edges. Quasipar-
ticles are allowed to tunnel between the edges at the two
quantum point contacts QPC1 and QPC2. Source S1 is biased
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Edge 2

Edge 1
2 CPQ1 CPQ

S1 D1
A

B

Γ1 Γ2

D2S2

FIG. 6. A schematic picture of an electronic Mach-Zehnder in-
terferometer. Charges propagate from source S1 to drain D1 and
source S2 to drain D2. Tunneling is possible at the two quantum point
contacts QPC1 and QPC2.

so that the electrochemical potential of edge 1 is higher than
that of edge 2 by eV . We are interested in the tunneling current
from source S1 to drain D2 and the corresponding noise,
which depends on V and the magnetic flux enclosed by the
loop QPC1-A-QPC2-B-QPC1.

The key piece of physics is the memory effect. Each
quasiparticle, absorbed by drain D2, remains forever inside
the loop QPC1-A-QPC2-B-QPC1. The probability of each
subsequent tunneling event is affected by the mutual statistical
phase φs of the tunneling quasiparticle and drain D2.

A. Tunneling current for non-Abelian orders

Since the bulk excitations are gapped, the system can be
described by a low-energy edge theory. The tunneling process
in Fig. 6 is modeled by the following Hamiltonian:

Ĥ = Ĥedge + [(�1T̂1 + �2T̂2) + H.c.], (79)

where Ĥedge is the Hamiltonian for the two edges of the
FQH liquid. The tunneling amplitudes for particles at the two
quantum point contacts are labeled as �1 and �2, with the
corresponding tunneling operators denoted as T̂1 and T̂2. Here,
we choose a gauge such that both the Aharonov-Bohm phase
φAB and the statistical phase φs are absorbed in T̂2. Depending
on the number of neutral bosonic modes on the edge and
the tunneling amplitudes for different types of quasiparticles,
the tunneling process can be dominated by either e/2 or e/4
quasiparticles [see Eqs. (21) and (25)]. In the following, we
will calculate the tunneling current for each case separately.

1. Case 1: e/4-quasiparticle tunneling

For all proposed non-Abelian topological orders in Sec. II,
the fundamental excitations are quasiparticles with charge
e/4. Suppose the tunneling process is dominated by e/4 quasi-
particles. Then, there are six possible superselection sectors
for drain D2 as shown in Fig. 7. Each sector is labeled by the
electric and topological charges in parentheses. The electric
charge is always ne/4, where n = −1, 0, 1, 2, since changing
n by 4 amounts to adding the charge of a topologically
trivial electron. Thus, (−e/4, σ ) can be considered to be in
the same sector as (3e/4, σ ) [137]. Since the temperature is
assumed to be zero, all transitions between different sectors
are unidirectional.

FIG. 7. The six possible superselection sectors for drain D2
when the tunneling is dominated by charge-e/4 quasiparticles. The
arrows show all possible transitions between different sectors at
zero temperature. The corresponding transition probabilities and
statistical phases are shown in blue (four phases are listed in Table I).

When both �1 and �2 are small, and assuming that the
fusion channel of the tunneling particle with the topological
charge in D2 is known, a general expression for the transition
rate between two sectors can be written as [89]

p(φs) = r[(|�1|2 + |�2|2)

+ 2u|�1||�2| cos (φAB + φs + δ)], (80)

with δ = arg (�2/�1) and u � 1. Here, φAB = 2π�/(4�0) is
the Aharonov-Bohm phase accumulated by an e/4 quasipar-
ticle moving around the interferometer loop QPC1-A-QPC2-
B-QPC1. Four probabilities p(nπ/2) in Fig. 7 are given by
the above expression with φs = nπ/2. The remaining proba-
bilities are pi/2, where pi is given by Eq. (80) with φs from
Table I. The factor of 1

2 in each probability comes from two
possible fusion channels, σ × σ = I or ψ , and reflects the
equal probabilities of the two fusion outcomes.

As shown in Fig. 7, there are four possible ways for
drain D2 to absorb one electron charge from source S1 and
return back to the original sector (−e/4, σ ). They correspond
to four paths Pi, i = 1, . . . , 4, on the oriented graph in the
figure. For example, one path P1 is (−e/4, σ ) → (0, ψ ) →
(e/4, σ ) → (e/2, ψ ) → (−e/4, σ ). To compute the average
current detected in drain D2, we need to know the average
time t̄e/4 to transfer four successive quasiparticles: I = e/t̄e/4.
The average time is a weighted sum of the average times t̄Pi to
travel along each of the paths Pi. For example, the probability
q1 that the system chooses path P1 equals

q1 =
(

p1

p1 + p3

)(
p2

p2 + p4

)
. (81)

The average time is given by

t̄e/4 =
4∑

i=1

qit̄Pi , (82)

where qi are the probabilities of the four paths.

TABLE I. Statistical phases φs for transitions between different
superselection sectors as shown in Fig. 7. Notice that p1 + p3 =
p2 + p4 = 2r(|�1|2 + |�2|2).

Index φs Index φs

1 π (3νC − 1)/4 2 π (3νC + 1)/4
3 −π (νC + 1)/4 4 −π (νC − 1)/4
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The expressions for qi and Pi are similar for all i. We only
show the contribution from the first path:

q1t̄P1 =
∫ ∞

0

[
e−(p1+p3 )t1/2

( p1

2

)]
[e−p(π )t2 p(π )]

×
[
e−(p2+p4 )t3/2

( p2

2

)][
e−p(− π

2 )t4 p
(
−π

2

)]
× (t1 + t2 + t3 + t4) dt1dt2dt3dt4, (83)

so that

t̄P1 = 2

p1 + p3
+ 1

p(π )
+ 2

p2 + p4
+ 1

p(−π/2)
. (84)

For convenience in the later discussion, we define

A =
⎛
⎝4 +

4∑
j=1

pj

p[( j + 1)π/2]

⎞
⎠. (85)

After summing over all four paths with the weights qi, we have

t̄e/4 = A

2r(|�1|2 + |�2|2)
. (86)

The same result can also be derived with the kinetic equation
approach [75,89].

The tunneling current Ie/4 = e/t̄e/4 takes four different
values for different νC . Indeed, φs in Table I is invariant
under νC → νC + 8, and νC is an odd number for non-Abelian
orders. In terms of the parameter s = 2u|�1||�2|/(|�1|2 +
|�2|2), Eqs. (63) and (64), one has

when νC = 1 : Ie/4 = er

4
(|�1|2 + |�2|2)

[
1 − s2 + s4

4 sin2 2γ

1 − 3s2

4 + s4

16 (1 − cos 4γ − sin 4γ )

]
, (87)

when νC = −1 : Ie/4 = er

4
(|�1|2 + |�2|2), (88)

when νC = 3 or − 5 : Ie/4 = er

4
(|�1|2 + |�2|2)

[
1 − s2 + s4

4 sin2 2γ

1 − s2

2

]
, (89)

when νC = 5 or − 3 : Ie/4 = er

4
(|�1|2 + |�2|2)

[
1 − s2 + s4

4 sin2 2γ

1 − 3s2

4 + s4

16 (1 − cos 4γ + sin 4γ )

]
. (90)

In the above equations, we have defined γ = φAB + δ.
We remark that Eqs. (87) and (88) reproduce the results
for the Pfaffian order [74] and the PH-Pfaffian order [24],
respectively. The PH-Pfaffian case is strikingly different from
all others since the current (88) exhibits no flux dependence.
νC = ±7 are not included in the above equations since e/4
particles are not expected to dominate tunneling at those
Chern numbers.

2. Case 2: e/2-quasiparticle tunneling

As discussed in Sec. IV C, e/4 particles dominate tunneling
at |νC | < 4. At |νC | � 7, the most important tunneling process
involves e/2 particles. Both quasiparticle types can dominate
tunneling at the intermediate values of the Chern number.
Thus, it is essential to address the interference of both e/4
and e/2 charges. Below, we investigate the tunneling of the
particles from the (e/2, I ) sector. In a striking contrast with
the e/4 case, the results do not depend on statistics, at least, in
the simplest model. In fact, the tunneling current is the same
for the Abelian and non-Abelian orders.

As before, we denote the number of e/4 quasiparticles in
D2 as n. Depending on the parity of n, possible superselection
sectors for the drain are shown in Fig. 8. From the figure,
one sees that the tunneling current depends on the parity of
n. The Aharonov-Bohm phase becomes φ′

AB = 2π�/(2�0).
The statistical phase is φ′

s = nπ/2 irrespectively of νC .
When n is odd, the topological charge for the drain can

be σ only. The average time required for D2 to absorb one

electron is then given by t̄e/2 = 1/p(−π/2) + 1/p(π/2). On
the other hand, the topological charge of D2 can be either I or
ψ , when n is even. In both cases, the time for D2 to absorb an
electron is t̄e/2 = 1/p(0) + 1/p(π ). Therefore, we determine
the tunneling current Ie/2 = e/t̄e/2 as

Ie/2 = er

2
(|�1|2 + |�2|2)(1 − s2 sin2 γ ′) for odd n, (91)

Ie/2 = er

2
(|�1|2 + |�2|2)(1 − s2 cos2 γ ′) for even n. (92)

Here, γ ′ = φ′
AB + δ and s has a similar definition to the

definition in Eqs. (87)–(90). This result resembles the even-
odd effect in the Fabry-Pérot interferometry.

(-e/4,σ) (e/4,σ)
−π/2

π/2

(0,I/ψ) (e/2,I/ψ)
0

π

FIG. 8. Possible superselection sectors for drain D2 when the
tunneling is dominated by charge-e/2 quasiparticles. The left (right)
panel illustrates the scenario when the number of charge-e/4 quasi-
particles in D2 is odd (even). When there are even number of
quasiparticles in drain D2, the topological charge of the drain can be
either I or ψ . However, the topological charge does not change after
tunneling events since e/2 quasiparticles carry the trivial topological
charge I . The arrows show all possible transitions between different
sectors at zero temperature.
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A more general analysis should incorporate rare tunneling
events of charge-e/4 particles. Such tunneling events switch
the system between the two sides of Fig. 8. In turn, the
tunneling of e/4 particles is sensitive to possible tunneling
of neutral fermions ψ . Fermion tunneling is marginal in the
RG sense [113] and hence likely more important than the
tunneling of e/4 charges at |νC | � 7. To include such effects,
it is necessary to set up a full set of kinetic equations. This
cumbersome general procedure is beyond the scope of this
paper. On the other hand, one does not need to include rare
tunneling events of e/2 particles and neutral fermions in the
analysis of the previous subsection, where we assumed that
e/4 particles dominate. The difference between this subsec-
tion and the previous subsection is due to the fact that e/4-
charge tunneling cycles the system through all superselection
sectors. Any additional tunneling events just occasionally
change the phase of the cycle. When the dominant tunneling
process is due to e/2 particles, some superselection sectors are
available only through rare tunneling events of other charges.

B. Fano factor in shot-noise experiment for non-Abelian orders

The Fano factor in a shot-noise experiment is another
useful parameter to differentiate topological orders [75]. The
nonequilibrium noise is defined as the Fourier transform of
the current-current correlation function

S(ω) = 1

2

∫ ∞

−∞
〈Î (0)Î (t ) + Î (t )Î (0)〉eiωt dt . (93)

This definition differs by a factor of 1
2 from a definition,

frequently found in the literature. We focus on the low-
frequency limit. In this case, the shot noise can be written as
S = δQ2(t )/t , where Q(t ) is the charge, transmitted through
the interferometer over the time t , and δQ(t ) is its fluctuation.
The Fano factor e∗ is the ratio between the noise and the
current:

e∗ = S/I = δQ2(t )/Q(t ) = e(δt2/t2), (94)

where t is the average time needed to transfer the total charge
e through the interferometer, and δt2 is the mean-square

fluctuation of that time. The last equality in Eq. (94) was
derived in Ref. [75].

We first assume that tunneling is dominated by e/4 parti-
cles. Now, we proceed to evaluate t2

e/4. One easily verifies
that

t2
e/4 =

∑
qit2Pi , (95)

where t2Pi are the fluctuations of the times, corresponding to
the four paths through the diagram in Fig. 7. For the path P1,
the contribution q1t2P1 is given by∫ ∞

0

[
e−(p1+p3 )t1/2

( p1

2

)]
[e−p(π )t2 p(π )]

×
[
e−(p2+p4 )t3/2

( p2

2

)][
e−p(− π

2 )t4 p
(
−π

2

)]
× (t1 + t2 + t3 + t4)2 dt1dt2dt3dt4. (96)

This yields

t2P1 = 8

(p1 + p3)2
+ 8

(p2 + p4)2
+ 8

(p1 + p3)(p2 + p4)

+ 4

(p1 + p3)p(π )
+ 4

(p1 + p3)p(−π/2)

+ 4

(p2 + p4)p(π )
+ 4

(p2 + p4)p(−π/2)

+ 2

[p(π )]2
+ 2

[p(−π/2)]2
+ 2

p(π )p(−π/2)
. (97)

A lengthy but straightforward calculation for all four paths
gives the following Fano factor:

e∗

e
= p1 p3

A2

[
1

p(0)
− 1

p(π )

]2

+ p2 p4

A2

[
1

p
(−π

2

) − 1

p
(

π
2

)
]2

+ p1 + p3

A2

4∑
j=1

pj

{p[( j + 1)π/2]}2
+ 8

A2
. (98)

By substituting the probabilities at different νC , one gets e∗/e
as

when νC = 1 :
e∗

e
= 1

4

[
1 − s2 + s4

4 (2 + cos 4γ − sin 4γ ) + s6

8 sin 4γ − s8

128 (1 − cos 8γ )[
1 − 3s2

4 + s4

16 (1 − cos 4γ − sin 4γ )
]2

]
, (99)

when νC = −1 :
e∗

e
= 1

4

[
1 − s2

2

1 − s2 + s4

8 (1 − cos 4γ )

]
, (100)

when νC = 3 or −5 :
e∗

e
= 1 − s2

2 + s4

8 (1 + 3 cos 4γ ) + s6

16 (1 − cos 4γ )

(2 − s2)2
, (101)

when νC = 5 or −3 :
e∗

e
= 1

4

[
1 − s2 + s4

4 (2 + cos 4γ + sin 4γ ) − s6

8 sin 4γ − s8

128 (1 − cos 8γ )[
1 − 3s2

4 + s4

16 (1 − cos 4γ + sin 4γ )
]2

]
. (102)

From these equations, we extract the maximal and minimal
possible values of e∗/e in the limit of the maximal possible

s = 1. Those values and the corresponding values of γ =
φAB + δ are summarized in Table II.
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TABLE II. Maximal and minimal values of the Fano factor in
a Mach-Zehnder interferometer experiment when s = 1. Here, we
focus on non-Abelian orders for the ν = 5

2 FQH state and assume
that the tunneling process is dominated by e/4 quasiparticles. The
third and last columns provide the values for γ = φAB + δ at which
e∗ = e∗

max and e∗ = e∗
min, respectively. Notice that these values of γ

are modulo π/2.

νC (mod 8) e∗
max/e γmax e∗

min/e γmin

1 3.20 0.09 0.44 −0.82
3 1 0 3/8 ±π/4
5 3.20 −0.09 0.44 0.82
7 ∞ 0 1/2 ±π/4

When the tunneling process is dominated by e/2 quasipar-
ticles, the physics is similar to that of a Laughlin state [75] as
can be seen from Fig. 8. The Fano factor is simply given by

e∗ = e

[
1 + s2 sin2 (φ′

AB + δ)

2

]
, (103)

or a similar expression with a cosine in place of the sine.
Hence, the maximal value of the Fano factor is e in the limit of
�1 ≈ �2 and u ≈ 1. The minimal Fano factor is always e/2.

C. Abelian topological orders with flavor symmetry

Similar calculations can be performed for Abelian topo-
logical orders. However, there are two different species of
e/4 quasiparticles due to the two different types of vortices
σ1 and σ2, as shown in Sec. III. Consequently, there are eight
distinct superselection sectors for drain D2 as shown in Fig. 9.
Generally, the two types of quasiparticles can have different

(0,ψ)

(0,I)

(e/2,ψ)

(e/2,I)

(-e/4,σ )1 (e/4,σ )1

(-e/4,σ )2 (e/4,σ )2 (-e/4,σ )2

(-e/4,σ )1
1

1

2

2

3

4

4

3

5

5

6

6

7

8

8

7

FIG. 9. For Abelian topological orders of the ν = 5
2 FQH state,

there are eight superselection sectors for drain D2. The arrows show
possible transitions between different sectors at zero temperature due
to the tunneling of e/4 particles. The corresponding statistical phases
are listed in Tables III and IV.

tunneling amplitudes at the quantum point contacts. Thus, one
has to consider many more transition rates than in the non-
Abelian case. The calculations become very cumbersome. In
the past, they were performed numerically for some of the
proposed topological orders [78,79].

The statistical phase, accumulated after one e/4 quasi-
particle encircles another, is still given by Eq. (66). Since
the sixteenfold way is also satisfied by Abelian vortices, φs

can be evaluated easily. Depending on the Chern number
of the topological order, the results are shown in Tables III
and IV.

In principle, the tunneling current and the Fano factor can
be evaluated in essentially the same way as in the above
subsection. To avoid unwieldy expressions, we focus on the
situation with flavor symmetry of the quasiparticles. In other
words, the tunneling amplitudes for the two types of e/4
quasiparticles at the QPCs are the same. Under this assump-
tion, Fig. 9 reduces to a version of Fig. 7, as shown in
Fig. 10. Using the same technique as before, we determine
the tunneling current as

when νC = 2 or −6 : Ie/4 = er

2

[
(|�1|2 + |�2|2)

(
1 − s2 + s4

4 sin2 2γ
)

1 − (
3
4 − 1

4
√

2

)
s2 + s4

16

[(
1 − 1√

2

)
(1 − cos 4γ ) − 1√

2
sin 4γ

]
]
, (104)

when νC = 4 or −4 : Ie/4 = er

2

[
(|�1|2 + |�2|2)

(
1 − s2 + s4

4 sin2 2γ
)

1 − (
3
4 − 1

4
√

2

)
s2 + s4

16

[(
1 − 1√

2

)
(1 − cos 4γ ) + 1√

2
sin 4γ

]
]
, (105)

when νC = 6 or −2 : Ie/4 = er

2

[
(|�1|2 + |�2|2)

(
1 − s2 + s4

4 sin2 2γ
)

1 − (
3
4 + 1

4
√

2

)
s2 + s4

16

[(
1 + 1√

2

)
(1 − cos 4γ ) + 1√

2
sin 4γ

]
]
. (106)

Just as in the non-Abelian case, the results are grouped
into four different classes (notice the sign differences in the
denominator). It is easy to verify that the cases with νC = 2
and −2 recover the expressions for the 331 order [78] and
the 113 order [79], respectively. Finally, we remark that the
tunneling current retains the structure of Eqs. (91) and (92), if
the tunneling process is dominated by e/2 quasiparticles.

The Fano factor can be calculated in the same way as
before. Since the expressions are too lengthy, we do not dis-
play them here. The maximal and minimal values of the Fano
factors for different Chern numbers are found numerically and
are summarized in Table V.

D. A special topological order: K = 8 state

In contrast to other Abelian orders, the K = 8 state is ob-
tained by pairing two electrons into a charge-2e boson. Then,
the bosons condense into a Laughlin state with the filling
factor of 1

8 [115]. In this state, single-electron excitations are
gapped. There are no neutral modes, and the vertex operator
for the charge-e/4 quasiparticle is eiφρ/2, where φρ is the
charged mode. In contrast to all other Abelian orders in the
sixteenfold way, there is only one type of e/4 quasiparticle in
the K = 8 state. Here, we examine its tunneling current and
the Fano factor in a Mach-Zehnder experiment.
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TABLE III. Statistical phase φs for the transitions between differ-
ent superselection sectors as shown in Fig. 9. Here, νC ≡ 0 (mod 4).

Index φs Index φs

1 π (νC + 3)/4 5 π (νC − 3)/4
2 π (νC − 1)/4 6 π (νC + 1)/4
3 π 7 −π/2
4 0 8 π/2

In Fig. 11, we show all eight possible superselection sec-
tors for drain D2, with the corresponding transition proba-
bilities. The phase accumulated by a quasiparticle, encircling
the drain, equals φs = nπ/4, where the drain charge is ne/4
modulo 2e, that is, n = 0, 1, . . . , 7. In order for drain D2 to
return to its initial superselection sector, it is necessary to
transfer a total charge of 2e. The structure of the diagram
resembles the simple diagram of a Laughlin state [89].

From the figure, the average time required for eight suc-
cessive tunneling events of charge-e/4 quasiparticles is given
by t̄ = ∑7

n=0
1

p(nπ/4) . The tunneling current is determined as
I = 2e/t̄ . This leads to

I = er

4
(|�1|2 + |�2|2)

[
1 − 2s2 + 5s4

4 − s6

4 + s8

64 sin2 4γ(
1 − s2

2

)(
1 − s2 + s4

8

)
]
.

(107)

The variance of t can be evaluated as δt2 =∑7
n=0[1/p(nπ/4)]2. This yields the following Fano factor:

e∗

e
= 64 − 160s2 + 152s4 − 68s6 + 29s8

2 − 5s10

4 + s12

16 + s14

32

(2 − s2)2(8 − 8s2 + s4)2

+ s8
(

7
2 − 15s2

4 + 15s4

16 − s6

32

)
(2 − s2)2(8 − 8s2 + s4)2

cos 8γ . (108)

When s = 1, the Fano factor takes its maximum value e∗
max =

2e [78] at γ = mπ/4. On the other hand, it assumes the
minimum value e∗

min/e = 11/16 at γ = π/8 + mπ/4, where
m is an integer. Equations (107) and (108) suggest that the
tunneling current and the Fano factor are periodic in � with
the period of �0/2 = h/2e. This agrees with the formation of
Cooper pairs of electrons in the system [138].

VI. SUMMARY OF EXPERIMENTAL SIGNATURES

Experimental signatures of the topological orders of the
sixteenfold way are summarized in Table VI. The PH-
Pfaffian order seems to agree best with the existing data

TABLE IV. Statistical phase φs for the transitions between differ-
ent superselection sectors as shown in Fig. 9. Here, νC ≡ 2 (mod 4).

Index φs Index φs

1 π (νC − 1)/4 5 π (νC + 1)/4
2 π (νC + 3)/4 6 π (νC − 3)/4
3 π 7 −π/2
4 0 8 π/2

(0,ψ)

(0,I)

(e/2,ψ)

(e/2,I)

FIG. 10. Transitions between superselection sectors in an
Abelian system with flavor symmetry. Note a coefficient of 2 in
some of the probabilities. For example, the transition rate from the
(0, I ) sector is 2p4 since this is the combined tunneling rate for two
quasiparticle types.

for the 5
2 plateau in GaAs at the electron densities n ∼

2–3 × 1011 cm−2. Indeed, this order possesses an upstream
Majorana mode, has a tunneling exponent of ge/4 = 1

4 < 1
2 ,

demonstrates the even-odd effect in a Fabry-Pérot experiment,
and shows the thermal Hall conductance coefficient of κH =
2.5, i.e., κ = 2.5κ0.

VII. ITERATIVE COUPLED QUANTUM-HALL-STRIPES
CONSTRUCTION

Effective Hamiltonians for different fractional quantum
Hall states have been designed with coupled-wire construc-
tions in Refs. [96–98,139,140]. Motivated by the mother-
daughter relations from Sec. II, we propose an iterative
construction of effective Hamiltonians for all orders in the
sixteenfold way. In contrast to the previous work, we start
with a collection of quantum Hall stripes and not wires (cf.
Refs. [141–143]). We choose one of the 16 orders and assume
that the ground state of the bulk Hamiltonian of each stripe
has the chosen order. Such Hamiltonian is well known for
the Pfaffian order [6,144]. Thus, we choose the Pfaffian order
as our starting point in the following discussion. At the same
time, all other orders can be used as a starting point.

We consider a large number of parallel stripes. The stripes
host gapped QHE liquids in the bulk. In the absence of
interaction between the stripes, they have gapless edge modes:
charged and Majorana. We choose the interstripe interaction

TABLE V. Maximal and minimal values of the Fano factor
in a Mach-Zehnder interferometer experiment when s = 1. Here,
we focus on Abelian orders for the ν = 5

2 FQH state with flavor
symmetry and assume that the tunneling process is dominated by
e/4 quasiparticles. The third and last columns of the table show
the values of γ = φAB + δ at which e∗ = e∗

max and e∗
min, respectively.

Notice that these values are modulo π/2.

νC (mod 8) e∗
max/e γmax e∗

min/e γmin

2 1.39 0.10 0.393 0.80
4 1.39 −0.10 0.393 −0.80
6 13.5 −0.05 0.381 0.98
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(e/4)

(3e/4)(5e/4)

(7e/4)

(0)

(e/2)

(e)

(3e/2)

p(0)

p(π)

p(π/4)

p(π/2)

p(3π/4)

p(5π/4)

p(3π/2)

p(7π/4)

FIG. 11. In the K = 8 state, the superselection sectors of drain
D2 are described by the drain’s charge modulo 2e. The drain makes
a full circle through the diagram after eight tunneling events of e/4
quasiparticles.

that gaps those edge modes out. Indeed, our goal is to generate
a system in which gapless edge modes are confined to its
uppermost and downmost parts.

To demonstrate our idea, we start with constructing the
effective Hamiltonian of the PH-Pfaffian state. This example
provides a template for neutral-mode flipping in our coupled-
stripe construction.

A. From Pfaffian to PH-Pfaffian

Consider a system of quantum Hall stripes in the Pfaffian
state as illustrated in Fig. 12. First, assume no interstripe

interaction. The Hamiltonian density of the gapless edge
channels of the decoupled system is given by

H0 = 2vρ

4π

∞∑
j=1

[(∂xφρ, j,L )2 + (∂xφρ, j,R)2]

+ ivψ

∞∑
j=1

(ψ j,L∂xψ j,L − ψ j,R∂xψ j,R). (109)

Here, vρ and vψ denote the speeds of the charged mode φρ

and the Majorana mode ψ , respectively. The subscripts L and
R label the left and right chiralities of the modes. The integer
index j labels the quantum Hall stripes. The commutation
relations of the Majorana fermions are {ψ j,D(x), ψi,D′ (x′)} =
1
2δ(x − x′)δi jδDD′ , where D and D′ can be R
and L.

Let us summarize the idea of the construction. Recall that
the PH-Pfaffian and Pfaffian states are related by neutral-mode
flipping. As shown in Fig. 12, the couplings between the
stripes gap out pairs of modes and leave a single gapless
charged mode and a single gapless Majorana mode at the
edge of the system. Furthermore, this Majorana mode has
the opposite chirality to that of the gapless boson. Thus,
the gapless edge acquires the structure demanded by the
PH-Pfaffian order. Hence, an effective Hamiltonian for the
PH-Pfaffian order is constructed.

Explicitly, we first gap out charged modes by introducing
electron-pair tunneling between neighboring stripes (step 1 in
Fig. 12). The coupling is described by the following Hamilto-

TABLE VI. Experimental signatures of different topological orders in the sixteenfold way. The second column provides the Chern number
of the edge, which should equal the Chern number of the bulk. A non-Abelian (Abelian) order has an odd (even) Chern number. The states
with negative νC have upstream neutral modes. For all topological orders, the most fundamental quasiparticle has the charge q = e/4. The fifth
to seventh columns give the universal tunneling exponents for different types of quasiparticles, with the most relevant one being boldfaced.
The eighth column provides the thermal Hall conductance coefficients, which are half-integers (integers) for non-Abelian orders (Abelian
orders). In the last three columns, we list the expected results from interferometry. The bottom three entries in the last two columns refer to the
situation in which the dominant process is e/2 tunneling. Everywhere else, we assume that the dominant quasiparticle has the charge e/4. All
non-Abelian orders should demonstrate even-odd effect in a Fabry-Pérot interferometer. Abelian orders (except the K = 8 state) may also show
the same effect, if they possess flavor symmetry. The last two columns list the maximal and minimal values of the Fano factor in a shot-noise
experiment with a symmetric Mach-Zehnder interferometer (s = 1).

Name νC Non-Abelian? q ge/4 ge/2 ge κH Even-odd effect? (e∗/e)max (e∗/e)min

K = 8 0 No e/4 1/8 1/2 ∞ 3 No 2 11/16
Pfaffian 1 Yes e/4 1/4 1/2 3 3.5 Yes 3.20 0.44
PH-Pfaffian −1 Yes e/4 1/4 1/2 3 2.5 Yes ∞ 1/2
331 2 No e/4 3/8 1/2 3 4 Maybe 1.39 0.39
113 −2 No e/4 3/8 1/2 3 2 Maybe 13.5 0.38
SU(2)2 3 Yes e/4 1/2 1/2 3 4.5 Yes 1 3/8
Anti-Pfaffian −3 Yes e/4 1/2 1/2 3 1.5 Yes 3.20 0.44
νC = 4 4 No e/4 5/8 1/2 3 5 Maybe 1.39 0.39
Anti-331 −4 No e/4 5/8 1/2 3 1 Maybe 1.39 0.39
νC = 5 5 Yes e/4 3/4 1/2 3 5.5 Yes 3.20 0.44
Anti-SU(2)2 −5 Yes e/4 3/4 1/2 3 0.5 Yes 1 3/8
νC = 6 6 No e/4 7/8 1/2 3 6 Maybe 13.5 0.38
νC = −6 −6 No e/4 7/8 1/2 3 0 Maybe 1.39 0.39
νC = 7 7 Yes e/4 1 1/2 3 6.5 Yes 1 1/2
νC = −7 −7 Yes e/4 1 1/2 3 −0.5 Yes 1 1/2
νC = 8 8 No e/4 9/8 1/2 3 7 Maybe 1 1/2
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1st stripe

2nd stripe

Step 1Step 2
gapped bulk

Step 2

Step 1

FIG. 12. Coupled-stripe construction of the effective Hamilto-
nian for the PH-Pfaffian order from a collection of quantum Hall
stripes in the Pfaffian state. The solid lines (the dashed lines) refer
to the charged bosonic modes (Majorana fermions). The lines with
arrows on both ends represent inter-stripe interactions which gap out
the pairs of the modes, connected by those lines.

nian density:

H1 = �1

∞∑
j=1

(ψ j,Re2iφρ, j,R )2(ψ j+1,Le−2iφρ, j+1,L )2 + H.c.

= 2�1

∞∑
j=1

cos (4φρ, j,R − 4φρ, j+1,L ). (110)

Here, we have used the property that ψ2 is a c number. This
number is dimensional, so, strictly speaking, the constants �1

are not identical on the two sides of Eq. (110). This minor
point is of no importance below. Note that we can add a
density-density interaction w∂xφρ, j,R∂xφρ, j+1,L that makes the
tunneling (110) relevant in the renormalization group sense.
As always with coupled-wire constructions, it is essential
that the arguments commute for any two cosines (or any one
cosine in different points) in Eq. (110):

[4[φρ, j,R(x) − φρ, j+1,L (x)], 4[φρ,i,R(y) − φρ,i+1,L (y)]] = 0

(111)

for any i, j, x, and y. As a consequence, it may be legitimate
to treat the arguments of the cosines as c numbers.

When a negative �1 is sufficiently large, the combina-
tion 4φρ, j,R − 4φρ, j+1,L is pinned to a multiple of 2π . This
gaps out the modes φρ, j,R and φρ, j+1,L. Only φρ,1,L is not
coupled with a right-moving mode by the above tunneling
operator and hence φρ,1,L remains gapless. Next, the Majorana
modes are gapped out by the following coupling (step 2 in
Fig. 12):

H2 = �2

∞∑
j=1

(ψ j,Le2iφρ, j,R )(ψ j+1,Re−2iφρ, j+1,L ) + H.c.

= �2

∞∑
j=1

ψ j,Lψ j+1,Re2i(φρ, j,R−φρ, j+1,L ) + H.c. (112)

We must explain why such coupling is legitimate. Two
requirements must be satisfied. First, the interaction must
conserve the electric charge as it obviously does. Second, it
should conserve the topological charge. To understand why

the second condition is satisfied, observe that the above tun-
neling interaction consists of products of operators of the type
ψ j,L exp(2iφρ, j,R) = ÂB̂ with Â = ψ j,L exp(2iφρ, j,L ) and B̂ =
exp(2iφρ, j,R − 2iφρ, j,L ). Â is a topologically trivial electron
operator. B̂ transfers one electron charge between the two
sides of a single stripe and hence is also topologically trivial.
Hence, the product of Â and B̂ also conserves the topological
charge, as does the interaction (112).

At this point, we observe that the combination of the
charged modes 4φρ, j,R − 4φρ, j+1,L was fixed to be a mul-
tiple of 2π at the first step. Hence, the exponential factor
exp[2i(φρ, j,R − φρ, j+1,L )] in Eq. (112) is ±1. As a conse-
quence, H2 can be simplified into

H2 = �̃2

∞∑
j=1

ψ j,Lψ j+1,R + H.c., (113)

where the ± sign factor is absorbed into �̃2. To make sure
that �̃2 is the same for all j, one may also need to redefine
ψ j,L → −ψ j,L .

The overall Hamiltonian density of the coupled system
H = H0 + H1 + H2 can be separated into the bulk and edge
parts: H = Hb + He. The gapped bulk contribution is

Hb = 4vρ

4π

∞∑
j=1

[(∂xθ j )
2 + (∂xϕ j )

2] + 2�1

∞∑
j=1

cos (8ϕ j )

+ ivψ

∞∑
j=1

(ψ j,L∂xψ j,L − ψ j+1,R∂xψ j+1,R)

+ �̃2

∞∑
j=1

ψ j,Lψ j+1,R + H.c., (114)

where

θ j = (φρ, j,R + φρ, j+1,L )/2, (115)

ϕ j = (φρ, j,R − φρ, j+1,L )/2. (116)

The edge contribution He is gapless.
To verify that the bulk is gapped, we need to check that the

Majorana modes in Eq. (114) are gapped out. We expand the
Majorana operators as superpositions of plane waves:

ψ j,L (x) = 1√
L

∑
k

a j,keikx, (117)

ψ j,R(x) = 1√
L

∑
k

ã j,keikx, (118)

where L is the length of the stripes. The condition ψ (x) =
ψ†(x) implies that a j,−k = a†

j,k . The anticommutation rela-
tions for a j,k and ã j,k are

{ai,k, a†
j,k′ } = 1

2δi, jδk,k′ , (119)

{ãi,k, ã†
j,k′ } = 1

2δi, jδk,k′ , (120)

{ai,k, ã†
j,k′ } = 0. (121)
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The Hamiltonian of the bulk Majorana degrees of freedom is
given by the integral Hψ = ∫ L

0 dx Hbψ , where Hbψ is the sum
of the last two rows in Eq. (114). With the new notation a j,k ,
ã j,k , the Hamiltonian Hψ can be rewritten as

Hψ = 2vψ

∞∑
j=1

∑
k>0

k(ã†
j+1,k ã j+1,k − a†

j,ka j,k )

+
⎡
⎣�̃2

∞∑
j=1

∑
k>0

(a†
j,k ã j+1,k − ã†

j+1,ka j,k ) + H.c.

⎤
⎦.

(122)

Then, Hψ can be diagonalized by the following transforma-
tion:

c j,k = (λ − vψk)a j,k + i Im(�̃2)ã j+1,k√
[Im(�̃2)]2 + (vψk − λ)2

, (123)

d j,k = i Im(�̃2)a j,k + (λ − vψk)ã j+1,k√
[Im(�̃2)]2 + (vψk − λ)2

, (124)

where λ =
√

(vψk)2 + [Im(�̃2)]2. The anticommutation rela-
tions for c j,k and d j,k are the same as the relations for a j,k

and ã j,k . The above transformation leads to the following
diagonalized Hψ :

Hψ = 2
∞∑
j=1

∑
k>0

√
v2

ψk2 + [Im(�̃2)]2 (c†
j,kc j,k − d†

j,kd j,k ).

(125)

It is now evident that as long as Im(�̃2) �= 0, the Majorana
modes are gapped with the gap of |Im(�̃2)|.

The bulk Hamiltonian is thus gapped:

∫
dx Hb = 4vρ

4π

∫
dx

∞∑
j=1

[(∂xθ j )
2 + (∂xϕ j )

2]

+ 2�1

∫
dx

∞∑
j=1

cos (8ϕ j )

+ 2
∞∑
j=1

∑
k>0

√
v2

ψk2 + [Im(�̃2)]2

× (c†
j,kc j,k − d†

j,kd j,k ). (126)

At the same time, the modes φρ,1,L and ψ1,R remain gapless
and are described by the edge Hamiltonian

∫
dx He:

He = 2vρ

4π
(∂xφρ,1,L )2 − ivψψ1,R∂xψ1,R. (127)

This is the edge theory of the PH-Pfaffian order. The electron
operator

�e ∼ exp(2iφρ,1,L )ψ1,L[ψ1,Lψ1,R]

∼ exp(2iφρ,1,L )ψ1,R. (128)

1st stripe

2nd stripe

Step 1
Step 3

Step 2

gapped bulk

Step 3

Step 1

Step 2

FIG. 13. Coupled-stripe construction for neutral-mode flipping
in non-Abelian topological orders. The charged modes, the Majorana
modes, and the bosonic neutral modes are denoted by solid lines,
dashed lines, and wavy lines, respectively. Three different tunneling
processes between neighboring stripes are introduced to gap out the
modes in the bulk of the system. The remaining gapless edge modes
are shown in the right panel.

B. First coupled-stripe construction (CW1)
for non-Abelian topological orders

The previous construction can be generalized to relate
other non-Abelian topological orders which possess neutral
bosonic modes or, equivalently, more than one Majorana
mode at the edge. Below, we will use the language of a single
Majorana edge mode. The K matrices, describing the Abelian
edge modes, take the form (7) with the corresponding charge
vector t = (1, 0, . . . , 0)T .

We are going to introduce coupled-stripe constructions
of two types. The first construction describes neutral-mode
flipping. The second construction describes particle-hole con-
jugation. We will call these two constructions CW1. A differ-
ent approach CW2 to the coupled-stripe construction will be
considered in the next subsection.

1. Effective coupled-stripe construction for neutral-mode flipping

Our goal is to transform a system with the Chern number
−νC < 0 into a system with the opposite Chern number νC .
As shown in Fig. 13, we start with a system of decoupled
quantum Hall stripes. Each edge of each stripe contains a
single downstream charged mode, one upstream Majorana
mode, and N upstream bosonic neutral modes so that −νC =
−(2N + 1). The velocities of all upstream modes are the
same. By introducing electron tunneling processes between
neighboring stripes, we gap out pairs of the modes. At the end,
gapless modes remain only at the topmost and bottommost
edges of the system of the stripes. The structure of the gapless
modes corresponds to the desired Chern number νC .
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The Hamiltonian density of decoupled stripes with no
interstripe tunneling is given by

H0 = 2vρ

4π

∞∑
j=1

[(∂xφρ, j,L )2 + (∂xφρ, j,R)2]

+ vn

4π

∞∑
j=1

N∑
i=1

[(∂xφni, j,L )2 + (∂xφni, j,R)2]

+ ivn

∞∑
j=1

(ψ j,L∂xψ j,L − ψ j,R∂xψ j,R), (129)

where vρ labels the speed of the charged mode, vn is the speed
of the neutral modes. The subsubscript i in φni ranges from 1
to N and enumerates the N neutral bosonic modes at the edge
of each stripe.

As in Sec. VII A, the charged modes are gapped out by in-
troducing electron-pair tunneling between neighboring stripes
(step 1 in Fig. 13):

H1 = �1

∞∑
j=1

(ψ j,Le2iφρ, j,R )2(ψ j+1,Re−2iφρ, j+1,L )2 + H.c.

= 2�1

∞∑
j=1

cos (4φρ, j,R − 4φρ, j+1,L ). (130)

Notice that the Majorana mode and the charged mode in the
electron operator have opposite chiralities as the topological
order has a negative Chern number (for example, PH-Pfaffian
or anti-Pfaffian). The coupling constant �1 is set to a suffi-
ciently large negative number to make sure that the charged
modes are gapped in the bulk of the system.

Next, we proceed to gap out the Majorana modes in the
bulk by adding single-electron tunneling (step 2 in Fig. 13):

H2 = �2

∞∑
j=1

(ψ j,Re2iφρ, j,R )(ψ j+1,Le−2iφρ, j+1,L ) + H.c.

= �̃2

∞∑
j=1

ψ j,Rψ j+1,L + H.c. (131)

The neutral bosonic modes in the bulk can be gapped by an
additional interstripe tunneling as shown as step 3 in Fig. 13.
Recall that �e = e−iφni e2iφρ is a legitimate electron operator
for any i = 1, 2, . . . , N . Thus, by analogy with Eq. (131), one
can consider the following electron tunneling process:

H3 = �3

∞∑
j=1

N∑
i=1

(e−iφni , j,R e2iφρ, j,R )

× (eiφni , j+1,L e−2iφρ, j+1,L ) + H.c.

= 2�̃3

∞∑
j=1

N∑
i=1

cos (φni, j+1,L − φni, j,R). (132)

All modes in the coupled stripes are completely gapped
out by the above three tunneling processes, except for the
modes which do not appear in H1, H2, and H3. As a result,

the effective Hamiltonian for the gapped bulk is given by

Hb =
∫

Hb dx

= 4vρ

4π

∫ ∞∑
j=1

[(∂xθρ, j )
2 + (∂xϕρ, j )

2] dx

+ 2�1

∫ ∞∑
j=1

cos (8ϕρ, j ) dx

+ 2vn

4π

∫ ∞∑
j=1

N∑
i=1

[(∂xθni, j )
2 + (∂xϕni, j )

2] dx

+ 2�̃3

∫ ∞∑
j=1

N∑
i=1

cos (2ϕni, j ) dx

+ 2
∞∑
j=1

∑
k>0

√
k2v2

n + Im(�̃2)2(c†
j,kc j,k − d†

j,kd j,k ),

(133)

where

ϕni, j = (φni, j+1,L − φni, j,R)/2; (134)

θni, j = (φni, j+1,L + φni, j,R)/2; (135)

ϕρ, j = (φρ, j+1,L − φρ, j,R)/2; (136)

θρ, j = (φρ, j+1,L + φρ, j,R)/2. (137)

The Hamiltonian density of the gapless edge at the bottom
of the system of the stripes is

He =2vρ

4π
(∂xφρ,1,L )2 + vn

4π

N∑
i=1

(
∂xφni,1,L

)2 + ivnψ1,L∂xψ1,L.

(138)

The chirality of the gapless neutral modes at the edge is
opposite to that of the neutral modes in the original state.
Hence, the topological orders with the Chern numbers νC and
−νC can be related by the above coupled-stripe construction.
This relationship is illustrated by horizontal arrows in Fig. 1.
The electron operators on the edge

�ψ ∼ exp(2iφρ,1,L )ψ1,R[ψ1,Rψ1,L]

∼ exp(2iφρ,1,L )ψ1,L; (139)

�n ∼ exp(2iφρ,1,L ) exp(iφni,1,R)

× [
exp

(−iφni,1,R
)

exp
(
iφni,1,L

)]
∼ exp(2iφρ,1,L ) exp(iφni,1,L ). (140)

2. Effective coupled-stripe construction
for particle-hole conjugation

Another connection among the orders in the sixteenfold
way is particle-hole conjugation. For example, the Pfaf-
fian and anti-Pfaffian orders are particle-hole conjugates. As
shown in Fig. 14, we consider a collection of alternating
stripes in the ν = 1 IQH state and in the ν = 1

2 FQH state
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gapped bulk

gapped bulk

Step 1

Step 2

Step 3

Step 4

FIG. 14. Effective coupled-stripe construction for particle-hole
conjugation of a topological order with filling factor ν = 1

2 . In the
left panel, the system consists of ν = 1 integer quantum Hall stripes
(narrow) and ν = 1

2 fractional quantum Hall stripes (wide), arranged
in an alternating pattern. The upper right panel shows the resulting
gapless edge structure after turning on tunneling between the stripes.
The lower right panel is the edge structure in the presence of a
density-density interaction on the edge.

to formulate a coupled-stripe construction for particle-hole
conjugation.

We begin by gapping out the modes from the ν = 1 IQH
stripes with the following electron tunneling process:

H1 = �1

2
eiφν=1

ρ, j,L e−iφν=1
ρ, j+1,R + H.c.

= �1 cos
(
φν=1

ρ, j,L − φν=1
ρ, j+1,R

)
. (141)

Here, φν=1
ρ, j,L/R denotes the charged mode in the jth ν = 1

stripe. As illustrated in Fig. 14, the coupling gaps out the
modes in the bulk of our system but leaves a single gapless
charged mode φν=1

ρ,1,R at the edge of the first stripe.
The modes in the ν = 1

2 FQH stripes can be gapped out
by coupling the stripes in the same way as in the previous
construction for neutral-mode flipping. We introduce three
tunneling terms H2, H3, and H4:

H2 = �2

∞∑
j=1

(
ψ j,Re2iφν=1/2

ρ, j,R
)2(

ψ j+1,Le−2iφν=1/2
ρ, j+1,L

)2 + H.c.

= 2�2

∞∑
j=1

cos
(
4φ

ν=1/2
ρ, j,R − 4φ

ν=1/2
ρ, j+1,L

)
(142)

gaps out the charged modes,

H3 = �3

∞∑
j=1

(
ψ j,Re2iφν=1/2

ρ, j,R
)(

ψ j+1,Le−2iφν=1/2
ρ, j+1,L

) + H.c.

= �̃3

∞∑
j=1

ψ j,Rψ j+1,L + H.c. (143)

gaps out the Majorana modes,

H4 = �4

∞∑
j=1

N∑
i=1

(
e−iφν=1/2

ni , j,R e2iφν=1/2
ρ, j,R

)(
eiφν=1/2

ni , j+1,L e−2iφν=1/2
ρ, j+1,L

)+ H.c.

= 2�̃4

∞∑
j=1

N∑
i=1

cos
(
φ

ν=1/2
ni, j+1,L − φ

ν=1/2
ni, j,R

)
(144)

gaps out the bosonic neutral modes. After the introduction of
the couplings H1,2,3,4, only the integer charged mode φν=1

ρ,1,R,

and the fractional modes φ
ν=1/2
ρ,1,L , φ

ν=1/2
ni,1,L , and ψ1,L remain

gapless at the edge. This edge structure is shown in the upper
right panel in Fig. 14.

To complete our procedure, we add a density-density inter-
action of the two charged modes φν=1

ρ,1,R and φ
ν=1/2
ρ,1,L . Its energy

density is

Hw = 2w

4π
∂xφ

ν=1
ρ,1,R∂xφ

ν=1/2
ρ,1,L . (145)

The two charged modes decouple from the rest of the modes.
The Lagrangian density of the charged modes becomes

L = − 1

4π

[
∂tφ

ν=1
ρ,1,R∂xφ

ν=1
ρ,1,R + v1

(
∂xφ

ν=1
ρ,1,R

)2]
+ 2

4π

[
∂tφ

ν=1/2
ρ,1,L ∂xφ

ν=1/2
ρ,1,L − v1/2

(
φ

ν=1/2
ρ,1,L

)2]
− 2w

4π
∂xφ

ν=1
ρ,1,R∂xφ

ν=1/2
ρ,1,L . (146)

We introduce a new charged mode φρ = φν=1
ρ,1,R − φ

ν=1/2
ρ,1,L and

a new neutral mode φN+1 = φν=1
ρ,1,R − 2φ

ν=1/2
ρ,1,L . We also choose

w = −2(v1 + v1/2)/3 and v1 = 2v1/2 − 3vn. The action then
becomes

L = − 2

4π
[∂tφρ∂xφρ + vρ (∂xφρ )2]

+ 1

4π
[∂tφN+1∂xφN+1 − vn(∂xφN+1)2], (147)

where vn is the same velocity as the speed of the rest
of the neutral modes, and vρ = v1/2 − 2vn. To make sure
that the Hamiltonian is positive definite, we assume that
vρ, v1/2, v1 � vn. The action (147) shows two decoupled
modes. Adding the rest of the neutral modes, we arrive to the
edge structure, depicted in the lower right panel of Fig. 14.
This corresponds to the contribution of any of the edges of the
stripes to Eq. (129). This was precisely our goal. The structure
of the allowed electron operators on the edge remains the same
as before the tunneling between the stripes was turned on
since the gapless edge structure is simply inherited from the
lowest edges of the lowest wide and narrow stripes in Fig. 14.

C. Second coupled-stripe construction CW2
for non-Abelian topological orders

Here, we provide a short discussion of another iterative
coupled-stripe construction to relate different non-Abelian
orders of the sixteenfold way. This construction is called CW2
in Fig. 1. It differs from CW1 in two ways. First, neutral
bosonic modes are gapped out in a different way on step 3
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1st stripe

2nd stripe

Step 1Step 3 Step 2

gapped bulk

gapped bulk
Step 4

gapped bulk

N bosonic
neutral modes

N-1 bosonic
neutral modes

Step 1

Step 2

Step 3

FIG. 15. Second coupled-stripe construction (CW2) for non-
Abelian topological orders of the sixteenfold way. On step 4, we
fermionize a neutral bosonic mode into two Majorana fermions,
then gap out one of them by coupling it to the counterpropagating
Majorana mode. Thus, the number of the bosonic neutral modes
decreases by one.

(cf. step 3 in Figs. 13 and 15). Second, an additional step 4 is
introduced.

After the coupling of the Hall stripes with three tunneling
processes as shown in Fig. 15, a gapless Majorana mode is
left at the edge. Its propagation direction is opposite to the
direction of the remaining gapless neutral Bose modes. This
“wrongly moving” mode can be gapped out by coupling it to
a Majorana mode obtained by fermionizing one of the neutral
bosonic modes at the edge. Indeed, a Bose mode can be seen
as two copropagating Majoranas. As a result, this construction
reduces the number of the bosonic neutral modes by one.
Thus, it provides a way to relate the effective Hamiltonians of
the orders from the sixteenfold way with the Chern numbers
νC and νC − 2, as shown in Fig. 1.

D. Coupled-stripe construction for Abelian topological orders

A coupled-stripe construction can also be employed to con-
struct effective Hamiltonians for the Abelian orders from the
sixteenfold way. We first construct an effective Hamiltonian
for the 331 order from the Pfaffian order. After this is done,
the same tricks as in the previous subsection produce effective
Hamiltonians for all the other Abelian orders.

1. Pfaffian order and 331 order

In Fig. 16, we illustrate the coupled-stripe system and the
corresponding couplings for constructing the 331 order from
the Pfaffian state. On step 1, charged modes are gapped out by
the tunneling operator from Eq. (110). Since the edge of the
331 liquid has one downstream neutral bosonic mode which is
equivalent to two downstream Majorana modes, the Majorana
modes in the stripes should be gapped by coupling the jth
stripe and the ( j + 2)th stripe on step 2 as shown in the figure.
More precisely, we introduce transfer of a pair of electrons
among three stripes j, j + 1, j + 2. The Hamiltonian density

1st stripe

2nd stripe

Step 1

gapped bulk

Step 1

3rd stripe

Step 1

gapped bulk

Step 3

Step 2

FIG. 16. Coupled-stripe construction for the Abelian 331 order
from a collection of quantum Hall stripes in the Pfaffian state. On
step 3, two copropagating Majorana modes form one neutral bosonic
mode.

of the tunneling term is

H2 = �2

∞∑
j=1

[(ψ j,Re2iφρ, j,R )(ψ j+1,Le−2iφρ, j+1,L )][ψ j+1,Lψ j+1,R]

× [(ψ j+1,Re2iφρ, j+1,R )(ψ j+2,Le−2iφρ, j+2,L )] + H.c.

= �̃2

∞∑
j=1

ψ j,Rψ j+2,L + H.c. (148)

This operator is allowed since it conserves the total electric
charge and the topological charge. Indeed, all four expressions
in the parentheses are topologically trivial electron operators.
The middle square brackets transfer a Majorana fermion be-
tween the edges of the same stripe and hence is allowed.

Steps 1 and 2 gap out all modes, except for φρ,1,L , ψ1,L, and
ψ2,L. Notice that the two gapless Majorana modes have the the
same chirality. Hence, they can be combined to form a single
Dirac fermion. In the bosonization language, it is equivalent
to a bosonic neutral mode φn,1,L. Finally, the effective Hamil-
tonian density for the edge modes is given by

Hedge = 2vρ

4π
(∂xφρ,1,L )2 + vn

4π
(∂xφn,1,L )2. (149)

This is the edge structure of the 331 order. The electron
operators can be chosen in the form

�e ∼ exp(2iφρ,1,L )ψ1,L{1 ± i[ψ1,Lψ1,R]

× [ψ1,R cos(2[φρ,1,R − φρ,2,L])ψ2,L]} (150)

or, equivalently,

�e ∼ exp(2iφρ,1,L )[ψ1,L ± iψ2,L]. (151)

It is also possible to construct the Pfaffian state from
the 331 state. We illustrate this by an example of a single
stripe, as shown in Fig. 17. Our example only shows how to
get the Pfaffian edge structure from the 331 edge structure.
Multiple stripes are needed to produce the bulk Pfaffian order.
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gapped bulk

FIG. 17. Obtaining the edge structure of the Pfaffian state from
the 331 state. For simplicity, we consider a single stripe. The bosonic
neutral mode (wavy line) at the edge is fermionized into two Ma-
jorana modes (dashed lines). One of the Majorana modes couples
with a Majorana mode on the opposite edge. The coupled Majorana
modes are gapped out.

Recall that a bosonic neutral mode at the edge of the 331
state can be fermionized into two copropagating Majorana
modes. Since quasiparticles can tunnel between the two op-
posite edges of the same quantum Hall liquid (but not across
two different quantum Hall liquids), two counterpropagating
Majorana modes can be directly coupled and gapped out. The
resulting edge structure consists of a charged mode and one
downstream Majorana mode on each edge. This is the edge
structure of the Pfaffian state.

2. Iterative construction for other Abelian orders

In this section, we consider in detail the construction of the
113 order from the 331 order. The construction is very similar
to the one we used in the non-Abelian case. We then briefly
address a generalization to an arbitrary Abelian topological
order.

The construction of the 113 order from the 331 order is
parallel to the construction of PH-Pfaffian order from the
Pfaffian order. We illustrate the construction in Fig. 18.

Since a Majorana mode is absent on the edges of Abelian
stripes, the electron operators are �̂± = e±iφn e2iφρ . Here, φn

can be any one of the neutral modes on the edge. Thus, it is
possible to gap out the charged modes in the 331 quantum Hall
stripes with the following interaction when �1 is sufficiently
strong:

H1 = �1

∞∑
j=1

[(e−iφn, j,R e2iφρ, j,R )(eiφn, j,R e2iφρ, j,R )]

× [(eiφn, j+1,L e−2iφρ, j,R )(e−iφn, j,L e−2iφρ, j,R )] + H.c.

= 2�1

∞∑
j=1

cos (4φρ, j,R − 4φρ, j+1,L ). (152)

1st stripe

2nd stripe

Step 1

Step 1

Step 2

Step 2

gapped bulk

FIG. 18. Coupled-stripe construction for the 113 order from a
collection of quantum Hall stripes in the 331 state. Here, the solid
lines (wavy lines) represent the charged modes (neutral modes).

1st stripe

2nd stripe

Step 1Step 2

gapped bulk

Step 2

Step 1

FIG. 19. Neutral-mode flipping construction for Abelian topo-
logical orders.

Next, we proceed to gap out the neutral modes in the bulk
as shown in the figure (step 2). The corresponding interaction
term is given by

H2 = �2

∞∑
j=1

(e−iφn, j,L e2iφρ, j,R )(eiφn, j+1,R e−2iφρ, j+1,L ) + H.c.

= 2�̃2

∞∑
j=1

cos φn, j+1,R − φn, j,L ). (153)

By gapping out the modes in the stripes with H1 and H2, one
recovers the edge structure of the 113 order. Following the
non-Abelian case, one can also easily verify that the correct
structure of the electron operators on the edge is reproduced
by this procedure.

For Abelian orders with more neutral modes on the edge,
the same procedure can be applied to construct effective
Hamiltonians for the topological order with the Chern number
νC from a collection of stripes in the state with the Chern
number −νC as shown in Fig. 19. The charged modes can be
gapped out by the interaction from Eq. (152). Equation (132)
shows a way to gap out the bulk neutral modes.

Aside from neutral-mode flipping (Fig. 19), we also need
to perform particle-hole conjugation. The procedure is essen-
tially identical to the non-Abelian case. The only important
difference is that the interaction (152) is used to gap out
fractional charged modes.

VIII. CONCLUSIONS

Composite fermions give an intuitive and powerful ap-
proach to FQHE. At odd-denominator filling factors, a dif-
ficult FQHE problem reduces to the much simpler integer
QHE of composite fermions. In the latter problem, the single-
particle spectrum is gapped. As a result, the basic properties
of the QHE liquid are robust. In particular, similar physics
is expected for a great variety of microscpic Hamiltonians.
As long as the filling factor is the same, one can realistically
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expect the same topological order in a complicated exper-
imental system and in a system with a highly simplified
Hamiltonian, suitable for numerical simulations.

Such picture cannot be generalized to half-integer filling
factors, where the simplest application of the composite-
fermion idea predicts a gapless liquid. This simplest behavior
is compatible with the experiment at some filling factors but
not at the others. This is not surprising since gapless states are
not as robust as gapped ones. Indeed, a gapless liquid can be
unstable to various weak interactions. Kitaev’s classification
reveals 16 instabilities which lead to 16 possible topological
orders. All 16 orders are close relatives since they all emerge
from Cooper pairing of the same type of composite fermions.
Importantly, the existing numerical evidence does support a
state of the sixteenfold way and hence the composite fermion
description of half-integer quantum Hall plateaus. Given a
close relation of the 16 orders, it is much harder to narrow
down the list of possibilities to a single state. This subtle
problem goes beyond the sort of questions one has to tackle
at simpler filling factors like 1

3 . The current debate about
the Pfaffian, PH-Pfaffian, and anti-Pfaffian orders in GaAs at
ν = 5

2 illustrates this point [128].
One cannot help wondering whether all 16 topological

orders of the sixteenfold way may be present in some physical
systems. Only experiment can shed light on this question. This
motivates a review of possible experimental signatures in this
paper.

The PH-Pfaffian order gives rise to a curious situation. That
topological order is compatible with the particle-hole (PH)
symmetry [22], yet it appears that PH-symmetric Hamiltoni-
ans break the PH symmetry in their ground states [28–31].
On the other hand, disorder and Landau-level mixing break
the PH symmetry of a Hamiltonian. The symmetry-from-
no-symmetry principle [24] suggests that those symmetry-
breaking effects stabilize the PH-symmetric order. Indeed,
mechanisms [103–106] have been proposed for the stabiliza-
tion of the PH-Pfaffian topological order by LLM and dis-
order. Moreover, existing coupled-wire constructions for the
PH-Pfaffian order also break the particle-hole symmetry (see
Ref. [97]). In fact, our coupled-stripe construction for getting
the PH-Pfaffian order from Pfaffian stripes is rather similar
to the stabilization of the PH-Pfaffian order by disorder in
the mechanisms [104–106]. The coupled-stripe construction
involves no disorder, but it breaks the PH symmetry in a way
similar to how it is broken by disorder in those mechanisms
[104–106]. This is another manifestation of the symmetry-
from-no-symmetry principle [24] for the PH-Pfaffian liquids.

In conclusion, we give a uniform description of different
proposed topological orders for the half-integer fractional
quantum Hall states. The candidate orders can be seen as
arising from Cooper pairing between composite fermions in
different pairing channels. We introduce a mother-daughter
relation between the topological orders, which relates them
iteratively via particle-hole conjugation and neutral-mode flip-
ping. The same mother-daughter relation allows us to iter-
atively construct wave functions and effective Hamiltonians
for all orders. We also verify explicitly that all resulting
topological orders belong to Kitaev’s sixteenfold way [15].
This is used to predict experimental signatures of all 16 orders
in multiple types of experiments, as summarized in Table VI.
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APPENDIX: FINITE-TEMPERATURE MACH-ZEHNDER
INTERFEROMETRY

In Sec. V, we discussed experimental signatures of topo-
logical orders in Mach-Zehnder interferometry at zero tem-
perature. In this Appendix, the discussion is generalized to
finite-temperature systems on the basis of the kinetic equation
approach [75,93].

1. Review of kinetic equations

We introduce the symbol Ps,i(t ) for the probability that
the charge sq was transferred from source S1 to drain D2
during the time t . Here, q is the charge of the quasiparticle
which dominates tunneling, and i labels the topological charge
of drain D2 at the time t . The topological charge is not
affected by the transfer of an integer number of electrons to D2
(s → s + ne/q). The probability satisfies the following kinetic
equation:

d

dt
Pl,i(t ) =

N∑
j=1

[Pl−1, j (t )w+
j→i + Pl+1, j (t )w−

j→i]

−
N∑
j=1

Pl, j (t )(w+
i→ j + w−

i→ j ). (A1)

In the above equation, N labels the number of possible
topological charges. The symbol wi→ j labels the transition
rate from sector i to sector j. The superscript “+” corresponds
to tunneling from the edge with the higher electrochemical
potential to the edge with the lower electrochemical potential
(edge 1 to edge 2 in Fig. 6). We call this type of tunneling
“forward tunneling.” At a nonzero temperature, thermal fluc-
tuations allow backward tunneling from edge 2 to edge 1. The
corresponding transition rates carry the superscript “−.”

The calculation of wi→ j consists of two steps. First, we
assume that the tunneling anyon and the initial topological
charge i of the drain are in the fusion channel j. We compute
the tunneling rate p+

i→ j under this assumption. On the second
step, we multiply the outcome p+

i→ j of the first step by the
probability of the fusion channel j. The bare tunneling rate
p−

j→i is defined in a similar way. It is related to the rate of the
forward process by the detailed balance principle:

p−
j→i = exp

(
− qV

kBT

)
p+

i→ j . (A2)

Again, the above result must be multiplied by the probability
of the fusion outcome i. Let x be the topological charge of the
tunneling particle. The fusion probability of i and x into j is
known from the algebraic theory of anyons [15,74,75,93]:

pj
ix = N j

ix

d j

didx
, (A3)
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where N j
ix is the fusion multiplicity and dc labels the quantum

dimension of anyon c. This fusion probability is independent
of the temperature. As an example of its calculation, consider
tunneling between the states (−e/4, σ ) and (0, ψ ). The fusion
probability of forward tunneling (−e/4 → 0) equals 1

2 since
σ × σ = ψ + I , Nψ

σσ = 1, dψ = 1, and dσ = √
2. However,

the fusion probability from (0, ψ ) to (−e/4, σ ) for the back-
ward tunneling is 1 since ψ × σ = σ . The total transition
rates are given by

w+
i→ j = pβ

αx p+
i→ j, w−

j→i = pα
β x̄ p−

j→i, (A4)

where x̄ is the antiparticle of x.
We introduce a generating function

fi(z, t ) =
∞∑

n=−∞
Pk+ne/q,i(t )zk+ne/q. (A5)

Here, k is uniquely determined by the topological sector i. In
terms of fi, the average charge transmitted during the time
interval t and its variance are given by

〈Q(t )〉 = q

(
d

dz

N∑
i=1

fi

)∣∣∣∣∣
z=1

(A6)

and

〈δQ2(t )〉 = q2

(
d

dz
z

d

dz

N∑
i=1

fi

)∣∣∣∣∣
z=1

− 〈Q(t )〉2. (A7)

From Eq. (A1) we obtain a kinetic equation for fi(z, t ) as

d

dt
fi(z, t ) =

N∑
j=1

[
z f j (z, t )w+

j→i + 1

z
f j (z, t )w−

j→i

]

−
N∑
j=1

fi(z, t )(w+
i→ j + w−

i→ j ). (A8)

The above equation can be written in the matrix form ḟ (z, t ) =
A · f (z, t ). At z = 1, the kinetic matrix A satisfies the Ro-
hbrach theorem [145]. Therefore, all its eigenvalues are non-
positive at z = 1. Besides, one of the eigenvalues must be
zero and nondegenerate. We denote it as λ(z). This eigenvalue
dominates the long-term behavior of the solution of Eq. (A8).
With this idea, the tunneling current and the Fano factor can
be evaluated as

I = lim
t→∞

〈Q(t )〉
t

= qλ′(z)
∣∣
z=1 (A9)

and

e∗ = lim
t→∞

〈δQ2(t )〉
〈Q(t )〉 = q

[
1 + λ′′(z)

∣∣
z=1

λ′(z)|z=1

]
. (A10)

In practice, it is not straightforward to obtain λ(z). Nev-
ertheless, λ′(1) and λ′′(1) can be determined from the char-
acteristic equation det[A(z) − λ(z)I] = 0 [93]. Suppose the
characteristic equation takes the form C0(z) + C1(z)λ(z) +
C2(z)λ(z)2 + · · · = 0. Using the condition that λ(1) = 0 and

the product rule, we have

λ′(1) = −C′
0(1)

C1(1)
, (A11)

λ′′(1) = −C′′
0 (1) + 2C′

1(1)λ′(1) + 2C2(1)λ′(1)2

C1(1)
. (A12)

From the above results, the tunneling current and the Fano
factor at finite temperatures can be evaluated systematically.

2. e/4-quasiparticle tunneling

Now, we evaluate the tunneling current and the Fano
factor at a finite temperature when the tunneling process is
dominated by charge-e/4 quasiparticles. We focus on non-
Abelian orders. In this case, there are N = 6 superselection
sectors as depicted in Fig. 7. For simplicity, we separate the
kinetic matrix into three pieces: A = AF + AB + AL. The first
matrix corresponds to forward tunneling from state j to state
i. By ordering the superselection sectors as (−e/4, σ ), (0, ψ ),
(0, I ), (e/4, σ ), (e/2, ψ ), and (e/2, I ), we have

AF = z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 p
(−π

2

)
p
(

π
2

)
p1/2 0 0 0 0 0

p3/2 0 0 0 0 0

0 p(π ) p(0) 0 0 0

0 0 0 p2/2 0 0

0 0 0 p4/2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A13)

The symbols pk and p(φs) are defined in Sec. V. The second
matrix represents backward tunneling from state j to state i:

AB = 1

z
μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p1 p3 0 0 0

0 0 0 p(π )/2 0 0

0 0 0 p(0)/2 0 0

0 0 0 0 p2 p4

p
(−π

2

)
/2 0 0 0 0 0

p
(

π
2

)
/2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A14)

where μ = e−eV/(4kBT ). Lastly, AL is the diagonal piece of the
kinetic matrix with the following matrix elements:

(AL )11 = −
[ p1

2
+ p3

2

]
− μ

2

[
p
(
−π

2

)
+ p

(π

2

)]
,

(AL )22 = −p(π ) − μp1,

(AL )33 = −p(0) − μp3,

(AL )44 = −
[ p2

2
+ p4

2

]
− μ

2

[
p(π ) + p(0)

]
,

(AL )55 = −p
(
−π

2

)
− μp2,

(AL )66 = −p
(π

2

)
− μp4. (A15)
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Using Eqs. (A9) and (A11), we obtain the generalization of Eqs. (87)–(90) to a finite temperature. From the top to the bottom,
νC = 1, 3, 5, 7 (mod 8):

Ie/4 = er

4
(|�1|2 + |�2|2)(1 − μ)

[
(1 + μ)2(1 − s2) + s4

8 (μ2 + 6μ + 1) − s4

8 (μ − 1)2 cos 4γ

(1 + μ)2
(
1 − 3s2

4

) + s4

16 (μ2 + 6μ + 1) − s4

16 [(μ − 1)2 cos 4γ − (μ2 − 1) sin 4γ ]

]
,

(A16)

Ie/4 = er

4
(|�1|2 + |�2|2)(1 − μ)

[
1 − s2 + s4

4 sin2 2γ

1 − s2

2

]
= Ie/4(0)[1 − e−eV/(4kBT )], (A17)

Ie/4 = er

4
(|�1|2 + |�2|2)(1 − μ)

[
(1 + μ)2(1 − s2) + s4

8 (μ2 + 6μ + 1) − s4

8 (μ − 1)2 cos 4γ

(1 + μ)2
(
1 − 3s2

4

) + s4

16 (μ2 + 6μ + 1) − s4

16 [(μ − 1)2 cos 4γ + (μ2 − 1) sin 4γ ]

]
,

(A18)

Ie/4 = er

4
(|�1|2 + |�2|2)(1 − μ) = Ie/4(0)[1 − e−eV/(4kBT )]. (A19)

Notice that the zero-temperature results can be recovered in
all cases by setting μ = 0. Note also that the coefficients r
and s can contain an additional dependence on the voltage and
temperature. For Abelian topological orders, the calculation is
essentially the same. However, the results are too lengthy to be
displayed here.

Fano factor for the PH-Pfaffian order

In principle, the Fano factor can be calculated from
Eqs. (A10), (A11), and (A12). However, a simple analytic
expression only exists when νC ≡ 7 (mod 8). This covers the
PH-Pfaffian case. One can show [136] that

e∗(T ) = e

2
csch

(
eV

4kBT

)
+ e∗(0) tanh

(
eV

8kBT

)
, (A20)

where e∗(0) is given by Eq. (100), and s in Eq. (100) may
depend on T and V .

3. e/2-quasiparticle tunneling

If the tunneling process is dominated by e/2 quasiparticles,
the calculation simplifies dramatically. There are only two

superselection sectors as shown in Fig. 8. We limit our discus-
sion to the case, represented in the left panel of Fig. 8. From
Eq. (A8) with N = 2, one can derive the following kinetic
matrix:

A =
(

−p
(−π

2

) − μ′ p
(

π
2

)
zp

(
π
2

) + 1
z μ

′ p
(−π

2

)
zp

(−π
2

) + 1
z μ

′ p
(

π
2

) −p
(

π
2

) − μ′ p
(−π

2

)
)

.

(A21)

Here, μ′ = e−eV/(2kBT ). Following the previous procedure, we
determine the tunneling current at a finite temperature as

Ie/2(T ) = Ie/2(0)[1 − e−eV/(2kBT )], (A22)

where Ie/2(0) is given in Eq. (91). Furthermore, the Fano
factor at a finite temperature is evaluated as

e∗
e/2(T ) = e csch

(
eV

2kBT

)
+ e∗

e/2(0) tanh

(
eV

4kBT

)
.

(A23)
As always, r and s in the expressions for Ie/2(0) and e∗

e/2(0)
may depend on T and V .
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