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We modify the “floating crystal” trial state for the classical homogeneous electron gas (also known as jellium),
in order to suppress the boundary charge fluctuations that are known to lead to a macroscopic increase of the
energy. The argument is to melt a thin layer of the crystal close to the boundary and consequently replace it
by an incompressible fluid. With the aid of this trial state we show that three different definitions of the ground-
state energy of jellium coincide. In the first point of view the electrons are placed in a neutralizing uniform
background. In the second definition there is no background but the electrons are submitted to the constraint that
their density is constant, as is appropriate in density functional theory. Finally, in the third system each electron
interacts with a periodic image of itself; that is, periodic boundary conditions are imposed on the interaction
potential.
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I. INTRODUCTION

The homogeneous electron gas, also called jellium, is a
fundamental system in quantum physics and chemistry [1,2].
In this paper we introduce a modified “floating crystal” trial
state and use it to prove that three possible definitions of the
jellium ground-state energy coincide in the thermodynamic
limit. In particular, we resolve a conundrum originating in
[3–7] and raised again in [8], where it was observed that the
usual floating-crystal trial state fails for Coulomb interactions.

In its original formulation, due to Wigner [9], jellium is
defined as an infinite gas of electrons placed in a positively
charged uniform background. The thermodynamic limit of
this system has been rigorously established in [10]. This
model provides a good description of the deep interior of
white dwarfs [11,12] (where the point charges are the fully
ionized atoms evolving in a uniform background of negatively
charged electrons). It has also been shown to be of high
relevance for valence electrons in alkaline metals, for instance
in solid sodium [13].

A similar system appears in the local density approxima-
tion of density functional theory (DFT) [1], where it plays a
central role for deriving functionals [14–17]. In DFT the den-
sity is fixed and there is no background. The natural system
arising in this situation is an infinite gas of electrons submitted
to the constraint that its density is constant over the whole
space. This model was called the uniform electron gas (UEG)
in [8,18,19] to avoid any possible confusion with jellium.

At low density, the electrons in jellium are believed to form
a bcc Wigner crystal [9,20]; hence their density is not at all
constant. It has nevertheless been assumed by many authors
that the two definitions should coincide. The reason for this
belief is that the Wigner crystal has no preferred position and
orientation; hence one may consider the mixed state obtained
by uniformly averaging over the position of the lattice. This
state is sometimes called the floating crystal [21–23] and it
has a constant density.

With long-range potentials such as Coulomb, one should
however be very careful, since boundary effects can easily
play a decisive role. It was proved in [8] that for the clas-
sical gas, computing the energy of the floating crystal in a
thermodynamic limit leads to a much higher energy than the
jellium energy of the bcc crystal, with a shift of the order of
the volume of the sample due to charge fluctuations close to
the boundary. This is very specific to the Coulomb case, which
is critical as far as the computation of the energy is concerned.
No shift arises for potentials decaying slightly faster than 1/r
at infinity.

In this paper we provide a simple and physically intuitive
proof of the equality of the jellium and UEG ground-state
energies in the thermodynamic limit, by explaining how to
modify the floating-crystal trial state. Our argument is to
immerse the floating crystal into a thin layer of fluid. The
small layer of fluid around the floating crystal is used to
compensate the large charge fluctuations at the boundary of
the system, which are responsible for the undesired shift of
the energy. The trial state suggests that the UEG ground state
in infinite volume is indeed the uniform average of the jellium
crystal, as was believed. In a finite system, the particles of the
UEG are probably not crystallized in a neighborhood of the
boundary, however.

Our argument will use a third definition of jellium, which
has always been of high relevance in practical computa-
tions [24–28]. In this third point of view, the electrons are
placed on a large torus without any background, whereas
the Coulomb potential is replaced by a periodized version
without zero mode. The problem of showing that the peri-
odic system has the same thermodynamic limit has a long
history for short-range potentials [29,30]. For the Coulomb
potential, a rigorous proof seems to have been provided
only recently, in a series of works [31–35]. For complete-
ness we will also give a simple argument for this important
fact.
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During the preparation of this work, the equality of
the jellium and UEG energies was claimed in a preprint
[35, version 5], but the argument is long and indirect. Contrary
to our trial-state approach, it does not seem to provide any
insight on the possible form of the UEG ground state.

The paper is organized as follows. In the next section we
introduce the three definitions. In Sec. III we explain how to
modify the floating-crystal argument to prove an upper bound
on the UEG energy. If jellium was rigorously proved to be
crystallized, this would complete the proof of the equality
of jellium and the UEG. In Sec. IV we apply the modified
floating-crystal argument in the case of a unit cell of large but
fixed side length L, containing N = L3 electrons. After pass-
ing to the thermodynamic limit and taking L → ∞ in a second
step, this gives an upper bound on the UEG energy in terms of
the periodic energy. Finally, in Sec. V we give a simple proof
that the periodic problem coincides with the jellium problem
in the thermodynamic limit, which concludes the proof of
the equality of the three definitions. Section VI contains a
discussion on how our argument can be generalized to other
interaction potentials and other space dimensions. We partic-
ularly consider the case of Riesz interaction potentials r−s.

II. THREE DEFINITIONS OF THE
GROUND-STATE ENERGY

We only discuss here the classical case in which the kinetic
energy is dropped. We expect that a similar construction
should apply to the quantum model but are unable to make
this work at the moment. This is due to the Pauli principle,
which makes it difficult to merge two quantum systems with
overlapping supports, as is explained in [19] and is needed to
add the thin layer of fluid around the Wigner crystal.

By scaling we may assume in the classical case that the
density is ρ = 1. The jellium energy of N point charges in a
background �N ⊂ R3 (a domain with volume |�N | = N) is
given by

Ejel(�N , x1, . . . , xN )

=
∑

1� j<k�N

1

|x j − xk|

−
N∑

j=1

∫
�N

dy
|x j − y| + 1

2

∫∫
�N ×�N

dy dz
|y − z| . (1)

For any given �N we may minimize the energy over the
positions x j . It does not matter whether we constrain the
point charges to stay in �N or allow them to visit the whole
space R3. After minimization they will always all end up in
�N , since the energy is a harmonic function outside of �N

with respect to each x j , when the other particles are fixed.
It was also proved by one of us [36] that the point charges
in �N must have a universal positive distance to each other,
a theorem that was recently used in [33,37]. We define the
jellium ground-state energy per unit volume by

ejel = lim
�N ↗R3

min
x1,...,xN ∈R3

Ejel(�N , x1, . . . , xN )

|�N | . (2)

Under some natural technical conditions on ∂�N , the limit
was proved to exist and to be independent of the sequence �N

in [10]. The reader may think of �N = N1/3�, where � is a
fixed open convex set of volume |�| = 1, for instance a cube
or a ball. It is a famous conjecture [9,20] that the electrons
crystallize on a bcc lattice, that is,

ejel = ζbcc(1) � −1.4442,

where ζbcc(s) is the Epstein zeta function of the (density 1)
bcc lattice; see [38,39] and [2, p. 43].

Next we turn to periodic jellium, which is formally ob-
tained when we repeat periodically a jellium configuration in
the whole space and compute its energy per unit volume. For
simplicity we work with a cube (that is, we place the particles
on the torus), but the argument is the same for other tilings.
For N = L3, we introduce

Eper,L(x1, . . . , xN ) =
∑

1� j<k�N

GL(x j − xk ) + N

2L
M, (3)

where

GL(x) = G1(x/L)

L
= 4π

L3

∑
k ∈ (2π/L)Z3

k �= 0

eik·x

k2

with G1 the Z3-periodic Coulomb potential, that is, the unique
solution of the equation −�G1 = 4π (

∑
z∈Z3 δz − 1) such

that
∫

C1
G1 = 0, with C1 = (−1/2, 1/2)3 the unit cube. The

constant M appearing in (3) is the Madelung constant of the
cubic lattice, which may be defined by

M = lim
r→0

[
G1(r) − 1

r

]
.

In another point of view, M/2 = ζZ3 (1) is the jellium energy
per unit volume of the cubic lattice, that is, the interaction
of each particle with all its periodic images. Except for the
unimportant constant M/(2L), which disappears in the ther-
modynamic limit, one can obtain (3) from (1) by replacing
1/r with the periodic function GL(r) whenever �N is a box.
This is because

∫
CL

GL = 0; hence the two background terms
disappear. We define the ground-state energy by

eper = lim
L→∞

min
x1,...,xN ∈CL

Eper,L(x1, . . . , xN )

L3
(4)

with CL = (−L/2, L/2)3. The limit on the right clearly exists
when L = 2nL0 because we can use as trial state a 2nL0-
periodic configuration in a cube of size 2n+1L0; hence the right
side is decreasing. The existence of the limit for L → ∞ was
proved in [31–34] but it will also be a consequence of our
analysis.

We finally turn to the UEG ground-state energy. In this case
there is no background but the electrons are assumed to form a
constant charge density, say over a given set �N ⊂ R3. The in-
direct energy of a given density ρ with

∫
R3 ρ(r)dr = N reads

Eind(ρ) := min
ρP=ρ

∫
R3N

∑
1� j<k�N

dP(x1, . . . , xN )

|x j − xk|

− 1

2

∫∫
R3×R3

ρ(x) ρ(y)

|x − y| dx dy, (5)

where the first minimum is taken over all N-particle
probability measures P with one-particle density ρ. Since the
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electrons are indistinguishable we should restrict ourselves
to symmetric P’s, but the minimum is the same. Note that
Eind(ρ) can be obtained from the Levy-Lieb functional of
DFT [40,41] by taking h̄ → 0 or, equivalently, scaling the
density in the manner λ3ρ(λx) with λ → 0 [42–47]. The
ground-state energy per unit volume of the UEG is given by

eUEG = lim
�N ↗R3

Eind(1�N )

|�N | . (6)

It was proved in [18] that the limit exists under the same
conditions on �N as for (2).

One can replace the characteristic function 1�N by any
sequence of densities ρN that are equal to 1 well inside �N

(at a distance 
 	 |�N |1/3 from the boundary), equal to 0
well outside, and that stay bounded in the transition region.
While such a ρN is not exactly constant, we proved in [18] that
Eind(ρN ) has the same thermodynamic limit as in (6). We shall
take advantage of this relaxed formulation in the following.

As shown in [18,19], the constant eUEG naturally arises in
the local density approximation of DFT. For instance, we have
for a very spread out density in the form ρ(x/N1/3)

lim
N→∞

Eind(ρ(·/N1/3))

N
= eUEG

∫
R3

ρ(x)
4
3 dx.

The classical UEG has been the object of many recent nu-
merical works, based on methods from optimal transportation
[42,48–51]. In addition to providing interesting properties of
DFT at low density, the classical UEG has been used to get
numerical bounds on the best constant in the Lieb-Oxford
inequality [8,52–56].

For any N-particle probability measure P such that ρP =
1�N , we have∫

R3N

∑
1� j<k�N

dP(x1, . . . , xN )

|x j − xk| − 1

2

∫∫
�N ×�N

dx dy
|x − y|

=
∫
R3N

Ejel(�N , x1, . . . , xN ) dP(x1, . . . , xN )

� min
x1,...,xN ∈R3

Ejel(�N , x1, . . . , xN ). (7)

Hence, after optimizing over P we obtain

Eind(1�N ) � min
x1,...,xN ∈R3

Ejel(�N , x1, . . . , xN ). (8)

After passing to the thermodynamic limit this yields the lower
bound

eUEG � ejel. (9)

The question of equality has been left open. Our main result
is the following:

Theorem 1. We have ejel = eper = eUEG.
The proof will be given in Secs. IV and V.

III. THE FLOATING CRYSTAL

Before showing Theorem 1 and as an illustration of the
main idea, we first prove that

eUEG � ζbcc(1) � −1.4442. (10)

If we had a proof that jellium is crystallized in a bcc lattice,
then this would immediately imply that eUEG = ejel, due to (9).
Note that (10) also implies that the best constant in the Lieb-
Oxford inequality [8,52,53] is at least as large as −ζbcc(1) �
1.4442.

We first explain the floating crystal and the problem as-
sociated with its use as a trial state for estimating the UEG
energy. We use the same notation as in [8, Appendix B]. Let
L be the bcc lattice, with Wigner-Seitz unit cell Q centered
at 0, such that |Q| = 1 [57]. We place the particles on the
intersection of the lattice L with a large cube C′ and call
L ∩ C′ = {x1, . . . , xN } the corresponding positions of the N
particles. We then take

�N =
N⋃

j=1

(Q + x j ),

the union of the cells centered at the particles. The floating
crystal [21–23] is obtained by taking the delta function distri-
bution of the N particles, then translating by an amount a ∈
R3 and integrating a over the unit cell Q. This corresponds to
the N-particle probability

P̃ =
∫

Q
δx1+a ⊗ · · · ⊗ δxN +a da, (11)

which has the constant density ρP̃ = 1�N . The indirect energy
per particle of this state is

1

2N

∑
1� j<k�N

1

|x j − xk| − 1

2N

∫∫
�N ×�N

dx dy
|x − y| . (12)

In the limit N → ∞, it has been shown in [8, Appendix B] to
converge to

ζbcc(1) + 2π

3

∫
Q

x2 dx � −0.9507. (13)

By (7) the indirect energy per particle (12) can also be written
in terms of a moving background in the form

1

N

∫
Q
Ejel(�N − a, x1, . . . , xN )da. (14)

As explained in [8, Appendix B], the difference 1�N −a − 1�N

describes a monopole layer in a neighborhood of the surface
that produces an electric potential felt by all the particles in the
system. This survives in the thermodynamic limit and gives
rise to the positive shift in (13).

We now explain our key idea to avoid the energy shift. We
immerse the crystal in a thin layer of fluid of density 1. As
we average over the positions of the crystal, the fluid gets
displaced as depicted in Fig. 1. To this end, we choose a
slightly larger cubic container C such that �N + Q ⊂ C with
the volume of the fluid |C \ �N | = M being an integer. We
will need M 	 N , so that the fluid layer around the floating
crystal has a negligible volume in the thermodynamic limit. In
practice, we choose the cube C to be at a finite distance to the
boundary of �N , this distance being larger than the diameter
of Q. Then M ∼ N2/3. Our new trial state has the N particles
on the floating crystal, translated by a ∈ Q as before, together
with M other particles forming a fluid in C \ (�N + a), the set
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a ΩN + aC

FIG. 1. A two-dimensional picture of the modified floating crys-
tal (15) used in the text. The dots represent the point particles that are
at the centers of hexagons of volume 1. As the whole crystal block
�N is translated by a, the incompressible fluid gets displaced to fill
the remaining space C \ (�N + a). In other words, for any a, if the
point charges were replaced by uniform charges over the hexagons,
the total density would be equal to 1 over the whole box C.

remaining after we have subtracted the moving background:

P =
∫

Q
δx1+a ⊗ · · · ⊗ δxN +a ⊗

(
1C\(�N +a)

M

)⊗M

da. (15)

Note that the fluid is correlated with the position of the crystal.
A sketch of the setup is depicted in Fig. 1. The density of this
trial state equals

ρP =
∫

Q

⎛
⎝ N∑

j=1

δx1+a + 1C\(�N +a)

⎞
⎠ da

= 1C + 1�N − 1�N ∗ 1Q (16)

with f ∗ g(x) = ∫
R3 f (y)g(x − y) dy the convolution between

two functions. In order to compute the Coulomb energy of P,
it is convenient to denote the Hartree energy by

D( f , g) := 1

2

∫∫
R3×R3

f (x)g(y)

|x − y| dx dy

and to use the shorthand notation D( f ) := D( f , f ). Then we
find∫

(R3 )N+M

∑
1� j<k�N+M

1

|z j − zk|dP(z1, . . . , zN+M )

=
∑

1�i< j�N

1

|x j − xk| +
N∑

j=1

∫
Q

∫
C\(�N +a)

da dy
|x j + a − y|

+
(

1 − 1

M

)∫
Q

D
(
1C\(�N +a)

)
da

=
∑

1�i< j�N

1

|x j − xk| −
N∑

j=1

∫
�N

dy
|x j − y| + D

(
1�N

)
+ D(1C ) + 2D

(
1C,1�N − 1�N ∗ 1Q

)
− 1

M

∫
Q

D
(
1C\(�N +a)

)
da.

The first line is the jellium energy Ejel(�N , x1, . . . , xN ) of the
finite crystal, whereas the second line is equal to D(ρP) −
D(1�N − 1�N ∗ 1Q). Hence we have shown that the indirect
energy of our trial state equals∫

(R3 )N+M

∑
1� j<k�N+M

dP(z1, . . . , zN+M )

|z j − zk| − D(ρP)

= Ejel(�N , x1, . . . , xN ) − D
(
1�N − 1�N ∗ 1Q

)
− 1

M

∫
Q

D
(
1C\(�N +a)

)
da. (17)

Using that D( f ) � 0, the last two terms can be neglected for
an upper bound. We have therefore proved that

Eind(ρP) � Ejel(�N , x1, . . . , xN ). (18)

The function ρP is equal to 1 when x is inside �N , at a distance
at least equal to the diameter of Q from the boundary ∂�N ,
whereas it is equal to 0 outside of C. It varies between 0
and 2 in the intermediate region. Since M 	 N we can make
use of the relaxed formulation in [18] mentioned after (6) to
conclude that

lim
N→∞

Eind(ρP)

N
= eUEG.

Therefore, after passing to the limit in (18), we find the
claimed upper bound

eUEG � ζbcc(1) � −1.4442. (19)

IV. UPPER BOUND ON THE UNIFORM
ELECTRON GAS ENERGY

The previous upper bound (19) is not enough to conclude
that eUEG = ejel since we have no rigorous proof that jellium is
crystallized. However, the previous section contains the main
idea. Here we show that

eUEG � Eper,
(x1, . . . , xn)

n
(20)

for any fixed x1, . . . , xn points in the cube C
, with 
3 = n.
The bound (19) simply corresponds to n = 1 for the bcc
lattice, but for simplicity we work here with the cubic lattice.
After minimizing over the x j and passing to the thermody-
namic limit 
 → ∞, we obtain the inequality

eUEG � eper. (21)

It has been shown in [35], based on results from [31–34],
that eper = ejel; hence this concludes the proof of the theorem.
Since the proof in these works is quite long and delicate, we
provide a simpler argument based on [10] in the next section,
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for completeness. But here we concentrate on proving (20)
and (21).

Let us consider n distinct points x1, . . . , xn inside the cube
C
 and denote τ = n−1 ∑n

j=1 x j their center of mass. If we
shift the background by τ , we obtain a configuration with no
dipole moment:

∫
R3

y

⎡
⎣ n∑

j=1

δx j (y) − 1C
+τ (y)

⎤
⎦dy = 0.

Next we repeat our configuration x j periodically in space and
add a layer of fluid as before, in a background shifted by τ .
This is done as follows. We define the large cube of side length

(2K + 1)

�N =
⋃

k ∈ Z3

|k1|, |k2|, |k3| � K

(C
 + 
k)

with N = 
3(2K + 1)3 and pick C to be a slightly larger cube
so that �N + 2C
 ⊂ C and |C \ �N | = M 	 N . Our trial state
is similar to (15), and is given by

P = 1


3

∫
C


⊗
j = 1, . . . , n

k ∈ Z3

|k1|, |k2|, |k3| � K

δx j+
k+a ⊗
(
1C\(�N +a+τ )

M

)⊗M

da,

and it has the density

ρP = 1C + 1

n

n∑
j=1

1�N +x j − 1�N +τ ∗ 1C



3
.

This density is again equal to 1 well inside �N and 0 outside
of C. Defining xn+1, . . . , xN to be the x j + 
k with k �= 0
(ordered in any chosen fashion), the exact same calculations
as in the previous section give∫

(R3 )N+M

∑
1� j<k�N+M

1

|z j − zk| dP(z1, . . . , zN+M )

=
∑

1�i< j�N

1

|x j − xk|

+ 
−3
N∑

j=1

∫
C


∫
C\(�N +τ+a)

da dy
|x j + a − y|

+ 
−3

(
1 − 1

M

) ∫
C


D(1C\(�N +τ+a) )da

= Ejel(�N + τ, x1, . . . , xN ) + D(ρP)

− D

⎛
⎝1

n

n∑
j=1

1�N +x j − 1�N +τ ∗ 1C



3

⎞
⎠

− 1

M
3

∫
C


D(1C\(�N +τ+a) )da. (22)

Hence we obtain

Eind(ρP)

N
� Ejel(�N + τ, x1, . . . , xN )

N
.

As before, when N → ∞ and M/N → 0, the left side con-
verges to eUEG. Since the repeated configuration has no dipole
moment, it is a well known fact that

lim
N→∞

Ejel(�N + τ, x1, . . . , xN )

N
= Eper,
(x1, . . . , xn)

n
. (23)

This concludes the proof of (20), hence of (21).
For completeness, we briefly explain how to derive the

limit (23). We start with the upper bound, which turns out to
be sufficient for our purpose. Since the points x1, . . . , xn are
strictly inside C
, the periodically repeated points are located
at a positive distance from each other, independently of N .
Then we replace the point charges by small uniform balls of
radius η. By Newton’s theorem, this does not change the inter-
action between the point charges, whereas the interaction with
the background is increased. With χη(r) = η−31(4πr3/3 �
η3) we obtain

Ejel(�N + τ, x1, . . . , xN )

� D

⎛
⎝ N∑

j=1

χη(· − x j ) − 1�N +τ

⎞
⎠ − N

η
D(χ1).

The density in the parentheses equals

N∑
j=1

χη(· − x j ) − 1�N +τ =
∑

k ∈ Z3

|k1|, |k2|, |k3| � K

f (x + 
k)

with f = ∑n
j=1 χη(· − x j ) − 1C
+τ . Passing to Fourier vari-

ables we can write

D

⎛
⎝ N∑

j=1

χη(· − x j ) − 1�N +τ

⎞
⎠

= 2π

∫
R3

| f̂ (p)|2
p2

∣∣∣∣∣∣∣∣∣
∑

k ∈ Z3

|k1|, |k2|, |k3| � K

ei
p·k

∣∣∣∣∣∣∣∣∣

2

dp.

Note that
∫

C

f (x) dx = 0 and that f has no dipole moment:∫
C


r f (r) dr = 1

n

n∑
j=1

x j − τ = 0.

Hence the function | f̂ (p)|2/p2 is continuous and vanishes at
p = 0. On the other hand, the square of the Dirichlet kernel
converges weakly to the Dirac comb of the dual lattice

1

(2K + 1)3

∣∣∣∣∣∣∣∣∣
∑

k ∈ Z3

|k1|, |k2|, |k3| � K

ei
p·k

∣∣∣∣∣∣∣∣∣

2

= 1

(2K + 1)3

3∏
ν=1

sin2[
pν (K + 1/2)]

sin2(
pν/2)

⇀

(
2π




)3 ∑
p∈(2π/
)Zd

δp
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as K → ∞. Going back to configuration space, this gives the
convergence

lim
N→∞

1

N
D

⎛
⎝ N∑

j=1

χη(· − x j ) − 1�N +τ

⎞
⎠

= 1

2n

∫
C


∫
C


G
(x − y) f (x) f (y)dx dy.

Passing then to the limit η → 0 using that

1

2

∫∫
R3×R3

G
(x − y)χη(x)χη(y)dx dy

= 1

2

∫∫
R3×R3

G
(η(x − y))χ1(x)χ1(y)dx dy

= D(χ1)

η
+ M

2

+ o(1),

we obtain, as was claimed, the upper bound in (23).
The proof of the lower bound in (23) is similar. It re-

quires estimating the error made in the interaction with the
background when we replace the point particles by uniform
balls. By Newton’s theorem, there is no error when the ball is
outside the background. In the case of an intersection the error
can be bounded by

2N
∫

r<η

dr
r

= 4πNη2,

a term which disappears in the thermodynamic limit since we
take η → 0.

V. UPPER BOUND ON THE PERIODIC ENERGY

We give here a short proof of the inequality

eper � ejel. (24)

Our strategy follows the one of [10], which is based on
the earlier work in [58] and is also described in [54]. In
combination with (9) and (21) this completes the proof of
Theorem 1.

We are going to use the important fact that Newton’s
theorem holds in the periodic cell, for neutral systems. More
precisely, if we have a radial charge distribution ρ compactly
supported in a ball BR and such that

∫
BR

ρ(r)dr = 0, then
for L large enough so that BR ⊂ CL we claim that ρ ∗ GL =
ρ ∗ r−1 in CL. This is because V = ρ ∗ 1/r vanishes outside
of BR, by Newton’s theorem; hence the periodized potential∑

k∈Zd V (r + 
k) solves the same equation as ρ ∗ GL and we
must have ρ ∗ GL = ρ ∗ 1/r + K in CL. The constant K is
found to vanish after integration over CL. We also infer that
ρ ∗ GL vanishes on CL \ BR.

We use the Swiss cheese theorem [54, Sec. 14.5] to cover
the cube CL with many balls (all of integer volume) of sizes
ranging from some fixed 
0 to the largest one of order 
.
The volume not covered by the balls is small compared to
L3 if 
 is large, and in particular goes to zero relative to L3

if 
 → ∞ after L → ∞ (for fixed 
0 or, more generally, if

0 	 
). In each ball Bn, we place Nn = |Bn| particles in the
optimal jellium configuration of the ball. The remaining M =
N − ∑

n |Bn| particles are placed uniformly in the leftover

cheese S = CL \ ⋃
n Bn. We obtain an upper bound on the

minimal energy in the box

eper (CL ) = min
x1,...,xN ∈CL

Eper,L(x1, . . . , xN )

of the form

eper (CL ) �
∑

1� j<k�N−M

GL(x j − xk )

+
N−M∑
j=1

∫
S

GL(x j − y)dy

+ 1

2

(
1 − 1

M

) ∫∫
S×S

GL(x − y)dx dy,

where x1, . . . , xN−M denote the positions of the N − M parti-
cles in ∪nBn. We then use that S = CL \ ∪nBn and the fact that∫

CL
GL = 0. Discarding the term of order 1/M for an upper

bound, we find that the right side is bounded above by

∑
1� j<k�N−M

GL(x j − xk ) −
∑

n

N−M∑
j=1

∫
Bn

GL(x j − y)dy

+ 1

2

∑
n,m

∫∫
Bn×Bm

GL(x − y)dx dy.

This is exactly the energy obtained by putting point particles
together with a uniform background over ∪nBn. Next we can
average the particle configurations in each ball Bn over rota-
tions. Due to Newton’s theorem recalled above, this cancels
the interactions between the systems in different balls. We
obtain the upper bound

eper (L) �
∑

n

⎡
⎣ ∑

1� j<k�|Bn|
G̃L

(
x(n)

j − x(n)
k

) −
|Bn|∑
j=1

×
∫

Bn

G̃L
(
x(n)

j − y
)
dy + 1

2

∫∫
Bn×Bn

G̃L(x − y) dx dy

⎤
⎦,

where x(n)
j denote the point charges in the ball Bn and G̃L

denotes the average of GL over rotations of the ball Bn. As
an upper bound, we thus obtain the sum of the jellium energy
in each ball Bn, with interaction kernel G̃L(x − y) in place
of |x − y|−1. As L → ∞, the former converges to the latter,
however. Hence dividing by L3 and taking the successive
limits L → ∞, 
 → ∞, and 
0 → ∞, we arrive at the desired
result.

VI. EXTENSION TO RIESZ POTENTIALS IN ALL SPACE
DIMENSIONS

Our argument in Secs. III and IV applies to more general
potentials in any dimension, since we have essentially only
used that the interaction has a positive Fourier transform, so
that D( f ) � 0. Here we quickly describe how to generalize
our findings to Riesz potentials, which are defined by

Vs(r) =
⎧⎨
⎩

r−s, for s > 0,
− ln r, for s = 0,
−r−s, for s < 0.
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For instance, s = 1 is the 3D Coulomb case which can also
be considered in dimensions d = 1, 2. The case s = 0 plays a
central role in many situations. This is the natural interaction
arising in random matrix theory for d = 1, 2 [59]. It also
arises in the study of star polymer solutions, at least at short
distances; see [60] and [61, Sec. 5]. It is very convenient to
incorporate all these important physical situations in the one-
parameter family of Riesz interactions. This has been useful
to better understand how the decay of correlations [62,63]
and sum rules [63–67] depends on the decay of the potential,
that is, the parameter s. It does not seem to be a well known
fact that adding the background in the spirit of Wigner is a
very robust method that, as we will demonstrate, works for all
−2 � s < d in any dimension, and not only in the Coulomb
case.

We define the jellium energy of N point particles by

Ejel,d,s(�N , x1, . . . , xN )

=
∑

1� j<k�N

Vs(x j − xk )

−
N∑

j=1

∫
�N

Vs(x j − y)dy + 1

2

∫∫
�N ×�N

Vs(x − y)dx dy

(25)

and always assume s < d to ensure the finiteness of the last
two terms. Of course, no background is necessary in the
short-range case s > d . The following says that the system
is thermodynamically stable for all −2 � s < d .

Lemma 1 (stability for Riesz potentials). Let d � 1 and
−2 � s < d . We have, for a universal constant C(d, s),

Ejel,d,s(�, x1, . . . , xN )

� −
⎧⎨
⎩

C(d, s)N, for 0 < s < d ,
C(d, 0)N, for s = 0 and N = |�|,
0, for −2 � s < 0 and N = |�|,

(26)

for every x1, . . . , xN ∈ Rd and every bounded open set
� ⊂ Rd .

Many authors work under the constraint that s � d − 2,
but the Coulomb case s = d − 2 is not a natural threshold
in the family of Riesz potentials. Since the previous result
does not seem to be well known, we provide a proof in the
Appendix. A similar lower bound was previously derived in
[35, Appendix B 2] for 0 < s < d .

We can now define the lowest jellium energy in a given
background �N with |�N | = N by

ejel,d,s(�N ) := min
x1,...,xN ∈Rd

Ejel,d,s(�N , x1, . . . , xN )

|�N | . (27)

This function is uniformly bounded from below, due to
Lemma 1. We claim that it is also bounded from above for
“reasonable” sets. To prove this we have to construct one trial
state with an energy of order N . Taking the uniform average
for all the points in �N , we find

ejel,d,s(�N ) � − 1

2N2

∫∫
�N ×�N

Vs(x − y)dx dy.

For s > 0 the right side is negative, proving that ejel,d,s(�N ) �
0. For s < 0 the right side diverges to +∞ as N → ∞, and

the uniform average is not a good trial state. Let us instead
consider �N to be the union of N smaller cubes of size 1 (�N

can be made a cube if N = K3 with K ∈ N). In each of the
small cubes we put exactly one particle, which we average
uniformly over its small cube only. This cancels exactly the
background and we are just left with the self-energies of the
small cubes:

ejel,d,s(�N ) � −1

2

∫∫
C1×C1

Vs(x − y)dx dy. (28)

This is of order 1 as claimed. This argument applies to
all s < d and any �N that can be partitioned into N sets
of volume 1 and uniformly bounded diameter. This leads
us to conjecture that the jellium model with Riesz interac-
tion has a thermodynamic limit for all −2 � s < d in any
dimension.

We would like to consider the corresponding energy

ejel(d, s) := lim
�N ↗Rd

ejel,d,s(�N ),

where �N is any reasonable sequence of domains such as
cubes or balls, with |�N | ∈ N. The existence of this limit has
been obtained for s = d − 2 in any dimension in [10,68,69]
and for d − 2 < s < d (resp. 0 � s < d for d = 1, 2) in
[32,34,35]. To our knowledge no proof has yet been given for
smaller values of s. In those cases we define ejel(d, s) by a lim
inf instead of a limit.

We then consider the indirect energy

Eind,d,s(ρ) := min
ρP=ρ

∫
RdN

∑
1� j<k�N

Vs(x j − xk )dP(x1, . . . , xN )

− 1

2

∫∫
Rd ×Rd

ρ(x)ρ(y)Vs(x − y)dx dy, (29)

which satisfies as in (8)

Eind,d,s(1�N )

|�N | � ejel,d,s(�N ) (30)

for every domain �N . Our upper bound (28) applies to the
UEG as well, showing that |�N |−1Eind,d,s(1�N ) is uniformly
bounded for “reasonable” sets. By following the proof of
[18, Theorem 2.6], based on the subadditivity of the indirect
energy, one can show that the limit

eUEG(d, s) := lim
�N ↗Rd

Eind,d,s
(
1�N

)
|�N |

exists and does not depend on �N , for regular-enough se-
quences �N ↗ Rd and for all −2 � s < d .

Finally, we consider the periodic problem

eper,d,s(CL ) = min
x1,...,xN ∈CL

∑
1� j<k�N

Gd,s,L (x j − xk ) + Md,sN

2Ls
,

where N = Ld and the periodic function Gd,s,L has its Fourier
coefficients equal to cd,sks−d for 0 �= k ∈ (2π/L)Zd and
the appropriate constant cd,s. Here Md,s = 2sgn(s)ζZd (s) is
the corresponding Madelung constant. At s = 0 the term
Md,s/(2Ls) is replaced by ζ ′

Zd (0) − ζZd (0) ln L. The limit

eper (d, s) = lim
L→∞

eper,d,s(CL )

Ld
(31)
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exists for subsequences in the form L = 2nL0, due to the
monotonicity of the energy. In the absence of a proof for
general sequences we define eper (d, s) by a lim inf instead of
a limit.

The Coulomb case s = −1 in dimension d = 1 is com-
pletely understood. It is well known that jellium is crystallized
[68,70,71] and a calculation furnishes

ejel(1,−1) = −ζ (−1) = 1
12 .

On the other hand, it has been proved in [72] that the floating
crystal, defined similarly to (11), is the exact ground state of
the indirect energy Eind(1[−N/2,N/2]). Hence the computations
in [8] imply that there is an energy shift:

eUEG(1,−1) = ejel(1,−1) + 1
12 = 1

6 .

Jellium and the UEG differ at s = −1 in 1D. Other values of
s are considered in [73,74].

Next we discuss the adaptation of the argument in Sec. IV
to Riesz potentials. Our result is the following:

Theorem 2. In space dimension d � 1 we have

ejel(d, s) � eUEG(d, s) � eper (d, s)

for all max (0, d − 4) < s < d . There is equality for 0 < s <

d in dimensions d = 1, 2 and for d − 2 � s < d in dimen-
sions d � 3.

The proof goes as follows. The first inequality is an im-
mediate consequence of (30). For the second inequality we
follow the argument in Sec. IV. The computation (22) con-
tinues to hold for the potential Vs. The last two Hartree terms
in this equation continue to be negative when s > 0 because
the Fourier transform of Vs is positive. The first Hartree term
on the second line of (22) is negative even for −2 � s � 0
because the function in the argument has a vanishing integral
(see the Appendix). But the Hartree term on the third line is
positive for s < 0 and it has no particular sign for s = 0. This
term is O(MN−s/d ), or O(M ln N ) for s = 0. In our case in
which M ∼ N1−1/d , the last term in (22) is o(N ) under the
condition that s > −1.

The convergence to the periodic jellium energy in (23)
continues to hold under the condition that d − s < 4 for con-
figurations that have no dipole moment. The convergence of
Eind(ρP)/N to eUEG(d, s) was established in [75] for all s > 0.
Hence we obtain the inequality for max (0, d − 4) < s < d ,
as claimed. Should the last convergence hold for all s � −2,
as we believe, then the same theorem would hold under the
weaker assumption that max (−1, d − 4) < s < d .

Finally, the equality eper (d, s) = ejel(d, s) is shown in
[32,34,35] for max(0, d − 2) < s < d (resp. 0 � s < d in
d = 1, 2). Note that our proof that eper (d, s) � ejel(d, s) in
Sec. V easily extends to s = d − 2 in all dimensions, but not
to other values of s, because it relies on Newton’s theorem.

VII. CONCLUSION

In this paper we have compared definitions of the minimum
energy of the uniform electron gas and of jellium. For many
years it has been an open problem to prove rigorously that
they are the same to leading order in the volume since it was
known that the obvious method for constructing the uniform
gas definitely did not lead to the desired equivalence. We have

succeeded in proving the equivalence, and thus provide a firm
foundation for some aspects of density functional theory.
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APPENDIX: PROOF OF LEMMA 1 ON THE STABILITY OF
JELLIUM WITH RIESZ POTENTIALS

We start with s > 0. Our idea is to replace Vs by a smaller
potential 0 � Vs,M � Vs that is continuous at the origin and
still has a positive Fourier transform. Then we use that for this
potential,∑

1� j<k�N

Vs,M (x j − xk ) −
N∑

j=1

∫
�

Vs,M (x j − y)dy

+ 1

2

∫∫
�×�

Vs,M (x − y)dx dy

= 1

2

∫∫
Rd ×Rd

Vs,M (x − y)dμ(x)dμ(y) − N

2
Vs,M (0)

� −N

2
Vs,M (0), (A1)

with μ = ∑N
j=1 δx j − 1�. To define the potential Vs,M we

follow [76,77] and first remark that for any radial function
χ � 0 with

∫
Rd χ = 1,

1

rs
= c(s)

∫ ∞

0
χ ∗ χ (tr)

dt

t1−s
, (A2)

where

c(s)−1 = 1

|Sd−1|
∫∫

Rd ×Rd

χ (x)χ (y)

|x − y|d−s
dx dy.

This suggests introducing the truncated potential

Vs,M (r) := c(s)
∫ M

0
χ ∗ χ (tr)

dt

t1−s
,

which satisfies Vs,M (0) = c(s)Ms

s

∫
Rd χ2 and∫

Rd
[Vs(r) − Vs,M (r)]dr = c(s)Ms−d

d − s
.

Using Vs,M � Vs for the self-energies of the particles and of
the background, as well as

N∑
j=1

∫
�

[Vs(x j − y) − Vs,M (x j − y)]dy � N
∫
Rd

(Vs − Vs,M )

for their mutual interaction, we find

Ejel,d,s(�, x1, . . . , xN )

�
∑

1� j<k�N

Vs,M (x j − xk ) −
N∑

j=1

∫
�

Vs,M (x j − y)dy
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+ 1

2

∫∫
�×�

Vs,M (x − y)dx dy − N
c(s)Ms−d

d − s

= 1

2

∫∫
Rd ×Rd

Vs,M (x − y)dμ(x)dμ(y)

− Nc(s)

(
Ms−d

d − s
+ Ms

2s

∫
Rd

χ2

)
.

Optimizing over M we obtain

Ejel,d,s(�, x1, . . . , xN ) � − Ndc(s)

2s(d − s)
2

s
d

(∫
Rd

χ2

)1− s
d

.

Our conclusion is that

Ejel,d,s(�, x1, . . . , xN ) � −Cχ (d, s)N, (A3)

where

Cχ (d, s) = d|Sd−1|
2s(d − s)

2
s
d

||χ ||2− 2s
d

L2 ||χ || 2s
d

L1∫∫
Rd ×Rd

χ (x)χ (y)
|x−y|d−s dx dy

.

The best bound is obtained after optimizing over χ but here
we keep it fixed for simplicity. In the limit s → 0, we have

Ejel,d,s(�, x1, . . . , xN )

= (N − |�|)2 − N

2
+ s EJe,d,0(�, x1, . . . , xN ) + O(s2),

whereas

Cχ (d, s) = 1

2
+ s

2d

[
1 + ln 2

+
∫ ∞

0 (χ ∗ χ )′(t ) ln
(
t
∫
Rd χ2

)
dt∫

Rd χ2

]
+ O(s2).

When N = |�|, the term −N/2 cancels on both sides of (A3).
Hence we can divide by s and pass to the limit s → 0. We get
the claimed estimate for s = 0, with the appropriate definition
of Cχ (d, 0).

Finally, for s < 0 we can write directly

Ejel,d,s(�, x1, . . . , xN ) = −1

2

∫
Rd

∫
Rd

|x − y||s|dμ(x)dμ(y).

The Fourier transform of μ has the behavior at the origin

μ̂(k) = 1

(2π )d/2
(N − |�| − ik · P) + o(k),

where P = ∑N
j=1 x j − ∫

�
x dx is the corresponding dipole

moment. Under the assumption that N = |�| and −2 < s <

0, we obtain that k−d−|s||μ̂(k)|2 is integrable at the origin, and
therefore we obtain

Ejel,d,s(�, x1, . . . , xN ) = cd,s

∫
Rd

|μ̂(k)|2
kd+|s| dk,

where cd,s = −(2π )
d
2 2

d
2 −1−s�( d−s

2 )�( s
2 )−1 is positive for

−2 < s < 0 (but negative for −4 < s < −2). At s = −2 we
can compute directly Ejel,d,−2(�, x1, . . . , xN ) = |P|2 and we
conclude, as we have claimed, that Ejel,d,s(�, x1, . . . , xN ) � 0
for all −2 � s < 0 when |�| = N .
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