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We introduce the functional field integral approach to study the statistics of quantum work under nonequilib-
rium conditions and derive the general formalism for a bilinear Hamiltonian with arbitrary time dependence. The
method is then examined in three models. For the transverse Ising chain, it yields the correct quantum critical
scaling and dynamical quantum phase transitions for single and double quench protocols, respectively. For
the Su-Schrieffer-Heeger (SSH) model, we observe nonuniversal quantum critical scaling with anomalous 1/N
correction due to its topological nature. Dynamical quantum phase transitions are observed for three different
time evolution protocols but their time periodicity only appears in the double quench case. We then extend
our method to the Bardeen-Cooper-Schrieffer (BCS) model for superconductivity and discuss the possibility of
its application for general correlated models in combination with either the mean-field approximation or exact
Monte Carlo simulations on classical (auxiliary) fields or disorders. Our method has the advantage of numerical
simplicity, in the cost of explicit state evolution, and provides a promising way for exploring the physics of
quantum work under general conditions.

DOI: 10.1103/PhysRevB.100.035124

I. INTRODUCTION

Nonequilibrium conditions provide an additional dimen-
sion in time domain for probing the many-body dynamics
beyond the well-established equilibrium statistics and have
recently led to the proposal of many novel phenomena such
as the dynamical quantum phase transition [1–4], the time
crystal [5,6], the fluctuation relations [7–14], and so on. While
ultracold atoms in optical lattices can be easily tuned to be out
of equilibrium [15,16], recent development of ultrafast pump-
probe spectroscopy has enabled one to study the excitation
and relaxation dynamics in real correlated materials [17]. The
study of nonequilibrium quantum physics is becoming one of
the most active and exciting branches of modern condensed
matter physics and attracted intensive attentions in recent
years [18]. However, despite many theoretical progresses
including the nonequilibrium extension of the density matrix
renormalization group, quantum master equations, Keldysh
Green’s function technique, and dynamical mean-field theory
[19–21], we still lack a schematic framework to interpret the
vast kinds of nonequilibrium phenomena.

Probability distribution of quantum work is arguably one of
the most important quantities to characterize the nonequilib-
rium dynamics such as the dynamical fluctuations, quantum
phase transitions (QPTs), and quantum criticality [22–34].
Technically, it may be defined as

p(w) =
∑
n,m

δ
(
W − E f

m + Ei
n

)
P(m f | ni )P(ni ), (1)
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where w = W/Nd is the work density, N is the lattice size,
d is the dimensionality, Ei

n is the nth eigenvalue of the
initial state (|ni〉), and E f

m is the mth eigenvalue of the final
state (|m f 〉). P(ni ) = exp(−βEi

n)/Z (0) denotes the probability
distribution of the initial canonical state, and P(m f | ni ) ≡
|〈m f |U (T0, 0)|ni〉|2 accounts for the transition probability
between the initial and final states governed by the time-
dependent evolution U (T0, 0) = T exp[−i

∫ T0

0 dtH (t )], where
T is the time ordering operator and T0 is the period for the time
evolution. The reduced Planck constant h̄ is set to unity. The
nonequilibrium dynamics is fully incorporated in the time-
dependent Hamiltonian H (t ) and the transition probability
contains the key information characterizing the dynamical
process.

The above method has been applied to a variety of many-
body systems including the transverse Ising chain [35,36],
the anisotropic XY model [37], the XXZ model [38], the
Luttinger liquid [39], and the low-dimensional quantum gas
[40–42]. In most of these works, a Hamiltonian approach
has been used by calculating explicitly the time evolution
of the quantum state for quench protocol. However, such
calculations can be very involved which makes it hard to be
extended to arbitrary time dependence and general correlated
many-body systems [39,43]. To overcome this issue, here we
propose to carry out the calculations straightforwardly using
the functional field integral formalism, which is a many-body
extension of the path integral approach to quantum fields [44].
Our approach has the advantage of numerical simplicity and
may be extended to more complicated nonequilibrium pro-
cesses beyond the quench protocol. Moreover, in combination
with the auxiliary field method and mean-field approximation,
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it has the potential to be applied to more general correlated
systems, in the cost of explicit state evolution.

The paper is organized as follows. In Sec. II we first
introduce the general formalism based on the functional field
integral approach and show that it can be used to identify both
the equilibrium and dynamical QPTs. In Sec. III we apply
it to three different models, including the well-studied trans-
verse Ising model, the Su-Schrieffer-Heeger (SSH) model
with topological phase transition, and the Bardeen-Cooper-
Schrieffer (BCS) model with superconductivity under mean-
field approximation. We will discuss the QPTs in these models
and derive the corresponding quantum critical exponents from
the calculated mean irreversible work density. Section IV is
the discussion and conclusions.

II. GENERAL FORMALISM

To proceed, we consider the bilinear model,

H (t ) =
∑

k

�
†
k Ak (t )�k, (2)

where Ak (t ) = dk (t ) · σ is a matrix and σ is the vector of
the Pauli matrices. Although simple, it represents a large
number of models in condensed matter physics. We first
reformulate the functional field integral approach to calculate
the Fourier transformation of the work distribution, namely
the characteristic function [7]:

G(u) =
∫ ∞

−∞
dw exp(iuwNd )p(w)

= Z−1
0 Tr[U †(T0, 0)eiuH (T0 )U (T0, 0)e−(iu+β )H (0)], (3)

where Z0 = Tr e−βH (0) is the partition function at t = 0. The
time contour of the path integral in G(u) is illustrated in
Fig. 1. After some tedious calculations using the functional
field integral techniques (see Appendix A), we obtain

G(u) =
∏

k

2 + Tr[Bk (T0)]

2 + Tr[e−βAk (0)]
, (4)

where

Bk (T0) = C†
k (T0)eiuAk (T0 )Ck (T0)e−(iu+β )Ak (0), (5)

with Ck (T0) = T exp[−i
∫ T0

0 dtAk (t )]. The mean work density
is given by the first cumulant of the characteristic function
〈w〉 = −idG(u)/(Nd du)|u=0, yielding

〈w〉 = 1

Nd

∑
k

Tr{[Dk (T0) − Ak (0)]e−βAk (0)}
2 + Tr[e−βAk (0)]

, (6)

[ ]
][

FIG. 1. Time contour C for the field integral. Blue circles rep-
resent discretized time points with �t = T0/M. Red dots and line
at t = 0 and T0 denote additional operators to be evaluated at these
points.

with Dk (T0) = C†
k (T0)Ak (T0)Ck (T0), where Ck (T0) can be

computed numerically for arbitrary time dependence.
Note that the mean work density 〈w〉 always exceeds the

free energy density difference � f between the initial and
final equilibrium states (both with the same inverse temper-
ature β), as stated in the second law of thermodynamics. A
mean irreversible work density can thus be defined as their
difference 〈wirr〉 = 〈w〉 − � f � 0, which characterizes the
irreversibility of the nonequilibrium process and is directly
related to the entropy increase between the final and initial
equilibrium states �s = β〈wirr〉, for a closed quantum system
without heat transfer [32].

The mean work density 〈w〉 and the mean irreversible
work density 〈wirr〉 can be used to identify equilibrium phase
transitions. Considering a quench process where the model
Hamiltonian changes from A0

k = d0
k · σ at time t = 0− to A1

k =
d1

k · σ at t = T0 = 0+, we have Dk (0+) = A1
k . As shown in

Appendix B, one can derive an explicit formula for the free
energy density difference

� f = − 1

βNd

∑
k

ln
cosh2

(
βE1

k /2
)

cosh2
(
βE0

k /2
) , (7)

and the mean work density

〈w〉 = 1

Nd

∑
k

[(
E0

k

)2 − d0
k · d1

k

]
tanh

(
1
2βE0

k

)
E0

k

, (8)

where E0,1
k = |d0,1

k |. Then the mean irreversible work density
can be immediately obtained by definition. To see how these
detect the phase transitions, we consider a small quench d0

k =
(x0

k , y0
k , z0

k ) → d1
k = (x0

k + δ, y0
k , z0

k ). It can be shown analyti-
cally (Appendix B) that 〈w〉 = −∑

k
δ

Nd
∂Ek
∂xk

|xk=x0
k

and 〈wirr〉 =∑
k

δ2

2Nd
∂2Ek

∂x2
k
|xk=x0

k
at zero temperature, which connect directly

to the first and second derivatives of the ground state energy
with respect to the quench parameter. Thus the singularity
in 〈w〉 and 〈wirr〉 reflect the first- or second-order phase
transitions.

For a (second-order) QPT, scaling analysis of 〈wirr〉 can
yield key information on the critical exponents [32]. In the
heat susceptibility limit, where δ−v is the largest length
scale, the mean irreversible work density at zero temperature
scales as

〈wirr〉/δ2 ∼ λν(d+z)−2, δ−ν > N > λ−ν,

∼ N2/ν−(d+z), δ−ν > λ−ν > N, (9)

where ν is the correlation length exponent, z is the dynamical
exponent, and λ reflects the distance from the quantum critical
point (QCP). In the thermodynamic limit, where N is the
largest length scale, one arrives at the scaling relation

〈wirr〉/δ2 ∼ δν(d+z)−2, N > λ−ν > δ−ν,

∼λν(d+z)−2, N > δ−ν > λ−ν . (10)

On the other hand, if the system is prepared very close to the
QCP such that λ−ν is larger than all other length scales, the
scaling relation becomes

〈wirr〉/δ2 ∼ δν(d+z)−2, λ−ν > N > δ−ν,

∼N2/ν−(d+z), λ−ν > δ−ν > N. (11)
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Note that when the combination ν(d + z) exceeds 2, the
scaling of 〈wirr〉 is nonuniversal. In the marginal case
ν(d + z) = 2, one may find additional logarithmic correction
to above scalings [32].

Recently, it has also been shown that the work statistics in a
double quench process, where the Hamiltonian changes from
A0

k to A1
k at t = 0 and then back to A0

k for t � T0, can be used
to describe dynamical QPTs [1]. In this case, the free energy
density difference � f is zero and we have 〈wirr〉 = 〈w〉 and
Dk (T0) = eiT0A1

k A0
ke−iT0A1

k . The mean irreversible work density
is incapable of capturing the dynamical QPTs. On the other
hand, the work distribution function, which in principle could
be evaluated by inverse Fourier transformation of G(u), is of-
ten ill-defined in numerical calculations. Lately, an alternative
approach has been proposed based on the so-called Gärter-
Ellis theorem [45,46]. Considering a global quench process,
the quantum work grows exponentially with the system size
p(w) ∼ e−Nd r(w), which defines the rate function r(w) � 0.
The theorem states that r(w) can be obtained via a Legendre-
Fenchel transformation,

r(w) = − inf
R∈R

[wR − c(R)], (12)

where c(R) = − limN→∞ N−d ln G(u = iR) is a scaled cumu-
lant generating function assumed to be differentiable with re-
spect to the real variable R ∈ R, and the infimum is evaluated
within the domain of definition of c(R) including R = ±∞.
The dynamical QPT is then manifested as a singular point of
r(w), as discussed in Appendix B.

For general time dependence, Ck (T0) may be computed
numerically using the matrix products

Ck (T0) ≈ e−i�tAk (
tM+1+tM

2 ) · · · e−i�tAk ( t1+t2
2 ), (13)

which becomes accurate as M → ∞ and �t = T0/M → 0.
If all Ak (t ) commute, the above formula reduces to a simple
time integral of Ak (t ) in the exponent. It is anticipated that
detailed investigations for arbitrary time dependence might
reveal more interesting properties of nonequilibrium physics.
In this work, we will focus on quench protocols for the sake
of simplicity and only give as an example a brief discussion
on general cases in Sec. III B.

III. NUMERICAL RESULTS

In this section we use the above general formalism to
study the work statistics and possible QPTs in three different
models. The first model is the transverse Ising model, which
has been extensively studied using the Hamiltonian approach
and hence provides a good examination of our method. We
then discuss the SSH model, where we will find corrections
to the quantum work due to its topological properties. Last
but not least, for possible extension to other correlated models
in future studies, we discuss the well-known BCS model for
superconductivity in combination with the mean-field approx-
imation.

A. The transverse Ising model

The Hamiltonian of the transverse Ising model is [47–49]

H = −J
N∑

j=1

σ x
j σ

x
j+1 − h

N∑
j=1

σ z
j , (14)

where σα
j (α = x, z) are the Pauli matrices at site j, J > 0 is

the ferromagnetic exchange coupling, and h is the transverse
external field. Here we assume N is even and consider the
periodic boundary condition σα

N+1 = σα
1 . This model has a

quantum critical point at h = J . Using the Jordan-Wigner
transformation,

σ+
j =

(
σ x

j + iσ y
j

)
2

= c†
j exp

⎛⎝iπ
∑
l< j

c†
l cl

⎞⎠, (15)

it can be mapped to a spinless fermion model [50–52],

H = Nh − 2h
N∑

j=1

c†
j c j − J

N∑
j=1

(c†
j − c j )(c

†
j+1 − c j+1), (16)

where the fermionic operator c j satisfies either periodic or
antiperiodic boundary conditions cN+1 = ±c1, depending on
odd or even number of the c quasiparticles, M = ∑N

j=1 c†
j c j .

For simplicity, we confine ourselves to the subspace of
even M with antiperiodic boundary condition. Using cq =
N−1/2 ∑N

j=1 c j exp(iq j), the fermionic Hamiltonian can be

transformed into the bilinear form H = ∑
k>0 �

†
k dk · σ�k ,

where �
†
k = (c†

k , c−k ), dk = (0,−2J sin k,−2h − 2J cos k),
and k = ±π (2m − 1)/N with m = 1, . . . , N/2.

Below we set J to unity and consider the quench protocol
where the external field h is tuned from its initial value
h0 to h1 = h0 + δ. The dispersion relation is εk (h) = |dk| =
2
√

1 + h2 + 2h cos k. The characteristic function G(u) =∏
k>0 Gk (u) for transverse Ising chain has an analytical form

as shown in Eq. (B4) of Appendix B. Figure 2 plots the
characteristic function for a quench protocol across the QCP
and the corresponding work distribution function obtained
through the Gärter-Ellis theorem at different temperatures. As
discussed in Appendix B, the work distribution is restricted
in the interval [wmin,wmax], where wmin is the energy density
difference of the highest excited state of the initial phase and
the ground state of the final phase and wmax is the energy
density difference between the ground state of the initial
phase and highest excited state of the final phase. At finite
temperature, the small but finite p(w) close to wmin and
wmax reflects the finite weight of all possible configurations
due to thermal effect. However, at zero temperature, since
there is no weight for the excited state in the initial phase,
p(w) is strictly zero if w is smaller than the energy density
difference of the ground states of the initial and final Hamil-
tonians, as can be seen in Fig. 2(b). For all the temperatures,
we have the normalization condition G(0) = ∫∞

−∞ dw p(w) =
1, as confirmed in Figs. 2(c) and 2(d). These results
agree with those obtained using the Hamiltonian eigenstate
approach [45].

The mean work density and mean irreversible work density
at zero temperature can be obtained from Eqs. (7) and (8).
Figure 3(a) plots the variation of 〈w〉/δ and 〈wirr〉/δ2 as a
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FIG. 2. (a) The rate function r(w) for a single quench from
h0 = 0.5 to h1 = 2.0 in the transverse Ising model at different inverse
temperature β. (b) The corresponding work distribution function
p(w) ∼ e−Nr(w). (c) and (d) Real and imaginary parts of the charac-
teristic function G(u), respectively. The lattice size is set to N = 20.

function of h0 with different lattice size N . The mean work
density changes continuously with the external field h0 and
shows no visible features across the QCP, while a significant
peak is seen to grow with increasing N in the mean irreversible
work density, indicating that the latter is a good indicator of
the second order QPT as discussed in Sec. II. The quantum
criticality can then be examined from the scaling behavior in
different parameter regimes. In Fig. 3 we see clear logarithmic
corrections in 〈wirr〉 depending on N , λ, or δ, in agree-
ment with the critical exponent ν = z = 1 of the transverse
Ising chain.

We now turn to the double quench protocol where the ex-
ternal field h is tuned from h0 < 1 to h1 > 1 at time t = 0 and
quenched back to h0 at t = T0. Figure 4 plots the rate function
as a function of T0 for different values of the work density w =
W/N . We see clear cusp in the curve of w = 0 and continuous
variation for other w. Such nonanalytic behavior at w = 0 in
the rate function is an indication of the so-called dynamical
QPT, which occurs when the time-evolving state |ψ (t )〉 is
orthogonal to the initial state at certain critical time after
quenching a set of control parameters of the Hamiltonian. As
discussed in Appendix C for the transverse Ising model, there
exists a sequence of critical time tc = (n + 1/2)T ∗, with

T ∗ = π

2
√

1 + (h1)2 − 2h1
1+h0h1
h0+h1

. (17)

Its inverse, ω∗ = 2π/T ∗, seems to define a characteristic
excitation energy for the transition [53]. We should note
that such singularity is not present in the mean (irreversible)
work density. As shown in the inset, the mean work density
varies smoothly with T0 and is insensitive to the dynamical
QPT revealed in r(w, T0). The above results are in good
agreement with previous studies using the Loschmidt echo

FIG. 3. (a) The mean irreversible work density 〈wirr〉/δ2 as a
function of h0 with different lattice size N . The inset shows the h0

dependence of the mean work density 〈w〉/δ. (b) and (c) Logarithmic
dependence of 〈wirr〉/δ2 on N and λ in the heat susceptibility limit
(δ = 0.001). Other parameters are λ = 0.005 in (b) and N = 100 in
(c). (d) and (e) Logarithmic scaling with respect to δ and λ in the
thermodynamic limit (N = 1000) for λ = 0.01 in (d) and δ = 0.01
in (e). (f) and (g) Logarithmic scaling with N and δ for λ = 0.0005,
such that λ−ν is the largest length scale and the prequench Hamilto-
nian is very close to the quantum critical point. Other parameters are
δ = 0.001 in (f) and N = 1000 in (g).

FIG. 4. The rate function r(w, T0 ) at zero temperature for a
double quench process of the transverse Ising model from h0 = 0.5
to h1 = 2.0 and back to h0 after time T0. The lattice size is N = 100.
The rate function for w = 0 corresponds to the Loschmidt echo
and its nonanalyticity at T0 = (n + 1/2)T ∗ manifests the dynamical
QPTs. The inset shows the mean work density 〈w〉, which exhibits
no singularity and is a smooth function of T0.
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[1], which is defined as L(t ) = |〈ψ |U (t )|ψ〉|2 and repre-
sents the probability amplitude to recover the initial state
after the time evolution U (t ). For a double quench process,
the work probability function p(w = 0, T0) also gives the
return probability to the initial state and could therefore
provide a signature when a dynamical QPT occurs [45].
The excellent agreement between our results and a previous
Hamiltonian eigenstate method confirms the validity of our
approach for both the single and double quench protocols. We
may extend it to other models and examine there the effect
of quantum criticality on nonequilibrium dynamics and the
possible existence of dynamical QPTs under more general
circumstances.

B. The SSH model

In this section we study the SSH model which was origi-
nally proposed for electronic transport in polyacetylene with
spontaneous dimerization [54]. Despite its simplicity, the
SSH model exhibits a variety of exotic phenomena, such as
topological soliton excitation, fractional charge, and nontrivial
edge states, and has attracted extensive interest in past decades
[55–59]. The model Hamiltonian can be written as

H =
N∑

j=1

(vc†
A, jcB, j + v′c†

A, j+1cB, j + H.c.), (18)

where A and B denote the two sublattices and N is the
number of unit cells. For even N and open boundary con-
dition, there exist two edge modes for v < v′ but no edge
mode for v > v′. Thus the model undergoes a topological
quantum phase transition at v = v′. For a periodic boundary
condition, one may apply the Fourier transformation cα, j =
N−1/2 ∑

k cα,k exp(ik j), where α = A or B, k = 2mπ/N with
m = 1 − N/2, . . . , N/2. Then the bulk Hamiltonian gets the
bilinear form H = ∑

k �
†
k dk · σ�k, where �

†
k = (c†

A,k, c†
B,k )

and dk = (v + cos k, sin k, 0).
Details on the calculations of the mean work density

and the mean irreversible work density can be found in
Appendix C. Figure 5(a) plots the results as a function of v0

for a single quench from v = v0 to v0 + δ at v′ = 1. In con-
trast to that of the transverse Ising model shown in Fig. 3, the
mean work density exhibits a clear discontinuity at the critical
point. Correspondingly, one observes a sharp resonancelike
peak in the mean irreversible work density on a smooth back-
ground. As N increases, the background evolves into a broad
peak, resembling that in the transverse Ising model, but the
sharp resonance at the critical point becomes weakened. Ex-
cept for a small region of the sharp peak around critical v0 =
1, the mean irreversible work density in all other parameter
ranges from the relatively smooth background exhibits similar
logarithmic scaling with respect to N , λ, or δ. This is plotted
in Figs. 5(b)–5(e) and indicates that the critical exponents are
ν = z = 1, as in the transverse Ising model. In contrast, as one
may see from Figs. 6(a) and 6(b), the mean irreversible work
density deviates from the expected scaling at v0 = 1 (λ = 0)
due to the presence of the sharp resonance. As a matter of
fact, we find when λ−ν is the largest length scale, the scaling

FIG. 5. (a) The mean irreversible work density 〈wirr〉/δ2 as a
function of v0 for different lattice size N . The inset plots the mean
work density 〈w〉/δ versus v0, showing a clear jump at v0 = 1 for
small N . (b) and (c) Logarithmic dependence of 〈wirr〉/δ2 on N and λ

in the heat susceptibility limit (δ = 0.001) for λ = 0.005 in (b) and
N = 100 in (c). (d) and (e) Logarithmic scaling with respect to
δ and λ in the thermodynamic limit (N = 1000) for λ = 0.01 in
(d) and δ = 0.01 in (e).

relation becomes
〈wirr〉
δ2

∼ ln δ + 2

N

1

δ
− 2λ

N

1

δ2
, λ−ν > N > δ−ν,

∼ ln N + 2(δ − λ)

δ2

1

N
, λ−ν > δ−ν > N. (19)

Such nonuniversal 1/N contributions are associated with the
topological nature of the SSH model. A straightforward anal-
ysis (Appendix C) suggests that they originate from the band
crossing at k = π at the topological quantum phase transition.
One may separate the contribution from this peculiar point and
obtain

〈wirr〉k=π

δ2
= 2(δ − λ)

δ2

1

N
. (20)

For λ−ν > δ−ν > N and ν = 1, in particular, this 1/N term
has large coefficient and overwhelms the ln N term as shown
in Fig. 6(a). To see this more clearly, we plot the mean
irreversible work density from momenta k = π and k = π

in Figs. 6(c) and 6(d), respectively. Indeed, there exists a
clear and small logarithmic contribution, which is of the
same order of magnitude as in Fig. 3(b), but a huge 1/N
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FIG. 6. (a) and (b) Scaling behavior of the mean irreversible
work density 〈wirr〉/δ2, with N in the SSH model near the quantum
critical point. We take λ = 0.0005 such that λ−ν is the largest length
scale of the system. Other parameters are δ = 0.001 in (a) and
N = 1000 in (b). The 1/N scaling in (a) can be separated into (c) a
small ln N contribution from quantum criticality and (d) a dominant
nonuniversal 1/N contribution due to the topological nature of the
QPT in the SSH model.

contribution. Intuitively, when the Hamiltonian is quenched
across the topological QCP, the necessary existence of the
band crossing yields this 1/N term. For open boundary condi-
tion, these correspond to the edge modes whose contribution
to the mean irreversible work density scales inversely with the
lattice size N .

The rate function for the double quench protocol of the
SSH model is plotted in Fig. 7 and actually similar to that
of the Ising model (up to a factor of 2) since both models
have the same bilinear Hamiltonian except for the bound-
ary conditions. Thus their difference is delicate and actually
diminishes in the thermodynamic limit. For comparison, we
also plot the results for two other protocols with different
time-dependent v(t ) as shown in the inset. Interestingly, we

FIG. 7. The rate function r(w, T0 ) at w = 0 and zero temperature
for three different time evolution protocols of the SSH model. The
inset plots the corresponding v(t ) with T0 = 2.0. The lattice size is
N = 1000. The singularities in the rate function reflect the dynamical
QPTs in all three cases.

see clear cusps in r(w, T0) at w = 0 and zero temperature in
all three cases, indicating the possibility of general existence
of dynamical QPTs. However, no time periodicity is seen
except for the double quench case, where the critical time is
given by tc = (n + 1/2)T ∗ with

T ∗ = π√
1 + (v1)2 − 2v1

1+v0v1
v0+v1

. (21)

More elaborate investigations might be able to reveal the true
controlling parameter for the dynamical QPT. We note that
since the dynamical QPT in the SSH model is associated with
the equilibrium QPT with topological properties, it might be
intriguing to think if the nonequilibrium phase might also
consist in some topological properties, for example, dynamic
edge modes under open boundary conditions [60,61].

C. The BCS model

Now we extend our approach to the superconductivity.
Since the model is generally insoluble, we consider here the
mean-field BCS Hamiltonian with a bilinear form and discuss
later in Sec. IV the possibility of going beyond the mean-field
approximation. The Hamiltonian is [44]

H =
∑

k

�
†
k

[
ξk −�

−� −ξk

]
�k, (22)

where ξk = −2v[cos(kx ) + cos(ky)] − 4v′ cos(kx ) cos(ky) −
μ, with the chemical potential μ, the mean-field order pa-
rameter �, and the Nambu spinor �

†
k = (c†

k↑, c−k↓). The

FIG. 8. (a) The mean irreversible work density 〈wirr〉/δ2 as a
function of the initial order parameter �0 of the BCS model in a
single quench protocol for different values of the lattice size N .
(b) and (c) Plot of its logarithmic scaling with respect to δ and λ

in the thermodynamic limit with N = 1000. Other parameters are
δ = 0.01 in (b) and λ = 0.01 in (c).
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FIG. 9. The rate function r(w, T0 ) at zero temperature for a
double quench of the BCS Hamiltonian from �0 = 0.0 to �1 =
2.0 and back to �0 after time T0 for N = 50. In contrast to the
singular behavior at T0 = (n + 1/2)T ∗ in the rate function, the mean
work density 〈w〉 shown in the inset exhibits no singularity from
dynamical QPTs.

parameters v and v′ denote the nearest-neighbor and next-
nearest-neighbor hoppings on a two-dimensional lattice.
We have kx = 2πm/N and ky = 2π l/N with m, l = 1 −
N/2, . . . , N/2, where N is the lattice size along both x and
y directions. Hereafter we set v = 0.435, v′ = 0.05, and
μ = 0.5.

For a single quench, we tune the mean-field parameter
� from an initial value �0 to �1 = �0 + δ such that d0

k =
(−�0, 0, ξk ) and d1

k = (−�1, 0, ξk ). The irreversible work
can then be calculated analytically (Appendix C). Figure 8(a)
plots 〈wirr〉/δ2 as a function of �0 for different lattice size
N . For large N , a logarithmic divergence appears as �0

approaches zero. In this thermodynamical limit (N = ∞),
as shown in Figs. 8(b) and 8(c), we also obtain logarithmic
scaling with respect to λ and δ. This indicates that the critical
exponents are ν = 1/2 and z = 2 with d = 2.

For the double quench protocol, we change the order
parameter from �0 to �1 at t = 0 and back to �0 at t = T0.
Using the Gärter-Ellis theorem, we obtain the rate function
r(w, T0) in Fig. 9 with the initial order parameter �0 = 0. We
see a clear nonanalytic behavior in r(w = 0, T0) at the critical
times tc = (n + 1/2)T ∗, where T ∗ = π/�1. Once again, this
indicates the existence of a dynamical QPT under double
quench. Such a transition only occurs for �0 = 0 but is absent
for any finite �0. It must be associated with the superconduct-
ing instability. We therefore speculate that the external driven
field induces Cooper pair excitations around the initially free
electron Fermi surface at �0 = 0. While the calculation of
nonequilibrium dynamics might be otherwise involving for a
general correlated Hamiltonian, extension of our approach to
other strongly correlated phenomena is straightforward under
the mean-field approximation.

IV. DISCUSSION AND CONCLUSIONS

Our proposal of the functional field integral approach
provides an alternate way to calculate the quantum work in
an arbitrary time evolution protocol with a general bilinear
Hamiltonian. The characteristic function and its cumulants

contain all the major information for evaluating the work
distribution via the Gärter-Ellis theorem and the mean (irre-
versible) work density, as well as the fidelity and Loschmidt
echo in the double quench process. The applications of our
approach to the transverse field Ising model, the SSH model,
and the BCS model provide unambiguous evidences for sig-
natures of quantum phase transitions and quantum criticality
in the nonequilibrium process. In the sudden quench protocol,
this is reflected in the quantum critical scaling of the mean
irreversible work density, while in the double quench protocol,
dynamical quantum phase transitions may be encoded as a
singularity in the rate function. In the SSH model, we also see
anomalous 1/N corrections due to the topological nature of
the quantum phase transition. Compared to the Hamiltonian
approach, the functional field integral formalism has the ad-
vantage to avoid tedious calculations of the second-order time
differential equation and replace them by matrix products at
different time intervals, which may be computed efficiently
using optimized algorithms at the cost of explicit time evo-
lution of the many-body wave function. As an example, we
calculate the rate function for the SSH model with different
time evolution protocols and find dynamical quantum phase
transitions in all cases. However, the time periodicity only
appears in the double quench case. Our approach provides a
possibility for revealing the true driving parameter of the dy-
namical transition under general nonequilibrium conditions.

The transverse Ising model represents the few examples
that can be mapped to a simple bilinear form. Often, an
interacting many-body system cannot be solved even under
equilibrium conditions, and approximations or numerical sim-
ulations have to be used with specially designed algorithms.
These include the Hubbard model for cuprates and pnictides
and the periodic Anderson model or the Kondo lattice model
for heavy fermions. In these cases, certain auxiliary fields,
based also on the functional field integral formalism, might
be introduced to decouple the interacting terms in the Hamil-
tonian, so that the model can be solved under the mean-field
(or saddle-point) approximations or simulated exactly using
efficient numerical techniques [62]. The mean-field approx-
imation can often capture some of the essential physics of
the correlated model. As shown for the BCS Hamiltonian, a
dynamical quantum phase transition is observed in a double
quench process, which might be an intrinsic property of the
model ascribed to the formation of Copper pairs near the
Fermi surface driven by the time-dependent pairing force.

To go beyond the mean-field approximation, one may
consider Monte Carlo simulations of the auxiliary fields. A
simpler situation is that the electrons are coupled to classical
fields or subject to disorders but the Hamiltonian remains
a bilinear form for each field or disorder configuration,
as is in the Anderson localization model or the Ising
Kondo lattice model. For the latter, we may have H (t ) =
−v

∑
〈i j〉,σ (c†

iσ c jσ + H.c.) + J (t )
∑

jσ Sz
jσc†

jσ c jσ , where Sz
j is

the Ising spin defined at site j and J (t ) is the time-dependent
coupling. Since all Sz

j commute with H , the spins do not
evolve with time. For each spin configuration, the electron
Hamiltonian has a bilinear form in real space, H ({Sz

j}, t ) =∑
iσ,lσ ′ c†

iσ Aiσ,lσ ′ ({Sz
j}, t )clσ ′ . Thus our derivation in

Appendix A can be extended to give a similar formula
after the electron degrees of freedom are integrated
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out,

G(u) =
∑

{Sz
j } det

[
I + B

({
Sz

j

}
, T0

)]∑
{Sz

j} det
[
I + B

({
Sz

j

}
, 0)

] , (23)

where B is defined as in Eq. (5) but with Ak (t ) replaced by
the matrix A({Sz

j}, t ) for each spin configuration {Sz
j}. Then

the Monte Carlo simulations can be applied on the Ising spin
configurations [63], with matrix products in real space instead
of momentum space due to the lack of translation symmetry.
A similar procedure may be extended to more complicated
cases such as the Hubbard model or periodic Anderson model,
where the local Coulomb interaction may be decoupled by
introducing an auxiliary field si at each site and time slice such
that e−�τU (ni↑−1/2)(ni↓−1/2) = c

∑
si=±1 eαsi (ni↑−ni↓ ), where c and

α are constants depending on �τU . Then one may perform
Monte Carlo sampling on the auxiliary field configurations
[62]. In both cases, detailed numerical realization may be
limited by severe sign problem or other issues and thus require
careful design of the algorithms. Nevertheless, our approach
seems to provide a general scheme for the exploration of
quantum work in nonequilibrium correlated systems. One
interesting topic along this line would be the study of many-
body localization within the framework of work statistics.

ACKNOWLEDGMENTS

We thank H. T. Quan for discussions. This work was
supported by the National Natural Science Foundation of
China (NSFC Grants No. 11774401 and No. 11522435),
the National Key R&D Program of China (Grant No.
2017YFA0303103), the State Key Development Program for
Basic Research of China (Grant No. 2015CB921303), and the
National Youth Top-Notch Talent Support Program of China.

APPENDIX A: FUNCTIONAL FIELD INTEGRAL
APPROACH TO THE CHARACTERISTIC FUNCTION

The Hamiltonian we consider here is

H (t ) =
∑

k

�
†
k Ak (t )�k, (A1)

where Ak (t ) = dk (t ) · σ and σ is the vector of the Pauli
matrices. Due to the Dirac delta in the work distribution
function in Eq. (1), instead of calculating p(w), it is often
easier first to calculate its Fourier transformation, namely the
characteristic function G(u) = ∫∞

−∞ dw eiuwNd
p(w). Because

of translational invariance, we have G(u) = ∏
k

Gk (u) with

Gk (u) = Tr[Uk (0, T0)eiuHk (T0 )Uk (T0, 0)e−(iu+β )Hk (0)]

Tr[e−βHk (0)]
(A2)

and

Uk (T0, 0) = lim
M→∞

e−iHk (tM,M+1 )�t · · · e−iHk (t1,2 )�t , (A3)

where T0 is divided into M slices and �t = T0/M is an
infinitesimal time step as illustrated in Fig. 1. One may then
write down the characteristic function by inserting a series
of overcomplete bases of the fermionic coherent states on a
closed time contour (0 → T0 → 0) [64],

1̂ =
∫

d[ψ
j
, ψ j]e−ψ

j
ψ j |ψ j〉〈ψ j |, (A4)

where |ψ j〉 is defined at t j with j = 1, 2, . . . , 2M + 2 on the
contour. This yields

Gk (u) = 1

Tr[e−βHk (0)]

∫ (
2M+2∏
n=1

d
[
ψ

n
k, ψ

n
k

])
exp

⎛⎝−
2M+2∑

j=1

ψ
j
kψ

j
k

⎞⎠
× 〈− ψ2M+2

k

∣∣eiHk (t2M+1,2M+2 )�t
∣∣ψ2M+1

k

〉 · · · 〈ψM+3
k

∣∣eiHk (tM+2,M+3 )�t
∣∣ψM+2

k

〉〈
ψM+2

k

∣∣eiuHk (T0 )
∣∣ψM+1

k

〉
× 〈

ψM+1
k

∣∣e−iHk (tM,M+1 )�t
∣∣ψM

k

〉 · · · 〈ψ2
k

∣∣e−iHk (t1,2 )�t
∣∣ψ1

k

〉〈
ψ1

k

∣∣e−(iu+β )Hk (0)
∣∣ψ2M+2

k

〉
. (A5)

Using the definition 〈ψm
k |ψn

k 〉 = exp(ψ
m
k ψn

k ), we have for any t ,〈
ψm

k

∣∣eαHk (t )�t
∣∣ψn

k

〉 ≈ exp
(
ψ

m
k eα�tAk (t )ψn

k

)
. (A6)

Thus the partition function at a single model k may be reformulated as

Zk (0) = Tr[e−βHk (0)] =
∫

d[ψ,ψ]e−ψψ 〈−ψ |e−βHk (0)|ψ〉

=
∫

d[ψ,ψ] exp[−ψ (I + e−βAk (0) )ψ] = det(I + e−βAk (0) )

= 2 + Tr[e−βAk (0)], (A7)

and similarly,

Gk (u) = det[I + ei�tAk (t1,2 ) · · · ei�tAk (tM,M+1 )eiuAk (T0 )e−i�tAk (tM,M+1 ) · · · e−i�tAk (t1,2 )e−(iu+β )Ak (0)]

det[I + e−βAk (0)]
, (A8)

where I is the 2 × 2 identity matrix. In deriving above equations, we have used the integral∫
d[ψ,ψ] exp(−ψAψ + χψ + ψχ ) = det(A) exp(χA−1χ ). (A9)
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The above formula can be further simplified by
defining Bk (T0) = C†

k (T0)eiuAk (T0 )Ck (T0)e−(iu+β )Ak (0),

with Ck (T0) = T exp [−i
∫ T0

0 dtAk (t )] for arbitrary time
dependence of Ak (t ) between 0 and T0. Note that
Bk (0) = e−βAk (0). We have eventually

G(u) =
∏

k

det[I + Bk (T0)]

det[I + Bk (0)]
=
∏

k

2 + Tr[Bk (T0)]

2 + Tr[e−βAk (0)]
, (A10)

following the identity det(I + A) = 1 + Tr A + det A for any
2 × 2 matrix A. The mean work density is given by
the first cumulant of the characteristic function 〈w〉 =
−idG(u)/(Nd du)|u=0, yielding

〈w〉 = 1

Nd

∑
k

Tr{[Dk (T0) − Ak (0)]e−βAk (0)}
2 + Tr[e−βAk (0)]

, (A11)

where Dk (T0) = C†
k (T0)Ak (T0)Ck (T0). On the other hand,

taking u = iβ, one immediately derives the Jarzynski equality
[11,12],

〈e−βwNd 〉 = 〈e−βW 〉 =
∏

k

2 + Tr[e−βAk (T0 )]

2 + Tr[e−βAk (0)]

= Z (T0)

Z (0)
= e−β�F , (A12)

where �F = F1 − F0 is the free energy difference between
the final and initial equilibrium states at the inverse tempera-

ture β, and Z (0) and Z (T0) are the partition functions at t =
0 and t = T0, respectively. Recently, the quantum Jarzynski
equality has been experimental verified in trapped ion system
[65,66].

APPENDIX B: THE WORK STATISTICS AND DYNAMICAL
QUANTUM PHASE TRANSITION

For a single quench where the model Hamiltonian changes
from A0

k = d0
k · σ at t = 0− to A1

k = d1
k · σ at t = T0 = 0+, the

characteristic function is

G(u) =
∏

k

2 + Tr
[
eiuA1

k e−(iu+β )A0
k
]

2 + Tr
[
e−βA0

k

] . (B1)

An arbitrary matrix Ak = dk · σ with dk = (xk, yk, zk ) may
be diagonalized under the unitary transformation U −1

k AkUk =
Dk , where

Uk =
[
μk −ν∗

k
νk μk

]
, Dk =

[
Ek 0
0 −Ek

]
, (B2)

with Ek = |dk|, μk = √
(Ek + zk )/2Ek , and νk =

xk+iyk√
x2

k +y2
k

√
Ek−zk

2Ek
. The matrix exponential eαAk is then

eαAk = UkeαDkU −1
k =

[
Ek cosh (αEk )+zk sinh (αEk )

Ek

(xk−iyk ) sinh (αEk )
Ek

(xk+iyk ) sinh (αEk )
Ek

Ek cosh (αEk )−zk sinh (αEk )
Ek

]
. (B3)

We have

Gk (u) = 1

2
sech2

(
βE0

k

2

){
1 + cos

(
uE1

k

)
cos

[
E0

k (u − iβ )
]+ d0

k · d1
k

E0
k E1

k

sin
(
uE1

k

)
sin

[
E0

k (u − iβ )
]}

, (B4)

where E0,1
k = |d0,1

k |.
From Eq. (A7), the free energy density difference between the final and initial states in a quench process can be written as

� f = �F

Nd
= − 1

βNd

∑
k

ln
2 + Tr[e−βAk (T0 )]

2 + Tr[e−βAk (0)]
= − 1

βNd

∑
k

ln
cosh2

(
βE1

k /2
)

cosh2
(
βE0

k /2
) . (B5)

From Eq. (A11) and considering Dk (T0) = A1
k for the quench protocol, we have the mean work density

〈w〉 = 1

Nd

∑
k

Tr
[(

A1
k − A0

k

)
e−βA0

k
]

2 + Tr[e−βA0
k ]

= 1

Nd

∑
k

[(
E0

k

)2 − d0
k · d1

k

]
tanh

(
1
2βE0

k

)
E0

k

. (B6)

Combing above equations gives the mean irreversible work density 〈wirr〉 = 〈w〉 − � f . For a small quench, d0
k = (x0

k , y0
k , z0

k ) →
d1

k = (x0
k + δ, y0

k , z0
k ), we have the expansion,

E1
k = E0

k + x0
k δ

E0
k

+
[(

y0
k

)2 + (
z0

k

)2]
δ2

2
(
E0

k

)3/2 + O(δ3). (B7)

Thus at zero temperature

〈w〉 = 1

Nd

∑
k

−x0
k δ

E0
k

= − 1

Nd

∑
k

δ
∂Ek

∂xk

∣∣∣∣
xk=x0

k

, (B8)

〈wirr〉 = 1

Nd

∑
k

(−x0
k δ

E0
k

+ E1
k − E0

k

)
= 1

Nd

∑
k

δ2

2

∂2Ek

∂x2
k

∣∣∣∣
xk=x0

k

. (B9)
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We see that the singularity in 〈w〉 and 〈wirr〉 reflects the first-
and second-order phase transitions, respectively.

The work distribution p(w) may be calculated using the
Fourier transformation of G(u). In general, the energy density
difference of the ground states �min = � f = − 1

Nd

∑
k[E1

k −
E0

k ] gives the minimal work that can be measured at zero
temperature, i.e., p(w < �min) = 0 for T = 0. While at finite
temperatures, even the highest excited state may have a small
but finite weight due to thermal effect. Thus the minimal
work wmin that can be achieved is given by the energy density
difference between the ground state of the post-quench Hamil-
tonian with energy density εg = − 1

Nd

∑
k E1

k and the highest
excited state of the initial Hamiltonian with the energy density

εh = 1
Nd

∑
k E0

k , yielding wmin = − 1
Nd

∑
k (E1

k + E0
k ). Oppo-

sitely, the maximal work wmax is given by the energy density
difference between the highest excited state of the post-
quench Hamiltonian with energy density εh = 1

Nd

∑
k E1

k and
the ground excited state of the initial Hamiltonian with the en-
ergy density εg = − 1

Nd

∑
k E0

k , yielding wmax = 1
Nd

∑
k (E1

k +
E0

k ) = −wmin. Beyond the interval [wmin,wmax], the distribu-
tion function p(w) = 0 and the rate function r(w) = ∞ at all
temperatures.

For a double quench, where the Hamiltonian changes from
A0

k to A1
k at t = 0 and back to A0

k for t � T0, we have Ck (T0) =
e−iT0A1

k . The characteristic function at zero temperature can be
evaluated to be

G(u) =
∏

k

eiuE0
k

{
cosh

(− iuE0
k

)+ sinh
(− iuE0

k

)[
cos2 (E1

k T0
)+ 2

(
d0

k · d1
k

)2 − (
E1

k E0
k

)2(
E1

k E0
k

)2 sin2 (E1
k T0

)]}
. (B10)

Because c(R) = − limN→∞ 1
Nd ln G(u = iR) and r(w = 0) = supR∈R c(R), the singularity in the rate function is associated with

the roots of G(R). Thus a dynamical quantum phase transition may occur at the critical time tc = (2n+1)π
2E1

kc

(n = 0, 1, 2,...) if there

exits a critical momentum kc satisfying d0
kc

· d1
kc

= 0. Under this condition, we have at T0 = tc,

Gkc (R) = e−RE0
kc

{
cosh

(
RE0

kc

)+ sinh
(
RE0

kc

)[
cos2

(
n + π

2

)
− sin2

(
n + π

2

)]}
= e−2RE0

kc . (B11)

Then the singularity occurs when G(R) = ∏
k Gk (R) = 0 as

R → ∞. While for all other T0 = tc or k = kc, there exists a
term in the brace proportional to eRE0

kc , which will cancel the
prefactor e−RE0

k and produce a nonzero G(R) for all R.

APPENDIX C: APPLICATION TO THE MODELS

For the transverse Ising chain, we have dk =
(0,−2 sin k,−2h − 2 cos k). Using the dispersion relation
εk (h) = |dk| = 2

√
1 + h2 + 2h cos k, we can calculate 〈wirr〉

for the single quench from h0 < 1 to h0 > 1,

〈wirr〉 = 1

N

∑
k>0

[−4δ(h0 + cos k)

εk (h0)
+ εk (h1) − εk (h0)

]
.

(C1)
Using tc = (2n+1)π

2E1
kc

and d0
kc

· d1
kc

= 0 for the value of kc, the

critical times for the dynamical QPT during a double quench
process are

tc = (n + 1/2)π

2
√

1 + (h1)2 − 2h1
1+h0h1
h0+h1

. (C2)

For the SSH model, we have dk = (v + cos k, sin k, 0) and
εk (v) = |dk| = √

1 + v2 + 2v cos k. Thus for a single quench
from v0 < 1 to v1 = v0 + δ > 1,

〈wirr〉 = 1

N

∑
k

[−δ(v0 + cos k)

εk (v0)
+ εk (v1) − εk (v0)

]
. (C3)

Because of the topological nature of the QPT in the SSH
model, there exists a band crossing at k = π at the QCP. We
can thus separate the mean irreversible work density into two
terms, 〈wirr〉 = 〈wirr〉k =π + 〈wirr〉k=π . The results are shown
in Fig. 6. While the first term gives the usual ln N scaling due
to quantum criticality, the second term 〈wirr〉k=π = 2

N (δ − λ)
yields an additional 1/N contribution, which becomes domi-
nant and leads to the anomalous 1/N scaling when λ−ν is the
largest length scale. For the double quench process, the critical
times for the dynamical QPT are

tc = (n + 1/2)π√
1 + (v1)2 − 2v1

1+v0v1
v0+v1

. (C4)

For the BCS model with dk = (−�, 0, ξk ), the mean irre-
versible work density for the single quench process is

〈wirr〉 = 1

N2

∑
k

⎡⎣ −δ�0√
�2

0 + ξ 2
k

+
√

�2
1 + ξ 2

k −
√

�2
0 + ξ 2

k

⎤⎦,

(C5)
and the dynamical QPT during a double quench process with
�0 = 0 occurs at

tc = (n + 1/2)π

�1
. (C6)
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