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Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers
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The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid
state devices working at ambient conditions would pave the way to disruptive technological applications. In
this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to
dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing
metallic collectors can be optimized by exploiting the “superradiance” phenomena. We demonstrate that this is
a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that
is compatible with actual implementation in few-monolayer transition-metal-oxide (TMO) heterostructures.
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I. INTRODUCTION

Manipulating the quantum coherence of electronic wave
functions on timescales compatible with every-day technol-
ogy is one of the big challenges of condensed matter physics
[1]. The possibility to generate, control and collect charges
without loosing the information stored in the quantum phase
would pave the way to the design of novel building blocks for
quantum computation or optoelectronic devices with unprece-
dented performances based on quantum effects [2,3].

One of the most striking examples of coherence-assisted
processes is related to transport of charges or excitons in
open quantum chains [4]. When the electronic coherence
is preserved on timescales longer than the transfer time of
the charges to external collectors, new phenomena with no
classical counterpart emerge. Paradigmatic examples include
the transport enhancement in the vicinity of the superradiant
transition in systems coupled to one or several decay channels
[5] or the central-symmetry enhanced exciton transfer in
dipole-networks in the presence of a dominant doublet [6].

The concept of coherence-assisted transport has been
widely employed to address the hitherto unexplained effi-
ciency of light-harvesting processes in molecular biocom-
plexes [7,8]. The experimental claim that electronic coherence
is preserved on timescales of the order of several hundreds of
femtoseconds has triggered a huge effort to understand and
model the interaction between the photoinjected excitons and
the ambient-temperature bath, mainly constituted by the exci-
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tation of the vibrational degrees of freedom of the molecules
along the transport path.

Extending this phenomenon to solids has been so far
believed possible only at extremely low temperatures [9] or
in extremely controlled artificial solids, such as cold atoms
trapped in perfect optical lattices [10,11]. This conventional
wisdom is based on the assumption that the quantum nature
of the electronic excitations in solids at high temperatures
is washed out within few femtoseconds by the interaction
with the incoherent fluctuations of the lattice, spin and charge
degrees of freedom, acting as a bath. Nonetheless, the recent
advances in the synthesis of materials as thin as few atomic
layers [12] opened the path to the nanoengineering of devices
working in a parameter range not far from what is needed to
observe and exploit coherent phenomena [13]. In this work,
we provide strong arguments to support the conclusion that
signatures of coherence-enhanced transport can survive in
solids and impact the efficiency of properly tailored few-
monolayer transition-metal-oxide (TMO) devices.

The model example TMO that serves as motivation to the
present work is qualitatively illustrated in Fig. 1. We consider
a device constituted by N atomic layers of a solid-state in-
sulating perovskite coupled to isostructural conductive layers
(collectors) at the two edges. Such a device can be realized
with a very small degree of intrinsic disorder by interfacing
TMOs with different degrees of electronic correlations. While
the core of the device is constituted by a Mott insulator with
a nonzero energy gap (Egap), the two metallic overlayers can
be used to collect the photogenerated charges. The electron-
hole excitation generated by the absorption of an above-gap
photon (h̄ω > Egap) can thus hop across the TMO layers under
the influence of either an applied external voltage or the
intrinsic field in the case of a polar TMO. As a consequence
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FIG. 1. Illustration of the charge generation and collection along
quantum coherent pathways in a few-monolayer oxide heterostruc-
ture (top). The process is modelled out of equilibrium via an effec-
tive one-dimensional open quantum system for a single excitation
(middle) in Sec. II and in equilibrium via an effective many-particle
Hubbard-model (bottom) in Sec. III.

of the strong oxygen-mediated hybridization of the orbitals
connecting two adjacent atomic layers, the interlayer hop-
ping integral (t), can be as large as 100–200 meV [14],
which corresponds to a timescale of 3–6 femtoseconds (h̄ =
658 meV fs). The timescale of the charge migration to one
of the two collectors is thus confined to few femtoseconds,
which is very close to the typical timescale of the electronic
decoherence related to the interaction with phonons, spin and
charge fluctuations. Furthermore, the large flexibility in the
growth of highly controlled interfaces allows to properly tune
the interface hopping integral and, consequently, engineer the
escape probability in order to optimize coherent transport phe-
nomena. At the same time, the presence of multiple structural,
magnetic and orbital ordering phase transitions constitutes a
fertile playground to investigate the way lattice, spin, and
electronic fluctuations affect the decoherence processes and
suppress or favor possible quantum-transport phenomena.

In this work, we set the basic theoretical framework to
treat the possible emergence of quantum transport effects
in real heterostructures at ambient conditions. We believe
that, before entering into a full-fledged, realistic simulation
of the nonequilbrium dynamics of photoexcited carriers in
the heterostructure, it is crucial to tackle the problem by
introducing simplified models which contain the basic bricks
of our understanding. We start from an idealized description
of the heterostructure where the interlayer transport of a single
excitation is modeled by a one dimensional N-site chain
connected to one collector and one source. Within this simple
approach we obtain analytic expressions to estimate the pa-
rameters range compatible with quantum-transport efficiency
enhancement, and we are able to connect the optimal transport
conditions with the superradiant transition [15–17], which
takes place as a function of the ratio between the coupling
with the leads γout and the hopping between the sites of the
chain t . When γout � t all the N eigenstates acquire a finite
lifetime of the order of N/γout, thus allowing coherent trans-
port throughout the chain. In the opposite regime γout � t , one

superradiant edge solution appears, spatially located at the
edge (N th) site, which acquires a broadening much larger than
the average one. In this regime, the lifetime (inverse broaden-
ing) of the remaining N-1 subradiant solutions progressively
increases thus suppressing transport at very large couplings.

The optimal regime for quantum transport where the cur-
rent is maximized is reached in the vicinity of the superradiant
solution separating the two regimes. The inherent quantum
nature of this phenomenon can be appreciated coupling the
whole chain with an external environment which leads to
dephasing. As the dephasing rate becomes comparable to
the inverse transfer time, the superradiance-driven current
increase progressively vanishes until an incoherent hopping
regime is reached. In this scenario, which applies to almost
all conventional devices, the charge collection is based on
diffusive or electric-field assisted charge migration at the
effective drift velocity −→vD.

The description of a photoinjected excitation as a free
particle is a useful starting point, but it completely neglects
the presence of the other carriers and the electron-electron
interactions, which are by no means negligible in TMOs.
In the second part of our theoretical analysis, we release
this approximation by considering the photoexcitation as a
quasiparticle in a strongly interacting environment. To treat
this case, we consider a simplified single-band Hubbard
model in the strongly correlated metal regime, and we show,
within linear-response theory, that optimal transport occurs at
the same superradiant transition even in presence of strong
interaction.

The occurrence of similar coherence-driven phenomena in
the two models, which describe a priori different physics,
is instructive. In the first model, we study nonequilibrium
dynamics of a free single excitation, while in the second
we compute the transmission of interacting many particles
within a Mott insulator at equilibrium. Since we obtain in
both cases that optimal transport occurs at the superradiant
transition, we argue that the underlying coherent quantum
transport mechanism is an ubiquitous and robust mecha-
nism observable and exploitable in actual devices at small
length scales and timescales. In other words, in order to see
superradiant-enhancement of the charge transport efficiency
we must work in a regime far from the diffusive bulk transport
characterized by the drift velocity (cf. Appendix F). Never-
theless, by allowing moderate levels of dephasing, disorder,
interaction and loss of charges, we are not limited to the pure
ballistic transport that requires full quantum control. Finally,
we will address the paradigmatic case of LaVO3/SrVO3 het-
erostructures, in which the emergence and exploitation of this
coherence-enhanced transport is experimentally within reach.

The work is organized as follows. In Sec. II, we present the
effective tight-binding quantum-transport model in which the
coupling to the environment (lattice, spin, charge fluctuations)
is described effectively within the quantum master equation
formalism. We find an analytical formulation of the nonequi-
librium steady state current. We show that the current is
maximized when the coupling to the sink is close to the super-
radiant transition, whereas it is strongly suppressed when co-
herence is destroyed by environment-induced dephasing. We
identify the dephasing threshold and we address the maximal
length-scale compatible with coherence-enhanced transport.
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Finally, we discuss the effect of static disorder and losses
on the current. In Sec. III, we benchmark our simple model
against dynamical mean-field theory calculations (DMFT),
which fully treat the on-site Coulomb repulsion and allows us
to compute the conductance in a strongly interacting system.
We show that the coherence-driven enhancement of the cur-
rent flowing across the device is robust against electronic cor-
relations. In Sec. IV, we explicitly discuss the possible realiza-
tion of a coherence-enhanced device in SrVO3/LaVO3/SrVO3

heterostructures [18].

II. OPEN SYSTEM TRANSPORT MODEL

As a first step, we model the transport of photoexcita-
tions within a heterostructure constituted by N monolayers
by means of a tight-binding Hamiltonian for a chain of N
sites coupled with nearest-neighbor interactions (see the open
system model illustration in Fig. 1). We will restrict our
considerations to the single-excitation subspace which is a
good approximation when describing photoinduced current
with a low rate of incident photons, such as is the case for
natural sunlight [19] (see also Sec. IV). The injection and
extraction of a charge excitation, as well as the effective
dephasing and decay processes, are taken into account by
coupling (“opening”) the system to an environment [20]. The
excitations are injected on the left and extracted on the right
of the chain as illustrated in Fig. 1. In this way, we model
effectively the directionality induced by the intrinsic electric
field across TMO heterostructures which drives the positive
(negative) charges towards the one negative (positive) metallic
interface at the end of the chain. In principle, excess charges
can be photogenerated anywhere in the heterostructure, and
thus the effective chain length (i.e., the number of hopping
events required to reach the metallic interface) varies from one
photon absorption event to another. However, since we work
in the low fluence regime, the absorption events can be consid-
ered independent (single-excitation approximation). Thus we
can optimize the current for any fixed length N of the chain.

Mathematically we describe the dynamics with a Lindblad
master equation [21,22] which is a good approximation when
the correlations in the environment decay much faster than the
system’s timescale,

˙̂ρ = − i

h̄
[Ĥ, ρ̂] +

∑
α

Lα (ρ̂ ). (1)

This is generically the case for the system we consider (see
Sec. IV). In Eq. (1), the superoperator is Lα (ρ̂) = L̂αρ̂L̂†

α −
1
2 (L̂†

αL̂αρ̂ + ρ̂L̂†
αL̂α ), where L̂α are the Lindblad operators

including the corresponding rates that we introduce below,
and ρ̂ is the one-particle density matrix.

The Hamiltonian in Eq. (1) reads

H =
N∑

j=1

ε j | j〉〈 j| + t
N−1∑
j=1

(| j〉〈 j + 1| + | j + 1〉〈 j|), (2)

where ε j are the on-site energies and t is the homogeneous
hopping energy. Here, | j〉〈 j| denotes the state when one
excitation is present on site j, and, in general, we will assume
degenerate on-site energies ε j = ε = 0. Static disorder can be
eventually added by choosing nonhomogeneous on-site ener-

gies ε j . For example, Anderson-type disorder [23] will be in-
troduced assuming ε j randomly distributed in [−W/2,W/2],
where W is the disorder strength. Realistic level of disorder
weakly affects our system and it is thus neglected at a first
stage. In Appendix E, a detailed analysis of the effect of
disorder is presented.

The contributions arising from the coupling to the envi-
ronment are taken into account by the Lindblad operators as
follows: The injection of an excitation and the coupling to the
exit lead consists of a pump coupled to the first site (with the
rate in, γin) and a sink coupled to the last (N-th) site (with
the rate out, γout), respectively,

L̂in = √
γin|1〉〈0| L̂out = √

γout|0〉〈N |. (3)

Here, |0〉〈0| denotes the state when no excitation is present
in the system. Dynamical noise from the coupling to the
environment is modelled by uniform dephasing [24] with a
rate γφ on each site, which can be described by N Lindblad
operators

L̂φ, j = √
γφ| j〉〈 j| for j = 1, . . . , N. (4)

The loss of excitations in the system (due to fluorescence
or electron-hole recombination for instance) is taken into
account by a spontaneous decay to the empty state (recom-
bination) on each site via the N identical Lindblad operators

L̂loss, j = √
γloss|0〉〈 j| for j = 1, . . . , N. (5)

The transport shall be characterized in terms of the nonequi-
librium steady-state (NESS) probability current [25,26] leav-
ing the system through the sink attached to the last site N ,

I := γout〈N |ρ̂ss|N〉, (6)

where ρ̂ss is the steady-state density matrix.
In order to understand the properties of the current, it is

useful to consider also the transient dynamics in addition to
the steady-state properties. This can be realized by setting
the pumping rate γin = 0. The dynamics is then obtained by
solving in time the Lindblad Eq. (1) for a single-excitation ini-
tially located on one site, or distributed over many sites. Note
that for γout �= 0 the excitation will asymptotically leave the
system. Solving dynamically the Lindblad equation allows to
find the average transfer time to the sink, i.e., the average time
the excitation needs to exit the system through the sink. This
quantity is a function of the initial state, the dephasing rate,
the coupling to the leads, the length of the chain, and the loss
rate. The average transfer time [27,28] can be defined via the
probability current I (t ′) := γout〈N |ρ̂(t ′)|N〉 escaping through
the sink (given an initial state ρ̂(t0 = 0), cf. Appendix A), via
the time integral:

τ := 1

η

∫ ∞

0
t ′I (t ′)dt ′ = γout

η

∫ ∞

0
t ′〈N |ρ̂(t ′)|N〉dt ′, (7)

where we introduced the normalization through the efficiency

η := γout

∫ ∞

0
I (t ′)dt ′. (8)

In practice, the time integrals in Eqs. (7) and (8) can be
solved analytically in terms of the eigenvalues of the system’s
Liouvillian, as shown in Appendix D. Note that here and
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throughout the rest of this manuscript we use t ′ as the time
variable to avoid confusion with the hopping parameter t .

Coherent transport and optimal current

We studied the NESS current (6) numerically using the
steady-state solver of the QUTIP [29,30] PYTHON package.
Unless specified otherwise, we set N = 10, γloss = 0,W = 0
(the cases W �= 0, γloss �= 0 are discussed in Appendix E). In
the following, we show that, at low dephasing, the coupling
to the sink γout can be tuned to maximize the current. This
is consistent with results found in previous work on coherent
quantum transport in the photosynthetic molecular complexes
[31]. Moreover, these optimal parameters are robust against
the introduction of short-range Coulomb interaction and are
compatible with experimental data for chains made of TMOs
atomic layers, as we shall discuss in Secs. III and IV, respec-
tively. To begin with, let us briefly explain how the different
parameters of the model affect qualitatively the current.

Our model is characterized by five parameters: The hop-
ping t , which we set as the reference energy scale, and the
rates γout, γφ , γloss, and γin (note that the value of ε0 does
not affect the current). While the first three rates are fixed
by the system (i.e., material) properties, the rate γin is in
general an external, tunable parameter. For instance, when
describing photoinduced current, γin characterizes the rate of
generated excitation from incoming photons. As we will see
below, in the single-excitation approximation, the current is
proportional to γin, and saturates at a maximum value defined
by the material parameters.

In Fig. 2(a), the maximal current achievable within the
single-excitation approximation, Ise, is shown as a function
of the two parameters γout and γφ (for γloss = 0). As one can
see, for any fixed dephasing rate γφ , the optimal value of
γout (for which the current is maximal as we will discuss in
more details below) occurs at the superradiant transition (st)
(see Ref. [5]), i.e., when γout � γ st. This is quite remarkable,
and is in contrast with previous results obtained in the strong
disorder regime where the presence of dephasing can strongly
modify the value of the optimal coupling [32].

The optimality at the superradiant transition can be physi-
cally explained as follows: The coupling to the sink induces a
level broadening, namely each eigenstate of the chain acquires
a finite width which represents a decay probability to the
continuum as shown in Fig. 2(b) (see also Appendix C).
For small γout, the decay widths increase linearly with the
coupling to the sink and so does the decay probability. Hence,
the current also increases with γout. When the average width
becomes of the order of the average level spacing (overlapping
of all resonances), one state becomes superradiant, namely, it
continues to increase its width as γout is increasing, while all
the others become subradiant, namely, they start to decrease
their widths as γout is increasing, as shown in Fig. 2(b). At
this point, it is no more convenient to increase further the
coupling γout, since the vast majority of states involved in
the dynamics under this action will now decrease their decay
width. Therefore a maximal current will appear for γout = γ st.

In Fig. 2(b), the largest width (superradiant state) and
the average width of all other states (subradiant) are shown
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FIG. 2. Numerics for (a) maximal current, Ise, obtainable in the
single-particle approximation from maximization of Eq. (6) in a
chain of length N = 10, as a function of both the coupling to the sink
γout and dephasing γφ . The vertical dashed line indicates the optimal
coupling out which agrees with the superradiant transition γout = γ st

shown in (b). (b) Decay widths as a function of the coupling to the
sink γout in absence of dephasing. Blue circles mark the largest width,
green triangles indicate the average of all other widths. The dashed
vertical line indicates the superradiant transition, namely, where the
average widths have a maximum.

as a function of γout in absence of dephasing and losses.
The average width of the subradiant states has a maximum
at γ st ∼ 2t/h̄, indicated by a dashed vertical line in both
Figs. 2(a) and 2(b). Interestingly, this very simple estimate for
the optimal γout works even in presence of dephasing. This
happens because we are dealing with a clean system (absence
of static disorder and therefore of Anderson localization) and
so the dephasing is always, independently on the value of γout,
detrimental to transport, since it only induces a transition from
ballistic to diffusive motion.

In the presence of static disorder, one expects the so-called
dephasing assisted transport, in agreement with many results
in literature (see, e.g., Refs. [28,33]), for which an optimal
value of the dephasing is found to be beneficial to transport.
However, in view of the application of our model to transport
in transition metal oxides (cf. Sec. IV) which can be fabricated
with a very low degree of disorder, we will ignore the effects
of disorder in the following treatment. For a more detailed
discussion about disorder see Appendix E.
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FIG. 3. Analytical formula (black solid line) and numerics (markers) for (a) average transfer time, Eq. (9), [(b) and (d)] NESS current,
Eq. (12), and (c) maximal current in the single-particle approximation, Eq. (17). (a) The average transfer time is minimal at the superradiant
transition γ st (vertical dashed line) and increases with increasing values of γφ . At large γφ , the minimum peak turns into a plateau. Far from the
superradiant transition, τ is almost independent of γφ . (b,d) Below 1/τ (vertical dashed lines) the current is linearly proportional to γin. Above
1/τ the current saturates because all the calculations are here done in the single-excitation subspace (cf. Appendix B). For (b), γφ = 0.1t/h̄
and for (d) γout = γ st . (c) Below the value of the dephasing γ̃φ , Eq. (15), (vertical dashed lines) the current I is independent of γφ . Above γ̃φ

the current decreases ∝ γ −1
φ (dash-dotted line).

In order to address the role of the different parameters
and compare the optimal condition for transport to realistic
values for TMO heterostructures, we seek in the following
an effective analytical formula to characterize the NESS
current. Interestingly, we can derive such a formula using
the phenomenological expression obtained in Ref. [32] for a
one-dimensional chain in presence of both static disorder and
strong dephasing.

The starting point of our derivation is Eq. (46) from
Ref. [32], which describes the average transfer time when
the initial excitation is concentrated in the first site, i.e., with
ρ(t0) = |1〉〈1| the density matrix at the initial time, as

τ = N

γout
+ (N − 1)(N − 2)

2
F
+ N − 1


L

= N

γout
+ h̄2(N − 1)

4t2
(Nγφ + γout), (9)

where


F = 2t2

h̄2γφ

, (10)


L = 2t2

h̄2
(
γφ + γout

2

) . (11)

This simple expression has a very clear physical meaning.
Equations (10) and (11) define, respectively, the Föster [34]
and the Leegwater [35] transfer rates. While the former was
introduced in order to describe the energy transfer rate that
characterizes the classical hopping in the limit of large de-
phasing, the latter is a phenomenological correction that takes
into account the quantum coherent effects coming from the
coupling to the sink.

In order to derive the above equation, Zhang et al. [32]
treated the average time as the result of different contributions.
One has to add the transfer time from the last site to the sink,
N/γout, the diffusion time from the first to the second last
site, (N − 1)(N − 2)/(2
F), and the transfer time from the
second last to the last site, (N − 1)/
L. This is clearly under-
standable in the limit of large dephasing where the dynamics
in the chain is expected to be diffusive. Quite surprisingly,
Eq. (9) turns out to be valid even for γφ = 0 when the trans-
port through the chain becomes ballistic (and not diffusive
as the simple argument above was suggesting), as indicated
by the comparison with our numerical simulations in Fig. 3(a).
This can be understood considering that, for short chains, the
average transfer time from ballistic propagation is negligible
with respect to the time-scale set by the sink. Note that Eq. (9)
was derived heuristically in the semiclassical limit, and not
from first principles.
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It is thus quite remarkable that an effective analytical
formula for the NESS current that agrees perfectly with
our numerical simulations even in the quantum regime [see
Figs. 3(b)–3(d)] can be derived from Eq. (9), in the single-
excitation approximation (γin < 1/τ , see also Appendix B)
when both the disorder and the losses are small (cf.
Appendix E). To begin with, we note that in the single-
excitation approximation, the maximum achievable current
Ise is obtained when the rate of incoming excitations γin is
equal to the inverse of the average transfer time 1/τ . In
other words, a new excitation can enter the system only when
the previous one has escaped. For pumping rates larger than
the average transfer time (γin � 1/τ ), the single-excitation
approximation breaks down (see Appendix B). The limit
of the single-excitation approximation can be observed in
Figs. 3(b) and 3(d) when the current saturates for γin > 1/τ .
At this point, the system could transmit more than one ex-
citation at a time, but since we limit ourselves to the single-
excitation approximation, the current saturates. At pumping
rates smaller than the saturation value, the current is directly
proportional to the pumping rate. This appears natural, since
all the excitations that enter the chain leave the chain in a time
that is shorter than the inverse pumping rate. Since there are
no losses in the chain, all injected excitation leave the system.
Thus we can express the NESS current as

I = γin

1 + γinτ
. (12)

Remarkably, our heuristic formula for I perfectly agrees with
our numerical simulations of the stationary current, given
that there is no disorder nor spontaneous emission in the
chain as illustrated in Figs. 3(b) and 3(d). Hence, we can
derive the maximum possible current in the single-excitation
approximation by setting γin = τ−1 in Eq. (12),

Ise := 1

2τ
. (13)

Using the analytical expressions reported in Eqs. (9), (12),
and (13), the key parameters characterizing the NESS current
and its maximum value can be derived. We remark that
maximizing the NESS current Ise is equivalent to minimizing
the average transfer time (7). Moreover, the current (12) does
depend on the system’s parameter only through the average
transfer time τ . Hence, we will focus in the following discus-
sion on current optimization, on the role of τ .

The average transfer time exhibits a minimum as a function
of the value of the coupling to the sink which can be derived
from Eq. (9) as

γ
opt
out = 2t

h̄

√
N

N − 1
≈ γ st � 2t

h̄
. (14)

As it was argued in Ref. [31], this minimum is in good
agreement with the superradiant transition value γ st. The
cooperative quantum coherent nature of this effect [15] sug-
gests that the current is optimized due to cooperativity and
quantum coherences for γout ≈ γ st. Such an interpretation is
confirmed by the fact that, in the semiclassical regime, i.e.,
when dephasing becomes dominant, γφ � γout, the minimum
of the average transfer time as a function of γout is broadened
as shown in Fig. 3(a). Moreover, we note that for large

dephasing, the Leegwater rate (11) converges to the Föster
rate (10), 
L ≈ 
F . Hence, according to Eq. (9), the transport
is then driven by pure incoherent hopping only. Therefore,
we can define a value of the dephasing γ̃φ above which the
coherent effects leading to a minimization of the average
transfer time are not relevant, and above which there is thus
no real gain in working at the superradiant transition γ

opt
out ≈

γ st. The dephasing rate can be estimated from Eq. (9) by
comparing the leading order in N components of γφ and γout:

γ̃φ (γout, N ) ∼ γ 2
out + 4t2/h̄2

Nγout
. (15)

In Fig. 3(c), we see that for any value of γout, when γφ � γ̃φ

the average transfer time is largely independent on γφ . On the
contrary, for γφ � γ̃φ , the current is decreasing as 1/γφ . We
conclude that in order to take full advantage of the superra-
diant transition for maximizing the current, we require that
γφ � γ̃φ . More precisely, this maximum allowable dephasing,
(15), at γout = γ

opt
out ≈ γ st, (14), is given by

γ̃φ (N ) = 2t

h̄

2N − 1

N
√

N (N − 1)
� 4t

h̄N
. (16)

As γ̃φ in Eq. (16) scales gently with the chain’s length N,
the coherence-enhanced current can be expected in short,
albeit not experimentally impractical short, chains as we shall
discuss in Sec. IV.

At the same time, the maximal current obtained by saturat-
ing the single-particle approximation bound [cf. Eqs. (9) and
(13)] and using γout = γ

opt.
out is

Ise(γφ, N ) =
(

h̄
√

N (N − 1)

t
+ h̄2N (N − 1)γφ

4t2

)−1

. (17)

From Eq. (17) it is clear that for a dephasing γφ � γ̃φ (N ),
(16), the maximal current at γout = γ st

out scales inversely pro-
portional to the chain’s length:

Ĩse(N ) >
t

h̄
√

N (N − 1)
∝ t

h̄N
. (18)

This again indicates that we indeed have coherence enhanced
current, since a classical current driven by incoherent hopping
is expected to be diffusive-like, i.e., ∝ N−2.

In brief, we established that transport can be made efficient
by exploiting coherences and derived an analytical bound
for the dephasing rate below which this can be done. So
far, we neglected static disorder and losses in the chain. As
we show in Appendix E, our coherence-enhanced current
is robust against disorder before localization effects play an
important role, i.e., for W � W̃ � t , and is robust against
losses for loss rates smaller than the inverse average transfer
time γloss < τ−1. These constraints are compatible with the
estimated values for the TMOs heterostructures considered in
Sec. IV.

In summary, in our transport model (1)–(5), coherences can
be exploited to optimize current because of two factors: First,
(coherent) ballistic transport quickly drives the excitation
to the collector and second, the excitation is very rapidly
absorbed via the coupling with the short-lived superradiant
solution, which is spatially localized at the interface with
the collector. While the first mechanism is suppressed by
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TABLE I. Summary of the key parameters of the model (1)–(5).
The max. values indicate the level of external noises below which the
current is optimized at the superradiant transition, i.e., γout = γ st . For
the max. disorder and max. loss see Appendix E.

Parameters Value

Single-particle approximation γin � τ−1

Optimal rate out γ
opt
out � 2t

h̄

√
N

N−1 ∼ γ st

Max. dephasing γ̃φ � 4t (h̄N )−1

Max. disorder W̃ � t
Max. loss rate γ̃loss � τ−1

Optimal current below max. values Ĩse > t (h̄N )−1

dephasing, which drives the transport through the chain from
ballistic to diffusive (in the limit of infinitely long chains), the
second remains unaffected by it. However, the speed-up from
a quick absorption is mitigated by the longer transport time
to the collector [see Fig. 3(a)]. Table I summarizes the key
parameter constraints and optimal values of our model.

III. STRONG CORRELATION EFFECTS:
DYNAMICAL MEAN-FIELD THEORY

Many properties of TMOs are determined by the strong
repulsive interaction between electrons occupying the same
atomic orbitals, which eventually leads to the failure of the
single-electron approximation and the emergence of Mott-
insulating states. As a further step towards the exploitation in
real devices of the coherence-enhanced phenomena discussed
in the previous section, we should address the role of the elec-
tronic interactions which underlie the Mott insulating ground
state of the TMOs discussed in Sec. IV. The goal here is not
however to study the nonequilibrium dynamics of correlated
TMOs following a photoexcitation, but rather to introduce the
simplest description of a correlated excitation and to compare
it with the results obtained in Sec. II. Throughout this section
we will assume that we can describe the photoinjected carriers
in terms of an effective photodoping of the Mott insulating
ground state. It is well established by dynamical mean-field
theory (DMFT) that the doping of a Mott insulator results in
a narrow quasiparticle peak flanking the upper Hubbard band
[36] (assuming electron doping). For a small number of doped
carriers, which is certainly the case we are interested in, the
quasiparticle peak remains well separated from the Hubbard
band. Nonetheless, the states in the peak have a small effective
hopping and a finite lifetime due to the interaction with the
other particles.

In this section, we study if the optimization of the quantum
transport at the superradiant transition survives in the pres-
ence of a strongly interacting environment by computing the
linear response of the system as a function of the interaction
strength. In the same spirit, we make one further approxima-
tion. For small finite system, the minimum doping which can
be introduced to half-filling (N electrons on N sites) is set by
the number of sites. Indeed, doping either adds or removes one
electron, so the average charge per site is modified by 1/N .
This means that with doping we have to consider densities
which are quite distant from the condition of half-filling, that

thus yield a physical behavior very different from the one of
a doped Mott insulator which we are interested in. For this
reason, we decided to model our system as a half-filled system
with a Coulomb repulsion smaller than the critical value for
the Mott transition, instead of a doped system. In this way, we
obtain a picture which includes the important features of the
photoexcitations we are interested in.

We performed equilibrium transport calculations of the
tight-binding model of the effective chain in the presence of a
local Coulomb interaction, denoted by an effective Hubbard
parameter Ueff (see the many-particle model illustration in
Fig. 1), which measures the residual interaction involving the
photoexcited carriers:

H = t
N−1∑
j=1

c†
jσ c j+1σ + H.c. + Ueff

N∑
j=1

c†
j↑c j↑c†

j↓c j↓, (19)

where c(†)
jσ are the fermionic annihilation (creation) operators

for an electron at site j with spin σ = {↑,↓}. In the non-
interacting limit Ueff = 0, the Hubbard Hamiltonian (19) is
identical to the tight-binding model in Eq. (2) in the absence
of disorder (and by setting ε0 = 0). By tuning the interactions,
one can explore the effects of the electron-electron interaction
on the superradiant transition. The electronic conductance
is evaluated in the linear response regime. The conductance
g = (e2/h)T (0) is defined in terms of the conductance quan-
tum (e2/h), and the transmission function

T (h̄ω) = Tr[
̂LĜa(h̄ω)
̂RĜr (h̄ω)]. (20)

The Green’s function of the chain is defined given by

Ĝ(h̄ω) = [h̄ω1̂− Ĥ0 − �̂L(h̄ω) − �̂R(h̄ω) − �̂(h̄ω)]−1, (21)

where H0 is the tight-binding Hamiltonian of the effective
chain model, �̂α is the self-energy of the left (L) and right
(R) leads, and �̂ accounts for the electronic correlations in
the chain.

The retarded (advanced) Green’s function Ĝr(a) =
Ĝ(h̄ω ± ıη) describes the propagation of electrons (holes).
The broadening η is necessary for the regularization of the
analytic continuation, and at the same time, it effectively
accounts for contributions not included in the Hubbard model
at zero temperature (e.g., electron-phonon coupling, thermal
excitations, and other decay channels). It has the functional
form of a local dissipative term, and is equivalent to the loss
rate γloss = 2η/t introduced in Eq. (5) in the quantum master
equation formalism for the dephasing.

The matrix 
̂α = i(�̂r
α − �̂a

α ) encodes the spectral infor-
mation of the leads. In the following, we assume a wide-
band limit (WBL) approximation for the sinks, so that the
leads’ self-energy takes the form �̂L = −iγ |1〉〈1| and �̂R =
−iγ |N〉〈N |. The presence of �̂L/R introduces another source
of broadening of the Hamiltonian eigenstates, which is equiv-
alent to the one shown in Fig. 2(b), where γ /t here plays the
role of γout. The main difference with the Lindblad master
equation approach is that the system is not open, and despite
the coupling to the sink, the electron number is conserved
(and fixed to one electron per site). In this configuration, the
transmission

T (h̄ω) = γ 2
∣∣Gr

1N (h̄ω)
∣∣2

(22)
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FIG. 4. (a) Sketch of the one-dimensional model solved within DMFT. (b) Conductance g (in units of the conductance quantum e2/h) as a
function of the coupling to the sinks γ for different values of the local Hubbard interaction Ueff . The maximum of g, marker of the superradiant
transition, is found at approximatively γ st =2t (dashed black line) and it is nearly independent on Ueff . (Inset) Suppression of the conductance
at the superradiant transition gst as a function of Ueff . (c) Evolution with γ of the site-resolved local spectral function A(h̄ω), for the sites labeled
as in panel (a). The states localized at the edge of the chain become superradiant both at Ueff =0 and at finite Ueff . The effect is symmetric on
the other half of the chain. The results are obtained for N =10 with a regularization η/t = 0.03 for the analytic continuation of the retarded
Green’s function.

is the probability of the electron to be transmitted from one
end to the opposite end of the chain.

Electronic correlations are taken into account through the
self-energy matrix �̂(h̄ω). The self-energy is obtained within
the framework of real-space dynamical mean-field theory
(DMFT) [37], which allows to obtain the electronic [38,39]
and transport properties [40–44] of models and realistic
Hamiltonians for correlated systems which lack translational
invariance in one or more spatial dimensions [45]. Within
real-space DMFT, the self-energy fully retains quantum fluc-
tuations, but it is approximated to be local, yet site-dependent,
i.e., �i j (h̄ω) = �ii(h̄ω)δi j , so that nonlocal spatial correlation
are retained just at the static mean-field level. The imaginary
part of the self-energy correspond to an energy-dependent
broadening of the energy levels, while the real part accounts
for a renormalization of the energy of the quasiparticles (i.e.,
the poles of the Green’s function). The dynamical character of
�̂(h̄ω) is fundamental to describe strong correlations effects,
including (but not limited to) the Mott charge localization
due to the interactions. While single-site DMFT is known
to have issues in one dimension [46], extensions such as
two-site cellular DMFT and real-space DMFT have been
shown to provide quantitative and/or qualitative agreement
with (numerically) exact methods such, e.g., density-matrix
renormalization group [46–48].

The auxiliary impurity models for each site in the chain are
solved at T = 0 with an exact diagonalization solver [49] with
nb = 8 bath sites. The knowledge of the impurity spectrum

allows to evaluate the retarded self-energy directly, avoiding
ill-defined analytic continuation procedures, and it is thus
suitable to describe the transport [43,44] Since the Green’s
function is dressed by the DMFT self-energy as in Eq. (21),
the transmission probability (22) fully takes into account all
scattering processes within the chain described by �̂(h̄ω).

Let us first discuss the transport properties for the case
Ueff = 0. In this case, it can be shown that the conductance g is
related to the NESS current as I ≈ t/(Nh̄)

√
gh/e2 for γloss =

2η/t , γout = γ /t , γφ = 0, η � γ , and γin � γloss. Hence, the
Lindblad master equation approach and the linear response
transport within DMFT indeed describe two sides of the same
coin.

In Fig. 4(b), we show the linear response conductance
as a function of the coupling to the sinks γ for different
values of the local Hubbard interaction Ueff . Remarkably, g
displays a maximum consistent with a superradiant transition
at γ st ≈ 2t/h̄, and this even for an interaction Ueff � t . Note
that here the value of the superradiant transition γ st is the
same for the Hubbard model and the quantum master equation
model. The position of the maximum is nearly independent on
the value of Ueff . The main effect of electronic correlations is
to suppress the conductance, as shown in Fig. 4(b) (see also
Refs. [50–53]), which suggests a tempting analogy between
the effect of electronic correlations on the conductance and
the effect of dephasing on the NESS current Ise [cf. Fig. 2(a)].
Moreover, the suppression of the conductance is minimal at
the superradiant transition, demonstrating that the realization
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of the optimal conditions for coherent transport is of pivotal
importance in the presence of strong correlations.

In Figs. 4(c)–4(e), we visualize the site-resolved local
spectral function A(h̄ω) = −ImGr (h̄ω)/π as a function of
γ /t across the superradiant transition. Let us consider the
noninteracting case Ueff/t =0 (upper panels) first. Below the
optimal value γ st ≈ 2t , the lifetime of the tight-binding eigen-
states decreases upon increasing γ , and, correspondingly,
the spectral features become broader. At the superradiant
transition we observe that the states localized at the edge
of the chain become superradiant, i.e., their widths become
much larger than the widths of the central states, in complete
analogy with the results of Fig. 2(b) and the tight-binding
eigenvalue analysis done in Appendix C. Remarkably, this
scenario holds also in the presence of interactions, as shown
for the case Ueff/t =4 (lower panels). For γ > γ st, the super-
radiant state is localized at the edge of the chain, while the
excitation spectra of the inner sites evolve into a collection of
sharp resonances which persist up to γ � t .

The Hubbard interaction discussed in this context provides
a simplified description of the interactions in TMOs, as it lacks
the intrinsic multiorbital nature of the electronic correlations,
as well as the interplay between charge, spin, and lattice
degrees of freedom. At the same time, this minimal model
represents the ideal framework to discuss the role of electronic
correlations on the superradiant transport beyond the Lindblad
master equation approach. In particular, it allows to make an
analogy between the effect of dephasing (γφ) and electron-
electron interactions as described by the Hubbard Ueff term.
Remarkably, the model also shows that the enhancement
of the transport properties due to coherent-assisted effects
survives up to moderate interaction strength, which falls in
the relevant range for TMOs. This suggests that the physics of
the superradiant transition is relevant (and can be straightfor-
wardly extended) to electric and thermal transport in quantum
junctions. In the literature, the signature of superradiant elec-
tron transport through a quantum dot was discussed in terms
of the coherent dynamics induced by hyperfine interaction
[54], and it was recently shown that the superradiant effect
in thermal emitters leads to an abnormal power scaling, which
could be exploited to engineering efficient energy conversion
devices [55].

IV. OUTLOOK FOR AN APPLICATION
TO HETEROSTRUCTURES

The observation and exploitation of coherence-enhanced
transport in the vicinity of the superradiant transition builds
on the possibility of collecting charges in real devices on
timescales faster than the decoherence time. Equation (16)
defines the maximum number of sites of the chain which
allows coherent transport, i.e., N � 4t/h̄γ̃φ . The large value
of γ̃φ for solid state systems at high temperatures therefore
requires the design of devices composed by few atomic layers.
TMOs heterostructures are one of the most promising plat-
form to investigate the high-temperature coherent phenomena
discussed in the present work. The chemical composition, the
interface strain mismatch and disorder, and the number of
atomic layers can be controlled to a level [12] that makes the
design of nano-devices with coherence-driven functionalities

a real opportunity. In this section, we will consider the case of
(SrVO3)n/(LaVO3)m/(SrVO3)n heterostructures, n(m) being
the number of atomic layers, which provides an interesting
example of a realistic system where the conditions discussed
in Table I can be fulfilled.

Bulk LaVO3 (LVO) is a Mott insulator with +3 nominal
valence of the V atoms. At room temperature, LVO crystal-
lizes in an orthorombic structure, with lattice parameters a =
5.555 Å, b = 5.553 Å, and c = 7.849 Å. The structure of LVO
[see Fig. 1(a)] can be derived from the cubic perovskite by tilt-
ing the VO6 octahedra in alternating directions around the b-
axis and rotating them around the c axis [14]. The cubic crys-
tal field given by the oxygen cage surrounding the V atoms
splits the V 3d levels into a doubly occupied t2g triplet (xy, yz,
xz symmetries) and an unoccupied eg doublet (x2-y2, 3z2-r2

symmetries) separated by a ∼2 eV gap [56]. In contrast with
band-theory predictions, the onsite Coulomb repulsion related
to the double occupation of the t2g orbitals leads to the freezing
of the charge carriers motion and the consequent formation of
a Mott insulating ground state with a gap of the order of 1.1 eV
[14,18,56]. The on-site Coulomb repulsion ULVO is estimated
as 3–5 eV, when the same orbital is doubly occupied by two
electrons with opposite spin, and 1–3 eV, when the double
occupation involves two different t2g orbitals with parallel
spin configuration [see Fig. 5(b)], as favored by the Hund’s
coupling [14,57]. The oxygen mediated hopping integrals
connecting vanadium atoms on different sites are strongly
orbital-dependent. When considering the interlayer hopping,
i.e., along the c axis, the dominant terms are given by the
dxz → dxz process with txz,xz � 200 meV (h̄/txz,xz � 3.3 fs)
and dyz → dyz with tyz,yz � 130 meV (h̄/tyz,yz � 5 fs) [14].

As recently suggested [18,56], LVO can be used as the
main building block for the development of innovative pho-
tovoltaic devices. Besides the perfect matching between the
LVO optical absorption [see Fig. 1(c)] and the solar spectrum,
a fundamental characteristic is the potential gradient along the
(LaO)+-(VO2)- planes [see Fig. 1(a)], which spontaneously
forms when LVO is sandwiched between nonpolar perovskites
(e.g., SrTiO3, SrVO3). This intrinsic potential [18] can be
properly combined with the application of an external electric
field, thus favoring the separation of photoinduced electron-
hole excitations and the fast migration of photogenerated
charges along the c axis, i.e., in the direction perpendicular
to the (LaO)+-(VO2)- planes. The combination of these in-
gredients opens the possibility to test the coherent-transport
model presented in the previous sections.

If we neglect the direct electron-hole interaction, the ab-
sorption of a photon with energy larger than the optical
gap of 1 eV generates a single excess electron (hole) in
the upper (lower) Hubbard band which migrates towards the
maximum (minimum) of the electric potential by hopping
along the c axis with a hopping term as large as 200 meV
and experiencing an effective interaction Ueff < ULVO. In the
coherent-transport model, the rate of creation of photoexcita-
tions corresponds to the rate γin. We point out that realistic
working conditions for thin LVO-based heterostructures falls
well within the single-excitation approximation, i.e., when the
rate of incoming excitations γin is smaller than the inverse of
the average transfer time 1/τ . For example, considering that
the typical sunlight power in the visible is 450 W/m2 and
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FIG. 5. (a) Perovskite structures of LaVO3 and SrVO3. The few-monolayer (SrVO3)n/(LaVO3)m/(SrVO3)n heterostructure constitutes a
promising platform to realize coherence-enhancement transport schemes. (b) Cartoon of the real-space electronic configuration (left and right
panels) and energy-levels scheme (central panels) of the dyz-dyz optical transition, which results in the photoinjection of an electron-hole
excitation. The black arrows indicate the electronic spin configuration in the orbital- and spin-ordered state at T < Tc. The red arrows indicate
the spin configuration of the photoexcitation. The energy cost for the dyz-dyz optical transition is U -JH � 1.8 eV, JH being the Hund’s coupling.
(c) Real part of the c-axis optical conductivity of bulk LaVO3, as measured by optical spectroscopy. The data are taken from Ref. [57]. At
T < Tc, the optical conductivity evidences the appearance of a well defined absorption feature at �1.8 eV for light polarization parallel to the
c axis. The dashed line represents the Lorentz oscillator, which accounts for the 1.8 eV optical transition. The estimated transition width is

/2 � 300 meV.

assuming an average photon energy of 2.3 eV, we obtain a
photon flux that is 1.2 × 1017 s−1 cm−2. Considering that the
penetration depth of the visible light in LVO is of the order
of 100 nm, the number of photons absorbed in a 5-nm-thick
LVO layer is less than 5%. The photon flux absorbed is thus
about 6 fs−1 cm−2. Even considering a transfer time as long
as 100 fs, it turns out that the number of absorbed photons in
the time span τ is 600 cm−2, which represents a very small
density as compared to the surface-projected density of the
vanadium atoms. Despite the fact that the light absorption of a
very thin LVO film is rather small, the LVO layer, sandwiched
between two metallic contacts, should be considered as the
main building block to engineer devices whose efficiency re-
lies on coherence-enhanced phenomena. The light absorption
can be easily tuned by stacking several building blocks up
to the point of achieving the desired absorption efficiency.
Thus, in order to build an efficient light-harvesting device that
can harvest the power of the coherent-absorption at the su-
perradiant transition, several LVO layers sandwiched between
conducting layers are stacked to absorb a large portion of the
incident light [18].

In order to describe the dynamics of the charge migration
and collection in the heterostructure via the one-dimensional
coherent-transport model, we will assume that all the in-plane
interactions can be accounted for by the decoherence rate
γφ . It is thus crucial to provide a quantitative estimation of
γφ in the realistic case of the photoexcited charge carriers
hopping in a fluctuating lattice, spin, and charge background.
A natural source of decoherence is constituted by the inter-

action with the thermally activated phonons, whose inverse
energy provides a lower limit for electron-phonon scattering
time. In LVO, the highest energy modes which are coupled
to electronic excitations are related to the rotation of VO6 oc-
tahedra (23 meV), to oxygen bending and Jahn-Teller modes
(35, 53 meV), which sets the minimum timescale for electron-
phonon scattering to h̄/53 meV = 12 fs.

The timescale related to the direct charge-charge interac-
tion is of more difficult evaluation. At room temperature, the
average occupation of the dxy, dxz, and dyz orbitals is 2/3 [14].
The strong quantum fluctuations of the orbital occupation
are thus expected to lead to an extremely rapid decoherence,
which would kill the possible onset of coherent-transport
regime.

A possible solution to this problem is connected with the
structural, magnetic and orbital ordering phase transition at
Tc � 140 K. Below Tc the lattice is subject to a 3% elongation
of the V-O bonds, which leads to the deformation of the
VO6 octahedra and the appearance of a new Raman-active
oxygen stretching mode at 89 meV [58]. The structural phase
transition is accompanied by the onset of a long-range C-type
antiferromagentic order (antiferromagnetic in the ab plane
and ferromagnetic along the c axis), with in-plane exchange
energy Jab = 2 meV and inter-plane exchange energy Jc =
33 meV [59]. Interestingly, in the low-temperature phase the
orbital fluctuations are almost completely suppressed and the
system exhibits an orbital order corresponding to alternate
d1

xyd1
xz/d1

xyd1
yz occupation along the c axis [14], as schemat-

ically shown in Fig. 5(b). In the orbitally ordered phase,
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the photogenerated charge excitations can thus move along
a well-defined conductive channel, which connects the dyz-dxz

empty orbitals with a hopping integral tyz,xz � 150 meV. At
the same time, the coupling to collective orbital excitations
is limited to 65 meV, as inferred by Raman measurements
[60]. We can thus conclude that the c-axis motion of photo-
generated charges in the low-T orbital-ordered phase of LVO
is characterized by a hopping term tyz,xz, that is almost twice
as large as the energy scale of the fastest interaction (phonon
modes at 89 meV), which represents the leading contribution
to the h̄γ̃φ term. In the following, this hopping term tyz,xz

will therefore play the role of the hopping t introduced in the
tight-binding and Hubbard models of Secs. II and III.

As a further confirmation of this picture, in Fig. 5(c), we
report the LVO optical conductivity as measured in Ref. [57]
by equilibrium optical spectroscopy. A strong peak centered
at ≈1.8 eV appears in correspondence of the orbital-ordering
phase transition and dominates the LVO absorption at T < Tc.
The linewidth of this transition, corresponding to the hopping
of an electron from a dyz(dxz) orbital to the empty dyz(dxz)
neighboring orbital, is 
/2 ≈ 0.3 eV, corresponding to a
lower bound for the lifetime of ≈2 fs, which is of the order of
the transfer time in a device made of few monolayers. Using
these values we can thus estimate the critical thickness for
the observation of coherence-enhanced transport, i.e., N �
4tyz,xz/h̄γ̃φ � 8, that is well within the current technological
possibilities.

As a last step, we discuss the role of the interfaces as
efficient collectors of the photogenerated charges. The state-
of-the art techniques for materials synthesis allows to grow
few-monolayer LVO films with a degree of disorder much
smaller than W̃ and whose interface can be optimized for
transport purposes. Since the optimal transport condition is
achieved in the vicinity of the superradiant condition, i.e.,
h̄γ

opt
out � 2tyz,xz, a proper engineering of the collector is crucial

for our purposes. A very promising route is terminating the
few-monolayer LVO device with SrVO3 (SVO), which is a
nonpolar cubic perovskite with almost perfect lattice match-
ing. The +4 nominal valence of the V atoms corresponds to a
single occupation of the dxy, dxz, dyz orbitals and a consequent
metallic behavior down to a thickness of two monolayers
[61]. The very good orbital overlap between LVO and SVO
orbitals, combined with the strongly correlated nature of the
SVO metallic state [62], thus provide a very effective scheme
to transfer the charges photogenerated in LVO across the Mott
gap to the collectors, where the electronic interactions rapidly
leads to the down-conversion of the high-energy excitations
into low-energy charge carriers and then into a detectable
electrical signal.

V. CONCLUSIONS

In conclusion, (SrVO3)n/(LaVO3)m/(SrVO3)n hetero-
structures with n>2 and m<8 layers constitute a very
promising platform to practically realize [63,64] the con-
ditions necessary to obtain superradiant-assisted quantum
transport at temperatures as high as 140 K. Being aware of
the many simplifications contained in the quantum-transport
model presented here, the main goal of this work is to provide
a general framework to guide the search for quantum-driven

phenomena in solid-state devices working at ambient condi-
tions. The results presented here are expected to boost the
development of first-principle calculations [65] to account for
the complexity of the real devices, such as the interfacial
lattice and electronic reconstruction and the scaling of LVO
and SVO bulk properties with the device size. From the
experimental standpoint, this work will trigger the develop-
ment of techniques [13,66] to directly measure the electronic
decoherence dynamics in correlated heterostructures.
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APPENDIX A: NONEQUILIBRIUM
STEADY-STATE CURRENT

In our one-dimensional tight-binding model (1)–(5), the
nonequilibrium steady-state current (NESS) can be derived
from the rate of change of the occupation number n̂N = |N〉〈N |
on the N th site,

ṅN = Tr[n̂N ˙̂ρ]. (A1)

Evaluated in the steady state ρ̂ss, the above rate of occupa-
tion change (trivially) vanishes. From the dynamical Eq. (1)
together with the Lindblad operators (3)–(5) we then obtain

Tr[n̂N ˙̂ρss] = − i

h̄
Tr[n̂N [H, ρ̂ss]] + Tr[n̂NLin(ρ̂ss)]

+ Tr[n̂NLout(ρ̂ss)] + Tr[n̂NLφ (ρ̂ss)]

+ Tr[n̂NLloss(ρ̂ss)] = 0. (A2)

One can now associate a different physical process with each
one of the terms in the right-hand side of Eq. (A2). The
quantity of interest for us is the number of excitons leaving
the system through the lead which is captured by the NESS
current

I := Tr[n̂NLout(ρ̂ss)] = γout〈N |ρ̂ss|N〉. (A3)

APPENDIX B: SINGLE-PARTICLE APPROXIMATION

The model (1)–(5) we use in this manuscript is limited to
the single-excitation manifold. We argue that this approxima-
tion requires the injection rate to be smaller than the inverse
of the average transfer time γin � 1/τ . To test this limit, we
numerically compare the NESS current obtained in our model
and the equivalent model within the full excitation manifold.
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FIG. 6. Value of the current (6) as a function of the pumping γin

for zero dephasing (blue curve) and large dephasing γφ (red curve)
in the single-excitation approximation (se) computed from Eq. (12).
Symbols indicate the same current (6), but in the full excitation
manifold (me): Blue circles for zero dephasing, and red squares
for γφ = 10. As one can see, both the single-particle approximation
and the full excitation calculation give rise to the same current for
γin � 1/τ , the latter being shown as vertical dashed lines.

In the latter case, the chain is described by an array of
coupled qubits instead of single sites. Then, the Hamiltonian
reads

Ĥ = t

⎛
⎝N−1∑

j=1

σ̂+
j σ̂−

j+1 + σ̂+
j+1σ̂

−
j

⎞
⎠,

and the Lindblad operators are

L̂φ, j = √
γφσ̂−

j σ̂+
j ; L̂out = √

γoutσ̂
−
N ;

L̂in = √
γinσ̂

+
1 ; L̂loss, j = √

γlossσ̂
−
j .

The current is defined as

Ime = Tr[σ̂+
N σ̂−

N Lout(ρ̂ss)] = γoutTr[σ̂+
N σ̂−

N ρ̂ss]. (B1)

In order to compute the current, we employ the same method
as in the single-excitation approximation. First, we compute
ρss using the steady-state solve of QUTIP [29], and then
evaluate Eq. (B1). As shown in the example in Fig. 6, the
single-excitation approximation holds for γin � 1/τ .

APPENDIX C: SUPERRADIANT TRANSITION

The value of the superradiant transition (st) can be derived
analytically in the limit of large systems and be computed nu-
merically otherwise [5]. In both cases, we consider the linear
chain without pumping, dephasing, spontaneous emission and
disorder (γin = 0, γφ = 0, γloss = 0, ε j = 0). It is convenient
to include the decay to the sink as a non-Hermitian term in
the Hamiltonian instead of a Lindblad term. In this case, we
have to remove the state with no excitation |0〉〈0| from the
description and the non-Hermitian Hamiltonian of the system

becomes

ĤNH = Ĥ − i

2
Q̂ (C1)

=: t

⎛
⎝N−1∑

j≡1

| j〉〈 j + 1| + | j + 1〉〈 j|
⎞
⎠ − ih̄

γout

2
|N〉〈N |,

with Ĥ as defined in Eq. (1). The corresponding Heisenberg
equation of motion,

˙̂ρ ′ = − i

h̄
(ĤNHρ̂ ′ − ρ̂ ′Ĥ†

NH), (C2)

gives rise to the same dynamics as the master Eq. (1) for the
density matrix ρ̂ ′ which is equal to ρ̂ but without the state
|0〉〈0|. The dynamics in this case are not trace-preserving. In
fact, the asymptotic state has always Tr(ρ̂ ′) = 0 because the
excitation leaves the system and ends up in the empty state
which we removed from our description.

The superradiant transition happens when one of the eigen-
states of HNH (the superradiant state) takes over all the decay
width [i.e., the imaginary part of its eigenvalue becomes larger
than that of all others and increases with the coupling to the
sink while the others decrease with the coupling, see Fig. 2(b)
of the main text]. Note that we have only one superradiant
state because there is only one open decay channel in our
model. In general, there is one superradiant state for each open
decay channel.

In order to numerically identify the value of γout at which
the transition occurs one compares the imaginary part of
the largest eigenvalue of the associated Liouvillian to the
average value of the imaginary parts of all other eigenvalues
[5]. For small rates, all eigenvalues grow with γout. At the
transition point, the largest value incurs a nonlinear transition
and increases suddenly, whereas all other eigenvalues have a
maximum and begin to decrease. This transition point can thus
be identified as the value of γout where the average over all
(the imaginary parts of the) eigenvalues, excluding the largest
one, has a maximum (cf. Fig. 2). This criterium allows for
a very simple and effective numerical way to identify the
superradiant transition [5].

Another, equivalent characterization of the superradiant
transition makes use of the fact that at some strength of γout

the energy levels will start to overlap with one another. This
happens when the average level spacing D and the average
decay width 〈
〉 are roughly equal [5] (in other words, the
point where perturbation theory breaks down). We can then
use perturbation theory to approximate this simple intuitive
estimate analytically [5]. For our system (C1), the strength
at which the transition occurs converges to γ st ≈ 4t/h̄ in the
limit of long chains (N � 1) in the absence of losses and
disorder. This is consistent with the numerical calculation
for which we obtain γ st = 2t/h̄ [cf. Fig. 2(b) of the main
manuscript].

In the limit of weak decay, i.e., γout � D, Q̂ can be con-
sidered as a perturbation with γout the perturbation parame-
ter. The unperturbed energy levels obtained by diagonaliza-
tion of the system’s Hamiltonian Ĥ and the corresponding

035126-12



TOWARDS HIGH-TEMPERATURE COHERENCE-ENHANCED … PHYSICAL REVIEW B 100, 035126 (2019)

eigenvectors read

ωq = 2t cos

(
πq

N + 1

)
,

|q〉 =
√

2

N + 1

N∑
j=1

sin

(
jqπ

N + 1

)
| j〉 ,

with q = 1, . . . , N . In the limit N � 1, the average level
spacing is thus approximately given by

D ≈ ω1 − ωN

N
≈ 4t

N
.

From standard nondegenerate perturbation theory (cf., for
example, the textbook [67]), we have

Eq = ωq + 〈q| − i

2
Q̂|q〉 + O

(
γ 2

out

)
≈ ωq − ih̄γout

N + 1
sin2

(
Nqπ

N + 1

)
=: ωq − i

2

q. (C3)

In other words, due to the coupling to the sink contained in
Q̂, the energy levels ωq acquire a decay width 
q which is by
definition given by the imaginary part of the corresponding
eigenvalue of Q̂. The later is given by Eq. (C3) when γout �
D. In the limit of large N , we have 〈sin2 ( Nqπ

N+1 )〉 = 1/2 and
thus the average decay width converges to 〈
q〉 = h̄γout/(N ).

Finally, the superradiant transition is obtained when the
average decay width is equal to the average level spacing, i.e.,
〈
q〉/D = h̄γout/(4t ) = 1, and reads

γ st ≈ 4t

h̄
. (C4)

We recall that the value in Eq. (C4) differs quantitatively from
the numerical solution γ st ≈ 2t

h̄ . This is because we employ a
qualitative criteria, namely, 〈
〉 = D, to identify the superra-
diant transition, and, in addition, we use perturbation theory
to approximation this criteria in a parameter range where
perturbation theory is expected to break down. Nevertheless,
Eq. (C4) can be used to qualitatively identify the superradiant
transition.

APPENDIX D: ANALYTICAL SOLUTION
FOR THE AVERAGE TRANSFER TIME

The average transfer time τ defined in Eq. (7) can be
reduced to an analytical form without any time-integral by
direct diagonalization of the Liouvillian L, the superoperator
defined as ˙̂ρ = Lρ̂. The dynamics are thus given by ρ̂(t ′) =
eLt ′

ρ̂(0). Diagonalization of L yields

L = V DV −1; D =
∑

n

En|n}{n|,

with L|n} = En|n} and thus

ρ̂(t ′) = V

(∑
n

eEnt ′ |n}{n|
)

V −1ρ̂(0). (D1)

Inserting Eq. (D1) into the definition of τ , (9), and noting that
R(En) < 0 ∀n since we only have one unique decay channel,

yields

τ = γout

h̄η
{N |V

(∑
n

1

E2
n

|n}{n|
)

V −1|N}. (D2)

Note that when there are no losses in the system, i.e., γloss = 0,
the efficiency is η = 1 because in our model the excitation
then invariably leaves the system (as long as γout > 0). Equa-
tion (D2) was evaluated numerically to obtain the results for
τ in this manuscript.

APPENDIX E: DISORDER AND LOSSES

Let us consider how the introduction of (static) disorder
and losses modifies the NESS current I . We first focus on the
former and consider uniform disorder in the on-site energies
ε j = ε0

j + δw with δw randomly distributed in [−W/2,W/2].
It is known that for one-dimensional chains, in the thermody-
namic limit (infinitely long chains), any level of disorder leads
to Anderson localization [23] which completely inhibits trans-
port. In this case, dephasing can help to overcome localization
thus leading to the so-called dephasing-assisted transport [33].
In finite-size chains coupled to a sink, three distinct transport
regimes [68] can be observed. For strong disorder (W � t)
localization and dephasing-assisted transport is observed with
the optimal dephasing given by γφ = W/(

√
6h̄) [68]. For

medium disorder (W < t), transport is possible even without
dephasing whenever the localization length is larger than the
chain’s length. For chains of medium length (N � 100), an
optimal dephasing value still exists when t > W > h̄γout/

√
N

[68]. Since in our case we are considering short chains (in
order to keep the transport coherent) and low static disorder
(W � t), transport is mostly unaffected and dephasing always
diminishes the current as discussed previously [cf. Fig. 2(a)].

Interestingly, the coherence-enhanced current occurring
close to the superradiant transition, γ st ≈ 2t/h̄, is robust
against disorder when below the localization threshold. In
fact, when the disorder is small compared to the hopping
term the current remains completely unaffected as shown in
Fig. 7(a). Also, in this case, the dephasing is always detrimen-
tal to transport and the dephasing γ̃φ below which the current
is optimized at γ st is given by Eq. (15) [see Fig. 7(a)].

Even if in our case average transfer times are much less
than realistic recombination times, it is important to discuss
its effect. The introduction of losses (i.e., γloss > 0) has the
trivial consequence that at a fixed rate in, γin, the absolute
value of the current is lowered. However, the effect be-
comes significant only when the losses become comparable
or larger than the inverse transfer time in the absence of losses
[see Fig. 7(b)].

γloss � τ−1|γloss=0 (E1)

In other words, when excitations leave the chain through the
sink before they are lost, the overall current is not modified.

APPENDIX F: COMPARISON TO TRANSPORT
IN CONVENTIONAL MATERIALS

Let us briefly comment on the difference, regarding the
characteristic time and the physical processes involved in the
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FIG. 7. Effect of disorder and losses on the maximal current.
(a) Ensemble averaged maximal NESS current 〈Ise〉 as a function
of the disorder strength W and the dephasing γφ at the superradiant
transition γ st obtained from averaging over 100 realizations of the
disorder. For W < W̃ = t (left of the vertical full line), the current is
independent of W , and maximal and independent of the dephasing
for γφ � γ̃φ (below the horizontal dashed line). For W > W̃ = t ,
we see the dephasing-assisted transport regime: The current is sup-
pressed by localization and is maximal at γφ ≈ W/(

√
6h̄) (diagonal

dashed-dotted line). (b) Current as a function of the losses at γφ = 0
and γout = γ st . For γloss � γ̃loss = τ−1|γloss=0 (vertical dashed line) the
current is strongly suppressed.

extraction of the photoinduced carriers, between the conven-
tional scheme which state-of-the-art photovoltaic devices are
based on (see, for instance, the one described in Ref. [56]) and
the coherence-driven devices that we suggest in this work.

FIG. 8. In conventional photovoltaic devices, the high-energy
excitation created by photoabsorption first thermalizes and then
migrates to the electrodes (continuum) with an effective drift velocity
vd and can be trapped in low-energy states created by defects in the
structure (blue arrows). In the few-atomic layers devices, we consider
here the excitation migrates to the electrodes before thermalization
occurs in a time τ that is minimal at the superradiant transition
(red arrows).

In conventional devices, the photoinduced charge collec-
tion is based on diffusive charge migration at an effective
drift velocity. Namely, once the carriers are generated in the
material, they thermalize by releasing most of they energy
and relaxing into low-energy and, usually, low-mobility states
that shorten the diffusion length of photocarriers. As a con-
sequence, the transfer time (necessary to reach the collectors)
can be very long, thus limiting the efficiency of the photo-
conversion process. For instance, LVO thick films for photo-
voltaic applications present a low mobility (0.1 cm2 V−1 s−1)
due to the defect-induced trapping of low-energy electronic
excitations.

On the contrary, in the case of the building block we
propose, which is made up of few monolayers of material
(5-nm-thick), the photogenerated charge excitations are co-
herently collected by the electrodes without any intermedi-
ate low-energy and low-mobility states along the collection
pathway. As a consequence, the efficiency of the process
is controlled by the quantum laws. When the transfer time
is much shorter than the decoherence time, the current can
be optimized thanks to the superradiant phenomenon. The
conventional incoherent scheme and the quantum-enhanced
path are schematically represented in Fig. 8.
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