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Competing charge and magnetic order in fermionic multicomponent systems
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We consider the fermionic SU(3) Hubbard model on the triangular lattice at 1/3 filling in the presence of a
three-sublattice staggered potential which provides the possibility to investigate the competition of charge and
magnetic order in three-component systems. We show that, depending on the strength of the staggered potential
�, the Hubbard interaction U destabilizes the band insulator at small U into the Mott insulator at large U in
three different ways with different intermediate phases. This leads to a rich phase diagram in the U -� plane.
Our results indicate that multicomponent systems show not only exotic states in the Mott regime as has been
considered previously, but also interesting competition between charge and magnetic orders which can lead to
the emergence of charge-ordered magnetic insulators and charge-ordered magnetic metals.
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I. INTRODUCTION

The observation of Bose-Einstein condensation [1] trig-
gered huge research interest in ultracold atoms trapped in
optical lattices as flexible and highly controllable quantum
simulators not only to mimic models of solid-state physics
but also to study systems which have no obvious solid-state
counterparts [2–4].

Alkali and alkaline-earth-like atoms have up to N = 10
internal states available which, due to the perfect decoupling
of the nuclear spin from the electronic angular momen-
tum, can be used to simulate multicomponent systems with
SU(N) symmetry [5–7]. Theoretical predictions depending on
the value of N suggest multicomponent magnetism [8–12],
valence-bond solid states [12–14], and quantum liquids
[14–16] in the Mott regime. A three-component Fermi gas
with SU(3) symmetry has been realized using 6Li atoms
in high magnetic fields [17,18], and the fermionic SU(6)
Hubbard model has been realized using 173Yb [19].

In this paper, we demonstrate that multicomponent systems
show not only exotic phases in the Mott regime as has been
discussed previously, but also interesting competition between
charge and magnetic order with a possible emergence of
charge-ordered magnetic metals (COMMs).

II. MODEL AND MAIN RESULTS

Our starting point is to introduce a three-sublattice stag-
gered potential into the fermionic SU(3) Hubbard model on
the triangular lattice, which allows for the competition of the
band insulator (BI) and Mott insulator (MI) phases at 1/3
filling. The Hamiltonian of the system reads

H = −t
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∑

δ
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where �†
r := (c†

r,0, c†
r,1, c†

r,2) is the SU(3) creation field
operator with c†

rα being the fermionic creation operator at the
lattice position r with the internal component α, and δ stands
for the nearest-neighbor (NN) vectors on the triangular lattice.
The first two terms in Eq. (1) describe the three-component
Hubbard model written in SU(3)-symmetric form, and the last
term is a staggered potential which gives, respectively, the on-
site energies −�, 0, and +� to the three sublattices A, B, and
C of the triangular lattice, see Fig. 1(a). Figure 1(b) displays
the phase diagram of the model for the inverse temperature
β = 20/t in the U -� plane in units of the hopping parameter
t obtained using the real-space dynamical mean-field theory
(DMFT) approach [20]. The continuous and the dashed lines
correspond, respectively, to the second- and the first-order
transitions. Depending on the value of �, the BI phase is
affected by the Hubbard U in different ways. For 0 < � � 6,
the Hubbard interaction drives the BI into a paramagnetic
metal (PM) and subsequently into a three-sublattice magnetic
MI (MMI) with a 120◦ pseudospin spiral order [21]. We call
the phase “magnetic” as it breaks the SU(3) symmetry, lead-
ing to a finite expectation value for the pseudospin operator
Sr = 1

2�†
r λ�r where λ is an eight-dimensional vector made

of Gell-Mann matrices. Due to the spontaneous breaking of
SU(3) symmetry, the state is continuously degenerate. The
solution lying in the Ŝ3−Ŝ8 plane corresponds to a diagonal
local density matrix, i.e., 〈c†

rαcrβ〉= 0 for α �=β. In this state,
at each sublattice one of the components has the dominant
density [21].

For 6t � � � 8t , the Hubbard interaction destabilizes the
BI into a charge-ordered magnetic insulator (COMI) at a first
transition point. In the COMI phase, sublattices A and B form
a 180◦ pseudospin order. Interestingly, upon further increas-
ing the Hubbard interaction, the broken SU(3) symmetry is
restored and the system enters the PM. The transition into
the MMI phase occurs at a third transition point. For larger
values of the staggered potential, � � 8t , the PM is replaced
by a COMM which separates the COMI from the MMI
phase. We notice that there is a nonuniform charge distribution
for any finite value of � in the system. The MMI and the
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FIG. 1. (a) Schematic representation of the Hamiltonian Eq. (1)
on the triangular lattice. The three sublattices A, B, and C acquire
different on-site energies due to the staggered potential �r. (b) The
phase diagram of the model Eq. (1) at 1/3 filling for the inverse
temperature β = 20/t in the U -� plane with energies given in units
of the hopping parameter t , computed using dynamical mean-field
theory method. The continuous and dashed lines denote, respectively,
the second- and the first-order phase transitions. (c) Schematic
representation of the different phases: band insulator (BI), where
mainly the sublattice A is occupied, charge-ordered magnetic insu-
lator (COMI), where the sublattice A is occupied by two fermionic
components and the third component occupies the sublattice B, and
magnetic Mott insulator (MMI) where each component occupies one
of the three sublattices.

PM are not called charge-ordered as they are adiabatically
connected to the � = 0 limit where there is a uniform charge
distribution. In contrast, the COMI phase is not equivalent to
any phase with a uniform charge distribution and the charge-
order is a fundamental feature of this state. The same for the
COMM phase.

In the limit U,� � t , the BI-to-COMI transition ap-
proaches the line � � 2U − 8t and the transitions from the
COMI to COMM and from COMM to MMI take place,
respectively, at � � U/2 and � � U/2 − 2t . This is in per-
fect agreement with the atomic limit (t = 0) results. In the
atomic limit, one can distinguish the three phases BI, COMI,
and MMI depicted in Fig. 1(c) with the ground-state energies
εBI

0 =U −�, εCOMI
0 = (U −2�)/3, and εMMI

0 =0 per lattice
site. By comparing these energies, one finds that BI is stable
for U < �/2, COMI is stable for �/2 <U <2�, and MMI is
stable for U >2�. This simple atomic limit discussion shows
how the competition between the staggered potential and the
Hubbard interaction in fermionic three-component systems
can lead to the COMI phase. The width of the COMM is
finite for any finite value of t . We would like to mention that,
precisely speaking, the COMI and the MMI phases are highly

degenerate in the atomic limit and a finite NN hopping is
needed to stabilize the three-sublattice magnetic orders, which
can be understood from a second-order perturbation theory.

III. SOME TECHNICAL ASPECTS

The Hamiltonian Eq. (1) in the absence of the Hubbard
interaction U reduces to a three-level problem in momentum
space and represents a BI for any finite value of �. To
investigate the phase diagram of the Hamiltonian Eq. (1), we
employed the DMFT technique which becomes exact in the
limit of infinite dimensions [22]. The method is also exact
in the noninteracting and in the atomic limit, and by fully
taking into account local quantum fluctuations, it is a non-
perturbative approach for studying the competition of charge
and magnetic order in strongly correlated systems. We use
the exact diagonalization (ED) impurity solver which enables
us to compute local quantities with high accuracy, to directly
access the real-frequency dynamical spectral functions, and
to handle the large-U limit with no difficulty. The results of
ED and hybridization-expansion CTQMC [23] solver for the
finite temperature phase transitions of the fermionic SU(3)
Hubbard model match nicely [24]. We use the real-space
DMFT method [20,25] which we implemented for fermionic
SU(N) systems in Ref. [21]. Due to the absence of electron-
hole symmetry we add a chemical potential term to the Hamil-
tonian Eq. (1) and adjust it during the DMFT loop to achieve
the desired 1/3 filling. We consider the inverse temperature
β = 20/t . One notices that the temperature T = t/20 is about
ten times smaller than the width of the points chosen in
Fig. 1(b) to separate different phases. The energy of each state
is calculated [21] and, in the coexistence regions, the state
with the lowest energy is always considered as the stable state.

IV. DENSITY AND LOCAL MOMENT

We have plotted the local density 〈c†
rαcrα〉 on the different

sublattices A, B, and C and for the different internal compo-
nents α = 0, 1, 2 versus the Hubbard U in Fig. 2 for � = 3t
(a), � = 7t (b), and � = 10t (c). The results are obtained for
four bath sites of the impurity solver.

One can see from Fig. 2(a) that upon increasing the Hub-
bard interaction U from zero in the BI phase, the particle
density at the sublattice A decreases and the sublattices B
and C get more populated. The system enters the PM at
U � 6t , which is signaled by a finite density of states at
the Fermi energy. We notice that due to the finite number
of bath sites in the impurity model, the fine details of the
spectral function are not captured and the BI-to-PM transition
point is only approximately determined. However, we believe
that increasing the number of bath sites cannot significantly
shift the position of the predicted transition point. In the
MMI phase for U � 12.5t , each sublattice is mostly occupied
with one of the three components. For the stronger staggered
potential � = 7t in Fig. 2(b), there is a phase transition
at U � 9t from BI into the COMI. This phase obviously
shows both magnetic and charge orders. In the presence of a
weak interaction anisotropy [11], the component with stronger
interaction will always occupy the sublattice B. Interestingly,
the broken SU(3) symmetry in the COMI phase is restored
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FIG. 2. Local density at the different sublattices A, B, and C and
for the different components 0, 1, and 2 plotted versus the Hubbard
interaction U at the staggered potentials � = 3t (a), � = 7t (b), and
� = 10t (c). The different phases band insulator (BI), paramagnetic
metal (PM), three-sublattice magnetic Mott insulator (MMI), charge-
ordered magnetic insulator (COMI), and charge-ordered magnetic
metal (COMM) are distinguished. The results shown are obtained
for four bath sites of the impurity solver.

again upon increasing the Hubbard interaction to U � 16.5t ,
where the system enters the PM. It is remarkable that the
Hubbard interaction, at least in this particular problem, can
drive a phase with long-range magnetic order into a PM. One
notices that the transition from COMI to PM is identified
from the local density, for which the ED impurity solver is
expected to have a high accuracy. Although the PM-to-MMI
transition at � = 7t is sharper than the one at � = 3t , it still
seems to be continuous. In Fig. 1(b), a phase transition is
considered second order if the local physical quantities such as
density and double occupancy change continuously across the
transition point, and it is considered first order if the change is
discontinuous. Nevertheless, one notices that it is not the aim
of the present paper to discuss the type of phase transitions
in the model Eq. (1). Upon increasing the staggered potential
from � = 7t to � = 10t in Fig. 2(c), the width of the COMI
becomes larger, the PM gets substituted with a COMM, and
the transition to the MMI phase becomes discontinuous. The
COMM shows both charge and magnetic orders and a finite
density of states at the Fermi energy.

One can see from Fig. 2 that, for small Hubbard U , there
is a strong nonuniform charge distribution in the system and,
for large Hubbard U , there is a strong magnetic order with an
almost uniform charge distribution. For intermediate values
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FIG. 3. Local moment on sublattice A plotted versus the stag-
gered potential � for different values of the Hubbard interaction
U . The local moment is shifted for clarity by (16t − U ) × 0.05
along the vertical axis. We have used BI for band insulator, PM
for paramagnetic metal, and COMI for charge-ordered magnetic
insulator. The results are for five bath sites of the impurity solver.

of U , these two different orders compete, leading to the
emergence of phenomena as we discussed above.

The results obtained for four and five bath sites perfectly
agree away from the transition points. However, some de-
viations occur close to the transition points especially near
the BI-PM-COMI tricritical point. In Fig. 3, we have plotted
the local moment mr := √

3|〈Sr〉| at sublattice A obtained for
five bath sites versus � for different values of U near the
BI-PM-COMI tricritical point. The local moment is shifted
for clarity by (16t − U ) × 0.05 along the vertical axis. In
the COMI phase, the local moment on sublattice A and on
sublattice B is the same, while it is zero on sublattice C within
our numerical accuracy. We have included the prefactor

√
3

in the definition of mr to have a local moment of 1 in the
fully polarized case, which for the COMI phase occurs when
two components occupy sublattice A, the third component
occupies sublattice B, and no particle occupies sublattice C.
One notices that, although there is a small shift in the phase
boundaries in Fig. 3 compared to Fig. 1(b), the general shape
is the same.

V. SPECTRAL FUNCTION

Next we discuss the single-particle spectral function, which
is given in terms of the imaginary part of the single-particle
Green’s function: Arα (ω) = − 1

π
ImGrα,rα (ω + iε), where ε =

0.05 is the broadening factor. The spectral function for five
bath sites in the Anderson impurity problem is plotted in Fig. 4
for different paramagnetic [Fig. 4(a)] and magnetically or-
dered phases [Figs. 4(b)– 4(d)]. For the paramagnetic phases
PM and BI, we have plotted the spectral function of only
one component. For the COMI and the COMM, the spectral
functions of the components α = 2 and α = 0 are the same
due to the symmetry of the phase. In each panel of Fig. 4,
we have distinguished the spectral functions at the different
sublattices A, B, and C by the different colors blue, green, and
red, respectively.
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FIG. 4. The spectral function A(ω) plotted versus energy ω in the
paramagnetic (a) and magnetically ordered phases (b)–(d). For the
paramagnetic metal (PM) and the band insulator (BI), the spectral
function is independent than the internal component α. For the three-
sublattice magnetic Mott insulator (MMI), the spectral functions of
all the three internal components α = 0, 1, 2 are represented. For the
charge-ordered magnetic insulator (COMI) and the charge-ordered
magnetic metal (COMM), the spectral functions of components
α = 0 and α = 2 are the same due to the symmetry. In each panel, we
have distinguished the spectral functions of the different sublattices
A, B, and C by the different colors blue, green, and red, respec-
tively. The results are for five bath sites in the Anderson impurity
problem.

Figure 4(a.1) depicts the spectral function in the PM for
(U,�) = (9t, 0). Due to the absence of the staggered po-
tential, the spectral functions of the different sublattices are
the same. The larger spectral contribution above the Fermi
energy ω = 0 is due to the 1/3 filling. Keeping the Hubbard
interaction U = 9t and introducing the staggered potential
� = 3t in Fig. 4(a.2), the system remains still metallic but
spectral functions of different sublattices become different.
For the sublattice A, the spectral contributions are transferred
from above to below the Fermi energy by introducing �,
while for the sublattice C it is the opposite. Figure 4(a.3)
shows the spectral function in the BI phase for the parameters
(U,�) = (4t, 9t ). The spectral function below the Fermi
energy is dominated by the contribution from sublattice A.
Right above the Fermi energy, there is a noticeable contribu-
tion from sublattice B. The high energy contributions belong
mainly to sublattice C. Such a spectral structure is expected,

as the system is in the BI phase and there should be three
well-separated bands due to the large staggered potential.

We have plotted the spectral function in the MMI phase
for the model parameters (U,�) = (22t, 7t ) in Fig. 4(b).
Figures 4(b.1)–4(b.3) correspond to the components α = 0
to α = 2. There is a Mott gap at the Fermi energy and the
spectrum below the Fermi energy for each component is
dominated by the contribution from one of the three sublat-
tices. This is what one would expect as the system shows a
three-sublattice magnetic order. The main low-energy peaks
in Figs. 4(b.1)–4(b.3) do not occur at the same energies: The
peak originating from sublattice A appears at much lower en-
ergies than the one originating from sublattice C. This energy
difference is a result of the finite staggered potential in the
system, which explicitly breaks the translational symmetry of
the lattice and gives different on-site energies to the different
sublattices. In the absence of �, the peaks would have the
same weight and occur at the same energies.

The spectral function in the COMI phase for (U,�) =
(15t, 10t ) is plotted in Fig. 4(c). The spectral function of
α = 2 is not shown as it is the same as the spectral function of
α = 0. We observe that the spectral function below the Fermi
energy ω = 0 for the component α = 0 is largely governed by
the contribution from sublattice A. The sublattice B contains
the major low-energy contributions of the spectral function
for the component α = 1. The contributions of the sublattice
C to the spectral functions mainly lie above the Fermi energy.
These results clearly support a phase which has both charge
and magnetic order and a finite gap at Fermi energy. We have
displayed the spectral function in the COMM for the parame-
ters (U,�) = (23t, 10t ) in Fig. 4(d). There are contributions
below ω = −15t mainly from sublattice A and contributions
above ω = +15t mainly from sublattice C, which cannot be
seen in the figure. Similar to the COMI, the spectral functions
of the two components α = 0 and α = 2 are the same. The
main part of the spectral function for all the three components
is concentrated near the Fermi energy.

VI. SUMMARY AND OUTLOOK

To summarize, multicomponent systems have attracted a
lot of attention in recent years due to their possible realization
in optical lattices and the emergence of exotic states in the
Mott regime [5–7,19]. We have provided explicit evidence
that multicomponent systems also show interesting compe-
tition between charge and magnetic order with the possible
emergence of COMIs and COMMs. This is achieved by intro-
ducing a three-sublattice staggered potential to the fermionic
SU(3) Hubbard model on the triangular lattice. We show
that depending on the strength of the staggered potential,
different intermediate phases separate the BI at weak and the
MI at strong Hubbard interactions, resulting in a rich phase
diagram. The fermionic SU(3) Hubbard model can be realized
in optical lattices using 6Li [17,18] or 173Yb [19], and the
staggered potential can be created via a triangular superlattice,
which also produces the Kagome lattice [26], or via the digital
micromirror device, which can be used at single-site level to
create different potential landscapes [27]. The charge order
can be probed by noise correlation measurements [28] and
the magnetic order can be detected using a quantum gas
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microscope [29]. The excitation spectrum can also be mea-
sured using spectroscopic techniques such as radio frequency,
Raman, and lattice modulation spectroscopy [2,28,30,31].

We would like to mention that charge- and spin-order
competition in two-component systems has been investigated
extensively through the ionic Hubbard model (IHM) [32–35]
and the Hubbard model with NN interaction [36–39]. The
IHM has recently been realized in optical lattices, and charge
order [28] on the honeycomb lattice and different phase
transitions in one dimension [40] have been explored. Our
results motivate similar investigations for higher spin systems,
where substantially colder MIs are expected at fixed initial
entropies due to the Pomeranchuk cooling effect [7,41]. For
the two-dimensional IHM, there are currently controversial
theoretical predictions regarding the nature of the intermediate
phase(s) separating the BI and MI phases [42–44]. It will
be subject to future research to take into account nonlocal
quantum fluctuations and to search for new kinds of quantum
states in multicomponent systems, especially near the critical
regions in the phase diagram 1(b).

While the phase transitions from paramagnetic metal to
magnetic MI and from BI to COMI can be described by

a local order parameter, there is no local order parameter
to describe the BI to paramagnetic metal and the COMI to
COMM transitions. The nature of different types of phase
transitions in the model is also a topic which requires further
attention in future studies.

It would be also interesting to include spin-orbit coupling
into the hopping term in Eq. (1) [45] and to study SU(3)
topological phases with charge and magnetic order. Another
important future step is the determination of the finite tem-
perature phase diagram and the critical entropies required to
reach different magnetically ordered phases of Fig. 1(b) in
ultracold atoms experiments.
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