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Search for pressure-induced tricriticality in Cr
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We investigate the possibility of reducing the phase space of magnetic fluctuations at the weakly first-order
Néel transition in Cr by neutron diffraction to test whether a second-order phase transition can be induced under
the application of uniaxial pressure. Using an improved setup to reduce stress inhomogeneities we succeed
in increasing significantly the pressure range until irreversible broadening due to plastic deformation occurs
compared with previous studies. Despite the observed tripling of the intensity of the magnetic Bragg peak
(0, 0, 1 − δ) at p[110] � 450 bar, indicating a full population of a single-Q±-domain state, no hints of a tricritical
point are observed, i.e., the phase transition remains weakly first order. Therefore, the reduction in the phase
space of the magnetic fluctuations by uniaxial pressure does not lead to the predicted second-order phase
transition.
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I. INTRODUCTION

Phase transitions are of great interest in contemporary
physics because they involve remarkable changes in materi-
als’ properties. Depending on the order of the transition, the
thermodynamic observables change abruptly or continuously
and may involve fluctuations which act as precursors to an
ordered state [1] or may even stabilize new ordered phases. A
prominent example is the stabilization of the skyrmion phase
in helical MnSi by entropy-driven magnetic fluctuations [2].
Of particular interest are transitions where the phase space of
the fluctuations is so large that a putative second-order phase
transition becomes first-order [3,4]. Indeed, it was shown
recently that the phase transition from the helimagnetic to
the paramagnetic phase in MnSi is a fluctuation-induced first-
order transition of the Brazovskii type [5].

First-order phase transitions which involve fluctuations
are not uncommon. For example, at the interface ice-water
and Salol, order-disorder fluctuations have been observed by
means of dynamic light scattering [6,7]. There are several
other first-order phase transitions, for example, in Cr, Eu, and
UO2 to name a few, that may involve fluctuations [8]. Bak
et al. have considered whether symmetry considerations not
only are useful for the classification of second-order phase
transitions but also can be used for predicting first-order phase
transitions. Based on the renormalization-group equations in
4 − ε dimensions they conclude that the lack of a stable fixed
point may be evidence of the occurrence of a first-order phase
transition [9].

According to universality, the critical behavior of the
static properties and of the fluctuations near second-order
phase transitions depends only on a small number of param-
eters of the system such as the spatial dimensionality, the

*a.schade@tum.de
†peter.boeni@frm2.tum.de

number of components of the order parameter, and the sym-
metry of the Hamiltonian [9]. Of particular interest are sys-
tems where the phase transitions involve an increase in the
unit cell, which are described by n � 4 vector models. Promi-
nent examples are Cr and MnSi. Cr involves n = 12 [10]
or even n = 18 components if the longitudinal fluctuations
are taken into account [11]. According to Bak and Jensen,
including anisotropy, MnSi exhibits n = 8 components [12].
Indeed, renormalization-group theory predicts for Cr and
MnSi first-order phase transitions as observed experimentally
in Refs. [13] and [14], respectively. Here, due to the large
n, the phase space of the critical fluctuations is so large that
the system circumvents the critical point and realizes a weak
first-order phase transition.

A convenient tool to influence the symmetry of a system,
thereby reducing the phase space of the fluctuations, is the
application of an external magnetic field. Indeed, it was shown
that the application of a field of μ0H int

TCP = 340 mT in MnSi
induces a tricritical point at TTCP = 28.5 K [15–18]. In Cr,
the application and removal of a field of 4 T leads to neither
a single-Q nor a cubic state [13]. One of the reasons is that
the coupling of the magnetic field to the spin density wave
(SDW) is very weak at the Néel transition [19]. In contrast, the
dilution of Cr is a very sensitive means to change the nature of
the phase transition: Doping Cr with 0.5 at% V leads already
to a continuous transition [20]. It is, however, not clear how
homogeneous the doping is and how it affects the electronic
band structure of Cr.

In the light of the above results, breaking the cubic sym-
metry by the application of uniaxial pressure seems to be the
most convenient route to affect the order of the Néel transition
of Cr. Based on the Landau-Ginzburg-Wilson Hamiltonian
proposed by Bak and Mukamel [10], Barak and Walker [11]
predicted that the application of uniaxial pressure along the
[110] direction in Cr leads to a reduction in the symmetry of
the order parameter. Thus the available phase space for fluc-
tuations is reduced. Therefore, the order of the Néel transition
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FIG. 1. T dependence of the (0, 0, 1 − δ) magnetic satellite peak
I (T ) of Cr [22]. (a) On a coarse T scale, the data points from
Ref. [22] can be parametrized assuming a second-order phase tran-
sition with I (T ) ∝ t2β (red line). (b) The enlargement of I (T ) close
to TN reveals a weak first-order phase transition [21]. The solid blue
line is an empirical fit to the data from Ref. [21], taking all shown
data points into account. The fitting function, Eq. (1), is explained in
Sec. IV.

would change from first to second order and a tricritical point
is expected at a critical pressure p[110] = pcrit

[110] [11].
A first attempt to investigate Cr under uniaxial pressure

was performed by Fawcett et al. [21]. However, the predic-
tion of Barak et al. could be neither verified nor falsified
because the Néel transition began to broaden irreversibly for
pressures in the range 160 bar � p[110] � 300 bar. Fawcett
et al. conjectured that the broadening was caused by the
formation of residual stresses due to the occurrence of plastic
deformation [21]. To draw definite conclusions concerning
the possibility of inducing a second-order phase transition by
uniaxial pressure we have designed an improved pressure cell
that allows the performance of experiments under controlled
conditions for pressures exceeding p[110] = pcrit

[110].
The magnetic properties of Cr may be summarized as

follows: Nesting of the Fermi surface leads to the formation
of a sinusoidal incommensurate SDW with ordering vectors
Q± = (2π/a)(0, 0, 1 ± δ), where a = 2.88 Å is the lattice
constant and δ = 0.048 [22]. A spin-flop transition from
the longitudinal to the transverse SDW phase takes place at
TSF = 121 K. At the Néel temperature TN = 311 K, Cr enters
the paramagnetic phase via a weak first-order phase transi-
tion. The incommensurate ordering leads to a complicated
spectrum of magnetic excitations which emerges from the
magnetic satellites and is still not understood [23] despite
intense experimental and theoretical efforts [24].

In contrast to most ferro- and antiferromagnets, which
enter the paramagnetic phase via a continuous second-order
phase transition, Cr exhibits a weak first-order phase tran-
sition as mentioned above. Figure 1(a) depicts the temper-
ature dependence of the intensity of the magnetic satellite
peak near the Néel temperature TN , the intensity of which
is proportional to the square of the staggered magnetization
M [22]. Assuming a second-order phase transition, the data
points are fitted with the expression M2 = M2

0 t2β , where the
reduced temperature is given by t = (Tc − T )/Tc, yielding
β = 0.19 ± 0.01 and a putative transition temperature Tc =
TN + (0.76 ± 0.14) K, which exceeds the experimentally

determined TN . Zooming into the region near TN reveals that
the phase transition is indeed weakly first order as indicated
by the blue circles in Fig. 1(b) [21].

We have used an improved design of the uniaxial pressure
cell that was developed by Chacón et al. [25] based on
work reported in Ref. [26]. It was successfully applied to
characterize the dependence of the magnetic order of MnSi on
uniaxial pressure [27]. Adams et al. used the same pressure
cell in an experiment on Cr, where the pressure was applied
along the [001] crystallographic direction [28].

The value of the critical pressure pcrit.
[110] is not predicted by

Barak’s model due to unknown material constants. However,
we have shown that the application of a uniaxial pressure
of 600 bar along the [001] direction is already sufficient to
completely suppress the SDW satellites along [001] [28].
As a rough guess we assume that 600 bar along [110] may
also be sufficient to suppress the four magnetic reflections
[±δ,±δ, 1]. Because the suppression of magnetic Bragg
peaks is supposed to coincide with the extinction of the
associated fluctuations, we conjecture that pcrit.

[110] ≈ 0.6 kbar.

II. IMPLICATIONS OF STRESS INHOMOGENEITIES

Uniaxial pressure cells are a formidable tool to study
effects of magnetoelastic coupling in antiferromagnetic mate-
rials [21,29]. As discussed above, the application of 0.6 kbar
along the [001] direction may be sufficient to completely
suppress the magnetic Bragg peaks [0, 1,±δ] [28]. This
pressure corresponds to the application of only 60 N on a
cross-sectional area of 1 mm2.

A disadvantage of applying uniaxial pressure in compari-
son to an externally applied magnetic field is the presence of
pressure inhomogeneities in the sample, which are difficult
to control. A discussion of the dependence of the stress
inhomogeneities as a function of the dimensions of the sample
and the mechanical deficiencies of the pressure cells may be
found in Ref. [30].

Typically, pressure inhomogeneities lead to a smearing of
phase transitions. Using the experimentally determined value
dTN/d p[110] = −1.5 ± 0.4 K/kbar for Cr [21], the shift of
the transition temperature Tc − TN = 0.76 K corresponds to
a uniaxial pressure p[110] = 510 bar. Therefore, it must be
verified that the standard deviation σp of the uniaxial pressure
within the sample is σp � 510 bar.

Plastic deformation of a sample sets in when the von
Mieses stress, σmis := [ 1

2 ((σxx − σyy)2 + (σyy − σzz )2 +
(σzz − σxx )2) + 3(σ 2

xy + σ 2
xz + σ 2

yz )]1/2, exceeds the yield
strength, σyield [31]. For typical sample dimensions, all
components except σzz may be neglected [30], yielding
σmis ≈ |p[110]|. However, stress inhomogeneities lower the
threshold for plastic deformation. On a 2σp tolerance level,
plastic deformation starts when the mean pressure p̄[110]

exceeds the threshold σyield − 2σp.

III. EXPERIMENTAL SETUP

The Cr sample under investigation had the shape of a
prism of height h = 7.56 mm and a square cross section with
sides a = 2 mm. It was cut from a cylindrical single crystal
purchased from Johnson-Matthey Co. The crystal was grown

035122-2



SEARCH FOR PRESSURE-INDUCED TRICRITICALITY IN … PHYSICAL REVIEW B 100, 035122 (2019)

7
.5
6

4
.0

piston

cadmium
aperture

extremal
neutron
rays

sample

FIG. 2. Cross-sectional view of the lower part of the pressure
cell. The sample is indicated by the vertical red rectangle. Cadmium
sheets (green rectangles) have been wrapped around the sample cage
and leave windows with a height of 4 mm. The window clips the St.
Venant region [30].

using the same Czochralski growth process as used for the
samples of Hiraka et al. [23,32]. The sample mosaic was
η = 40′.

One component of the stress errors is caused by barreling.
It can be shown that these errors concentrate near the contact
surface and become exponentially weaker as a function of the
z coordinate [30]. Our choice of h/l guarantees that average
stress errors caused by barreling are below 10%, if boundary
regions with a height of at least 1.6 mm are clipped using cad-
mium apertures. Exceeding this estimate we used apertures
that reduce the neutron beam by approximately 1.8 mm on
each side (Fig. 2).

Another important component of the stress errors is caused
by bending of the sample, which is caused by nonparallel
contact surfaces if standard, guided pistons are used. In order
to minimize stress inhomogeneities caused by nonparallel
contact surfaces we used a piston that compensates inclina-
tions as proposed by Schade using grease as lubricant [30].
For our design of the piston that compensates for inclinations
we postulate that the bending of the sample mostly depends
on the centering of the sample in the apparatus, while the
surface inclination is of lesser importance. We estimate that
the centering error of the sample is bounded by �d < 0.2 mm,
and thus the stress error caused by eccentricity is below
2%. The above considerations suggest a total error in the
stress of ≈ 12%. Nevertheless, our setup cannot guarantee
that the stress errors are less than 12%, since other factors
could contribute such as finite manufacturing and alignment
tolerances and residual friction between the piston and the
sample despite the use of low-friction lubricants [30].

Elastic neutron scattering experiments were conducted at
MIRA (FRM II) [33,34] in the triple-axis mode with an energy
transfer �E = 0. Stress was applied using a He-activated
uniaxial pressure cell [27]. A manometer records continuously
the helium pressure in the gas bellow. The applied stress is
then determined using the effective area of the metal bellow
and the sample dimensions, yielding an accuracy for the pres-
sure of better than 1% within the temperature range investi-
gated (305.5 K � T � 312 K). We performed 12 temperature
sweeps during which we repeatedly measured the integral
intensity of the magnetic Bragg peak [0, 0, 1 − δ] using a
longitudinal scan in reciprocal space as shown in Fig. 3. Each
sweep started at a temperature T1 > TN followed by a decrease
in T at a constant rate of 2.7 K/h to T2 < TN .
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FIG. 3. Scattering plane in reciprocal space. The uniaxial pres-
sure is applied along [110], i.e., normal to the scattering plane. The
longitudinal scan is used to measure the magnetization as a function
of the temperature, and the ω, φ11̄0, and φ001 scans are used for
realigning the sample after each pressure change.

After each pressure change, we optimized the orientation
of the sample to compensate for possible tilting of the crystal
planes due to a rigid rotation or a plastic deformation by
adjusting the angles ω, φ11̄0, and φ001 (see Fig. 3). For this
purpose the intensity of the nuclear Bragg peaks [1,−1, 0]
and [0, 0, 2] was optimized.

Figure 4 shows the optimized goniometer angles ω, φ11̄0,
and φ001 for each pressure. It is shown that the angles ω and
φ001 do not change significantly. In contrast, φ11̄0 decreases
strongly by about 0.5◦ for p[110] � 550 bar. We see below
that the strong tilting of the (001) crystal planes about the
[11̄0] axis is linked to the observed plastic deformation of the
crystal.

IV. EXPERIMENTAL RESULTS

Figure 5 summarizes the 12 temperature sweeps we per-
formed. They are numbered in the sequence of occurrence.

(d
eg

)

FIG. 4. Orientation of the scattering plane parameterized by the
angles φ11̄0, φ001, and ω as a function of the applied uniaxial pressure.
Error bars are smaller than the symbol size. The shading indicates
the full width at half-maximum of the Bragg peaks used for the
alignment (Fig. 3).
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FIG. 5. Summary of all temperature sweeps performed. The
numbering #1 to #12 reflects the sequence of the measurements.
Data sets are shifted vertically by a constant for better visibility. The
scaling of the intensity axis is the same for each curve. Error bars
are smaller than the size of the symbols. Solid lines depict the fitted
function f (T ) given by Eq. (1). The numbers on the right-hand axis
indicate the applied pressure in bars.

From #1 to #7 the uniaxial pressure was monotonically in-
creased from 0 to 550 bar. In run #1 the piston had no mechan-
ical contact with the sample. The data show that the smearing
of the phase transition does not change significantly. However,
the step height increases by a factor of approximately 3,
indicating a complete population of the SDW domain with
Q± parallel to [001]. There is also an indication of a lowering
of TN by ≈ 0.8 K with increasing pressure, quantitatively
consistent with the known pressure dependence of TN . Within
the accuracy of our experiments we did not observe a change
in the incommensurability δ.

Subsequently decreasing the pressure from 550 to 178 bar
(run #8) essentially resulted in a shift in the data of run #7 to
a higher temperature without involving a significant change in
the profile. This result indicates (i) that the sample behaved
reversibly and (ii) that the sample remained in a single-Q±
state. During the course of runs #9 and #10 the pressure was
increased further before it was reduced again to 0 bar (#11,
#12). The data clearly show a significant broadening of the
transition that is irreversible. We conclude that the sample was
plastically deformed.

FIG. 6. Fit of data set #1 (0 bar) by f (T ) from Eq. (1). The
width of the transition, TWidth, is approximately given by the [10% ×
PStep, 90% × PStep] levels. Error bars represent the confidence inter-
val of 2σ . They are not shown if they are smaller than the size of the
symbols.

For a quantitative estimate we parametrized the data by the
function f (T ) given by

f (T ) = fLine(T ) × fSigmoid(T ) + Pbg, (1)

where

fLine(T ) := PSlope × (T − TN ) + PStep, (2)

fSigmoid(T ) := 1

1 + exp
( T −TN

�T

) , (3)

�T := TWidth

2 log 9
. (4)

Here, Pbg, PSlope, PStep, TN , and TWidth are the fit parameters
designating the background, the linear slope of the integrated
intensity of the magnetic peak, the increase in the intensity at
the phase transition, the Néel temperature, and the width of the
transition, respectively (see Fig. 6). The choice of fSigmoid(T )
in the form of a Fermi function is purely empirical.

V. DISCUSSION

The pressure dependence of PStep shown in Fig. 7 confirms
the conclusions drawn from the raw data notably that a single
Q± state is populated at the high pressure of p[110] ≈ 448 bar.
There is an indication of a downturn of PStep at 771 bar, which
does not recover when the pressure is released, suggestive of
plastic deformation.

Figure 8 shows that TN decreases linearly as long as
p[110] � 550 bar. Above 550 bar, TN decreases more rapidly,
indicating the development of stress inhomogeneities, i.e.,
σp > 0. A linear regression of the slope yields

dTN

d p
= (−1.77 ± 0.10)

K

kbar
. (5)

In addition to the statistical error of the fit, a systemic error of
0.012 K/kbar due to the pressure calibration is included.

The slope as determined in our experiment is in good
agreement with the slope determined by Fawcett et al., who
obtained dTN/d p = −1.5 ± 0.4 K/kbar [21]. It compares
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FIG. 7. Increase in the intensity of the magnetic satellite peak
(0, 0, 1 − δ) at TN versus p[110]. With increasing p[110], PStep in-
creases. After reaching 550 and 771 bar, p[110] was reduced to 178 bar
(red arrow) and 0 bar (violett arrow), respectively. Irreversibilities are
observed for p[110] � 550 bar.

well also with the slope as reported by McWhan and Rice
[35] under application of hydrostatic pressure; they found
(dTN/d p)iso = −5.1 K

kbar , which is � 2.9 times larger than our
value, i.e., very close to the theoretical value of 3. For more
recent results on Cr under hydrostatic pressure see the work
by Jaramillo et al. [36].

Finally, Fig. 9 shows the central result of our investigation,
namely, the pressure dependence of the width of the transition.
Initially, TWidth shrinks significantly, from 0.93 K at 0 bar
(sweep #1) to 0.62 K at 3 bar, before increasing again and
assuming, at p[110] ≈ 448 bar, the value of sweep #1. At
higher pressures, p[110] � 550 bar, TWidth increases rapidly.
When releasing p[110] in this regime, TWidth maintains its
high value, suggesting plastic deformation. The signature of
a tricritical point, as predicted by Barak et al. [11], would
be reflected in a marked and reversible increase in TWidth as
typically observed for a continuous phase transition. This is
not observed.

FIG. 8. Néel temperature TN versus p[110]. After reaching 550
and 771 bar, p[110] was reduced to 178 bar (red arrow) and 0 bar
(violet arrow), respectively. Irreversibilities are observed for p[110] �
550 bar. Error bars are omitted when they are smaller than the symbol
size.
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FIG. 9. Width of the Néel transition, TWidth, versus p[110]. After
reaching 550 and 771 bar, p[110] was reduced to 178 bar (red arrow)
and 0 bar (violet arrow), respectively. Irreversibilities are observed
for p[110] � 550 bar. Error bars are omitted when they are smaller
than the symbol size. Data points with the labels #1 and #2 corre-
spond to sweeps #1 (0 bar) and #2 (3 bar).

In the experiment reported by Fawcett et al. [21], the
width of the transition was found to increase by a factor
of approximately 2 between 160 and 300 bar, in contrast to
our experiment, where a significant broadening occurs only
above 550 bar. We attribute the behavior of our sample to the
significantly more homogeneous stress distribution.

Finally, let us discuss the width of the magnetic phase
transition in Cr at zero pressure. The data points labeled #1
and #2 in Fig. 9 correspond to sweeps #1 (p[110] = 0 bar)
and #2 (p[110] = 3 bar). As soon as the piston comes into
contact with the sample, TWidth is significantly reduced, by
about 0.2 K, while a significant difference in TN and TStep

between sweep #1 and sweep #2 is not observed. The decrease
in TWidth may be a consequence of an improved alignment
of Q± perpendicular to p[110] due to the applied pressure.
According to Eq. (5) a pressure difference �p � 110 bar is
required to shift TN by 0.2 K, which is much higher than the
applied pressure of 3 bar in sweep #2. Therefore, the width
of the transition at TN at zero pressure, TWidth ≈ 0.93 K, is
intrinsic (maybe caused by imperfections of the crystal) and
is not caused by residual stress in the sample.

When the pressure is released from 550 bar (#7) to 178 bar
(#8) TN increases, however, TWidth remains essentially con-
stant, clearly indicating that irreversibilities occur. A similar
scenario is observed when p[110] is further increased to 771 bar
(#10) and released to zero pressure (#12).

VI. SUMMARY AND OUTLOOK

Based on our experimental results, namely, that the transi-
tion at TN remains first order, we rule out the existence of a
tricritical point in Cr for uniaxial pressures p[110] � 550 bar
despite the observation that the sample is obviously in a
single-Q± state above 448 bar (Fig. 7). Reaching 550 bar is
a significant improvement in comparison to previous work in
which no broadening was observed up to only 160 bar [21]. As
a precondition for this conjecture, we succeeded in reducing
the stress inhomogeneities strongly in our setup.
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Comparing our results with a similar study on MnO by
Bloch et al. [37] we hesitate to rule out the appearance of
a tricritical point in Cr under controlled uniaxial pressure
exceeding p[110] > 550 bar. Bloch et al. observed that a sig-
nificant detwinning occurred in MnO at p = 1.2 kbar, while
clear evidence of tricritical behavior was only observed at a
pressure p = 5.5 kbar [37]. Therefore, our uniaxial pressure
device should be improved further to reach uniform pressures
higher than 550 bar.

In contrast to Cr, where magnetostrictive effects are ex-
tremely small, i.e., �d/d � 1 × 10−5 [38], a strong sponta-
neous contraction of the lattice occurs in the ordered phase of
antiferromagnetic MnO, i.e., the angle between the [100] and
the [010] axis becomes 1.12 × 10−2 rad at 4 K. [37] There-
fore one may speculate that in the presence of the strongly
enhanced magnetic fluctuations reported by Sternlieb et al.

at the silent satellite positions in Cr close to TN [39] and
the extremely small magnetostrictive effects, the phase space
for magnetic fluctuations in Cr is not reduced when uniaxial
pressure forces Cr to become single Q±. Hence, a stress-
induced tricritical point in Cr may not exist and the phase
transition in Cr remains weakly first order.
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