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A nonstationary anomalous Hall current is calculated for a voltage biased Josephson junction, which is
composed of two s-wave superconducting contacts deposited on the top of a three-dimensional topological
insulator (TI). A homogeneous Zeeman field was assumed at the surface of the TI. The problem has been
considered within the ballistic approximation and on the assumption that tunneling of electrons between contacts
and the surface of the TI is weak. In this regime the Josephson current has no features of the 4π -periodic
topological effect which is associated with Andreev bound states. It is shown that the Hall current oscillates in
time. The phase of these oscillations is shifted by π/2 with respect to the Josephson current and their amplitude
linearly decreases with the electric potential difference between contacts. It is also shown that the Hall current
cannot be induced by a stationary phase difference of the contact’s order parameters.
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I. INTRODUCTION

Anomalous Hall effect (AHE), as well as the more con-
ventional Hall effect, were first observed by Hall more than
a century ago [1]. It has been named “anomalous” because
in some magnetic materials this effect was detected in the
absence of an external magnetic field. In magnetic systems
AHE may be explained by the presence of topologically
nontrivial magnetic textures [2–5]. Other theories of AHE
do not rely on topological magnetic textures, but rather on
a strong spin-orbit coupling (SOC) of electrons which, in
combination with a homogeneous magnetic order, can lead
to AHE [6]. Recently, great interest in AHE was attracted
by the discovery of the quantum anomalous Hall effect [7],
which can be observed in one-dimensional quantized transport
of electrons along edges of topological insulators (TIs) [8,9].
This quantized effect has recently been observed in various
systems [10–12].

In addition to AHE in normal metals, the anomalous Hall
transport in superconducting systems is fundamental to many
practical applications. In some cases this effect may be re-
alized in topologically nontrivial materials via the quantized
electron transport of Majorana fermions along chiral edge
channels [13–16]. The nontopological AHE was also con-
sidered [17–19]. On the other hand, the latter effect has not
been addressed sufficiently, while it can extend considerable
functionality to superconducting quantum circuits. Important
elements of such circuits are Josephson junctions. A great
interest is attracted to junctions where the weak link is rep-
resented by a two-dimensional electron gas on the conducting
surface of a three-dimensional topological insulator [20–30].
Since such systems are characterized by the strong SOC, it is
of fundamental interest to find out whether the AHE can be
observed there together with the Josephson effect. In contrast
to the latter, which manifests itself in a supercurrent between
superconducting contacts, the anomalous Hall supercurrent
should be directed parallel to the gap separating the contacts.

The AHE may be observed only in systems with the broken
time inversion symmetry, for example, in the presence of
a magnetic order, which adds a mass term into the Dirac
Hamiltonian of electron states on the surface of the TI. Such
a magnetic TI can be created by a magnetic impurity doping
[10–12], in antiferromagnetic TIs [31,32], or in TI magnetic
insulator heterostructures [33–37].

Our goal is to study the nontopological AHE in Josephson
contacts with a magnetic TI taken as a weak link. The Joseph-
son current in nontopological junctions has a conventional
2π periodicity, as a function of the phase difference between
order parameters of superconducting contacts. In contrast,
the topological Josephson effect is characterized by the 4π

periodicity [20]. From the experimental point of view such
a nontopological AHE is of special interest, because it does
not require special experimental conditions. In particular,
it is not necessary to provide a large proximity induced
superconducting gap on the surface of the TI, in order to
guarantee that Andreev bound states will dominate the elec-
tron transport between contacts. We will consider a junction
under the voltage bias, because the analysis below shows that
AHE cannot be driven by a static phase difference between
superconducting terminals. Therefore, the Hall (super)current
oscillates in time, as does the Josephson current of Cooper
pairs. The model system is shown in Fig. 1. It will be assumed
that the superconducting contacts are weakly coupled to the
TI surface. Therefore, the superconducting proximity effect,
which is induced in the TI by the contacts, may be taken into
account perturbatively. In this situation the role of Andreev
bound states of TI electrons is not important, because the
proximity induced minigap under contacts is small. It is of the
order of the tunneling rate � between a contact and TI. This
rate is assumed to be much less than the superconducting gap
� in both contacts. Hence, the transport of electrons between
superconductors mostly occurs by means of quasiparticle
states outside the minigap.
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FIG. 1. Two superconducting contacts are placed on the top of
a three-dimensional magnetic topological insulator. The voltage bias
V is applied to the contacts. Under this bias the oscillating in time
anomalous Hall current of Cooper pairs is induced perpendicular to
the Josephson current.

Even within the perturbation theory an analysis of the con-
sidered problem poses serious difficulties because it is beyond
a conventional semiclassical approach [38]. Moreover, for this
reason one cannot use the Born approximation for an analysis
of impurity scattering effects. Therefore, it will be assumed
that the transport of electrons between contacts is ballistic. It
requires the sufficiently small distance L between contacts.
For example, highly ballistic TI junctions were reported in
Ref. [27] with L � 100 nm.

The paper is organized in the following way. The formal-
ism employed in this paper will be presented in Sec. II. In
Sec. III two situations will be considered, depending on the
position of the chemical potential with respect to the energy
gap, which is induced by the Zeeman field. A discussion of
results is presented in Sec. IV.

II. FORMALISM

The unperturbed Hamiltonian of two-dimensional electron
gas on the TI surface is given by [14] H0 = ∑

k ψ
†
kH0kψk,

where ψk are the electron field operators, which are defined
in the Nambu basis as ψ = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ ), and the one-

particle Hamiltonian H0k is given by

H0k = τ3(vk × σ − μ) + τ0Mσz. (1)

Here, μ is the chemical potential, M is the exchange field
produced by the magnetic order, and σ j denote Pauli matrices
( j = x, y, z). The Pauli matrices τi, i = 0, 1, 2, 3 operate in
the Nambu space, where τ0 is the unit matrix. We assume a
weak tunneling coupling between the TI and superconducting
contacts. The corresponding tunneling Hamiltonians HL and
HR for the left and right contacts can be written in the form

HL(R) =
∑
k,k′

(
ψ

†
ktL(R)k,k′τ3ψ

S
L(R)k′ + H.c.

)
, (2)

where ψS
L(R)k′ are electron field operators in the left and

right contacts. Generally, the tunneling parameters tL(R)k,k′

are spin dependent. Let us consider, as an example, time-
reversal-symmetric TI belonging to the Bi2Se3 family. In
these materials in the leading k · p expansion the tunneling
parameters are diagonal in spin space, but are different for
opposite spin projections. This is dictated by the form of
Bloch functions which are associated with surface states near
the Dirac point. According to Refs. [14,39], the degener-
ate pair of such functions has the form (ψ1 + iψ2)| ↑〉 and
(ψ1 − iψ2)| ↓〉, where the arrows denote the spin projection
and real functions ψ1 and ψ2 are composed from pz atomic
orbitals. Within the tight-binding approximation the tunneling
parameters are determined by the respective overlap integrals
a1 and a2 of these functions, which are adjacent to TI atomic
orbitals of a contact material (a superconductor or a spacer).
The latter are assumed spin independent. Therefore, the tun-
neling parameters in Eq. (2) are proportional to a1 + ia2 and
a1 − ia2 for up- and down-spin projections, respectively. A
k · p expansion near the � point may result in small spin-
dependent corrections, which will be ignored below. One
should take into account that, since the contact size in the x
direction is finite, the in-plane component of the wave vector
of a tunneling particle is not conserved. Therefore, tL(R)k,k′ ∝
δk−k′,q, where q is the Fourier wave vector of a function which
describes the contact shape.

The Hall current in the junction is directed parallel to
the y axis. The corresponding one-particle current operator is
given by vσx. Therefore, the Hall current density Jy

H may be
expressed in terms of the Keldysh Green’s function as

Jy
H (r, t ) = − ive

4
Tr[σ xGK (t, r; t, r)]. (3)

The Josephson current and anomalous Hall current are given
by the fourth order in the expansion of GK with respect to
the tunneling parameter. Such a perturbative approach was
previously employed for calculation of the Josephson current
[40] and the spin-Hall current in voltage biased Josephson
junctions [41]. Each superconducting contact gives rise to the
self-energy 	L(R), which may be written in the form

	L(R)k,k+q(t, t ′) =
∑

k′
tL(R)k,k′tL(R)k′,k+qGS

k′ (t, t ′). (4)

Because of the electric potentials VL/R/e = ±V/2e on con-
tacts, 	L(R)k,k+q(t, t ′) takes the form

	L(R)k,k+q(t, t ′) = eiτ3VL(R)t	L(R)k,k+q(t − t ′)e−iτ3VL(R)t ′
. (5)

Although tL(R)k,k′ depends on spin, the self-energy in
Eq. (4) is a spin-independent function. It is guaranteed by a
spin-singlet structure of the superconductor Green’s function
GS in Eq. (4) and by a form of the spin dependence of
tunneling parameters. Indeed, since the spin-dependent part
of tk,k′ has the form a1 ± ia2 with real a1 and a2, it is easy
to see that for both spin orientations the self-energy will be
proportional to a2

1 + a2
2 and, hence, the self-energy is spin

independent.
As was discussed above, the only important wave-vector

dependence of tL(R)k,k′ is associated with the finite size of
contacts in the x direction. The shape of the contacts may
be taken into account by multiplying the self-energies 	L(R)

by the functions sL(x) = θ (x − xL2)θ (xL1 − x) and sR(x) =
θ (x − xR1θ (xR2 − x) where the distance between the contacts
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is L = xR1 − xL1. The Fourier components of these functions
will be denoted as sL(R)(q). By integrating GS in Eq. (4) over
k′ one may obtain a simple expression for temporal Fourier
components of the retarded (r) and advanced (a) self-energies
	

r/a
L(R)(t − t ′) in the form

	
r/a
L(R)k,k+q(ω) = �sL(R)(q)

τ1�√
(ω ± iδ)2 − �2

, (6)

where � is the superconducting order parameter and � can
be expressed through the resistance Rb of the superconductor-
normal metal interface, as � = 1/4e2NF Rb, with NF denoting
the state density at the Fermi energy. Only nondiagonal matrix
elements of 	 in the Nambu space are taken into account,

because only these terms contribute to the Josephson current
in the tunneling regime. In the following it will be convenient
to write Nambu matrix elements of 	

r/a
L(R)k,k+q(ω) in Eq. (6)

as(
	

r/a
L(R)k,k+q(ω)

)
12 = (

	
r/a
L(R)k,k+q(ω)

)
21 = 	r/a(ω)smq, (7)

where the subscript m takes the values 1 and −1 for 	R and
	L, respectively, and 	r/a(ω) = ��/

√
(ω ± iδ)2 − �2.

We are interested in the total electric current in the y
direction. Therefore, the current density in Eq. (3) should
be integrated over x. In the second order with respect to �,
Fourier components of the total current can be expressed from
Eq. (3) in the form

Jy
H (±2�) = ie

v

4

∫
dω

2π
dxdx′ ∑

k,q,m=±τ

sm(x)s−m(x′)

× Tr

[
σxGτ,k+q(ω + mτ�)	

(
ω + mτ�

2

)
G−τ,k(ω)	

(
ω − mτ�

2

)
Gτ,k+q(ω − mτ�)

]K

eiq(x′−x), (8)

where the superscript K denotes the Keldysh component of
the matrix product in square brackets, � = V , q ≡ qx, and the
trace is taken over spin variables. The unperturbed Green’s
functions Gτ,k(ω) of TI electrons in Eq. (8) may be obtained
from Eq. (1), where τ3 → τ = ±1. Therefore, the correspond-
ing retarded, advanced, and Keldysh functions are given by

Gr(a)
τ,k (ω) = (ω − τvk × σ + τμ − Mσz ± iδ)−1,

GK
τ,k(ω) = [

Gr
τ,k(ω) − Ga

τ,k(ω)
]

tanh
ω

2kBT
, (9)

where T is the temperature. Since the system is uniform in
the y direction, one may set ky = 0. Therefore, the Green’s
functions in Eq. (9) can be written as

Gr(a)
τ,k (ω) = ω + τvkxσy + τμ + Mσz

(ω + τμ ± iδ)2 − E2
k

, (10)

where Ek = √
v2k2

x + M2 and δ → 0.
The sum over k and q in Eq. (8) involves a product of

three Green’s functions. By taking the Keldysh component of
the matrix in Eq. (8) one obtains various combinations of the
retarded and advanced Green’s functions. These combinations
are summed up over k, q, and spin variables. As a result, we
obtain a set of the functions babc

m,τ (x − x′), which are given by

babc
m,τ =

∑
k,q

Tr
[
σxGa

τ,k+q(ω + mτ�)

× Gb
−τ,k(ω)Gc

τ,k+q(ω − mτ�)
]
eiq(x′−x). (11)

Each of the symbols a, b, and c takes the value r or a. By
taking the trace in Eq. (11), the latter can be transformed to

babc
m,τ = −4im�vM

∑
k,q

(2kx + q)Da
τ,k+q(ω + mτ�)

× Db
−τ,k(ω)Dc

τ,k+q(ω − mτ�)eiq(x′−x), (12)

where the functions Dr and Da are given by Dr/a
τ,k (ω) =

[(ω + τμ ± iδ)2 − E2
k ]−1. It turned out that the functions babc

m,τ

are proportional to �. This means that within the considered
model the Hall current cannot be induced by a “phase” bias,
provided by a static phase difference of order parameters in
contacts. It follows from Eq. (12) that the functions babc satisfy
the equations

babc
m,τ (ω, x) = −babc

m,τ (ω,−x),

babc
1,−1(ω, x) = b∗abc

1,1 (−ω, x). (13)

By calculating the Keldysh projection of the matrix in
Eq. (8) and taking into account Eq. (13) the Hall current
Jy

H (2�) may be written in terms of the functions babc, as

Jy
H (2�) = ie

v

4

∫
dω

2π
dxdx′sR(x)sL(x′)(S1 + S2 + S3), (14)

where

S1 = brrr	r
+	r

− tanh
ω − �

2kBT
− baaa	a

+	a
− tanh

ω + �

2kBT
,

S2 = brra	r
+	r

−

(
tanh

ω

2kBT
− tanh

ω − �

2kBT

)

+ braa	a
+	a

−

(
tanh

ω + �

2kBT
− tanh

ω

2kBT

)
, (15)

and

S3 = brra	r
+(	r

− − 	a
−)

(
tanh

2ω − �

4kBT
− tanh

ω

2kBT

)

+ braa(	r
+ − 	a

+)	a
−

(
tanh

2ω + �

4kBT
− tanh

ω

2kBT

)
,

(16)

where 	
r/a
± = 	r/a(ω ± �

2 ) and babc = babc
1,1(x − x′) +

babc
−1,−1(x′ − x).
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In its turn, the time dependence of the Hall current is
given by

Jy
H (t ) = Jy

H (2�)e2i�t + J∗y
H (2�)e−2i�t . (17)

III. LIMITING CASES

A. The chemical potential outside the mass gap

The exchange interaction M gives rise to a gap in the
spectrum of electron states, as can be seen from the poles
of the Green’s function in Eq. (10). In doped TIs the Fermi
level can be outside the gap. Let us consider the case when
μ > M > 0. It will also be assumed that V � � � μ and
|q| � kF , where vkF =

√
μ2 − M2, with the Fermi velocity

vF given by vF = v
√

μ2 − M2/μ. At these assumptions the
functions babc can be calculated analytically from Eqs. (11)
and (12), by linearizing the denominators of Green’s functions
Eq. (10) near the Fermi energy. As a result, we obtain for
m = τ = 1 and x − x′ > 0

brrr
1,1(ω) = γ

∫ π

−π

dφ

2π
exp

2iω(x − x′)
vx

sin
�(x − x′)

vx
,

baaa
1,1 (ω) = brrr∗

1,1 (ω),

brra
1,1(ω) = −i

γ

2

∫ π

−π

dφ

2π
exp

2iω(x − x′)
vx

exp
i�(x − x′)

vx
,

braa
1,1 (ω) = brra

1,1(−ω), babc
1,1(x − x′) = babc

−1,−1(x′ − x), (18)

where γ = 2M/μv3 and vx = vF cos φ > 0.
According to Eq. (6), at � � � the function

	r
± − 	a

± in Eq. (16) is finite only at ω � �.
In this range, however, the temperature-dependent
factors [tanh(ω/2kBT ± �/2kBT ) − tanh(ω/2kBT )] are
exponentially small, as exp(−2�/kBT ) at kBT � �.
Therefore, one may ignore S3 in Eq. (14). An important
parameter range is determined by the distance L between
contacts and by their width w. In the case of w ∼ L the
characteristic flight time Tf = L/v. For a typical TI (for
example, Bi2S3) with v = 5 × 105 m/s and L = 100 nm one
obtains 1/Tf = 3 meV. Therefore, for such a ballistic junction
both 1/Tf  � and �  �. In this case a contribution to
Eq. (14) given by S2 can be easily calculated, because,
according to Eq. (15), only small ω ∼ � contribute to S2.
Hence, one may set ω = 0 in brra and braa in Eq. (18), as well
as in 	r/a given by Eqs. (6) and (7). In this case 	

r/a
± = i�

in Eq. (15). As a result, the integration over x, x′, ω, and φ

in Eqs. (14) and (18) gives for the current Jy
H2(2�), which

is associated with the second term in Eq. (14), the following
expression:

Jy
H2(2�) = e

4π
��2w2 M

μv2
. (19)

The total current, which includes the first two terms in Eq. (14)
and ignores the small third one, can be written in the form

Jy
H (2�) = Jy

H2(2�)R(L,w), (20)

where the function R is plotted as a function of L in Fig. 2, at
various w.

FIG. 2. The anomalous Hall current as a function of the distance
between contacts [see Eq. (20)]. Curves from the top to the bottom:
wξ=0.5, wξ=1, wξ=2, and wξ=3, where ξ = �/v

B. The chemical potential inside the mass gap

In this section we will assume μ = 0. In this case the
magnetic gap M prevents penetration of Cooper pairs into the
TI. Therefore, the distance between superconducting contacts
must be small enough so that MTf � 1. In the same way as in
Eq. (14), the anomalous Hall current can be expressed in terms
of the functions babc, that are given by Eq. (12). In contrast
to Sec. IIIA, however, the factors brra and braa are propor-
tional to � at � � M. Therefore, by taking into account the
temperature-dependent statistical factor in Eq. (15), which is
∼�, we arrive at S2 ∼ �2. Hence, the leading contribution to
JH is given by S1. Since brrr	r

+	r
− and baaa	a

+	a
− are analyti-

cal functions of ω in the upper and lower complex semiplanes,
respectively, it is convenient to transform the integration over
ω in Eq. (14) into the sum over Matsubara frequencies �n =
π (2n + 1). As a result, in the leading approximation with
respect to � Eq. (14) gives

Jy
H (2�) = ie2�v2MT �2

∫
dxdx′sR(x)sL(x′)

×
∑

ωn,k,q

2kx − q(
ω2

n + E2
k

)2

exp[iq(x′ − x)]

ω2
n + E2

k−q

�2

ω2
n + �2

(21)

where q = qnx. Analytical expressions for the Hall current
may be obtained, by assuming that the distance between
contacts L � v/M. Since at v/M < L the current decreases
fast, this limiting case gives the upper bound on the current.
In order to analyze main qualitative trends, it is sufficient
to consider the cases of the wide (w  v/M) and narrow
(w � v/M) contacts. At small temperatures T � � Eq. (21)
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gives

Jy
H (2�) = e

�

2π

�

24

�2

M2

� + 2M

(� + M )2
(22)

for wide contacts and

Jy
H (2�) = e

�

2π

w2

4

�2

v2

�

� + M
(23)

for narrow contacts.

IV. DISCUSSION

The anomalous Hall current has been calculated for a
ballistic Josephson junction in two regimes, depending on a
position of the chemical potential with respect to the mass
gap, which in turn is induced by an exchange field. In both
cases, according to Eqs. (19), (22), and (23), the Hall current
is proportional to V cos 2V t . Hence, its oscillation amplitude
vanishes at V → 0. This result also signals that the Hall
effect cannot be observed in a stationary state, where the
Josephson current is induced by the phase difference between
superconducting contacts. This effect has no relevance to the
topological 4π Josephson tunneling [20]. The latter requires
a good contact of superconductors with the TI surface, so that
a sufficiently large proximity induced energy gap might be
formed under contacts. Such a gap can support the bound An-
dreev states which are involved in the 4π Josephson current.
In the case considered here, however, such a proximity gap is
equal to the small tunneling rate � and can be ignored.

Above, the Josephson current was calculated within the
ballistic approximation. It is important to understand a pos-
sible influence of disorder on this current. At first sight it
seems that this influence is weak when the mean free path l
of electrons in the TI is much larger than the distance between
contacts, as well as their size in the x direction. The situation,
however, is more complicated in the case when μ > M. This
becomes evident from an analysis of the Hall current distribu-
tion in the x direction. As shown in Appendix A, the current
which is associated with S2 in Eq. (14) extends far outside the

contacts over the distance ∼v/�. At small � the latter can
exceed l and the ballistic approximation becomes invalid. It
is reasonable to expect that at such small frequencies the Hall
current is able to penetrate only over the distance which is less
than l . As a result, at ∼v/�  l the Hall current Jy

H2 should
be proportional to ∼�2, rather than � in Eq. (19). At the
same time, as shown in Appendix A, the Hall current which
is associated with S1 is distributed only in the region between
and under contacts. Therefore, the effect of a disorder is not
so destructive on this current, as long as the contacts are close
to each other and are not too wide.

In the case of μ < M the mass gap restricts the distance
over which the current propagates outside the contacts. Hence,
the scattering effects are not important, as long as M  v/l .

In the model considered here the contacts are infinitely
extended in the y direction. A restriction of their size in this
direction would lead to charge accumulation and to an electric
potential buildup near contact ends. Therefore, the presence
of low ohmic normal contacts is assumed at y = ±∞. Also,
one may consider TI wires, or ribbons, which are coated
with superconducting films. In this case the Hall current will
circulate around the wire.
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APPENDIX: SPATIAL DISTRIBUTION
OF THE HALL CURRENT DENSITY

The above analysis has been focused on a calculation
of the total anomalous Hall current, which is given by an
integral of the current density over the x coordinate. On the
other hand, the x dependence of this density allows one to
better understand a physics of the considered Hall effect. The
current density Jy

H (±2�, x) has a more complicated structure
in comparison with Eq. (8) and is given by

Jy
H (±2�, x) = iev

4

∫
dω

2π
dx′dx′′ ∑

m=±τ

sm(x′)s−m(x′′)
∑

k,q1,q2

eiq1(x−x′ )eiq2(x−x′′ )

× Tr

[
σxGτ,k+q1 (ω + mτ�)	

(
ω + mτ�

2

)
G−τ,k(ω)	

(
ω − mτ�

2

)
Gτ,k−q2 (ω − mτ�)

]K

. (A1)

Instead of the functions babc
m,τ , which are defined by Eq. (11), one can introduce the x-dependent functions babc

m,τ (x). In the range
of parameters considered in Sec. III A they have the form

babc
m,τ (x) = −8im�vM

∑
k,q1,q2

kxeiq1(x−x′ )eiq2(x−x′′ ) × Da
τ,k+q1

(ω + mτ�)Db
−τ,k(ω)Dc

τ,k−q2
(ω − mτ�). (A2)

From this equation one obtains

brrr
1,1(ω) = γ θ (x′ − x)θ (x − x′′)��(x),

brra
1,1(ω) = −γ θ (x′ − x′′)θ (x′′ − x)��(x),

(A3)
braa

1,1 (ω) = −γ θ (x′ − x′′)θ (x − x′)��∗(x),

baaa
1,1 (ω) = brrr∗

1,1 (ω),
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where θ (x) is the Heaviside step function and

�(x) =
∫ π

−π

dφ

2π
e2iω̃(x′−x′′ )e−2i�̃xei�̃(x′+x′′ ). (A4)

In these equations �̃ = �/vx and ω̃ = ω/vx. Other functions,
such as babc

1,−1, depend on x in a similar way.
It is easy to see that the integration of Eq. (A3) over x from

−∞ to +∞ results in Eq. (18). However, the convergence of
integrals for the functions brrr and baaa is much better in com-
parison with the convergence of brra and braa. In the former
case x is confined due to theta functions between x′ and x′′,

which are coordinates belonging to the contacts, while in the
latter case x is free to vary either to +∞ (for braa) or to −∞
(for brra). Therefore, in this case the corresponding integrals
are converging only at finite �. This is the consequence of the
ballistic approximation used in this paper. As a result, there
are physical restrictions on �. Namely, this frequency must
be large enough with respect to various competing parameters
which may restrict the distance of the ballistic propagation of
electrons. For example, it must be large in comparison with
the elastic-scattering rate. Since, according to Eq. (15), brra

and braa contribute to JH2 in Eq. (19), this current must depend
strongly on the impurity scattering, as discussed in Sec. IV.
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