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Superlenses are imaging components that can overcome the diffraction limit associated with conventional
dielectric lenses. An ideal superlens is a flat infinite slab of homogeneous double-negative material with
ε = μ = −1 embedded in air, which achieves perfect imaging by restoring all the spatial frequency components
of an object to the image plane. It has been shown that any deviation from these homogeneous material parameter
values limits the resolution of the lens and introduces a surface mode resonance with fields that dominate the
image. While material loss can suppress the resonant mode, loss also reduces spatial resolution. In this paper, we
investigate resonant modes arising in metamaterial superlenses of infinite and finite extent and show how they
cause imaging artifacts and reduce imaging fidelity. We choose a well-studied periodic structure consisting of an
array of magnetodielectric cylinders for the lens medium under test. We demonstrate that the presence of these
artifacts can lead to erroneous interpretation of the standard two-source resolution test for lenses. We show that
artifacts can be mitigated by introducing point defects into the array, which move the resonant modes to higher
spatial frequencies and, in the case of finite lenses, suppress their amplitudes through radiation losses. This
strategy enables more robust and reliable subwavelength imaging performance, improves the spatial resolution
of the metamaterial lens, and reduces the deleterious effects of material losses.
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I. INTRODUCTION

The resolution of classic optical instruments is limited
by Abbe’s diffraction limit in which details of an object
smaller than half the wavelength of operation become blurred
at the image plane [1]. These subwavelength details have
high transverse spatial-frequency components in the Fourier
spectrum, are carried by evanescent waves from the object,
and are lost before reaching the image plane. It has been
shown that an infinitely long flat slab of homogeneous
double-negative material with ε = μ= −1 embedded in air
can overcome the diffraction limit by restoring all propagating
and evanescent components of the object to the image plane
[2]. This perfect lens was first introduced by Veselago [3],
who showed that an isotropic and homogeneous double-
negative medium could sustain left-handed propagating plane
waves with antiparallel phase and group velocities. As a
result, a flat slab of this material can focus all the propagating
components of an object by negatively refracting them at the
two interfaces of the slab. The slab, which we will refer to as
a Veselago lens, was later shown to amplify evanescent waves
through the excitation of bound modes guided along the slab
over the evanescent spectrum [4,5].

The bound modes of a Veselago lens arise from the
symmetric and antisymmetric coupling of surface-plasmon
polaritons guided along the two interfaces of the slab. In
other words, the (uncoupled) surface mode of a single inter-
face (which resonates when ε = μ= −1) splits into two slab
bound modes with resonance frequencies above and below the
single-interface resonance frequency [6,7]. The Veselago lens
always operates between these two bound mode frequencies,
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amplifying each incident evanescent component to perfectly
compensate for its decay in air [5]. As a result, a Veselago
lens has a unity transfer function for all transverse spatial
frequencies when the object plane is separated from the image
plane by twice the lens thickness [2,5].

When the constitutive parameters of an infinite homoge-
neous slab deviate from −1, however, the bound modes appear
at the operating frequency [8]. These resonances correspond
to poles in the slab transfer function [9] and degrade the
imaging performance of the slab in two ways [10]. First, the
transfer function starts to rapidly decay for spatial frequencies
above the bound mode wave number, thereby establishing an
upper spatial-frequency cutoff. Second, components of the
object which have transverse spatial frequencies at or near the
bound mode wave number are overamplified throughout the
slab, which prevents image formation. These bound modes
must be suppressed by adding material losses to the slab;
however, these losses reduce the evanescent amplification and
further limit the resolution of the lens [10]. Therefore, to
achieve subdiffractive imaging resolution, the resonant modes
must be suppressed while still maintaining a spatial frequency
cutoff above the free-space cutoff.

While the absence of homogeneous double-negative ma-
terials in nature precludes realizing an ideal superlens,
subwavelength-spaced sources have been resolved using
lenses composed of arrays of resonant inclusions [11–13].
Among them are metamaterial structures which can sustain
backward-wave Bloch modes in all directions of propagation
and therefore mimic left-handed behavior over the propa-
gating spectrum. The extraction of double-negative effective
parameters for metamaterials has suggested that they might
be viable candidates for Veselago superlensing across the
electromagnetic frequency spectrum [14–16]; however, the
effect of finite lens dimensions, periodicity, and heterogeneity
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on evanescent wave amplification needs further study. Fur-
thermore, resonant modes are not completely bound to a lens
with finite lateral extent and the impact of edge scattering on
imaging performance must also be determined.

In this paper, we investigate how resonant modes within
infinite and finite negative-index metamaterial lenses can
affect imaging fidelity, resolution, and robustness. We select a
standard metamaterial design composed of an array of magne-
todielectric (MD) inclusions [17–22]. This metamaterial has
been shown to mimic the left-handed behavior of a Veselago
medium below the free-space cutoff and has been reported
to be capable of super-resolution imaging [23]. By choosing
lossless materials with matched electric and magnetic prop-
erties, the MD array offers arguably the closest metamaterial
approximation to a homogeneous Veselago superlens. It fea-
tures a high degree of spatial symmetry and exhibits identical
responses for TE and TM polarization. In this paper we con-
sider two-dimensional arrays of MD cylinders for simplicity.
We start our investigation by choosing idealized lossless
material parameters (similar to previous works referenced)
in order to isolate the effect of resonant modes on imaging
and establish a baseline performance. Employing full-wave
simulations to calculate the electromagnetic response of the
MD arrays, we show that finite lenses support low spatial
frequency modes that are easily excited by the evanescent
components of the object. These modes have field patterns
that extend into the image plane with intensities on the order
of the field representing the object, producing artifacts that
can overwhelm the fields of the true image. For example, we
show that a regular array of MD cylinders can image a pair
of illuminating point sources when symmetrically centered
in front of the lens but not when that symmetry is broken.
This fact casts doubts on the standard two-source resolution
test used by the community to benchmark metamaterial
superlensing and demonstrates the importance of accounting
for resonant modes in metamaterial superlens design.

Material loss can dampen resonant modes and suppress
imaging artifacts, but it comes at the expense of reduced
spatial resolution (often precluding super-resolution). In this
paper, we show that imaging improvements can be made to the
MD cylinder array by introducing vacancy point defects that
shift the resonant bound modes to higher spatial frequencies
and direct the edge scattering laterally away from the image
plane. Higher spatial frequency bound modes increase the
lens cutoff (maximizing resolution) while lateral scattering
circumvents overamplification and decreases the artifacts in
the image. Using multiple point sources at various lateral
positions and spacings, we show that the defected array lens
generates images that have greater resolution and fidelity than
those generated by the regular array lens. Furthermore, due
to its higher spatial bandwidth, superlensing in the defected
array lens is shown to be more robust to material losses.

The rest of the paper is organized as follows. In Sec. II, we
study the behavior of backward bulk modes in the regular and
defected MD cylinder array metamaterials and compare them
with an ideal lossless and homogeneous Veselago medium.
In Sec. III, we study the bound modes guided along infinite
metamaterial slabs and compare them to the bound modes in
Veselago lenses of identical thickness. In Sec. IV, we study
the dominant resonant modes in finite metamaterial lenses and

describe the effects of scattering from the edges. In Sec. V,
we study and compare the imaging performance of lossless
and lossy metamaterial MD lenses for various multisource
configurations. The final section concludes the paper and sum-
marizes our findings. All the numerical analyses presented
in this paper were conducted using the finite-element solver
from COMSOL MULTIPHYSICS [24]. The homogeneous medium
and metamaterial structures presented are independent of TM
and TE polarization; however, we chose TM polarization to
illustrate the results (i.e., the magnetic field lies perpendicular
to the plane of propagation). All fields are assumed to be time
harmonic with an implicit e−iωt dependence.

II. BULK MODES IN TWO-DIMENSIONAL
MAGNETODIELECTRIC METAMATERIALS

In order to analyze the complete imaging performance of
a lens, we need to know its response to propagating and
evanescent incident waves. In negative-index metamaterial
lenses, homogenization methods have been used to show
that effective bulk parameters of propagating backward-wave
Bloch modes may provide a quasi-isotropic negative-index
response [14,16,23]. Here we show that this bulk response
is not sufficient to determine the evanescent response and
that further investigation is required. In Sec. II A, we analyze
the bulk modes in an ideal homogeneous double-negative
medium and use the results as a baseline reference for analyz-
ing negative-index metamaterials. The two-dimensional bulk
modes within a uniform regular array of MD cylinders and a
defected array (comprising a grid of MD cylinder monolayers)
are studied in Secs. II B and II C, respectively.

A. Ideal homogeneous double-negative medium

Let us consider an ideal isotropic homogeneous double-
negative medium with frequency-dispersive relative material
parameters

ε(ω) = 1 − 2ωo
2

ω2 , (1)

μ(ω) = 1 − 2ωo
2

ω2 , (2)

where both ε and μ are equal to −1 at the operating frequency
ωo (note that these equations must necessarily contain loss
terms at low frequencies, but we consider the limit at which
losses are negligible at the frequencies of interest). We will
refer to this medium as the Veselago medium. We call the
wave number and wavelength corresponding to this frequency
ko = ωo/c and λo = 2π/ko, respectively, where c is the speed
of light in free space.

Here, we describe the bulk modes of the Veselago medium
at ωo in terms of real transverse wave-vector component
kx. For the propagating spectrum (|kx| < ko), the eigen-
modes are left-handed plane waves propagating in the xz
plane with a purely real longitudinal wave-vector component
kz = −√

k2
o − k2

x . As shown by the solid gray equifrequency
contours (EFCs) in Fig. 1, the wave vectors trace out a circle
with radius ko over which group velocity points inward. The
EFC of right-handed plane waves propagating in free space
has the same circular shape but with positive longitudinal
wave-vector components and an outward pointing group ve-
locity. Therefore, propagating waves incident from free space
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FIG. 1. The EFCs of the bulk eigenmodes at ωo in (a) the regular
array metamaterial (solid black lines) and (b) the defected array
metamaterial (solid and dashed black lines), alongside the EFC of
an ideal homogeneous double-negative medium (solid gray lines). In
each plot, the complex longitudinal wave-vector components kz +
iαz are plotted as a function of the real transverse wave-vector com-
ponent kx. Both diagrams are plotted over the first Brillouin zone of
the defected array (i.e., up to the band edges at |kx| = π/2a = 3.89ko)
in order to compare the salient features. The geometries of the
defected and regular array metamaterials with their square unit cells
are illustrated in the inset diagrams.

at any angle will be negatively refracted at the interface of
the Veselago medium. Because of this property, a slab of this
material can focus all propagating components of an object
from a source plane to an image plane when the planes are
separated by twice the lens thickness [3].

For the evanescent spectrum (|kx| > ko), however, bulk
eigenmodes are evanescent waves in the z direction with
a purely imaginary longitudinal component iαz = i

√
k2

x − k2
o

which is identical to free space. Having similar evanescent
modes as in free space with equal but opposite constitutive
parameters satisfies a resonant condition at the interface be-
tween a Veselago half space and air for all values of kx.
These resonances correspond to surface-plasmon polaritons
guided along the interface with a flat dispersion profile over
the evanescent spectrum at ωo. As will be further discussed
in Sec. III A, these surface modes split into symmetric and
antisymmetric coupled surface modes for an infinite flat slab
of the Veselago medium. These bound modes provide the
origins of evanescent wave amplification within the slab and
consequently provide the mechanism for perfect imaging
[4,5].

B. Regular array MD metamaterial

Here, we analyze the two-dimensional bulk modes in an
infinite uniform regular array of magnetodielectric cylinders
with ε = μ= 20 which are embedded in air as the host
medium [see the inset diagram in Fig. 1(a)]. The cylinders
extend infinitely along the y axis with diameter 2r = 0.893a,
where a is the lattice constant of the array. The bulk modes are
extracted at a fixed frequency by solving the wave equation
over a unit cell for different transverse wave-vector compo-
nents kx [25].

As shown by the solid black line in Fig. 1(a), this peri-
odic structure can sustain backward-wave Bloch modes for
all directions of propagation. The circular EFC (traced by
the fundamental Floquet wave vectors) mimics the homo-
geneous Veselago medium when the periodicity is equal to
a = 0.0646λo, where once again λo is the free-space operating
wavelength. Similar to the Veselago medium, a slab of this
metamaterial can focus all the incident propagating waves
from air through coupling with the backward-wave Bloch
modes sustained within the slab.

As can be seen in Fig. 1(a), however, the dispersive be-
havior of the bulk modes deviates from the ideal Veselago
medium over the evanescent spectrum, with the bulk modes
taking on complex wave vectors at higher transverse spatial
frequencies. This would naturally lead us to suspect that the
slab bound modes also differ from those of the Veselago
lens, potentially impacting the imaging performance of the
MD metamaterial lens. In Sec. III B, we directly solve for
the bound modes sustained in a slab of this metamaterial and
analyze its response to an incident wave.

C. Defected array MD metamaterial

Here, we analyze the defected array metamaterial designed
by introducing uniformly spaced vacancy point defects in
the regular array MD metamaterial [see the inset diagram in
Fig. 1(b)]. We can also view the defected array as a cross-
hatched grid of MD cylinders made by vertical and horizon-
tal MD cylinder monolayers which are spaced by distance
2a along the longitudinal (z) and transverse (x) directions,
respectively. As shown by the solid black line in Fig. 1(b),
the propagating backward-wave Bloch modes in the defected
array can also mimic the circular EFC of the Veselago medium
by adjusting the lattice constant to 2a = 0.1284λo. Given the
shape of the EFC, we expect that a slab of this structure
focuses all incident propagating components through negative
refraction (just like the regular MD array).

Although the dispersive behavior of dominant bulk modes
in the regular and defected array metamaterials are very simi-
lar over the propagating spectrum, as shown by the solid black
lines in Fig. 1(b), the behavior over the evanescent spectrum is
very different. Furthermore, the defected array supports a sec-
ondary mode that propagates at higher spatial frequencies and
is not present in the regular array response [indicated by the
dashed lines in Fig. 1(b)]. This mode can be attributed to the
appearance of additional coupled resonances introduced by
the vacancy defect points inside the structure (similar to how
alternating thin layers of positive and negative index media
can support coupled surface waves at layer interfaces [26]).
As a result, we would expect that the bound modes within a
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defective array slab would not resemble those of the regular
array lens and may not even be evanescent inside the slab. It
has been shown elsewhere, however, that similar bound modes
in a multilayered slab can amplify evanescent waves over a
wider spatial frequency and thus have improved resolution
over a solid negative-index slab of the same thickness [10,
27–29]. In Sec. III C, we directly solve for the bound modes
of a slab of the defected array metamaterial and analyze the
slab response to incident waves in order to investigate our
hypothesis of improved imaging through the introduction of
point defects.

III. BOUND MODES IN INFINITE
MD METAMATERIAL SLABS

In this section, we analyze the bound modes guided along
infinitely wide slabs as the physical origins of evanescent
wave amplification. In Sec. III A, we begin by studying guided
bound modes along an infinite slab of an ideal homogeneous
double-negative medium to give insights into how they con-
tribute to perfect imaging. Then we use numerical solutions of
the wave equation for an infinite MD-cylinder metamaterial
slab to find its bound modes and estimate its transmission
response over the evanescent spectrum. In Sec. III B, we study
the bound modes guided along an infinite slab of the regular
array MD metamaterial. In Sec. III C, we analyze the bound
modes for an infinite slab of the defected array metamaterial
and discuss the effects of introducing vacancy points. In
both sections we present bound mode dispersion diagrams
and full-wave simulations of transmission at the operating
frequency ωo.

A. Ideal homogeneous double-negative slab

Using the analytic eigenmode solutions for a slab of dis-
persive material [5], the dispersion diagrams of bound modes
guided along Veselago slabs embedded in air with thickness
d = a = 0.0642λo and 5a = 0.321λo are shown in Fig. 2.
These bound modes arise from symmetric and antisymmetric
coupling of surface-plasmon polaritons at the two interfaces
of the infinite slab. As can be seen in this figure, the flat
dispersion line of an uncoupled single interface (dotted line)
has been split into two curves with resonance frequencies
above ωo for even surface bound modes and below ωo for odd
surface bound modes. These dispersion curves asymptotically
approach the operating frequency (indicated by the solid red
line) as kx increases, approaching faster for thicker slabs
where the coupling between surface-plasmon polaritons is
weaker. The ideal Veselago lens always operates between
the even and odd mode resonance frequencies, exciting each
mode precisely in such a way as to provide unity transmission
across a source-to-image-plane distance of 2d [5].

As shown by the flat dash-dotted red line in Fig. 2, a slight
change in the operating frequency (which slightly distorts the
ideal material parameters) causes the bound mode dispersion
curve to intersect with the operating frequency, introducing
a resonance that prohibits perfect imaging. These intersection
points are indicated by red dots in the dispersion diagram. It is
also apparent that the imaging performance would be further
degraded for a thicker slab since the intersecting resonance
point appears at a lower spatial frequency.
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FIG. 2. Dispersion diagrams of even bound modes (upper lines)
and odd bound modes (lower lines) guided along ideal homogeneous
double-negative slabs of thickness a (dashed black lines) and 5a
(solid black lines). The geometry of the slabs and the magnetic
field distributions (Hy) of even and odd bound modes are plotted
in the inset diagrams. The field plots correspond to a wave vector
kx = 1.7ko. The light line is indicated by the solid gray line. The
dispersion diagram of uncoupled surface-plasmon polariton waves
at a single interface is shown by the flat dotted black line at ωo.
The flat solid red line indicates the operating frequency ωo in which
both values of ε and μ are equal to −1. The flat dash-dotted red line
corresponds to a slight deviation in operating frequency from ωo and
the subsequent appearance of bound modes at the intersection points
indicated by the red dots.

The magnetic field distributions of odd and even surface
bound modes under TM polarization are shown in the inset
of Fig. 2 for kx = 1.7ko. These field plots illustrate how
evanescent wave growth within a Veselago slab can be in-
terpreted as the superposition of even and odd bound modes
with destructive interference at the front face and constructive
interference at the back face.

B. Regular array metamaterial slab

In this section, we study the resonant bound modes guided
along an infinitely long slab of the regular array MD meta-
material embedded in air. We solve for the eigenmodes of
a single unit cell of the slab as a function of transverse
wave vector kx. Figure 3(c) shows the schematic diagram of
the simulation setup for a five-layer slab in which periodic
boundary conditions are assigned to the top and bottom sides
and perfectly matched layers (PMLs) are placed at the left
and right sides of the domain. The height of the domain is
equal to the slab periodicity a and the width is set large
enough for the evanescent tails of the slab bound modes to be
negligibly small at the PML interfaces (ensuring a real valued
eigenfrequency).

Figure 3(a) shows the frequency dispersion diagram of
guided bound modes along a monolayer slab and a five-layer
slab plotted over the first Brillouin zone (BZ). An incident
evanescent wave can be amplified by coupling to the slab
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FIG. 3. (a) Dispersion diagrams of guided bound modes along
infinite slabs of the regular array MD metamaterial and (b) the
transfer function of the slabs at ωo. The results for a monolayer
MD slab and a five-layer MD slab are shown by the dashed black
lines and solid black lines over the first Brillouin zone (up to |kx| =
π/a = 7.73ko), respectively. The even bound modes (corresponding
to the upper lines at low spatial frequencies) intersect with ωo to
produce a transmission peak at kx = 1.871ko for the five-layer and at
kx = 3.183ko for the monolayer slab. The slab geometries, unit cells,
and bound mode field distributions corresponding to kx = 1.7ko are
plotted in the inset diagrams. The dispersion diagram of uncoupled
single interface surface waves is shown in (a) by the dotted black
line. The ideal transfer function of Veselago slabs is shown in (b) by
the flat gray line at 0 dB. Diagrams of the simulation setups used
to generate the dispersion diagram and transmission response of the
infinite regular array slab are shown in (c) and (d), respectively.

mode with the corresponding transverse wave vector. For
example, consider the magnetic field distribution of even
and odd modes plotted as insets in Fig. 3(a). These modes
resemble coupled surface modes within the Veselago slab
and can similarly amplify incident evanescent waves. As can
be seen from the dispersion curves of the monolayer slab
(dashed black line) and the five-layer slab (solid black line),
however, they can mimic the ideal lens behavior only until the
dispersion curves of the even modes intersect with the flat line
at ωo (the even modes provide the lowest spatial frequency
intersections). These intersection points are indicated by red
dots in the dispersion diagrams. As the thickness of the slab
increases, the curves appear closer to the dispersion line of
uncoupled surface modes guided along a single interface
(shown by the dotted line and calculated using a very thick
slab where the coupling between the surface modes at each
interface is negligible). This pushes the intersection point with
ωo to lower spatial frequencies, thereby reducing the spatial
bandwidth of the lens. For example, the first resonance of the
five-layer slab at the operating frequency occurs for the even
bound mode at kx = 1.871ko.

To quantify the response of the metamaterial slabs to
propagating and evanescent waves at ωo, we use full-wave
simulations to calculate the transfer function for plane waves
transmitted from the source plane (z = −d) to the image plane
(z = d) as a function of transverse spatial frequency kx. We
use the simulation setup shown in Fig. 3(d) and solve for the
transmitted field given an incident plane wave with a trans-
verse wave vector kx. In this setup, the dashed lines represent
periodic boundary conditions, the incident wave is generated
through a simulation port (shown in red), and PMLs are used
to terminate the scattered waves. The transmission is then
calculated as the ratio of the transmitted Fourier coefficient
at the image plane (L2) to the incident Fourier coefficient at
the source plane (L1) using

T =
∫

L2
Ht (x, z)e−ikxxdx

∫
L1

Hi(x, z)e−ikxxdx
, (3)

where Hi(x, z) is the incident magnetic field and Ht (x, z) is the
transmitted magnetic field.

Figure 3(b) plots the amplitude of the total transmission
function for a monolayer slab (dashed black line) and a five-
layer slab (solid black line) alongside the ideal transmission of
a Veselago slab (flat gray line). The response of the metama-
terial slabs to propagating waves is similar to the Veselago
slab over the propagating spectrum, with nearly uniform
0-dB transmission. However, the metamaterial slabs only
mimic the ideal lens behavior over the evanescent spectrum
below the transmission resonances (indicated by the peaks in
the response). These peaks correspond to the points where
the dispersion curves intersect with ωo, and cause the imag-
ing performance of the metamaterial slab to be restricted in
the following two ways. First, the amplification of evanes-
cent waves is dramatically reduced after the appearance of
resonances, placing an upper spatial frequency limit to the
evanescent components of an object that can be reconstructed
in the image plane. In other words, the resonance peaks limit
the minimum focal spot diameter corresponding to the image
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of an illuminating point source. Second, the overamplification
of the object components at or near the resonances manifests
as high-intensity lobes which obscure the image of the object.

C. Defected array metamaterial slab

In this section, we solve for the bound modes guided
along an infinite slab of the defected array metamaterial
and analyze the slab response to incident waves using the
methods described in the previous section [see Figs. 4(c)
and 4(d) for diagrams of the simulation setups]. We study
a defected array slab of thickness 5a and compare it to the
response of the five-layer regular array metamaterial slab.
The dispersion diagram of bound modes over the first BZ of
the defected array slab (up to |kx| = π/2a = 3.89ko) and the
geometry of the defected array metamaterial are shown in
Fig. 4(a). Note that unlike the homogeneous double-negative
medium and the regular array metamaterial higher-spatial
frequency propagating modes are present in the defected array
[shown by the dashed lines in Fig. 1(b)] that prevents surface
modes from forming at a single interface. This fundamentally
changes how the bound modes are formed since they do not
arise from the simple coupling between the surface modes of
the slab. As can be seen in this figure, the defected array slab
can guide odd bound modes with a flat dispersion profile near
ωo and an intersection point pushed up to kx = 2.824ko. The
near-resonant coupling of incident evanescent waves at ωo to
these odd bound modes provides amplification over a wide
range of the evanescent spectrum that results in higher spatial
resolution imaging [11]. The transfer function of the defected
array slab at ωo is shown in Fig. 4(b) in order to quantitatively
demonstrate the response of the slab to an incident wave.
The defected array slab has a nearly unity transfer function
over the propagating spectrum and provides amplification
for higher spatial frequencies up to the first resonance peak
[coinciding with the first intersection point in Fig. 4(a)].

We can gain insights into the operation of the defected ar-
ray slab by considering the bound modes of multilayered MD
slabs composed of either longitudinally stacked transverse
monolayers spaced with air (wherein each layer is parallel
to the x axis) or transversely stacked longitudinal monolayers
spaced with air (wherein each layer is parallel to the z axis).
Note that a single MD monolayer guides bound modes along
the layer [see Fig. 3(a)] and a multilayered stack of MD
monolayers forms a coupled-waveguide structure with similar
properties to the anisotropic multilayered stack of alternating
thin layers of positive and negative index media [26]. First,
we consider the slab composed of transverse monolayers. This
corresponds to introducing air gaps (i.e., line vacancy defects)
parallel to the slab interfaces between each layer of MD cylin-
ders. The dispersion diagram of bound modes in this structure
approaches the diagram of a single monolayer MD slab in
Fig. 3 with the resonance pushed to higher spatial frequencies.
Below the resonance point, however, these modes are far
from ωo and cannot provide the amplification of the regular
array MD slab. This is not unexpected, given the evanescent
decay across each of the air gaps between layers. Second, we
consider the slab composed of longitudinal monolayers. This
corresponds to introducing air gaps (line vacancy defects) that
are perpendicular to the slab interfaces. These monolayers
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FIG. 4. (a) The dispersion diagrams of guided bound modes
along the defected array metamaterial slab and (b) the transfer func-
tion of the slab at ωo over the first BZ (up to |kx| = π/2a = 3.98ko).
The middle curve in (a) represents an even bound mode while
the upper and lower curves represent odd bound modes. The odd
bound mode corresponding to the lowest line at low spatial fre-
quencies intersects with ωo to produce the first transmission peak
at kx = 2.824ko. The MD slab geometry and unit cell are plotted in
the inset diagrams alongside the magnetic field distribution of this
guided odd mode at kx = 1.7ko. Diagrams of the simulation setups
used to generate the dispersion curves and transmission response of
the infinite defected array slab are shown in (c) and (d), respectively.
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act as transmission lines, allowing the slab to sustain bound
modes with relatively flat dispersion near ωo. The horizontal
monolayers couple poorly to incident waves, however, and
the overall amplification of the slab is minimal. Although
both structures shift the resonant slab modes to higher spatial
frequencies, evanescent waves are not strongly amplified and
propagating waves can only be focused if the source and
image planes are nearly adjacent to the slab interfaces. The
proposed defected array slab, however, combines both layered
structures, providing high coupling and amplification over a
wide range of the evanescent spectrum, while mimicking the
focusing mechanism of a perfect lens over the propagating
spectrum.

IV. RESONANT MODES IN FINITE MD
METAMATERIAL LENSES

In this section, we use full-wave eigenmode simulations
to study the resonant modes and imaging artifacts of a MD
metamaterial lens with finite transverse width. As discussed
in previous sections, bound modes guided along an infinite
slab at the operating frequency (identified by the red dots at
the dispersion diagram intersection points) appear as high-
intensity lobes which obscure the image of the object. Here,
we consider a finite width for the lens which reduces the
continuous dispersion curves of infinitely long slabs to dis-
crete resonances in ω-k space. These resonant modes can
have symmetric or antisymmetric field distributions in the
transverse and longitudinal directions (across the x = 0 and
z = 0 planes, respectively). Due to scattering from the top and
bottom edges of the lens, these modes are generally not com-
pletely bounded, resulting in a complex resonant frequency
ωr + iγ , where γ is a damping term that accounts for radiation
loss. In the following section we study the dominant resonant
modes (at or very close to the operating frequency) in the
regular and defected array lenses of finite width.

A. Regular array metamaterial lens

As discussed in Sec. III B, the bound mode guided by an in-
finite five-layer regular array slab at ωo has longitudinal even
symmetry and a low transverse wave vector kx = 1.871ko.
Not surprisingly, the dominant resonant modes within a fi-
nite regular lens also have even symmetry along the z axis
[see Figs. 5(a) and 5(b)], resulting in nondirective scattering
from the edges of the lens. These radiated fields are weakly
confined to the lateral side of the lens and appear as side lobes
across the image plane. The low spatial frequency components
of the resonant modes make them easy to excite, resulting in
strong imaging artifacts. For example, a regular array five-
layer lens with width 65a (not shown for the sake of brevity)
has a resonant mode at the operating frequency (ωr = ωo and
γ /ωo = 6.3437 × 10−5). When this lens is used for imaging,
the mode is strongly excited at its resonance and completely
obscures the object image.

By carefully choosing the lens width, the resonance fre-
quency of the dominant modes can be detuned from the
operating frequency to reduce the mode amplitudes; however,
this mitigation is limited. For example, a regular five-layer
lens with width 59a does not have a resonant mode at ωo
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FIG. 5. Magnetic field intensity plots of the dominant reso-
nant modes for the MD metamaterial lenses of width 59a and
thickness 5a. The resonance modes of the regular array lens are
plotted in (a) and (b) and have an even longitudinal symmetry
(along the z axis). (a) The resonant mode with ωr = 0.9998ωo

and γ /ωo = 4.3085 × 10−5 has transverse odd symmetry (along
the x axis). (b) The resonant mode with ωr = 1.0003ωo and
γ /ωo = 1.1288 × 10−4 has transverse even symmetry. The defected
lens resonant mode plots in (c) and (d) have an odd longitu-
dinal symmetry. (c) The resonant mode with ωr = 0.9998ωo and
γ /ωo = 5.8441 × 10−5 has transverse even symmetry. (d) The res-
onant mode with ωr = ωo and γ /ωo = 4.1274 × 10−5 has transverse
odd symmetry. The inset diagrams plot the real part of the field to
show the transverse and longitudinal symmetries of each mode.

[see Figs. 5(a) and 5(b)]; however, the off-resonance mode
fields are not well confined to the lens and can lead to strong
imaging artifacts. The robustness of this lens in imaging
different objects will be studied further in Sec. V.

Taking the Fourier transform of the magnetic field over
the surface of the lens at z = 2.5a shows that resonant mode
fields in Figs. 5(a) and 5(b) have dominant transverse spatial
variations equal to kx = 1.93ko and 1.82ko, respectively. These
have similar spatial frequencies to the even bound mode of
the infinite slab at the operating frequency [i.e., they are
located near the first red dot in Fig. 3(a) at kx = 1.871ko],
which demonstrates consistency between the dispersion of
the infinite and finite slab modes. Furthermore, far from the
lenses, the field patterns exhibit low spatial variations with
transverse wavenumbers near ko. This can be attributed to the
fact that the slabs can also support an even bound mode near
the light line just above ωo [see the solid line in Fig. 3(a)].

B. Defected array metamaterial lens

As discussed in Sec. III C, the first resonant mode guided
by the defected array slab at ωo [identified by the red dot
in Fig. 4(a)] is an odd mode with a transverse wave vector
kx = 2.824ko (this is higher than that of the regular array slab).
The dominant resonant modes within a finite defected array
lens have the same odd symmetry along the z axis as the
infinite slab. As can be seen in Figs. 5(c) and 5(d) for a lens of
width 59a, the odd symmetry produces scattering at the edges
of the lens that is directed away from the image plane. The
resonant mode fields are therefore confined closer to the lens
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FIG. 6. Imaging field plots for the regular array lens (top) and the
defected array lens (bottom). Each lens has thickness 5a, has width
59a, and is illuminated by two x-polarized electric dipoles located
at x = 0.25λo and −0.25λo. The magnetic field intensity is plotted
over the xz plane on the left, while the normalized field intensity at
the image plane is plotted on the right in solid black. The image field
without the lens is plotted in dotted black, along with the source plane
field intensity of the object in solid gray. The source plane at z = −5a
and the image plane at z = 5a are indicated by thin black lines in the
field plots.

surface with amplitudes that are suppressed by this radiation
loss. The higher spatial frequency of the resonances also
results in weaker excitation by the highly decaying evanescent
components of the object field. Compared to the regular array
lens, we see a significant decrease in imaging artifacts in the
defected array lens. Simulation results show that although
the defected array lens has a resonant mode at the operating
frequency [see Fig. 5(d)] the mode fields do not extend into
the image plane. This means that compared to the regular
array lens the performance of the defected array lens is less
sensitive to the location of resonances and is more robust
to the transverse width. The resonant mode fields shown in
Figs. 5(c) and 5(d) have dominant transverse spatial variations
equal to kx = 2.68ko and 2.82ko, respectively, which occur
near the spatial frequency of the odd bound mode of the
infinite slab at the operating frequency [indicated by the red
dot at kx = 2.824ko in Fig. 4(a)]. Unlike the regular array lens,
the field patterns of the defected array lens do not exhibit
the same low spatial variations far from the lens because the
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FIG. 7. Field plots similar to the ones shown in Fig. 6 for two
offset electric dipoles located at x = 0.13λo and 0.63λo.

lens does not support odd bound modes near the light line
close to ωo [see Fig. 4(a)]. In the next section, we demonstrate
and quantify the improvements in imaging performance of the
defected array lens over the regular array lens.

V. IMAGING PERFORMANCE OF FINITE MD
METAMATERIAL LENSES

In this section, we study the imaging performance of the
regular array lens and the defected array lens using full-wave
simulations. The object to be imaged consists of multiple
two-dimensional electric dipoles with moments aligned par-
allel to the x axis. Each dipole emits a transverse magnetic
field Hy with a uniform source-plane Fourier spectrum across
both propagating and evanescent domains. This enables the
response of each lens to be studied across a broad spatial
bandwidth. Figures 6–8 compare the imaging performance of
the regular array lens (shown in the top of the figure) and the
defected array lens (shown in the bottom of the figure) given
various object configurations. Both lenses have a thickness
of 5a, have a width of 59a, and are centered at the origin.
The source and image planes are separated by a distance
equal to twice the lens thickness and are located at z = −5a
and 5a, respectively. In these figures, the field plots on the
left show the magnetic field intensity distribution over the
xz plane, while the plots on the right show the normalized
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FIG. 8. Field plots similar to the ones shown in Fig. 6 for two
offset electric dipoles with wider spacing located at x = 0.25λo and
−0.65λo.

transverse field intensity in decibels (20 log |Hy|) at the image
plane. The field intensity at the source and image planes for
empty space without the lenses are also plotted for reference.
All the intensity plots in this section are normalized with
respect to the maximum value of the image intensity for
the regular array lens in Fig. 6. This provides a quantitative
comparison of the performance of each lens across different
object distributions.

Figure 6 illustrates that both the regular array lens and the
defected array lens produce two distinct peaks at the image
plane for a pair of symmetrically centered dipole sources
separated by 0.5λo. The image from the defected array lens,
however, is much clearer with lower side lobe levels and
more distinct peaks. The image peaks of the regular array
lens are also laterally shifted from the true object positions.
These imaging discrepancies reflect the differences between
the excited resonant modes within the regular and defected
array lenses and the differences between the resulting imaging
artifacts.

We now investigate the robustness of these lenses to object
configurations which are not symmetrically centered on the
lens. Figure 7 plots the image fields for the same two dipoles
offset by 0.28λo along the x axis. As shown in the top figure,
the superposition of the object image with the resonant mode
excited within the regular array lens produces an image in
which the locations of both sources are no longer identifiable.
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FIG. 9. The normalized field intensity at the image plane for
imaging with lossless and lossy MD lenses. The illuminating sources
are four x-polarized electric dipoles located at x = 0.675λo, 0.225λo,
−0.225λo, and −0.675λo. The fields from the lossless regular and
defected array lenses are plotted in dashed blue and solid black lines,
respectively. The fields from the regular and defected array lenses
with lossy inclusions (with electric and magnetic loss tangents equal
to 10−3) are plotted in dashed red with circle markers and solid
green with triangle markers, respectively. The normalized source
field intensity of the object and image intensity without the lens are
plotted in solid gray and dotted black, respectively.

By contrast, as shown in the bottom figure, the defected array
lens has no trouble resolving and locating the object dipoles.
This implies that the resolution of the objects observed in
Fig. 6(a) may simply have been a consequence of the object
spectrum matching the spectrum of a resonance mode within
the regular lens. When the spectra are mismatched, however,
as in Fig. 7(a), the objects are no longer resolved.

In Fig. 8, the sources are separated further to a distance
of 0.9λo and offset by 0.2λo. Despite the larger separation
distance, the regular array lens still cannot locate the bottom
source at x = −0.65λo in the image of the lens. The defected
array lens has no trouble resolving the object with all side
lobes below 13 dB.

Here, we briefly discuss the minimum separation distance
necessary to resolve symmetric dipoles. We first consider a
pair of centered dipoles (as in Fig. 6) and use the Rayleigh cri-
terion to define the image resolution as the minimum distance
between two point sources that results in a drop of 0.91 dB
between their image peaks. Simulation results (not shown here
for brevity) demonstrate that a pair of dipoles is still resolvable
when the separation between them is reduced to 0.3192λo and
0.2951λo for the regular array lens and the defected array
lens, respectively. We then consider an object composed of
four evenly spaced dipoles symmetrically centered over the
source plane. The four dipoles provide a more complex source
to test the imaging resolution under more robust conditions.
Our simulation results (again, not shown here for brevity)
demonstrate that in order to resolve the object the separation
between the dipoles should be increased to 0.4286λo for the
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MD inclusions (tanδ). The length of error bars is equal to 0.005λo.

regular array lens and to 0.3239λo for the defected array lens.
These results further confirm that the effect of resonant modes
should not be ignored in analyzing the imaging performance
and that resolving a pair of symmetric point sources does not
provide a sufficiently rigorous test for super-resolution.

We now investigate the effect of material loss on the imag-
ing performance of the regular array lens and the defected
array lens. Figure 9 plots the image field intensity corre-
sponding to an object composed of four symmetric dipoles
separated by 0.45λo. Two cases are considered: in the first, the
lenses are composed of lossless MD cylinders (ε = μ= 20),
while, in the second, low loss cylinders are used in which
the electric and magnetic loss tangents are equal to 10−3

(ε = μ= 20 + 0.02i). In the absence of loss, both the regular
array lens and the defected array lens generate images that
can resolve the point sources, although the image produced
by the regular array lens has prominent side lobes and peaks
that are laterally shifted from the true object positions (due to
interference with the resonant mode fields). In the presence of
absorption, the resonance modes are suppressed in the regular
array lens; however, the spatial resolution is also reduced
and the lens can no longer resolve the inner point objects.
By contrast, the defected array lens can still resolve all four
objects.

We systematically investigated the imaging resolution of
the regular array lens and the defected array lens by gradually
varying levels of material loss. Figure 10 plots the minimum
separation distance (�) necessary to resolve four symmetric
dipoles as the electric and magnetic loss tangent (tanδ) of the
MD inclusions is varied. The plot shows that a lossy defected

array lens with tanδ < 0.006 has a higher resolution than the
lossless regular lens. While the regular array lens can resolve
sources separated by a distance �= 0.5λo for tanδ < 0.003,
the same resolution can be achieved by the defected array lens
for much higher loss tanδ < 0.014 (which is within the range
reported for low loss magnetodielectric materials [30]). This
demonstrates the improved imaging robustness of the defected
array lens and the importance of designing superlenses with
resonance modes in mind.

VI. CONCLUSION

In this paper, we have investigated the impact of resonant
modes on the imaging performance of a negative-index meta-
material lens. We showed that although a metamaterial lens
can mimic the response of a perfect lens over the propagating
spectrum the evanescent response can differ significantly. The
excitation of resonant modes within the lens limits the spatial
frequency bandwidth and introduces imaging artifacts that
degrade the imaging fidelity and robustness. Furthermore,
we show that the standard two-source resolution test can be
unreliable when applied to superlenses. In particular, some
demonstrations of super-resolution arise simply as a conse-
quence of the object spectrum matching the spectrum of the
dominant resonant mode. For example, we show that a regular
array of MD cylinders can image a pair of illuminating point
sources when symmetrically centered in front of the lens but
not when that symmetry is broken. Achieving robust imag-
ing performance therefore requires an understanding of how
resonant modes produce artifacts and requires that all super-
resolution claims are supported by comprehensive resolution
testing.

We showed that the resolution and robustness of a meta-
material lens can be improved by tailoring its resonant modes
to avoid artifacts. Using the MD cylindrical metamaterial as
an example, we introduced defects into the array to push
the resonant modes to high spatial frequencies and direct the
edge-scattered fields away from the image plane. We show
that these defects also mitigate the effects of material losses on
subwavelength resolution. This paper provides deeper insight
into the behavior of resonant modes and their effects on
imaging and provides a comprehensive method to study super-
resolution imaging in metamaterial lenses. These methods can
now be applied to other two- or three-dimensional metamate-
rial structures in order to improve the imaging performance
and ensure robustness—important steps towards the ultimate
goal of designing a practical superlens.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and En-
gineering Research Council of Canada through the Discovery
Grant program. The authors would also like to acknowledge
CMC Microsystems for the provision of CAD tools that
facilitated this research.

[1] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-
sity, Cambridge, England, 1999).

[2] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[3] V. G. Veselago, Soviet Phys. Usp. 10, 509 (1968).

035137-10

https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1070/PU1968v010n04ABEH003699


AVOIDING IMAGING ARTIFACTS FROM RESONANT … PHYSICAL REVIEW B 100, 035137 (2019)

[4] X. S. Rao and C. K. Ong, Phys. Rev. B 68, 113103 (2003).
[5] R. E. Collin, Prog. Electromagn. Res. 19, 233 (2010).
[6] R. Ruppin, Phys. Lett. A 277, 61 (2000).
[7] R. Ruppin, J. Phys.: Condens. Matter 13, 1811 (2001).
[8] L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford

University, New York, 2009).
[9] S. A. Shakir and A. F. Turner, Appl. Phys. A 29, 151 (1982).

[10] E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar,
Electron. Lett. 37, 1243 (2001).

[11] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry,
Phys. Rev. B 68, 045115 (2003).

[12] P. A. Belov, C. R. Simovski, and P. Ikonen, Phys. Rev. B 71,
193105 (2005).

[13] M. J. Freire and R. Marqués, Appl. Phys. Lett. 86, 182505
(2005).

[14] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77
(2001).

[15] A. N. Lagarkov and V. N. Kissel, Phys. Rev. Lett. 92, 077401
(2004).

[16] G. Shvets and Y. A. Urzhumov, Phys. Rev. Lett. 93, 243902
(2004).

[17] C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos,
IEEE Trans. Antennas Propag. 51, 2596 (2003).

[18] X.-X. Liu and A. Alù, Metamaterials 5, 56 (2011).
[19] R. A. Shore and A. D. Yaghjian, Radio Sci. 42, 1 (2007).
[20] A. Alù, Phys. Rev. B 84, 075153 (2011).
[21] L. Markley, Phys. Rev. B 94, 085108 (2016).
[22] I. Aghanejad and L. Markley, Phys. Rev. B 96, 205157 (2017).
[23] X.-X. Liu and A. Alù, J. Nanophotonics 5, 053509 (2011).
[24] http://www.comsol.com.
[25] C. Fietz, Y. Urzhumov, and G. Shvets, Opt. Express 19, 19027

(2011).
[26] S. Feng, J. M. Elson, and P. L. Overfelt, Opt. Express 13, 4113

(2005).
[27] J. Pendry and S. Ramakrishna, Physica B: Condens. Matter 338,

329 (2003).
[28] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J.

Stewart, J. Mod. Opt. 50, 1419 (2003).
[29] N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and

C. Sibilia, Opt. Express 17, 17517 (2009).
[30] H. Su, X. Tang, H. Zhang, Y. Jing, and F. Bai, J. Electron. Mater.

43, 299 (2014).

035137-11

https://doi.org/10.1103/PhysRevB.68.113103
https://doi.org/10.1103/PhysRevB.68.113103
https://doi.org/10.1103/PhysRevB.68.113103
https://doi.org/10.1103/PhysRevB.68.113103
https://doi.org/10.2528/PIERB09120904
https://doi.org/10.2528/PIERB09120904
https://doi.org/10.2528/PIERB09120904
https://doi.org/10.2528/PIERB09120904
https://doi.org/10.1016/S0375-9601(00)00694-0
https://doi.org/10.1016/S0375-9601(00)00694-0
https://doi.org/10.1016/S0375-9601(00)00694-0
https://doi.org/10.1016/S0375-9601(00)00694-0
https://doi.org/10.1088/0953-8984/13/9/304
https://doi.org/10.1088/0953-8984/13/9/304
https://doi.org/10.1088/0953-8984/13/9/304
https://doi.org/10.1088/0953-8984/13/9/304
https://doi.org/10.1007/BF00617772
https://doi.org/10.1007/BF00617772
https://doi.org/10.1007/BF00617772
https://doi.org/10.1007/BF00617772
https://doi.org/10.1049/el:20010863
https://doi.org/10.1049/el:20010863
https://doi.org/10.1049/el:20010863
https://doi.org/10.1049/el:20010863
https://doi.org/10.1103/PhysRevB.68.045115
https://doi.org/10.1103/PhysRevB.68.045115
https://doi.org/10.1103/PhysRevB.68.045115
https://doi.org/10.1103/PhysRevB.68.045115
https://doi.org/10.1103/PhysRevB.71.193105
https://doi.org/10.1103/PhysRevB.71.193105
https://doi.org/10.1103/PhysRevB.71.193105
https://doi.org/10.1103/PhysRevB.71.193105
https://doi.org/10.1063/1.1922074
https://doi.org/10.1063/1.1922074
https://doi.org/10.1063/1.1922074
https://doi.org/10.1063/1.1922074
https://doi.org/10.1126/science.1058847
https://doi.org/10.1126/science.1058847
https://doi.org/10.1126/science.1058847
https://doi.org/10.1126/science.1058847
https://doi.org/10.1103/PhysRevLett.92.077401
https://doi.org/10.1103/PhysRevLett.92.077401
https://doi.org/10.1103/PhysRevLett.92.077401
https://doi.org/10.1103/PhysRevLett.92.077401
https://doi.org/10.1103/PhysRevLett.93.243902
https://doi.org/10.1103/PhysRevLett.93.243902
https://doi.org/10.1103/PhysRevLett.93.243902
https://doi.org/10.1103/PhysRevLett.93.243902
https://doi.org/10.1109/TAP.2003.817563
https://doi.org/10.1109/TAP.2003.817563
https://doi.org/10.1109/TAP.2003.817563
https://doi.org/10.1109/TAP.2003.817563
https://doi.org/10.1016/j.metmat.2011.04.001
https://doi.org/10.1016/j.metmat.2011.04.001
https://doi.org/10.1016/j.metmat.2011.04.001
https://doi.org/10.1016/j.metmat.2011.04.001
https://doi.org/10.1029/2007RS003647
https://doi.org/10.1029/2007RS003647
https://doi.org/10.1029/2007RS003647
https://doi.org/10.1029/2007RS003647
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.94.085108
https://doi.org/10.1103/PhysRevB.94.085108
https://doi.org/10.1103/PhysRevB.94.085108
https://doi.org/10.1103/PhysRevB.94.085108
https://doi.org/10.1103/PhysRevB.96.205157
https://doi.org/10.1103/PhysRevB.96.205157
https://doi.org/10.1103/PhysRevB.96.205157
https://doi.org/10.1103/PhysRevB.96.205157
https://doi.org/10.1117/1.3578138
https://doi.org/10.1117/1.3578138
https://doi.org/10.1117/1.3578138
https://doi.org/10.1117/1.3578138
http://www.comsol.com
https://doi.org/10.1364/OE.19.019027
https://doi.org/10.1364/OE.19.019027
https://doi.org/10.1364/OE.19.019027
https://doi.org/10.1364/OE.19.019027
https://doi.org/10.1364/OPEX.13.004113
https://doi.org/10.1364/OPEX.13.004113
https://doi.org/10.1364/OPEX.13.004113
https://doi.org/10.1364/OPEX.13.004113
https://doi.org/10.1016/j.physb.2003.08.014
https://doi.org/10.1016/j.physb.2003.08.014
https://doi.org/10.1016/j.physb.2003.08.014
https://doi.org/10.1016/j.physb.2003.08.014
https://doi.org/10.1080/09500340308235215
https://doi.org/10.1080/09500340308235215
https://doi.org/10.1080/09500340308235215
https://doi.org/10.1080/09500340308235215
https://doi.org/10.1364/OE.17.017517
https://doi.org/10.1364/OE.17.017517
https://doi.org/10.1364/OE.17.017517
https://doi.org/10.1364/OE.17.017517
https://doi.org/10.1007/s11664-013-2831-5
https://doi.org/10.1007/s11664-013-2831-5
https://doi.org/10.1007/s11664-013-2831-5
https://doi.org/10.1007/s11664-013-2831-5

