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Viscous phenomena are the hallmark of the hydrodynamic flow exhibited by Dirac fermions in clean graphene
at high enough temperatures. We report a quantitative calculation of the electronic shear and Hall viscosities in
graphene based on the kinetic theory combined with the renormalization group providing a unified description at
arbitrary doping levels and nonquantizing magnetic fields. At charge neutrality, the Hall viscosity vanishes, while
the field-dependent shear viscosity decays from its zero-field value saturating to a nonzero value in classically
strong fields. Away from charge neutrality, the field-dependent viscosity coefficients tend to agree with the

semiclassical expectation.
DOI: 10.1103/PhysRevB.100.035125

Hydrodynamic behavior of charge carriers in graphene has
been the focus of considerable experimental [1-14] and the-
oretical efforts [15-38] (recently reviewed in Refs. [39,40]).
Within linear response, the difference between an Ohmic cur-
rent and a hydrodynamic flow is determined by the viscosity
[4,8,14,23,25,26,30] (see Refs. [9,12] on the issue of ballistic
electrons).

In traditional hydrodynamics [41], viscosity is a measure
of mutual friction between the neighboring fluid elements
moving with distinct velocities. From the viewpoint of the
microscopic theory, viscosity is a fourth-rank tensor that can
be defined as a “response function” relating the stress (or mo-
mentum flux) to the strain [35,42]. In isotropic systems [41],
the viscosity tensor contains two independent coefficients, the
shear and bulk viscosities. The latter is only important for
physical phenomena associated with fluid compressibility and
is known to vanish for monoatomic gases [41], ultrarelativistic
systems [43,44], and Fermi liquids [45]. Similarly, it’s been
argued to vanish in graphene [22,25,27], at least to the leading
approximation. In anisotropic systems the situation is more
involved [46].

Treating the shear viscosity as a linear response function,
one can derive a Kubo formula [27,35,42] that can be re-
lated to the Kubo formula for electrical conductivity [42].
In practice, Kubo-formula-based calculations are typically
perturbative and one can only use this approach to evaluate
the viscosity either in doped graphene (i.e., in the so-called
“Fermi-liquid” or “degenerate” limit) [27] or in the high-
frequency collisionless regime [35]. At charge neutrality, one
typically turns to the kinetic theory [16,22] combined with the
renormalization group [47].

The relation between the Kubo formulas for shear vis-
cosity and conductivity [42] leads to certain expectations
regarding the dependence of the viscosity tensor on the ex-
ternal magnetic field. In the simplest case [48—50], one finds
the field-dependent shear viscosity and the newly appearing
Hall viscosity to mimic the magnetoconductivity and Hall
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conductivity in the usual Drude theory, respectively, with the
only difference that the scattering time is now provided by
electron-electron interactions.

An experimental measurement of the electronic shear vis-
cosity is a nontrivial task [51]. Based on nonlocal resistance
measurements [4], a related quantity—the kinematic viscosity
[41]—was estimated to have a “higher-than-in-honey” value
v & 0.1 m?/s at typical charge densities, n ~ 10'> cm~2, and
temperatures, 7 = 220 K. This value is of the same order
of magnitude as the theoretical expectation [27] for doped
graphene and agrees with more recent measurements [8,14].
In contrast, the theoretical result for the shear viscosity in neu-
tral graphene [16,22,25] has not been tested experimentally.
Hall viscosity has been studied in a recent experiment reported
in Ref. [14]. Again, the measurements were performed away
from charge neutrality, where the shear and Hall viscosities
follow the semiclassical field dependence [48,49,52].

The purpose of the present paper is to provide a con-
sistent, unified calculation of the shear and Hall viscosities
in graphene at arbitrary doping levels within the “hydrody-
namic” temperature window [39] and at arbitrary nonquan-
tizing magnetic fields. In a companion paper [53], we have
generalized the nonlinear hydrodynamic equations derived in
Ref. [25] to include the external magnetic field. Here we re-
port a quantitative calculation of the kinetic coefficients on the
basis of the kinetic theory combined with the renormalization
group approach. At neutrality and in the degenerate regime,
the results can be obtained in a closed analytical form. For
arbitrary carrier densities, the viscosities can be expressed in
terms of certain ‘“scattering rates” to be evaluated numerically.

The results of our calculations are in good agreement
with available experimental evidence. In the absence of the
magnetic field, we find the kinematic viscosity to depend
rather weakly on the carrier density, remaining of the order
of v~ 0.1 m?/s for all densities explored in the experiment
of Ref. [4]. The field-dependent shear and Hall viscosities
away from charge neutrality are qualitatively similar to the
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semiclassical expectations [14], reaching the standard Drude-
like dependence at the experimental densities, n ~ 10'? cm 2.
In contrast, the shear viscosity at the neutrality point in
classically strong magnetic fields saturates to a nonzero value.
Our results are illustrated in physical units in Figs. 5 and 7.

I. FROM THE MICROSCOPIC THEORY
TO HYDRODYNAMICS

We begin with a brief review of the hydrodynamic ap-
proach and a discussion of the applicability of hydrodynamics
to Dirac fermions in graphene. The ideas presented here were
developed in full detail in Refs. [15,25,44,53] (see the recent
review [40] for a more detailed discussion and a complete
set of references) and are included here to make the paper
self-contained.

Hydrodynamics is a macroscopic manifestation of con-
servation laws in an interacting many-body system that is a
fluid. Typically [41], one considers conservation of the par-
ticle number (or, equivalently either mass or electric charge),
energy, and momentum. The latter provides the most stringent
restrictions on the applicability of hydrodynamics limiting
one to systems with the only (or the dominant) scattering
mechanism being due to interparticle collisions (e.g., electron-
electron interaction) that conserve momentum. At first glance
this rules out scattering with other types of excitations (e.g.,
electron-phonon or electron-magnon scattering) as well as
microscopically varying external potentials (e.g., potential
disorder). In a typical solid, such processes dominate the
linear-response transport properties and while they can be
accounted for using the Boltzmann kinetic theory [44], a fully
hydrodynamic description is not possible.

In recent years, a number of materials have been developed
[4—6,10,11] which are, on one hand, clean enough, such that
disorder scattering is important only at the lowest temper-
atures and on the other hand rigid enough, such that the
electron-phonon interaction is relevant at much higher tem-
peratures. This provides for a considerable intermediate tem-
perature range [25,39] where the electron-electron interaction
is the dominant scattering mechanism in the system. Mathe-
matically, the above can be summarized by the inequality,

Tee K Tdis, Te-ph, ©IC., (D

where 7., is the typical time scale associated with
the electron-electron interaction, tg; describes disorder
scattering, T..pn the electron-phonon interaction, and “etc.”
stands for any other scattering-related time scale in the
problem (e.g., the “recombination” time g, see below).

Assume that the condition (1) is sufficient to uphold the
conservation laws in the electronic system. Then they can be
expressed in terms of continuity equations that can be either
written down on symmetry grounds [41] or can be obtained
by integrating the kinetic equation [44]. The first of these
equations is the standard continuity equation reflecting charge
conservation

on+V,-j=0, (2a)

which in this paper we express in terms of the carrier density n
and current j, such that the actual charge density and electric

current are obtained by multiplying these quantities by the
electron charge.

The second equation reflects energy conservation. In the
case of charge carriers, this equation differs [39,40] from
its textbook counterpart [41,44] by an extra term describing
Joule’s heat

dng +V, - jp = eE - . (2b)

Here ng and j are the energy density and current, E is the
electric field, and e is the electron charge.

The third equation describes momentum conservation. In
contrast to the corresponding equation for a neutral fluid
[41,44], this equation takes into account the effect of elec-
tromagnetic fields. Moreover, for reasons that will become
clear below, we include a small [as required by Eq. (1)]
disorder-scattering term [24,25]

e ny
dng + VPSP —enE® — —[j xB" = ——%.  (20)
c Tdis
Here ny, is the momentum density, H%ﬂ is the momentum flux
(or stress tensor), and B is the magnetic field.

The continuity equations (2a)—(2c) are valid for any elec-
tronic system satisfying Eq. (1). In the particular case of
graphene, one may neglect scattering processes that change
the number of particles in each individual band (e.g., the
Auger processes, three-particle collisions, electron-phonon
interaction, etc.) such that the number of particles in each band
should be conserved separately. As a result, one finds another
continuity equation [21,39,40]

Dy + V- = = (2d)
TR
where n; and j; are the so-called “imbalance” (or total quasi-
particle) density and currents that are related to the particle
number densities 74 and currents j, in the two bands as

np=ny+n_, (3a)

J'=j+—j,, J.1=J.++J’7- (3b)
The right-hand side in Eq. (2d) describes weak [again, in the
sense of Eq. (1)] quasiparticle recombination characterized by
a (long) time scale tz. The quantity n; ¢ is the equilibrium
density of quasiparticles.

The kinetic derivation [25,44] of the continuity equations
(2) has the advantage of providing “microscopic” definitions
of all macroscopic quantities in Eqs. (2) in terms of the quasi-
particle distribution function. In graphene (or any other two-
band system), one may label the single-particle (band) states
by the band index A = £ and the momentum k. Denoting the
distribution function by f;x, we define the above densities and
currents as

n=ny—n_,

d%k d%k
ny =N Wﬁr,k, n. = N/ W(l = f-x)s
(3¢)
d*k
Jj= NZ/ W”Akfkk,
’ (3d)

) d’k
Ji=N)_ —(zn)z)»vxkka,
x
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Here N = 4 is the degeneracy factor. The second equality in
Eq. (3f) is specific to the Dirac spectrum in graphene and
represents a crucial difference between the electron fluid in
graphene and the usual (massive) fluids. Indeed, assuming the
Dirac form of the quasiparticle spectrum [54]

€k = Ak,

“

one immediately finds the following relations between veloc-
ity and momentum (where e denotes the unit vector in the
direction indicated by the subscript)
Ak €4V
vxk:)wgz, e, = e, k:—vkk:M

2
Vg Ug

&)

Inserting Egs. (5) into Egs. (3g) and (3f), one concludes
that (i) the momentum density in graphene is equivalent to
the energy flux and (ii) the hydrodynamic flow in graphene
describes the energy flow in contrast to the standard hydro-
dynamics describing the mass flow of a conventional fluid.
Moreover, conservation of momentum leads to the conclusion
that the energy flux in graphene is not relaxed by electron-
electron interaction. The system can only reach the steady
state by means of (weak) disorder scattering [24,25] described
by the last term in Eq. (2¢).

II. IDEAL HYDRODYNAMICS IN GRAPHENE

The true equilibrium state (in the absence of the external
fields) is described by the Fermi-Dirac distribution function
yielding constant densities and zero currents, such that each
term in Eqs. (2) vanishes. Applying weak external fields one
drives the system weakly out of equilibrium. This can be
described either by means of the perturbative linear-response
theory [24], or, if the condition (1) is fulfilled, by the hy-
drodynamic theory [39,40]. The latter approach requires two
additional assumptions.

First, one assumes the spatial and temporal variations of the
external fields and the resulting currents and density inhomo-
geneities to be small [ultimately, in the sense of Eq. (1) or the
equivalent relation of the corresponding length scales], such
that the electron-electron scattering processes may maintain
local equilibrium. The latter is described by the distribution
function [15,25,39,40,53]

_ — Nl

€ — . (r) —u(r) R
T(r)

where u; (r), T (r), and u(r) are the local chemical potential,

local temperature, and hydrodynamic (or “drift”) velocity,
respectively.

V) = {1 + exp [

Using the distribution function (3), one finds the expres-
sions for the equilibrium hydrodynamic quantities as well
as the thermodynamic pressure P and enthalpy W listed in
Appendix A. Substituting these quantities into the continuity
Eq. (2), one obtains the (ideal) hydrodynamic equations. In
particular, expressing the continuity Eq. (2c) for the momen-
tum density in terms of the hydrodynamic velocity u, we
obtain the generalized Euler Eq. [41]

WO +u-Vu+v,VP+udP+eE ju (7)
w
= vf,enE—i—v;fj X B — u.
c Tdis

Equation (7) was suggested in Ref. [22] in the absence of
electromagnetic fields and weak disorder (terms due to the
electric field were discussed in Ref. [25]). In comparison to
the standard Euler equation, the generalized Eq. (7) contains
two extra terms: (i) the time derivative of pressure that can
be interpreted as a reminder of the relativistic nature [15,40]
of the quasiparticle spectrum in graphene, Eq. (4) and (ii) the
disorder scattering term necessary to establish a steady state
[24,25,53].

Away from charge neutrality, the Euler Eq. (7) allows for
a homogeneous, steady flow [24] that is equivalent to the
usual Ohmic current [using Egs. (A1)—(AS) with uy = @ and
uw>T]

vgenE + vf,fj X B = ﬂ
c Tdis

characterized by the standard Drude-like expressions for the
longitudinal and Hall resistivities

sgn
nle|c’

0) _

Py’ = ’ p,ig) =RHB7 RH = -

€| | zais
where Ry is the Hall coefficient.

The complete set of the equations of ideal hydrodynam-
ics in graphene includes the generalized Euler equation (7),
the continuity equations (2a), (2b), and (2d), as well as the
Poisson’s equation relating the charge density to the electric
field and the (thermodynamic) equation of state [15,25], see
Eqgs. (AS),

3nE

W= P=——F—.
ng + 2+u2/v§

®)
This equation has the thermodynamic nature and represents
the second assumption needed to build the hydrodynamic the-
ory, namely, that thermodynamic quantities and their relations
are not affected by the dissipative corrections to the ideal
hydrodynamics [44].

III. GENERALIZED NAVIER-STOKES
EQUATION IN GRAPHENE

Taking into account dissipative processes modifies the
macroscopic quantities and turns the ideal Euler equation
into the Navier-Stokes equation, the central equation of the
hydrodynamic theory [41]. Following the standard approach
[39-41,44], we focus on the velocity-independent kinetic
coefficients. In graphene, these include the viscosity and
“quantum conductivity” (cf. the thermal conductivity in the
traditional hydrodynamics [41]).
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In the usual hydrodynamics [25,40,41,53], viscosity is
defined as the coefficient in the leading term of the gradient
expansion of the dissipative correction to the stress tensor

ny’ =y +emy’, (%a)
ST = —n(BD™ + nu (BB e}, (9b)
o = veuP + VP — §°PV ., (9¢)

where ez = B/B, n(B), and ny(B) are the field dependent
shear [48-50] and Hall [42,48-50,52,53] viscosities (the latter
appears only in the presence of magnetic field; bulk viscosity
in graphene vanishes, at least to the leading approximation
[25,39,40]). While the sign of 5 is fixed by thermodynamics
[41,44], the sign of ny is not. Similarly to Ref. [14], we
adopt the convention where the Hall viscosity is positive for
electrons [53] (and negative for holes).

Substituting Egs. (9) into the continuity equation (2¢) and
repeating the steps leading to the Euler Eq. (7), we obtain the
generalized Navier-Stokes equation [53]

W@, +u-Vu+v;VP+ud,P+eE - ju

= vﬁ[nAu —nyAu x eg + enE + Ej X B:| — J—E.
4 Tdis
(10

Comparing the first terms in the left- and right-hand sides of
Eq. (10), we define the kinematic viscosity

V= vgr)/W, (11

with the dimensionality of the diffusion constant (m?/s).

The second set of the kinetic coefficients describes the
dissipative corrections to the quasiparticle currents [25,53]
(in the presence of disorder, the energy current acquires a
dissipative correction of its own):

J=nu+48j, jr=mu+8j, jg=Wu+djg,
(12a)
3j R eE+°uxB-TV%L
8jr/T 0
R eE—l—fuxB—TV%
+ Xy TZ% x eg,  (12b)

w= (s +pn-)/2, pr=Wpy—pn-)/2. (12¢)

The “imbalance” chemical potential y; is relevant for ther-
moelectric effects [21], which will be considered elsewhere.
In this paper we disregard the possibility of the temperature
gradients and set py = p (or u; = 0).

At charge neutrality, the matrix ¥ is block diagonal, i.e.,
the electric current decouples from the energy and imbalance
currents. For n = 0, the total current j is given by the dissipa-
tive correction §j which remains finite even in the absence of
disorder, 145 — 00,

e8j(n=0)=0pE, op=Ac/a;, A~0.12.
Here o¢ is known as the “quantum” or “intrinsic” conduc-

tivity of graphene [16,17,25,40,53,55]. Within the electronic

hydrodynamics in graphene, this quantity appears instead of
the usual thermal conductivity due to the special relation
between the energy current and momentum, see Eq. (3f) and
the discussion following Eq. (5).

Together with the continuity equations (2) and the equation
of state (8), the generalized Navier-Stokes equation (10) forms
a closed system of hydrodynamic equations that can be solved
in arbitrary geometries (see Ref. [36] for the appropriate
boundary conditions). Away from charge neutrality, these
equations have to be solved together with the electrostat-
ics equations similarly to the usual Vlasov self-consistency
[25,44]. In free (e.g., suspended) graphene the latter is given
by the Poisson’s equation. In gated structures used in the ma-
jority of experiments [4,8,9,14] the electrostatics is dictated by
the gate [56,57], simplifying the relation between the charge
density and the electric field.

IV. KINETIC CALCULATION OF ELECTRONIC
VISCOSITY IN GRAPHENE

In this section we report the kinetic theory results for the
electronic viscosity in graphene. The calculation method was
outlined in Ref. [25] but unfortunately involves some tedious
algebra yielding the viscosity coefficients in terms of rather
cumbersome multidimensional integrals, see Appendix B. In
the simple limiting cases (e.g., at charge neutrality and in
the degenerate, “Fermi-liquid” regime), analytical results can
be obtained. Otherwise, for arbitrary doping levels the shear
and Hall viscosities, see Egs. (B1), are computed numerically.
These results are illustrated in Figs. 1-3. Details of the deriva-
tion are published in Ref. [53].

The kinetic theory is formally valid only in the weak
coupling limit. In particular, the “collinear” (or “three-mode”)
approximation [18,25,53] that allows us to solve the kinetic
equation is formally justified in the limit | In ozg| >> 1 (g is the
coupling constant in graphene). Therefore, in order to obtain
experimentally relevant numerical values for the viscosity
coefficients we supplement the kinetic theory calculation with
the renormalization group analysis described in the following
section.

n(B;u=0)/n(B =0;1=0)

1.0
0.8}
0.6

04}

0.2F

0 20 40 60 80

YB

FIG. 1. Shear viscosity in graphene at charge neutrality. The
solid red curve shows the ratio of the field-dependent viscosity to
its zero-field value, n(B; u = 0)/n(B = 0; © = 0), as a function of
v, see Egs. (14) and (15). In classically strong fields the viscosity
saturates to n/n(B = 0) = B, /(BB,) ~ 0.3065 (for unscreened in-
teraction) shown by the blue dashed line.
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n(8)/n(B=0)
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0 20 40 60 80 100

FIG. 2. Field-dependent shear viscosity in graphene away from
charge neutrality. Solid curves are the result of the direct numerical
evaluation of Eq. (Bla) with U = 1. Dashed curves show the “Fermi-
liquid” asymptotics (18). The lower (red) solid curve corresponds to
w/T = 3, the upper (green)—to /T = 6.

A. Shear viscosity at charge neutrality

At charge neutrality, the general expressions (B1) simplify
and can be evaluated analytically [22,25] (up to a multiplica-
tive numerical factor). The Hall viscosity vanishes identically
(due to the exact electron-hole symmetry), while the shear
viscosity exhibits the following behavior.

In zero magnetic field, we recover the well-known result
[22] (the parametric dependence follows from the fact that the
only energy scale in neutral graphene is T')

2

T
nB=0u=0)=8B—.
O Vg

13)

The numerical coefficient was first evaluated in Ref. [22] re-
porting the value B = 0.45. Although not explicitly discussed
[22], this result was obtained using the “bare” Coulomb
interaction, i.e., neglecting screening effects. Such an ap-
proach is formally valid for asymptotically low temperatures
[16,18,55] where the coupling constant «, is expected to
have been renormalized to a small enough value (see below

Nn+H(B)/n(B=0)

0.5
0.4
0.3
0.2

0.1

0 20 40 60 80 100 VB

FIG. 3. Hall viscosity in graphene as a function of the magnetic
field. Solid curves are the result of the direct numerical evaluation
of Eq. (B1b). Dashed curves show the “Fermi-liquid” asymptotics
(18). The lower (red) solid curve corresponds to /T = 3, the upper
(green)—to u/T = 6.

for the discussion of the renormalization group approach).
Indeed, evaluating the integrals (B3) for the “scattering rates”
with unscreened Coulomb interaction numerically, we find
B = 0.446 4 0.005, where the deviation stems from the sys-
tematic differences between various numerical methods. The
small difference between the above result and that of Ref. [22]
is due to the fact that our calculation takes into account only
the direct interaction, while the exchange term is small [16,55]
in1/N.

In magnetic field, the shear viscosity decreases but remains
finite in classically strong fields (due to the aforementioned
decoupling of the charge mode)

T? B+ Biy;

nB;u=0)= 2 T+ Boyl’ (14)
where
|e|v§B
VB = W’ (15)

and, again neglecting screening effects, B; ~ 0.0037 and
B, ~ 0.0274. The field dependence of the shear viscosity at
charge neutrality is illustrated in Fig. 1.

B. Viscosity away from charge neutrality

Away from charge neutrality, the shear viscosity (Bla)
has to be evaluated numerically, with the exception of the
so-called “Fermi-liquid” or degenerate regime, u > T. In
that limit, the momentum integral in Eq. (B3) is dominated
by the momenta Q > W [for definition of the dimensionless
variables see Eq. (B7)] and can be evaluated analytically. For
example (here x = u/T),

1 16N , [™ W2adW
— = —uwu ——J33(0, W, X),

16
f33 g glIL 0 sinh2W ( a)

where (here é = Q/x, W= W/x)

1dQ ~ w2 ~ w2~
e (g )o- o) - e -2
w
(16b)

Unscreened Coulomb interaction corresponds to U=1
(see below for a discussion of the screening effects).
Evaluating the momentum integral J33 for unscreened
Coulomb interaction in the limit u > T yields
x 3
w2
which together with the rest of the integrals (B3) leads to the
following expression for the shear viscosity

_ 3u? 1
128720202 In & + 8, — 7

J33(ag =0,x> 1)~ In

n(u>T)

. a7

where §; &~ 0.34. The numerical factors in the denominator
represent small corrections to the leading behavior that have
to be taken into account since otherwise the matrix of the
scattering rates (B2f) is degenerate.

Once the magnetic field is applied, the shear viscosity
(Bla) decreases, while the Hall viscosity (B1b) becomes
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nonzero. In classically strong fields both viscosities vanish (in
contrast to the behavior at 4 = 0). In the degenerate regime,
the field dependence of the viscosity coefficients follows the
simple semiclassical expectation [14,48,49] (similarly to the
Drude conductivity tensor):

nB=0u>T)

B; T)= , 18
nBiu>T) T+ 12 (18a)
I'p
mBiu>T)=nB=0u>T)——, (18b)
1+T3
where
g = 2wptn,  wp = lelv;B/(1c). (18¢c)

The field dependence (18) was suggested in Refs. [48,50]
for a single-component Fermi liquid. In graphene in the
degenerate limit, essentially only the single band contributes
to physical observables and hence one expects to recover the
single-band results. The kinetic calculation allows us to give
a precise definition to the scattering rate 7;; appearing in
Egs. (18). Indeed, this rate differs [25,27] from the transport
scattering rate [55,58], determining the electrical conductivity
as well as from the “quantum” scattering rate [55] determining
the quasiparticle lifetime.

In Figs. 2 and 3 we compare the results of the numer-
ical evaluation (with unscreened Coulomb interaction, for
simplicity) of the shear viscosity (Bla) and Hall viscosity
(B1b) with the asymptotic expressions (18). Qualitatively, the
shape of the field dependence is the same for all values of
the chemical potential. The semiclassical dependence (18)
becomes indistinguishable from the full result at u/7T ~ 5.

V. RENORMALIZATION GROUP APPROACH

Quantitative evaluation of the shear and Hall viscosities
(Bla) and (B1Db) in physical units requires the knowledge of
the coupling constant . Following Refs. [22,46,47] we treat
this constant as a running coupling constant in the sense of
the renormalization group (RG). The final values for physical
observables are then obtained by combining the RG with the
scaling laws for these quantities.

The one-loop Kadanoff-Wilson RG approach to interacting
Dirac fermions in graphene was suggested in Refs. [47,59,60].
The idea is to relate physical observables to their counterparts
at the specifically chosen renormalization scale, where the
renormalized theory is characterized by weak coupling and
the kinetic theory is justified.

The renormalized carrier density obeys the relation [47]

n(T, 11, o) = b *n[Z; (DT, Z; ' (D), ag(b)].  (19)

Here T (b) = Z; '(b)T and ary(b) = b~'Z; ' (b)a, are the solu-
tions of the RG equations. The latter are only valid in the low-
temperature quantum limit, 7 (b) < T,, where T, is related
to the bandwidth. Choosing the renormalization condition
for T =0 and p > 0, one finds u(b,) = T, leading to the
zero-temperature carrier density [47]

N> a, T\
n(T:O;pL)=4M2(1+Zgln—) .
g m

For the nondegenerate system, u < 7', the renormalization
condition is essentially the same as at criticality [61] (e.g.,
neutral graphene), T'(b,) = T, leading to

T, o T, 1 o T,
b= =1+=m=Z), Zb)=—(1+=m=).
T<+4HT> 7(by) (—i— n)

b, 4 T
For general u and T, the leading behavior is captured by
NT? ii(x o T.
W= B0 Ry =1y 0)

£]

_2 9 - n =N 9
27rvg2 R% 4 max(u,T)
where 7i(x) is a dimensionless function of ratio x = /T that
can be read off Eq. (Ala) (for u = 0). The ratiox = /T does
not change under the RG, hence only the explicit dependence
on the velocity v, is renormalized [16]. At the same time, the
renormalized coupling constant is

ag=al”/Ry. (1)

The “bare” coupling constant in suspended graphene
is e*/ (fivg) ~ 2.2 (corresponding to the “bare” velocity
v, & 10° m/s), while for graphene encapsulated in boron ni-
tride [4] this reduces to e?/(fis v,) A 0.5 (here ¢ is the effective
dielectric constant). Assuming the value T, &~ 8.34 x 10* K,
see Refs. [47,62], and (xé(,o) ~ 0.5 we estimate the effective
coupling constant in neutral graphene

(T ~ 200 K) ~ 0.285, ao(T ~ 10 mK) ~ 0.167.

Even assuming a smaller, “Fermi-liquid” coupling constant,
oti,o) ~ 0.2, derived from earlier measurements [63,64], we
find the renormalized value of 0.11 at the lowest temperatures
and 0.15 in the hydrodynamic range.

For realistic values of the carrier density in graphene in the
degenerate regime [4,8,9,14], the logarithmic renormalization
(20) is appreciable, see Fig. 4. For T = 300 K, the dimension-
ful prefactor in Eq. (20) has the value

NT?  2k3T?

— ~ 0.098 x 102 cm™2.
271v§,

2.2
T vy 72300 k

Neglecting the renormalization factor in Eq. (20) and using the
“Fermi-liquid” asymptotics, 77 = x?/2 + 72/3, we estimate
the chemical potential corresponding to the typical density,

n(10"%cm™?)
3.5

3.0
25

20

0 1000 2000 3000 2000 M )

FIG. 4. Renormalized carrier density (20). The red, blue, and
green solid curves correspond to 7' = 300, 200, 100 K, respectively.
Dashed curves show the nonrenormalized density.
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n=102cm™2,as

mk3T?

3h2v§,n

w= nkBZh%gn(l - ) ~ 1239.7K, x~4.13.

Restoring the renormalization factor, we find increased values
for the chemical potential, see Fig. 4 (the values shown in
the figure were evaluated for @’ ~ 0.5). For the same carrier
density we find

win =107 cm™2)~ 1918.8 K, x~6.396, R, ~ 147,

with the corresponding renormalized coupling constant
ag A~ 0.34.

For the smaller “bare” coupling constant, ago) ~ (0.2, the
above values change to

pnn =107 cm™?)~ 1533.1 K, a,~0.167, Ry~ 1.2.

Neither renormalization factor is negligible leading to a strong
enhancement of the results of the kinetic theory.
Similarly to Eq. (19), the viscosity renormalizes as [22,46]

1
(T, p, @, B) = I;n[Z;l(b)T, Z; ' (b)u, ag(b), b*B], (22)

where B is the magnetic field. Representing the weak-
coupling kinetic-theory result (B1la) as
n=— n(x, Ty)
- 2.2 ’ B )
Ug®e

(23)

one finds [16,22] that the product veo, doesn’t renormalize.
This leads to the conclusion [47] that the kinetic expression
for the shear viscosity at charge neutrality, Eq. (14), pro-
vides the correct low temperature result for interacting Dirac
fermions in graphene (for B = 0). Implicit to this argument
is the assumption of the large screening length [16]. Indeed,
static screening is determined by the real part of the polariza-
tion operator, I1%(w = 0), which for small enough momenta
is well approximated by the density of states [58],

=2, v, [ (w = 0) ~ da _
i« VeI ( ) gngi
where 7 = 2T In[2 cosh(/2T)], see Eq. (B2b). The scaling
of the densipy of states was derived in Refs. [47,65]. The
quantities I are defined similarly to Eq. (18¢c)
le|v2B
S fijlx, 50RY,

caT? 24
g

Fg = 20)3%,’ i =
where the dimensionless functions f;;(x, ») can be read off
Egs. (18c) and (B3).

Finally, the kinematic viscosity (11) is a combination of
the shear viscosity, renormalized velocity, and energy density.
The latter renormalizes as the free energy [47]

Zr(b)

ne(T, 1, o) = =5=ne[Zp (DT, Zr (b, eg(B)], (25)
which yields
NT?3 iig (x)
np(T, o) = —— — . (26)
wv; Ry

The kinematic viscosity (11) can be obtained by combining
Egs. (23) and (26) with the equation of state (8). The result is

given by

2nv§f7(x, Fg) & o

Ts ) = 5 e <
V(T . @) 3N« Tiip ()

The results of the one-loop RG approach reviewed in this
section should be treated with care. Ultimately, this is a per-
turbative calculation that is formally valid for weak coupling.
Strictly speaking, this is not the case in real graphene (see
the above estimates for the effective coupling constant) and
hence the kinetic coefficients, such as viscosity, should be
considered phenomenologically and assigned the experimen-
tally measured values [40]. Nevertheless, it is instructive to
evaluate the expressions for kinetic coefficients with the corre-
sponding renormalizations to obtain a quantitative theoretical
expectation for physical observables.

VI. QUANTITATIVE RESULTS FOR ELECTRONIC
VISCOSITY IN GRAPHENE

In this section we report the results of the numerical
evaluation of the shear and Hall viscosity in graphene (B1)
taking into account the renormalization and screening effects.

A. Screening effects

The above analytical results were obtained for the bare
Coulomb interaction and are valid only in the limit of the
infinitesimal interaction strength, a, — 0. For more realistic
values of a,, screening effects have to be taken into account.
Within the RPA approximation [40,55,58] the dynamically
screened Coulomb interaction is given by

Uy _27‘[62
1+ Uk, q) ¢ °

Dipa(@. q) = (28)
where TI%(w, q) is the polarization operator (for a detailed
calculation of the polarization operator see, e.g., Ref. [58]).
In the dimensionless form of Eq. (16) one finds

r7 Q R v§ R
U = =~ I H ((,(), q) = H (Cl), q)
Q + 27, TR (w, q) 27

For analytical estimates in the degenerate regime one can
use the usual Thomas-Fermi static screening [55,58]

~

_°
0+ 2a, ’
In full units the inverse screening length is sc = Nagkr. The
use of the static screening in Eq. (16) can be justified by
the fact that in this integral the contribution of the region
0 ~ W is explicitly suppressed, while outside of this region
for W < Q < x the polarization operator in graphene is well
approximated by a constant [55,58].

Taking into account static screening, we find for the mo-
mentum integral J33 in the opposite order of limits (first,
x — 00, then @ — 0)

U=

7 w2 20t,X
—— (1 —-m=%).
+2x2a§,< n W)

The first two terms are identical for all integrals (B2f), so
again we need to keep the subleading term. Combined with

Iim lim J5;3 ~In — — —
a,—0x—>00 33 ZOlg 4
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the rest of the integrals (B3) this leads to the result

3ut 1
1287 20uiT? In o — 8

nu>T)= , (29)

where 6, = 7/4 4+ 1n2 =~ 2.44. The factor §, is kept in the
denominator in order to emphasize that the logarithmic de-
pendence on the coupling constant is only valid in the limit
ag — 0 such that |Inag| > 1. For any practical value of the
coupling constant Eq. (29) is negative and thus invalid. Instead
of the limit oy — 0, one has to consider the full expression
for J33 .

The leading parametric dependence in Eq. (29) (up to the
correction, §,) was first suggested in Ref. [27]. The numerical
prefactor that can be found in Ref. [40] appears to be twice as
large as ours.

In gated structures screening is modified by the presence
of the gate [56]. In particular, the “bare” Coulomb interaction
Uy should be replaced by

2 2
L1 - ey, (30)

UO — U(‘)g =
where d is the distance to the gate. This form assumes the
single gate device. Note that the experiments of Ref. [4] were
performed on double gate devices as well. In the latter case,
the effective Coulomb interaction has a more complicated
form. However, if the gate is placed far enough from the
graphene sample (Ref. [4] reports the thickness of the insu-
lating layer to be about d = 50 nm), such that d >> 1/, then
the screening effect of the gate may be neglected.

B. Kinematic viscosity in zero field

Kinematic viscosity in graphene as a function of the car-
rier density is shown in Fig. 5, where we plot our results
in physical units taking into account the renormalizations
(20) and (27) as well as the dynamical screening (28). The
results are in a reasonably good agreement with the exper-
imental data reported in Fig. 4 of Ref. [4]: the theoretical
values are of the same order of magnitude, v ~ 0.1 m?/s,

v[107'm?/s]
6

n[10"%cm]

0.0 0.5 1.0 1.5 2.0 25 3.0

FIG. 5. Kinematic viscosity in graphene as a function of the
carrier density. The solid lines are the result of the direct numerical
evaluation of Eq. (27) with @, =0.5 and dynamical screening,
Eq. (28). Dashed curves show the “Fermi-liquid” asymptotics, based
on Eq. (16) with static screening. The lower dataset (shown in red)
corresponds to 7 = 280 K, the upper (black)—to 7" = 220 K. The
temperatures and the density range are taken from Fig. 4 of Ref. [4].

as the experimental ones, the density dependence in the
range n ~ 1 =3 x 10'2 cm~2 is rather weak, and the overall
value decreases slightly with the temperature increase from
T =220KtoT =280K.

Our results were obtained assuming the value a, ~ 0.5 for
the “bare” coupling constant (as reported in the Supplemental
Material to Ref. [4]). The “bare” velocity in graphene was
taken as v, = 10% m/s. Then at T = 300 K, the dimensionful
prefactor in Eq. (27) has a value

v2 hv? m?2
g g ~

2T 2 ~0.1—,

agT o sT T2300 K S

which ultimately determines the order of magnitude of the
resulting kinematic viscosity.

Combining this prefactor with the asymptotic behavior
of ) [which can be read off Eqgs. (17) or (29) disregarding
the logarithm] and 7iz ~ x*(1 4+ 72/x?)/6 [from Eq. (A3)],
we estimate the dominant temperature dependence of the
kinematic viscosity (11) in the degenerate regime as
v; 1
aT? 1+ 7272/

v > T) (3D
This “naive” estimate neglects the temperature dependence
arising from the renormalizations and the logarithmic factors
in Eq. (17) [or Eq. (29)]. Nevertheless, the true temperature
dependence is not far off as shown in Fig. 6 where we plot
Eq. (31) together with the “Fermi-liquid” asymptotics for the
kinematic viscosity (11) based on Eq. (16) and static screening
(a reasonable approximation in the degenerate regime, see
Fig. 5; the dashed curve is vertically shifted for clarity).

Similarly, we can estimate the temperature dependence of
the kinematic viscosity at charge neutrality. Using Eq. (13)
and the relation nz (u = 0) o« T3, we find

2

v
v(p = 0) o == (32)
a:T
8
v[107'm?/s]
“r |
\
\
12\
w
AS
10 s
N
\
8 \\
-~
-~
~
6 AN
<
N\
4f DRI
2k TTmee T
0 1 1 1L 1 J T[K]
100 150 200 250 300

FIG. 6. Kinematic viscosity in graphene as a function of tem-
perature evaluated at the carrier density n =2 x 10'> cm~2, where
the “Fermi-liquid” asymptotics yields excellent agreement with the
direct numerical evaluation of Eq. (27). The solid line shows the
“Fermi-liquid” asymptotics for the kinematic viscosity (11) based on
Eq. (16). The dashed line shows the “naive” temperature dependence
(31), vertically shifted for clarity. The temperature and density ranges
are taken from Fig. 3 of Ref. [14].
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Again, the true temperature dependence will be slightly dif-
ferent due to the renormalization factors (the screening length
at charge neutrality is determined by temperature and hence
does not lead to any additional temperature dependence).

For the higher temperature range shown in Fig. 6 the
kinematic viscosity may be fitted [27] by another power
law, v oc T~!'. However, this is an intermediate regime: for
higher temperatures, T > 350 K, the calculated temperature
dependence shows clear deviations from this behavior.

Finally, typical theoretical values of the kinematic viscosity
shown in Fig. 5 differ from those reported in Ref. [4] by about
a factor of 3. Our calculation does not involve any fitting
parameters and does not take into account any particular
features of the experimental device, e.g., screening by the gate
and disorder scattering. As we have already mentioned, the
renormalization group calculation leading to the factors of
R, is approximate, so that we do not expect to find perfect
agreement with the data. A true test of the theory would be to
calculate the quantities actually measured in the experiment
(e.g., the nonlocal resistivity [4], Ry) for realistic sample
geometries. The results of such calculations will be reported
in a subsequent publication.

C. Hall viscosity

Defining the “kinematic” counterpart of the Hall viscosity
similarly to Eq. (11),
v
vy = gv (33)
and using the same RG approach, we find that vy renormalizes
similarly to Eq. (27)

2mviin (X, v8)

) 34
3Na2Tiip(x) " 34

vg(T, u, a) =

Here #g(x, yp) is defined according to Eq. (23). For
T =300K, B=1T and neglecting renormalizations, the
dimensionless quantity yp (in SI units) is given by

file|v2B

= —° ~ 3.939.
v agkgTz

T=300K;B=1T

The resulting values are shown in Figs. 7 and 8 in phys-
ical units. The former shows vy as a function of the exter-
nal magnetic field for a fixed value of the charge density,
n =2 x 10> cm™2. The results shown in Fig. 7 significantly
exceed the experimental values shown in Fig. 3 of Ref. [14].
The origin of this discrepancy is in the high power of the
renormalization factor in Egs. (34) and (24). Indeed, combin-
ing Egs. (18b), (34), and (24), we find

gt T Ve M) BB
T 2T 21 B
o fig(x) B*+ Bj

(35a)

where the “reference field” By introduced in Refs. [14,52] is
given by

272
By = R ca, T

N lelu2fx, %) (330

vH[1072m?/s]
50

30

20

0 10 20 30 40

B[mT]

FIG. 7. Hall viscosity in graphene as a function of magnetic
field. Solid lines show the “Fermi-liquid” asymptotics for the kine-
matic Hall viscosity (33) based on Eq. (16) with a, =0.5 for
n=2x 10" cm™? and three different temperatures, T = 100 K,
T =220K, and T = 300 K (shown in green, orange, and red, re-
spectively). The density, temperature, and field range are taken from
Fig. 3 of Ref. [14].

Here the dimensionless function f(x, ») is defined simi-
larly to Eq. (24) with the dominant contribution coming from
the scattering time 7 [defined in Eq. (B3)].

The temperature dependence of vy shown in Fig. 8 for
weak magnetic fields, B < By, and in the degenerate regime
can be extracted from Eqs. (35) and (B3),

4
lelv} 1

T:B < By) .
v (> < Bo) cot;,‘T31—|—712T2/,u2

(36)

Similarly to Eqgs. (31) and (32) this expression disregards
additional temperature dependence from the renormaliza-
tions and screening [i.e., the logarithmic factors in Egs. (17)
or Eq. (29)]. Nevertheless, it accounts for the temperature

ViIB[m?I(sT)]
50
\
1
)
aF \
\
\
\
30f \
\
A Y
LY
20 AN
‘\
10f W
1 1 1 1 —— 7 T[K]
100 150 200 250 300
FIG. 8. Temperature dependence of the kinematic Hall

viscosity. The solid line shows the “Fermi-liquid” asymptotics for
the kinematic Hall viscosity (33) based on Eq. (16) with a, = 0.5 for
n =2 x 10> cm~2. The dashed line shows the “naive” temperature
dependence (36), vertically shifted for clarity. The density and
temperature ranges are taken from Fig. 3 of Ref. [14].
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dependence of the Hall viscosity in the degenerate regime
rather well, see Fig. 8.

VII. SUMMARY

In conclusion, we have calculated the shear and Hall vis-
cosities in graphene at arbitrary doping levels and classical
(nonquantizing) magnetic fields using the kinetic theory ap-
proach combined with the RG analysis. The shear viscosity
in graphene exhibits a monotonous growth as a function of
carrier density (or chemical potential) from a small value at
charge neutrality, see Eqs. (17) and (29). In contrast, the kine-
matic viscosity (11) remains of the same order of magnitude
at all doping levels, see Fig. 5: vy (n) decays from the initial
value at n = 0 and then passes through a minimum followed
by a (initially weak) growth in the degenerate regime. This
behavior follows from the nontrivial density dependence of
the enthalpy (or equivalently, energy density). The appearance
of the enthalpy in the definition of kinematic viscosity (11) is
a characteristic feature of the electronic system in graphene
(in contrast, the usual definition of the kinematic viscosity
involves the mass density [41]).

The field dependence of the shear and Hall viscosities
shown in Figs. 2 and 3 can be expected on general grounds.
In particular, the Hall viscosity vanishes at zero magnetic
field as well as for classically strong fields and hence has to
exhibit a maximum. In the degenerate regime, both viscosities
are well described by the semiclassical expressions (18) first
suggested in Ref. [48]. For smaller densities the shape of the
field dependence of 1 and ny deviates from Eqgs. (18) but
remains very similar. The only exception to this argument is
the field dependence of the shear viscosity at charge neutrality,
see Fig. 1, which remains finite in classically strong fields.
This effect can be traced to the complete decoupling of the
charge and energy currents at charge neutrality.

In the degenerate regime of large charge densities, our
results are in a reasonably good agreement with the avail-
able experimental evidence. The quantitative discrepancies
between the theoretical values shown in Figs. 5-8 and the
results of Refs. [4,14] can be attributed to our use of the renor-
malization group resulting in relatively strong enhancement of
the kinematic viscosity (11) and especially the kinematic Hall
viscosity (33). Moreover, our calculation does not include
sample-specific details such as screening by the gate and
disorder scattering. The latter can be expected to reduce the
viscosity values. In any case, a true test of the theory would be
a calculation of several distinct quantities actually measured
in the experiment for realistic sample geometries (using, e.g.,
the experimentally measured [66—68] values for renormalized
velocity). Such results will be reported elsewhere.
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APPENDIX A: LOCAL EQUILIBRIUM QUANTITIES

Under the assumption of local equilibrium, the macro-
scopic quantities appearing in the hydrodynamic equations are
given by

_ T gy(uy/T) — go(—p_/T)
n=ny—n_—=—

vz (1- uz/vf,)y2
(Ala)
_ _ T? g(uy/T) + ga(—p_/T)
nyp=nypo +n_= F A 3
s (1 —u?/v2)

(AlDb)

82<ﬁ) = —lLiz(—eu/T) (A2)
T 27 ’

where Li, is the polylogarithm,

e =2 TR0 [ () 4 (<)),

(- NT

(A3)
u) N _. /T
ZY) = - Lis(—etT), A4
&(5) =~ Lis(=e"") (A4)
1 —u?/v?
—pp—— ¢ A5
nES 2702 (A5a)
3
W=np+P=—"F (A5b)
2+ u*/v;

J=nu, j,=nmu, (A5¢)
Je =vim =Wu, (A5d)
N3 = Péug + v, Wuup. (ASe)

APPENDIX B: GENERAL EXPRESSIONS
FOR THE VISCOSITY COEFFICIENTS

The general expressions for the shear and Hall viscosities
in graphene

T . ~ 1 o~ i~ n
nzT—(o 0 Dy (14 7%y T, T i) T 2 +72/3)2], (Bla)
422 n 1 n g
88 3ig
TT —~ Tl P PUR g Py | i
n,,:nme(o 0 Duy(1+7%y T T o) T oy T | (2 4 72/3)/2 ], (B1b)
8¢ 3ig
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with the following notations

lelv;B B
VB = Wy (B2a)
T =T[n(1 +e“/"y+In(1l +e /7)) — T =2TIn2cosh % (B2b)
where the last expression is obtained in the limit 4+ = u, that is used hereafter,
ii(x) = —Liy(—€") + Lia(—e™), fig(x) = —Liz(—¢') — Liz(—e™), x= % (B2c)
xT ~T
m, = % 1 [x2 + %]% , (B2d)
=T 2, 2 |T ~ T
2 7 [x + T:I 7 6iig 7
X T
R tanh 3 1 T
My = 1 tanh5  x (B2e)
% X 27
~—1 -1 -1
T T T
R o T 11 12 13
T = gl gl f2_31 . (B2f)

The “scattering rates

— =17 T
n aé NT? 12 22

”~l

7;; are obtained from the collision integral within the three-mode approximation [25] and are given by

— onyacnt| N d’ aw |0’ [YooY:: — Yo:Yo:] B3
5 - v2ane/op | ) 2r)? 2w sinhZw -0 T O ®3)
where
Yoo(w. q) = — [M 220+ M%[h]} (B4a)
4| JT—2 ° Joe—1 ')
Yoi (o, q) = —;[G(IQI < DHQVI— Q22T+ 0(12] > DHQVQ? — 1 Z5[11], (B4b)
~ 1 N 1 S 1 sgn(€2)
Yoo (w, q) = ;[G(IQI <DHQYI1 - Q2 Z[L] - ze(lﬂl > 1)sgn(Q)VQ2 - 12 [11]} + EG(IQI > 1)\/% Zyh],
(B4c)
- 1
Yo3(w, ) = 0QYy(w, q) + o 0Q[0(12] < DV1 = Q2 Z7[I] - 0(1Q] > DV Q2 — 1 Z5[11]], (B4d)
~ 1
Yi1(w,q) = ;[G(IQI S DOVI=Q2Z7 L1+ 6(12] > DVQ?2 — 1 Z7[1L]], (B4e)
~ 1
Yi(w,q) = —;G(IQI < DOV =Q2Z7(1, (B4f)
Yis(w,q) = —%[G(IQI <OV =Q2ZI[1+6(12] > DHV Q2 — 1 Z5[11], (B4g)
~ 1 N 16(12[>1)
Yn(w,q) = ;[G(IQI SOVI=Q2Z7[L0]-60(2 > DVQ2 -1 Z7[Lh] + - I a1 z; [11]], (B4h)
~ 0 - - ol >1) __ .
Y3(w,q) = ;[9(|9| S DOVI=Q2Z[L]—-60(12 = DIQIVR2 —12,7[L]+ T Joo1 Z; [11]} (B4i)
2
Y3(w,q) = %[G(IQI < DOVI=Q2Z7[L]-60(1Q] > DVQ2 — 1 Z5 L] + 0°QYy(w, ). (B4j)
These functions are expressed in terms of the integrals
0 1
Zr = f dzv/z2 = 11(z), 25 = / dzv'1 —z221(2), (B5a)
1 0
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=17

oo
Z3>[1] =‘/1A dZZZ_—QZ 1(2), o2

1 1 — 2302
ZE[ :/ dzu
0 —Z

1(2). (B5b)

00 2 _ 132 1 _2V3/2 1 _2\3)2
?m—/z#iilwn Tm—/aiildm %m—/w9¥14w+ﬁm>(ma
! P @ o (@2 o (@-2) T
() Z(Z2 _ 1)3/2 1 Z(l _ Z2)3/2
ZZ] = di———== 1), Z:[ll=| di——=1(2), B5d
z1 j e CREAT L g 1) (B5d)
that are evaluated for either of the two functions
w W — -w -W -
I1(z) = tanh ZQ—FTH + tanh 0+ t_ tanh Q0 T anh ZQTX, (B6a)
W W — -w -W -
I(z) = tanh ZQJFTH —anh 2TV X n 2 : X 1 tanh ZQTX (B6b)
The frequency and momentum are expressed in terms of the dimensionless variables
Vg 4]
=, = —. B7
0 2T 2T ®7)
Finally, the Coulomb interaction has the form
2me? ~ 2T aU, ~ 2
Ulw,q) = U= U, oj=—, (B8)
q q Vg€

where ¢ is the dielectric constant of the dielectric environment and the dimensionless factor U accounts for screening.
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