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Trigonal selenium and tellurium crystalize in helical chainlike structures and thus possess interesting
properties such as nontrivial band topology, gyrotropic effects, and nonlinear optical responses. By performing
systematic density-functional-theory calculations with the generalized gradient approximation plus scissors
correction, we study their linear and nonlinear optical (NLO) properties. We find that both materials exhibit
large second-harmonic generation (SHG) and linear electro-optic (LEO) effect. In particular, tellurium has the
huge SHG coefficient (χ (2)

xxx) in the photon energy range of 0 ∼ 3 eV with the maximum magnitude being about
16 times larger than that of GaN, a widely used NLO material. Tellurium is also found to possess the gigantic
static SHG coefficient χ (2)

xyz , which is up to 100 times larger than that of GaN. On the other hand, selenium exhibits
the large LEO coefficient rxxx (0), which is more than six times larger than that of GaN. Thus, tellurium and
selenium may find valuable applications in NLO and LEO devices such as frequency conversion, electro-optical
switches, and light signal modulators. Interestingly, our calculations also reveal that for each material, the
χ (2)

xxx values for the two helical structures are equal but the χ (2)
xyz values differ in sign, suggesting that the SHG

spectroscopy is a useful probe of their chirality. The calculated static and optical dielectric constants as well as
SHG coefficients at the CO2 laser frequency are in good agreement with the available experiments. Finally, much
stronger NLO responses of selenium and tellurium compared with the semiconductors with similar band gaps
are attributed to their quasi-one-dimensional structures with directional covalent bonding and lone-pair electrons.
These findings will help the search for new materials with large NLO coefficients.
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I. INTRODUCTION

The interaction between intense optical fields and materials
may induce strong nonlinear optical (NLO) responses [1,2].
Noncentrosymmetric materials with large second-order NLO
susceptibility (χ (2)) play a crucial role in the development
of modern optical and electro-optical devices such as lasers,
frequency conversions, electro-optic modulators, and switches
[2]. Second-harmonic generation (SHG), a special case of
sum frequency generation, is perhaps the best-known NLO
effect. Since the 1960s, the SHG has been investigated ex-
tensively in bulk semiconductors [2–7] and more recently
also in one-dimensional (see, e.g., Refs. [8,9] and references
therein) and two-dimensional (see, e.g., Refs. [10–13] and
references therein) materials. Furthermore, because of its high
sensitivity to local structure symmetry, the SHG has been a
powerful probe of surfaces and interfaces [1]. Linear electro-
optic (LEO) effect, another second-order electric polarization
response of a NLO material, refers to the linear refractive
index variation (�n) with the applied electric field strength
(E ), �n = n3rE/2, where n is the refraction index and r is the
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LEO coefficient [2]. The LEO effect thus allows one to use an
electrical signal to control the amplitude, phase, or direction of
a light beam in the NLO material, and leads to a widely used
means for high-speed optical modulation and sensing devices
(see, e.g., Ref. [14] and references therein).

Since their discovery, trigonal selenium and tellurium have
attracted considerable attention due to their unique proper-
ties, such as a high degree of anisotropy, broken inversion
symmetry, and chirality [15–19]. Trigonal selenium has valu-
able technological applications such as rectifiers, photocells,
photographic exposure meters, and xerography to medical
diagnostics due to their photoconductivity in the entire visible
range [20–23]. As a narrow band-gap semiconductor, tel-
lurium possesses excellent thermoelectric properties [17,24]
and thus can be used for thermoelectrics. Furthermore, tel-
lurium also exhibits such interesting behaviors as current-
induced spin polarization [25], trivial insulator to strong topo-
logical insulator transition under shear strain [16], circular
photon drag effect [26], robust control over current-induced
magnetic torques [27], and gyrotropic effects [28]. Finally,
their electronic band structures host Dirac and Weyl nodes
due to the broken inversion symmetry and spin-orbit coupling
(SOC) [18,19].

As semiconductors without inversion symmetry, selenium
and tellurium exhibit second-order NLO responses. Although
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their linear optical properties [4,29–33] have been extensively
studied, their NLO effects have hardly been investigated.
Only the second-order NLO susceptibility element χ (2)

xxx has
been measured at the CO2 laser frequency (h̄ω = 0.113 meV)
for selenium and tellurium [29,32,33] and calculated at zero
frequency for selenium [4]. No study on the other nonzero
element χ (2)

xyz has been reported. Since the SHG depends on
the electronic band structure, dipole transition matrix, and
specific frequency and orientation of the applied optical field,
it is of interest to know all the nonzero SHG elements over
the entire optical frequency range. The LEO effect in these
two materials has not been investigated either. Therefore,
the main objectives of this paper are as follows. First, we
want to perform systematic ab initio calculations of all the
nonzero elements of the second-order NLO susceptibility ten-
sor χ

(2)
αβγ (−2ω,ω,ω) of both materials for the whole optical

frequency range. The results will tell us whether trigonal
selenium and tellurium are promising NLO materials for
optical and opto-electronic devices. Second, we also want
to calculate linear optical dielectric functions ε(ω) for both
selenium and tellurium to understand the interesting observed
optical phenomena. The calculated dielectric functions will
also help us to understand the obtained SHG coefficients
[6,9,10]. Furthermore, since a NLO material with a large LEO
coefficient needs to simultaneously possess a large second-
order NLO susceptibility and a low dielectric constant, the
dielectric functions are also required for evaluating the LEO
coefficient. Our findings are expected to stimulate further
experimental investigations on the NLO properties of these
interesting helical chainlike materials.

The paper is organized as follows. In Sec. II, we present the
theory and computational details. In Sec. III, the calculated
optical dielectric function, SHG, and LEO coefficients over
the entire optical frequency range are reported. Comparison
of the obtained SHG and LEO coefficients of the materials
with the known NLO materials suggests that they are superior
NLO materials. The theoretical SHG coefficients are com-
pared with the measured values at the CO2 laser frequency,
and also analyzed in terms of one- and two-photon resonances
via the calculated absorptive parts of the dielectric function.
Moreover, we compare the calculated dielectric function over
the whole optical frequency range with the available exper-
imental results and also analyze their interesting features in
terms of the symmetry of band states at high symmetry k-
points in the Brillouin zone. Finally, conclusions drawn from
this work are given in Sec. IV.

II. STRUCTURE AND COMPUTATIONAL METHOD

The crystal structure of trigonal selenium and tellurium
[34,35] is schematically shown in Fig. 1. It consists of the
helical chains arranged in a hexagonal array [34,35]. The
three atoms in the unit cell are situated at positions (u, 0, 0),
(0, u, 1/3), and (−u,−u, 2/3). The space group is either
P3121 (D4

3) or P3221 (D6
3), depending on whether it has

the right-handed or left-handed screw. Nonetheless, the two
different helical structures are related to each other by spatial
inversion. Thus, their energy bands and linear optical proper-
ties should be identical. Furthermore, their nonzero elements
of the second-order NLO susceptibility tensor would be the

FIG. 1. (a) Side and (b) top views of the trigonal crystalline
structure of selenium and tellurium as well as (c) the associated
Brillouin zone. a and c are lattice constants. θ , r, and R are bond
angle, intrachain, and interchain distances, respectively. q denotes
the radius of the helices.

same and are also related to each other, as will be explained in
Sec. III C below. Thus, we only consider the D4

3 case here.
The structures could be viewed as being derived from the
Peierls distortion [36] of the six-coordinated simple cubic
structure. The valence electron configurations of selenium
and tellurium are 4s24p4 and 5s25p4, respectively, i.e., one-
third of the p bands are empty. Consequently, every atom
is covalently bonded to two neighboring atoms along each
chain, and interacts with four second-nearest-neighbor atoms
of the adjacent chains by van der Waals forces. The intrachain
bonding and interchain bonding correspond to the p bonding
and the lone pair states, respectively. The overlap of electronic
orbitals arising from the lone pair and antibonding states on
neighboring chains induces the covalent bond stretched to
infinity. Furthermore, such overlap and the repellant exchange
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TABLE I. Calculated (the) and measured (exp) lattice constants a and c, atomic-position parameter u, the distances of intrachain r and
interchain R, bond angle θ , cell volume V .

a (Å) c (Å) u r (Å) R (Å) θ (◦) V (Å
3
)

Se expa 4.3662 4.9536 0.2254 2.3732 3.4358 103.07 81.78
the 4.3084 5.0874 0.2315 2.4207 3.3958 103.66 81.78

Te expb 4.4511 5.9262 0.2633 2.8325 3.4908 103.27 101.68
the 4.4345 5.9707 0.2754 2.9044 3.4428 101.79 101.67

aRef. [34].
bRef. [35].

interaction between lone pair orbitals stabilize the helical
chains. As shown in Fig. 1, lattice constant a amounts to the
distance between the adjacent chains. Lattice constant c is
equal to the height of the unit cell in the chain direction (the
c axis). Interestingly, the atomic position parameter u = q/a
can be related to lattice constant a and the helix radius q. Note
that the ratio (R/r) of the interchain and intrachain distances
of tellurium is smaller than that of selenium (Table I), imply-
ing a weaker structural anisotropy in tellurium.

The present ab initio calculations are performed based on
the density-functional theory with the generalized gradient
approximation (GGA) of Perdew, Burke, and Ernzerhof [37].
The resultant GGA lattice constants agree rather well with
that of experiments (see Table I). The accurate projector-
augmented wave (PAW) method [38], as implemented in the
VASP package [39,40], is used. A large plane-wave cutoff
(Ecut) of 450 eV is adopted throughout. Test calculations using
Ecut = 500 eV for selenium yields the band structure being
identical to that of Ecut = 450 eV. The PAW potentials are
used to describe the electron-ion interaction, with six valence
electrons for Se (4s24p4) and also for Te (5s25p4). The theo-
retical atomic positions and lattice constants are fully relaxed
until the forces acting on all the atoms are less than 0.01 eV/Å
and the stresses are less 8.0 kBar, respectively. The total
energy convergence criterion for the self-consistent electronic
structure calculations is 10−6 eV. The accurate tetrahedron
method [41] is used for the Brillouin zone integration. A
k-point mesh of 10 × 10 × 8 is used for the self-consistent
charge density calculations. The density of states (DOS) is
evaluated from the self-consistent band structure with a much
denser k-point mesh of 20 × 20 × 18 for Se and of 20 ×
20 × 16 for Te. Further calculations using different k-point
meshes indicate that the above k-point meshes produce the
well-converged charge density and DOS spectra, respectively.

We first perform structural optimizations of the atomic
positions and lattice constants with the conjugate gradient
technique. Table I shows that the calculated lattice constants
agree rather well with that of experiments [34,35] except
lattice constant c of selenium, which is about 2.6 % too small.
Nonetheless, the calculated linear and NLO spectra using the
theoretical structural parameters look almost the same as that
obtained using the experimental structural parameters. There-
fore, only the results calculated by using the experimental
structural parameters are presented in this paper.

The optical dielectric function and NLO susceptibility are
calculated based on the linear response formalism with the
independent-particle approximation, as described previously
[8,42]. Therefore, the imaginary part of the dielectric function

ε(ω) due to direct interband transitions is given by the Fermi
golden rule [8,42],

ε′′
a (ω) = 4π2

�ω2

∑
i∈VB, j∈CB

∑
k

wk

∣∣pa
i j

∣∣2
δ(εk j − εki − ω), (1)

where ω is the photon energy and � is the unit-cell vol-
ume. VB and CB represent the valence and conduction
bands, respectively. The dipole transition matrix elements
pa

i j = 〈kj| p̂a|ki〉 are obtained from the self-consistent band
structures within the PAW formalism [43]. Here |kn〉 is the
nth Bloch state wave function with crystal momentum k,
and a denotes the Cartesian component. The real part of the
dielectric function is then obtained from the calculated ε′′(ω)
by the Kramer-Kronig transformation [8,42]:

ε′(ω) = 1 + 2

π
P

∫ ∞

0
dω′ ω

′ε′′(ω′)
ω′2 − ω2

. (2)

Here P represents the principal value of the integral.
The imaginary part of the second-order optical susceptibil-

ity due to direct interband transitions is given by [8,9]

χ
′′(2)
abc (−2ω,ω,ω) = χ

′′(2)
abc,VE(−2ω,ω,ω)

+ χ
′′(2)
abc,VH(−2ω,ω,ω), (3)

where the contribution due to the so-called virtual-electron
(VE) process is [8,9]

χ
′′(2)
abc,VE = − π

2�

∑
i∈VB

∑
j,l∈CB

∑
k

wk

⎧⎨
⎩

Im
[
pa

jl

〈
pb

li p
c
i j

〉]
ε3

li(εli + ε ji )
δ(εli − ω)

− Im
[
pa

i j

〈
pb

jl pc
li

〉]
ε3

li(2εli − ε ji )
δ(εli − ω)

+ 16Im
[
pa

i j

〈
pb

jl pc
li

〉]
ε3

ji

(
2ε3

li − ε3
ji

) δ(ε ji − 2ω)

⎫⎬
⎭, (4)

and that due to the virtual-hole (VH) process is [8,9]

χ
′′(2)
abc,VH = π

2�

∑
i,l∈VB

∑
j∈CB

∑
k

wk

⎧⎨
⎩

Im
[
pa

li

〈
pb

i j pc
jl

〉]
ε3

jl (ε jl + ε ji )
δ(ε jl − ω)

− Im
[
pa

i j

〈
pb

jl pc
li

〉]
ε3

jl (2ε jl − ε ji )
δ(ε jl − ω)

+ 16Im
[
pa

i j

〈
pb

jl pc
li

〉]
ε3

ji(2ε jl − ε ji )
δ(ε ji − 2ω)

⎫⎬
⎭. (5)
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TABLE II. Calculated (EGGA
g and EHSE-SOC

g ) and experimental
band gaps (E exp

g ) as well as scissors operators (�Eg = EHSE-SOC
g −

EGGA
g ) for selenium and tellurium. The values in brackets are from

the HSE calculations without the SOC.

EGGA
g (eV) EHSE-SOC

g (eV) E exp
g (eV) �Eg (eV)

Se 1.002 1.735 (1.759) 2.0a 0.733
Te 0.113 0.322 (0.546) 0.323b 0.209

aExperimental value from Ref. [30].
bExperimental value from Ref. [44].

Here ε ji = εk j-εki and 〈pb
jl pc

li〉 = 1
2 (pb

jl pc
li + pb

li p
c
jl ). The real

part of the second-order optical susceptibility is then obtained
from the calculated χ

′′(2)
abc by the Kramer-Kronig transforma-

tion [8,9]:

χ ′(2)(−2ω,ω,ω) = 2

π
P

∫ ∞

0
dω′ ω

′χ ′′(2)(2ω′, ω′, ω′)
ω′2 − ω2

. (6)

The LEO coefficient rabc(ω) is related to the second-order
optical susceptibility χ

(2)
abc(−ω,ω, 0) [5]. In the zero frequency

limit,

rabc(0) = − 2

εa(0)εb(0)
lim
ω→0

χ
(2)
abc(−2ω,ω,ω). (7)

Furthermore, for the photon energy ω well below the band
gap, χ

(2)
abc(−2ω,ω,ω) and n(ω) are nearly constant. In this

case, the LEO coefficient rabc(ω) ≈ rabc(0) [8,10].
To obtain accurate optical properties, we perform calcula-

tions for selenium and tellurium with several different k-point
meshes until the calculated optical properties converge to a
few percent. As a result, dense k-point meshes of 40 × 40 ×
36 and 50 × 50 × 38 are adopted for selenium and tellurium,
respectively. Furthermore, about 27 bands per atom are in-
cluded in the optical calculations to ensure that ε′ and χ ′(2)

obtained by the Kramer-Kronig transformation are reliable,
as confirmed by further test calculations for selenium using
different numbers of bands. The function δ in Eqs. (1), (4), and
(5) are approximated by a Gaussian function with � = 0.2 eV.

It is well known that the band gap of a semiconductor is
generally underestimated by the local density approximation
(LDA) and GGA calculations (see, e.g., Table II) where many-
body effects, especially quasiparticle self-energy correction,
are not adequately taken into account. On the other hand,
Eqs. (1), (4), and (5) indicate that correct band gaps would
be important for obtaining accurate optical properties. There-
fore, we further perform the band-structure calculations using
the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional [45],
which is known to produce much improved band gaps for
semiconductors. We then take the self-energy corrections into
account by the so-called scissors correction (SC) [46], using
the accurate band gaps from the HSE calculations. In the SC
calculation, the conduction bands are uniformly upshifted so
the band gap would match the HSE gap together with the
renormalized transition matrix elements [46]. Indeed, such
SC calculations were shown to give rise to the second-order
nonlinear susceptibility at zero frequency for low-dimensional
materials such as trigonal selenium [4] and graphenelike BN
sheets that agree well with the experimental ones [10].
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FIG. 2. Band structures of (a) selenium and (b) tellurium from
the GGA (blue solid lines) calculations and HSE (red dashed lines)
calculations with the SOC included. Both materials possess an
indirect band gap. The top of the valence bands is at 0 eV.

III. RESULTS AND DISCUSSION

A. Electronic band structure

Because selenium and tellurium have the same crystalline
structures, the band structure of selenium is similar to that
of tellurium, as shown in Fig. 2. Both materials are indirect
band-gap semiconductors which have the conduction band
minimum (CBM) at the H point. For selenium, the valence
band maximum (VBM) is located at the L point, whereas
the VBM of tellurium is close to the H point along the H-K
direction. The calculated band gap is 1.002 (0.113) eV in
Se (Te), which is significantly smaller than the experimental
value of 2.0 (0.323) eV [30,44]. The ratio between the inter-
chain and intrachain distances of tellurium, as mentioned pre-
viously, is smaller than that of selenium. Thus, the enhanced
interchain interaction in tellurium brings about more electrons
transferred from lone pair states to antibonding states and this
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weakens the Peierls distortion. This explains why the band gap
of tellurium is smaller than that of selenium, even though they
have the same crystalline structure. There are three groups of
valence bands, namely, the s bonding, p bonding, and p lone
pair states, and the three lowest conduction bands arise from
the p antibonding states. The calculated band structures of Se
and Te agree quite well with previous calculations [18]. The
minor differences stem from the fact that the present GGA
calculations are done without SOC.

As mentioned before, we also calculate the band structures
by using the HSE functional [45] in order to get more accurate
band gaps. The band structures from the HSE calculations
with the SOC included are displayed in Fig. 2. The theoretical
band gaps from the GGA and HSE calculations together with
the experimental values are listed in Table II. Indeed, the band
gaps of selenium and tellurium from the HSE calculations
with the SOC included, are in good agreement with the cor-
responding experimental values (Table II). Therefore we use
the band gap differences between the HSE-SOC calculations
and GGA calculations as the scissors correction energy [46],
to evaluate linear and NLO properties for both selenium and
tellurium.

We also calculate total and orbital-projected DOS for
selenium and tellurium, as displayed in Fig. 3. Overall, the
DOS spectra of the two systems are rather similar. Hence, in
what follows, we only analyze the DOS spectra of selenium.
We can see from Fig. 3(a) that the lowest valence bands
of selenium ranging from −15.9 to −9.5 eV (region VB1)
stem mainly from the s orbitals. On the other hand, the top
valence bands ranging from −5.9 to 0.0 eV (regions VB2 and
VB3) and the lower conduction bands ranging from 1.0 to
4.0 eV (region CB1) originate primarily from the p orbitals.
Figure 3(b) further shows that the lower valence bands ranging
from −5.9 to −4.8 eV and also the conduction bands ranging
from 1.9 to 4.0 eV are dominated by the pz orbital with
an equal contribution from the px and py orbitals. The top
valence bands ranging from −4.8 to 0.0 eV are of mainly px

and py orbitals with a certain pz component. Moreover, the
lower conduction bands ranging from 1.2 to 1.9 eV mainly
consist of the px and py orbitals. Thus, Fig. 3 shows clearly
that both the upper valence bands and lower conduction bands
near the band gap are dominated by the p orbitals and hence
the p orbitals will play a major role in the linear and NLO
responses.

B. Linear optical property

The calculated imaginary (absorptive) part of the optical
dielectric function ε(ω) for selenium and tellurium are shown
in Fig. 4. Selenium and tellurium have a uniaxial crystalline
structure with strongly covalent bonded spiral chains oriented
along the c axis which are weakly binded by van der Waals
forces. As a result, their optical properties depend signifi-
cantly on light polarization direction. Thus, the imaginary
part of the dielectric function for both systems consist of
two distinctly different components, i.e., light polarization
parallel (E ‖ c) and perpendicular (E ‖ a) to the c axis. In
particular, Fig. 4(a) shows that the absorptive part of E ‖ a
is much smaller than that of E ‖ c in the low energy range
(about 2.3 ∼ 8.8 eV), while it is the opposite in the energy
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FIG. 3. Total and orbital-projected density of states (DOS) for
selenium (a) and (b) as well as tellurium (c) and (d). The top of the
valence bands is at 0 eV.

range above 8.8 eV. Although the similar phenomena are
observed in tellurium, it possesses weaker optical anisotropy
than selenium (Fig. 4). This could be explained by the fact that
tellurium has a weaker structural anisotropy.

Figure 4(a) shows that there are two pronounced peaks
in the imaginary part of the dielectric function for E ‖ c,
namely, a large peak (C2) located at ∼3.7 eV and a relatively
small one (C4) in the neighborhood of 7.5 eV. Furthermore,
there are three shoulder peaks at ∼2.4 eV (C1), ∼6.1 eV (C3),
and ∼8.7 eV (C5), respectively. For E ‖ a, our theoretical
calculations for selenium exhibit a prominent peak (A2) near
3.7 eV. Beyond that, for E ‖ a, the spectrum shows multiple
bumps (A3 ∼ A8). The amplitude of the bumps above ∼5.6 eV
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FIG. 4. The absorptive part of optical dielectric function ε′′(ω)
of (a) selenium and (b) tellurium for both light polarization perpen-
dicular (E ‖ a) and parallel (E ‖ c) to the c axis.

increases and then decreases with the photon energy. At
5.6 eV occurs a deep minimum deriving from the fact that
transitions from the upper valence triplet to the lower con-
duction triplet are already exhausted. The amplitude of the
bumps increases within the energy range between 5.6 eV and
9.2 eV due to the transitions from the lower valence triplet to
the lower conduction triplet and also from the upper valence
triplet to the upper conduction triplet. For Te, Fig. 4(b) shows
that the spectra of the imaginary part of the dielectric function
could be divided into two regions. In the low-energy region
(about 0–4 eV), there are two prominent peaks for both E ‖ a
(A1, A2) and E ‖ c (C1, C2). The larger peak (A2) occurs at
∼2.0 eV and the smaller peak (A1) is found at 1.2 eV for
E ‖ a. For E ‖ c, the larger (C2) and smaller (C1) peaks are
located at 1.9 eV and ∼1.2 eV, respectively. In the high-
energy region (about 4–9 eV), a broad peak (A4) centered
at ∼7.2 eV for E ‖ a exists. However, the spectrum of E ‖ c
exhibits some steadily oscillatory bulges in the energy region.

0

10

20

30

40

ε"

E//a
E//c
E//a (exp1)
E//c (exp1)
E//a (exp2)
E//c (exp2)
E//a (exp3)
E//c (exp3)

0

20

40

60

80 E//a
E//c
E//a (exp4)
E//c (exp4)
E//a (exp3)
E//c (exp3)

0 2 4 6 8 10 12
Energy (eV)

-10

0

10

20

30

ε’

E//a
E//c
E//a (exp1)
E//c (exp1)
E//a (exp3)
E//c (exp3)

0 2 4 6 8 10
Energy (eV)

-20

0

20

40

60

80
E//a
E//c
E//a (exp4)
E//c (exp4)
E//a (exp3)
E//c (exp3)

(a) (c)

(b) (d)Se

Se Te

Te

FIG. 5. Calculated and experimental imaginary [ε′′(ω)] and real
part [ε′(ω)] of the dielectric function for (a) and (b) selenium as
well as (c) and (d) tellurium for both light polarization perpendicular
(E ‖ a) and parallel (E ‖ c) to the c axis. Red, maroon, green, and
magenta dashed and dot-dashed lines denote the measured dielectric
function spectra from Refs. [30] (exp1), [48] (exp2), [49] (exp3), and
[50] (exp4), respectively.

Therefore, the transitions from the lower valence triplet to the
lower conduction triplet and from the upper valence triplet to
the upper conduction triplet are more pronounced.

The calculated and experimental [47] static dielectric con-
stants are listed in Table VII. It is clear from Table VII that
the dielectric constants of both selenium and tellurium from
the GGA calculations with the scissors correction agree well
with the measured ones while, as expected, that obtained from
the GGA calculations without the scissors correction are too
large. The measured optical dielectric functions for selenium
and tellurium [48,49] are compared with our calculations in
Fig. 5. The imaginary part of the dielectric function would
allow us to find out the information on the major electronic
transitions. Thus, we focus on the calculated and experimental
spectra of the imaginary part of the dielectric function. First,
we find that for selenium, the positions of the A2 and C2

peaks at ∼3.7 eV are consistent with the experiments [49].
Furthermore, small bumps C3 and C5 are also observed in the
experimental spectra [48]. In particular, the position of the
C5 bump is consistent with the experiment [48]. Moreover,
Fig. 5(a) shows that our calculated five small bumps (A3,
A4, A5, A7, A8) agree reasonably well with that of the mea-
surements [48], other than having slightly larger amplitudes.
The experiment and our theoretical calculations have common
peaks A1, C1, and C4, although the energy positions of the
theoretical peaks are slightly blueshifted compared to that of
the experimental ones [48,49]. Finally, the positions of peaks
A1 and C1 are consistent with the experiments [30].

For tellurium, the positions of peaks A1, A2, A3, A4, C1, and
C2 in the imaginary part of the dielectric function agree well
with that of the experimental spectra [49,50]. Furthermore,
the small C3, C5, and C6 peaks can also be observed in
the experimental [49] spectra, other than being redshifted by
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TABLE III. Symmetry adapted basis functions of the point
groups for six high-symmetry k-points in the hexagonal Brillouin
zone [see Fig. 1(c)].

Group k-point A1 A2 E A B

D3 A, �, H, K s, dz2 pz px, py,

dxz, dyz,

dxy, dx2−y2

C2 L, M pz, dxy, px, py,

dz2 , dx2−y2 dxz, dyz

about 0.2 eV, 0.2 eV, and 0.4 eV, respectively. In the high
energy region (4.0–9.0 eV), both the calculated and exper-
imental [49] spectra exhibit oscillatory peaks, although the
positions of the peaks differ slightly. Overall, the theoretical
imaginary part of the dielectric function for both materials
are in good agreement with the experiments. Furthermore,
Figs. 5(b) and 5(d) show that the spectral shape of the real
part of the dielectric function agrees rather well with that of
the experiments [49,50].

The band structure and linear optical properties of se-
lenium and tellurium have been studied both theoretically
[33,48,51,52] and experimentally [30,31,44,48,49] before.
Nevertheless, no detailed analysis on the main peaks in the
imaginary part of the dielectric function in terms of interband
transitions, has been reported. Here we perform such a de-
tailed analysis. Equations (1), (4), and (5) show that the imag-
inary parts of the dielectric function and second-order NLO
susceptibility are closely connected with the dipole-allowed
interband transitions. Thus, we can understand the origin of
the peaks in the imaginary part of the dielectric function by
analyzing the symmetry of the band states and also the dipole
transition selection rules. First, by using the projection method
of the group theory, we deduce the symmetry-adapted basis
functions in terms of the atomic orbitals (Table III). Second,
we determine the symmetry of the band states (Fig. 6) for six
principal symmetry points (A, �, H, L, K, M) by comparing
the symmetry-adapted basis functions with the calculated
orbital characters of the band states at the six symmetry points.
Note that the atomic configurations of Se and Te are 4s2,
4p4 and 5s2, 5p4. Therefore, we only consider the symmetry-
adapted basis functions of s, px, py, and pz orbitals. Such
deduced symmetries at the A, �, H, and K points are con-
sistent with the previous calculations [51]. After considering
the selection rules (Table IV) [52], we could assign the peaks
in the imaginary part of the dielectric function to the direct
interband transitions at the six symmetry points, as shown in
Fig. 6 as well as in Tables V and VI. For example, for trigonal

TABLE IV. Dipole selection rules between the band states at
six high symmetry k-points in the hexagonal Brillouin zone [see
Fig. 1(c)].

E ⊥ c E ‖ c E ⊥ c E ‖ c

D3 �1 ←→ �3 �1 ←→ �2 C2 �1 ←→ �2 �1 ←→ �1

� �2 ←→ �3 �3 ←→ �3 L �1 ←→ �3 �2 ←→ �2

(A, H, K ) �3 ←→ �3 (M ) �2 ←→ �3 �3 ←→ �3
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FIG. 6. (a) Selenium and (b) tellurium band structures from the
GGA calculation with the scissors correction. The symmetries of
band states at six high-symmetry points are labeled according to
the irreducible representations of the point groups (Table III). The
principal interband transitions and the peaks in the imaginary part of
the dielectric function in Fig. 4 are indicated by blue [light polarized
parallel (E ‖ c) to the c axis] and pink [light polarized perpendicular
(E ‖ a) to the c axis] arrows. The top of the valence bands is at 0 eV.

selenium, the A2 peak at ∼3.7 eV [see Fig. 4(a)] stems from
transitions from the H3 state at the top of the valence band
to the conduction band state H3 (∼3.4 eV) at H-point and
from the L2 valence band state at −1.4 eV to the L1 state at
the bottom of conduction band at the L-point. Furthermore,
the A2 peak is associated with the transition from the M2 state
at the top of valence band to the M1 state at the bottom of

035202-7



CHENG, WU, ZHU, AND GUO PHYSICAL REVIEW B 100, 035202 (2019)

TABLE V. The principal peaks in the imaginary part spectra
of the dielectric function [see Fig. 4(a)] and corresponding direct
interband transitions at six high symmetry k-points [see Fig. 6(a)]
for selenium.

Peak Direct transitions Peak Direct transitions

C1 A1 L : 9 → 10
C2 H : 8, 9 → 11, 12; A2 H : 8, 9 → 11, 12;

L : 9 → 12 L : 8 → 10;
M : 9 → 10

C3 M : 6 → 10 A3

C4 H : 4 → 10 A4 M : 9 → 13
C5 K : 4, 5 → 10, 11 A5 K : 4, 5 → 10, 11

A6 � : 7, 8 → 14, 15;
H : 4 → 11, 12

A7 K : 9 → 14, 15;
L : 8 → 14

A8 A : 3 → 10, 11;
A : 5, 6 → 14, 15;
� : 7, 8 → 17;

M : 7 → 14

conduction band at M-point. The C2 peak at ∼3.7 eV could be
attributed to transitions starting from the H3 state at the top of
valence band to the conduction band states H3 (∼3.4 eV) at
the H-point and from the L2 state at the top of valence band to
the L2 conduction band state (∼3.7 eV) at the L-point.

Similarly, for tellurium, we can assign the A2 peak [see
Fig. 4(b)] to the transitions from the �2 state at the top of
valence band to the �3 state at the bottom of conduction band
at the �-point and from the M2 state at the top of valence
band to the M1 state at the bottom of conduction band at the
M-point. It is noted that the transition from the A3 state at
the top of the valence band to the conduction band state A3

(∼0.8 eV) at the A-point contributes to the A2 and C2 peaks.

TABLE VI. The principal peaks in the imaginary part spectra
of the dielectric function [see Fig. 4(b)] and corresponding direct
interband transitions at six high-symmetry k-points [see Fig. 6(b)]
for tellurium.

Peak Direct transitions Peak Direct transitions

C1 A1 L : 9 → 10
C2 A : 8, 9 → 11, 12 A2 A : 8, 9 → 11, 12;

� : 9 → 10, 11;
M : 9 → 10

C3 � : 4 → 12; A3 A : 4 → 11, 12;
L : 8 → 12; L : 5 → 10;
L : 9 → 13 M : 6 → 11

C4 L : 6 → 11 A4 � : 9 → 16, 17;
H : 8, 9 → 16;

L : 7 → 13
C5 � : 7, 8 → 13, 14;

� : 9 → 15;
M : 6 → 12;
L : 8 → 13

C6 A : 4 → 13;
� : 7, 8 → 16, 17
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FIG. 7. (a) and (d) Real and imaginary parts as well as (b) and
(e) absolute value of the second-order susceptibility (a) and (b) χ (2)
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as well as (d) and (e) χ (2)
xyz of selenium. (c) and (f) Imaginary part

ε′′(ω) of the dielectric function for light polarization perpendicular
and parallel to the c axis, respectively. In (b), the green diamond and
violet circle denote the experimental SHG values from Refs. [29] and
[32], respectively.

C. Second-harmonic generation and
linear electro-optic coefficient

Point group D3 has ten nonvanishing second-order NLO
susceptibility elements [1,2]. However, the crystalline sym-
metry D4

3 of selenium and tellurium further reduces this
number to five. Our ab initio calculations show that there
are only two independent elements among the five nonzero
elements because χ (2)

xxx = −χ (2)
xyy = −χ (2)

yxy, χ (2)
xyz = −χ (2)

yzx . Our
calculations for selenium also reveal that the values of the χ (2)

xxx
element of the two helical structures (D4

3 and D6
3) are equal

but the values of the χ (2)
xyz element differ in sign. Therefore,

here we present only χ (2)
xxx and χ (2)

xyz for space group D4
3, as

mentioned above in Sec. II. The calculated real and imaginary
parts as well as the absolutes values of these two elements
are displayed in Figs. 7 and 8 for selenium and tellurium,
respectively. We note that with the scissors correction, the
line shapes of the calculated NLO spectra are hardly changed
and thus only the NLO spectra calculated with the scissors
correction are displayed in Figs. 7 and 8. However, the peak
positions are blueshifted by about the energy of the scissors
correction (�Eg). Moreover, the magnitude of the second-
order susceptibility gets reduced (see Table VII).

In Table VII, we list the calculated static dielectric con-
stant ε(0), second-order NLO susceptibility χ (2)(0, 0, 0), and
zero-frequency LEO coefficient r(0). Interestingly, Table VII
shows that tellurium exhibits large static second-order NLO
susceptibility, especially χ (2)

xyz (0), which is up to 100 times
larger than that of GaN in both zinc-blende and wurtzite
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TABLE VII. Static dielectric constants (εx = εy and εz), second-order susceptibility χ (2)
xxx (0) (pm/V), χ (2)

xyz (0) (pm/V), and |χ (2)
xxx (0.113 eV)|

(pm/V) as well as LEO coefficient rxxx (0) (pm/V) and rxyz(0) (pm/V) of selenium and tellurium calculated without (GGA) and with (SC)
scissors correction. Available experimental data and previous calculation are also listed for comparison.

εx εz χ (2)
xxx (0) χ (2)

xyz (0) rxxx (0) rxyz(0)
∣∣χ (2)

xxx (0.113 eV)
∣∣

Se GGA 10.8 15.4 330, 440a 6 −5.63 −0.10 335
SC 9.0 12.7 145, 194b 5 −3.58 −0.12 146
exp 6.2∼8.4b 12.7b 159 ± 84c

194 ± 50d

Te GGA 40.6 57.2 3163
SC 33.2 49.0 169 1009 −0.30 −1.82 475
exp 33.0b 54.0b 1840 ± 560d

1843 ± 586e

aLDA calculations with the SC from Ref. [4].
bExperimental value from Ref. [47].
cExperimental value from Ref. [29].
dExperimental value from Ref. [32].
eExperimental value from Ref. [33].

structures [6,7]. Furthermore, for both materials, the static
second-order NLO susceptibility exhibits strong anisotropy.
The same phenomenon is observed in the LEO coeffi-
cient. Moreover, selenium has large LEO coefficient rxxx(0)
(∼3.6 pm/V), being more than six times larger than that of
bulk GaN polytypes [6,7].

Let us now compare our calculated |χ (2)
xxx(0)| and

|χ (2)
xxx(0.113)| with the previous LDA calculations and avail-

able experiments. First, our calculated |χ (2)
xxx(0.113)| for se-

lenium agrees rather well with the experimental values re-
ported in Ref. [29] and also Ref. [32] [see Table VII and
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ε′′(ω) of the dielectric function for light polarization perpendicular
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violet circle denote the experimental SHG values from Refs. [32] and
[33], respectively.

Fig. 7(b)]. Second, for |χ (2)
xxx(0)|, the agreement between

our GGA calculations and the previous LDA calculations
[4] is also rather good (see Table VII). For tellurium, Ta-
ble VII and Fig. 8(b) show that our calculated |χ (2)

xxx(0.113)|
is much smaller than the available experiment values [32,33].
Nonetheless, we note that in the energy range of 0.0 ∼
0.3 eV, |χ (2)

xxx| increases rapidly with the photon energy and
the energy of 0.113 eV sits right at the middle of the steep
slope [Fig. 8(b)]. Thus, a small error in the energy position
could cause a large discrepancy between the theory and ex-
periment. Indeed a small redshift (∼0.1 eV) could bring the
calculated and experimental values of |χ (2)

xxx(0.113)| in good
agreement.

The SHG involves not only single-photon (ω) resonance
but also double-photon (2ω) resonance. Therefore, to fur-
ther analyze the NLO responses, we plot the modulus
of the imaginary parts of the second-order susceptibility
|χ (2)(−2ω,ω,ω)| as well as dielectric functions ε′′(ω) and
ε′′(ω/2) together in Figs. 7 and 8 for selenium and tel-
lurium, respectively, to understand the prominent features
in the spectra of χ (2)(−2ω,ω,ω). For selenium, Fig. 7
shows that the threshold of the χ (2)(−2ω,ω,ω) spectra and
also the absorption edge of ε′′(ω/2) is at ∼0.87 eV ( 1

2 Eg),
while the absorption edge of ε′′(ω) is at ∼1.73 eV (Eg).
Therefore, the SHG spectra can be divided into two parts.
The first part from 0.87 to 2.50 eV stems predominantly from
double-photon resonances. The second part (above 2.5 eV)
is mainly associated single-photon resonances with some
contribution from double-photon resonances [see Figs. 7(c)
and 7(f)]. These two types of resonances cause the SHG
spectra to oscillate and decrease gradually in the higher energy
region. Figure 7 indicates that, for selenium, both the real
and imaginary parts of the second-order NLO susceptibil-
ity χ (2)

xyz (−2ω,ω,ω) show an oscillatory behavior with the
energy. Indeed, the spectrum of |χ (2)

xyz (−2ω,ω,ω)| oscillates
rapidly and has the maximum of about 205 pm/V at ∼3.6 eV
[see Fig. 7(e)]. It is clear from Fig. 7(b) that the spectrum
of the absolute value of χ (2)

xxx(−2ω,ω,ω) shows a broad
plateau from 1.34 eV to 3.44 eV and reaches the maximum
of 775 pm/V at 1.7 eV which is a few times larger than that
of GaN [6,7], a widely used NLO semiconductor.
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For tellurium, likewise, the spectral structure in the energy
range from ∼0.16 ( 1

2 Eg) to ∼1.0 eV is formed mainly by
double-photon (2ω) resonances. The rest structure (above
∼1.0 eV) arises mainly from single-photon (ω) resonances
with some contribution from 2ω resonances. All the NLO
susceptibilities of tellurium are large in the photon en-
ergy range of 0.0 ∼ 3.0 eV. For example, the magnitude of
|χ (2)

xyz (−2ω,ω,ω)| is around 1977 pm/V at 0.96 eV. Inter-
estingly, for both systems, the real part, imaginary part, and
absolute value of χ (2)

xyz are smaller than χ (2)
xxx, and produce

relatively pronounced oscillations compared to χ (2)
xxx. The phe-

nomenon is explained by the fact that the two materials are
helical chains along the c axis and possess a high degree of
anisotropy. In particular, the absolute value of second-order
NLO susceptibility χ (2)

xxx of tellurium is as high as 3640 pm/V
at 0.94 eV, which is nearly 16 times larger than that of GaN
[6,7]. This suggests that tellurium would be a superior NLO
material and has potential application in NLO and LEO op-
tical devices such as frequency conversion, optical switching,
SHG, optical modulation, and sensing devices.

Equations (1), (4), and (5) show that for a specific semicon-
ductor, the smaller the band gap is, the larger the magnitude of
the imaginary part of the dielectric function, and second-order
NLO susceptibility would be, simply because of the energy
differences between the initial and final states of optical exci-
tations in the denominators. In particular, the magnitude of the
imaginary part of the SHG coefficients especially in the low-
frequency region would be roughly proportional to the inverse
of the fourth power of the band gap. Table II shows that
tellurium has a band gap which is roughly six times smaller
than that of selenium, and this explains why the calculated
χ (2) values of tellurium are much larger than that of selenium
(see Table VII and Figs. 7 and 8), although the two materials
have similar crystalline and electronic structures. However, if
the band gap is too small, especially when the band gap is
smaller than the optical frequencies of interest, the material
would not be useful for the NLO applications because of the
strong absorptions by the material. This suggests that to search
for NLO materials with large SHG coefficients, one could
focus on those semiconductors with smallest possible band
gaps which are larger than the optical frequencies required by
specific NLO applications.

To further investigate the origins of the enhanced NLO
responses of selenium and tellurium, we also calculate the
deformation charge density which is defined as the difference
between the valence charge density and the superposition
of the free atomic charge densities, as displayed in Fig. 9.
Figure 9 clearly show that there is a considerable electron
charge buildup in the vicinity of the Se-Se (Te-Te) bond center
by depleting the charge around the atoms along the bond
directions, resulting in strong directional covalent bonding.
This strong covalency which would lead to large optical
matrix elements due to large spatial overlap between the wave
functions of initial and final states, and high anisotropy which
would result in large joint DOS, would give rise to large χ (2)

values [53,54]. Moreover, Fig. 9 also shows a charge buildup
around each atom in the direction perpendicular to the chain,
indicating the existence of lone-pair electrons. The presence
of lone-pair electrons is beneficial to the generation of induced
dipole oscillations by the optical electric fields, thus leading

FIG. 9. The contour plots of the deformation charge densities for

(a) selenium and (b) tellurium. The contour interval is 0.02 e/Å
3
.

The electron accumulation is depicted by positive contours (blue
solid lines), while the electron depletion is represented by negative
contours (red dashed lines).

to large SHG effects [55,56]. Therefore, in general, quasi-
one-dimensional crystals with strong directional covalency
and lone-pair electrons would have large χ (2) values. This
explains that selenium has much larger SHG coefficients than
the semiconductors with similar band gaps such as GaAs
[54]. This also suggests another strategy for designing good
NLO materials with a specified band gap, namely, starting
with chainlike semiconductors with strong covalency and/or
lone-pair electrons.

IV. CONCLUSION

Summarizing, we have calculated the linear and NLO
properties of trigonal selenium and tellurium based on the
DFT with the GGA. To adequately take into account many-
body effects, especially quasiparticle self-energy correction,
we further perform the relativistic band-structure calculations
using the hybrid HSE functional and use the much-improved
band gaps to calculate the optical properties with the scissors
correction. We find that the two materials exhibit large SHG
and LEO effects. Also, their linear and NLO responses are
highly anisotropic due to their structural anisotropy. In par-
ticular, the second-order NLO susceptibilities of tellurium are
huge in the photon energy range of 0 ∼ 3 eV, with the magni-
tudes of χ (2)

xxx being as large as 3640 pm/V, which is about 16
times larger than that of GaN, a widely used NLO material.
Furthermore, tellurium is found to exhibit gigantic static SHG
coefficients with the χ (2)

xyz component being up to 100 times
larger than that of GaN. On the other hand, selenium is shown
to possess large LEO coefficient rxxx(0) which is more than six
times larger than that of GaN polytypes. Thus, tellurium and
selenium are excellent NLO materials and may find valuable
applications in NLO and LEO devices such as electro-optical
switches, frequency conversion, phase matching, and light
signal modulators. Interestingly, our calculations also reveal
that for the two different helical structures of each material,
the values of χ (2)

xxx are equal but the values of χ (2)
xyz differ in sign,

thus suggesting that the SHG spectroscopy is a useful probe
of the chirality of these helical materials. The calculated static
dielectric constants and also SHG coefficients at the CO2 laser
frequency are in good agreement with the experiments. More-
over, the energy positions and shapes of the principal features
in the calculated optical dielectric function spectra of both
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materials agree rather well with the available experimental
ones. They are also analyzed in terms of the calculated
electronic band structures, especially symmetries of the in-
volved band states and dipole transition selection rules. The
prominent structures in the spectra of χ (2)(−2ω,ω,ω) are
also related to single-photon and double-photon resonances.
Finally, much larger NLO coefficients in selenium and tel-
lurium compared with the semiconductors with similar band
gaps are attributed to their quasi-one-dimensional structures
with directional covalent bonding and lone-pair electrons. We
believe that our work will stimulate further experiments on the
NLO and LEO effects in these interesting materials.
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