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Fractionalized Fermi liquid in a frustrated Kondo lattice model
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on
the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin
model that is known to host a Z2 spin-liquid and a ferromagnetic phase. The model is amenable to sign free
auxiliary-field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire
a gap, they remain massless in the Z2 spin-liquid phase. Since our model has an odd number of spins per unit
cell, this phase is a non-Fermi liquid that violates the conventional Luttinger theorem which relates the Fermi
surface volume to the particle density in a Fermi liquid. This non-Fermi liquid is a specific realization of the
so-called fractionalized Fermi liquid proposed in the context of heavy fermions. We probe the violation of the
Luttinger sum rule in this non-Fermi liquid phase via conventional observables such as the spectral function, and
also by studying the mutual information between the electrons and the spins.
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I. INTRODUCTION

Electron-electron interactions can localize charge carriers
and generate insulating states with local moments [1]. What
happens when these local moments ( f spins) are Kondo
coupled with magnitude JK to extended Bloch conduction
(c) electrons? For a single local moment in a metal, the
answer is known: The Kondo coupling is relevant and the
f electron is screened by the conduction electrons [2,3].
For a lattice of f electrons, i.e., Kondo lattice systems, the
problem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, the
Lieb-Schultz-Mattis-Hastings-Oshikawa theorem [4–6] puts
strong constraints on the possible outcomes. Specifically, in
addition to a heavy Fermi liquid phase where the Fermi
surface is “large” since it includes the local moments, there
exists a distinct possibility where f spins decouple from the
conduction electrons at low energies and enter a spin-liquid
phase [7,8]. In such a “fractionalized Fermi liquid” phase
(henceforth denoted as FL* phase, following Refs. [7,8]), the
conduction electron Fermi surface is “small” in that it does
not include local moments, and therefore the conventional
Luttinger theorem [9] is violated.

From an experimental standpoint, a possible breakdown of
Luttinger theorem is relevant to some of the most challenging
issues in heavy fermion materials [7,10,11]. There are at least
two conceptually different scenarios where this may occur:
In materials such as YbRh2Si2 [12] and CeCu6−xAux [13],
one observes signatures that indicate that the Fermi surface
volume changes abruptly across the transition from a heavy
Fermi liquid phase to a magnetically ordered phase charac-
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terized by the absence of Kondo screening [14]. A different
scenario, which is perhaps more closely related to this paper,
is the possibility of a nonmagnetic phase which violates
Luttinger theorem. Signatures of such a phase were seen in
Co- and Ir-doped YbRh2Si2 [15]. Following Refs. [4,7,8] and
as discussed above briefly, in the absence of any other sym-
metry breaking (e.g., lattice translation) such a nonmagnetic
phase is inconsistent with a Fermi liquid ground state if the
Kondo screening is not operative and the unit cell contains
an odd number of spin-1/2 spins. The local moments in such
a phase are then forced to either have a gapless spectrum
or topological order [5]. We also note that as discussed in
Ref. [16], the above is closely related to the notion of an
“orbital selective Mott transition.” In addition, there are sev-
eral other heavy fermionic materials such as CePdAl [17–20],
κ-(ET)4Hg2.89Br8 [21], YbAgGe [22], YbAl3C3 [23], and
Yb2Pt2Pb [24] whose phenomenology seems to be poorly
understood, and where microscopic considerations suggest
that the geometric frustration between local moments plays
an important role.

In the next section, we will introduce a generalized Kondo
lattice model (KLM) which hosts the aforementioned transi-
tion between a conventional phase with electronlike quasipar-
ticles, and an FL* phase with Z2 topological order. From a
technical standpoint, and as discussed in Sec. III, the most
salient feature of our model is that it does not suffer from
fermion sign problems even in the presence of the Kondo
coupling [25]. Our model is realized by Kondo coupling a
variant of the Balents-Fisher-Girvin (BFG) model [26–28],
first introduced in Ref. [29], to conduction electrons. The
BFG model supports a transition from a ferromagnetic phase
to a gapped Z2 spin liquid [Fig. 1(a)]. When this model is
weakly coupled to conduction electrons, the spin liquid gives
way to an FL* phase where the conduction electrons form a
Dirac semimetal, while the local moments continue to form
a Z2 spin liquid [Fig. 1(b)]. Since our unit cell contains two
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FIG. 1. (a) Schematic phase diagram of the BFG model in the
absence of Kondo coupling. (b) Schematic phase diagram of the BFG
model in the presence of Kondo coupling. The stability of the FL*
phase is set by the gap in the BFG model that scales as (J⊥)2/Jz in
the strong coupling limit.

c electrons and three f spins, this result stands at odds with
the Luttinger sum rule. As the Kondo coupling is increased
beyond a threshold, one loses the topological order of the local
moments and enters a conventional phase with electronlike
quasiparticles. In Sec. IV, we will discuss the numerical
results, spectral function of the conduction electrons, and
mutual information between the conduction electrons and
local moments that allow us to draw the aforementioned
conclusion. Finally, in Sec. V, we discuss our results.

II. MODEL AND LIMITING CASES

We investigate the following generalized KLM described
by Ĥ = Ĥc + ĤS + ĤK with

Ĥc = −t
∑

〈xxx,yyy〉,σ
ĉ†

xxx,σ ĉyyy,σ + H.c.,

ĤS = −J⊥ ∑
〈iii, jjj〉

(
Ŝ f ,+

iii Ŝ f ,−
jjj + H.c.

) + Jz
∑
�

(
Ŝ f ,z
�

)2
,

ĤK = JK

∑
〈xxx,iii〉

[
Ŝc,z

xxx Ŝ f ,z
iii − (−1)xxx

(
Ŝc,+

xxx Ŝ f ,−
iii + H.c.

)]
. (1)

Here, ĉ†
xxx,σ creates a conduction electron in a Wannier

state centered at xxx with a z component of spin σ , SSSc
xxx =

1
2

∑
s,s′ ĉ†

xxx,sσs,s′ ĉxxx,s′ is the spin operator and 〈xxx,yyy〉 are the

nearest neighbors of a honeycomb lattice. SSS f
iii is a spin-1/2

degree of freedom located on the kagome lattice correspond-
ing to the median of the honeycomb lattice (see Fig. 2). The
Hamiltonian ĤS is a variant of the BFG model (Refs. [26,29])
with nearest-neighbor 〈iii, jjj〉, spin-flip amplitude J⊥, and in-
teraction Jz that minimizes the total z component of the spin
on a hexagon: Ŝ f ,z

� = ∑
iii∈� Ŝ f ,z

iii . The conduction electrons

and the local moments are Kondo coupled, according to ĤK ,
along nearest-neighbor bonds 〈xxx, iii〉 between the kagome and
honeycomb lattices (Fig. 2). The factor (−1)xxx that takes the
value 1 (−1) on the A (B) sublattice of the honeycomb
lattice is necessary to avoid the negative sign problem. In
particular, it cannot be gauged away since the kagome lattice
is not bipartite. Referring back to Fig. 1, Jz plays the role of
frustration, and JK is the Kondo coupling.

Let us consider various limiting cases of the Hamiltonian
Ĥ . When J⊥ � Jz, JK , the local moments order in an XY -

(a) (b) (c)

(d) (e)

FIG. 2. Left: The model—conduction (c) electrons hop, with
matrix element t , between nearest-neighbor sites of the honeycomb
lattice denoted by the red and blue circles. The kagome lattice
(black) supports impurity spins described by the Balents-Fisher-
Girvin model with nearest-neighbor spin-flip J⊥ and interactions on
hexagons of strength Jz (green). The two systems are Kondo coupled
with strength JK for each bond in the elemental triangles (thick red
and blue bonds). For details, see Eq. (1). Right: Various patches
� used to extract the Renyi mutual information. Subsets (b) and
(c) belong to the triangle sequence, (d) and (e) are built out of unit
cells.

ferromagnetic ground state. Taking into account the (−1)xxx

factor in the Kondo coupling, we see that this term induces
an antiferromagnetic in-plane mass term for the conduction
electrons. Hence, in this limit one obtains a magnetically
ordered insulating phase.

Next, consider JK � J⊥ � Jz, t . First, let us set all cou-
plings except JK to zero. Performing the unitary transforma-
tion ĉxxx,↓ → −(−1)xxxĉx,↓ maps the Kondo interaction to an
antiferromagnetic Heisenberg coupling between the conduc-
tion electrons and the local moments. This interaction is not
frustrated, and the ground state is AFM ordered with opposite
polarizations on the kagome sites and the honeycomb lattice.
Undoing the above transformation, the in-plane magnetization
of the conduction electrons will be parallel for one honeycomb
sublattice and antiparallel for the other, relative to the local
moments. Next, turning on a small J⊥, Jz with J⊥ � Jz, the
local moments will preferably order in the XY plane. Com-
paring to the limit J⊥ � Jz, JK , one finds that the in-plane
symmetry-breaking pattern is identical and in the absence
of any out-of-plane component, this phase is expected to be
adiabatically connected to the aforementioned magnetically
ordered insulating phase in the J⊥ � Jz, JK limit. Note that an
out-of-plane component will spontaneously break the symme-
try Ŝ f ,z

iii → −Ŝ f ,z
iii , Ŝ f ,x

iii → Ŝ f ,x
iii , Ŝ f ,y

iii → Ŝ f ,y
iii (see Appendix A

for a detailed discussion of the symmetries). Due to symmetry
breaking and associated stiffness, this phase is also stable to
switching on a small hopping t .

Most interesting is the limit Jz � J⊥ � JK . When only
Jz and t are nonzero, the conduction electrons form a Dirac
semimetal while the local moments can be described as a
classical system with a ground-state degeneracy that scales
exponentially with the system size [26]. Allowing a small
J⊥/Jz 
 1 lifts this macroscopic degeneracy and leads to a
Z2 topologically ordered spin liquid of the local moments
[26]. Remarkably, as discussed in Refs. [7,8], introducing
a small Kondo coupling JK leaves the state unchanged be-
cause perturbatively the Kondo coupling is irrelevant at the
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renormalization group (RG) fixed point where conduction
electrons form a Dirac semimetal while the local moments are
in a gapped Z2 topologically ordered state. Therefore, at low
energies, the local moments decouple from the conduction
electrons and one obtains a non-Fermi liquid FL* phase with
a “small” Fermi surface which was introduced in Refs. [7,8].
Physically, in this phase the local moments are highly entan-
gled with each other such that the formation of Kondo singlets
or the tendency to magnetically order is suppressed.

The phases discussed above, especially the FL* phase,
should be contrasted with the conventional heavy Fermi liquid
that satisfies the Luttinger sum rule. Since our model has two
electrons and three spins per unit cell, the most prominent
feature is that this state has a “large” Fermi surface which en-
closes half of the Brillouin Zone (BZ) whereas the Fermi vol-
ume of the aforementioned fractionalized FL* phase vanishes.
In the Appendices, we discuss several Ansätze for mean-field
approximations of Eq. (1) and find that the nature of the
Fermi liquid state strongly depends on symmetries. If particle
hole-symmetry (PHS) is imposed in the paramagnetic phase,
then one would expect a flat-band pinned at the Fermi level, a
generically unstable state [30–38]. A hybridization between c
and f electrons necessarily breaks either PHS—with uniform
hybridization—or TRS—when the (−1)xxx phase in the Kondo
coupling is carried over to the hybridization. The latter, which
should be relevant in magnetic phases especially for large
JK , requires fine-tuning to remain paramagnetic whereas the
former can generate a nonmagnetic heavy Fermi liquid. In the
range of parameters considered in this paper, we do not find
such a phase.

III. METHOD AND OBSERVABLES

We simulate the Hamiltonian in Eq. (1) using the aux-
iliary field quantum Monte Carlo (QMC) method [39–41].
We follow the strategy outlined in Ref. [25] where it was
shown that Hamiltonians of the form Ĥ do not suffer from
the fermion sign problem when J⊥ � 0 and the conduction
bands are particle-hole symmetric. In this approach, local
moments are fermionized, SSS f

iii = 1
2

∑
s,s′ f̂ †

iii,sσs,s′ f̂iii,s′ , with the

constraint
∑

s f̂ †
iii,s f̂iii,s = 1. As in simulations of the generic

KLM [42,43], this constraint can be imposed very efficiently
since it corresponds to a local conservation law. The details
of our implementation are summarized in Appendix B and we
have used the ALF package [44] to carry out the simulations.
Despite the absence of sign problems, the simulations of this
model are challenging. Fermionization leads to a large number
of auxiliary fields (33 per unit cell), and the condition number
on scales corresponding to the ratio of bandwidth to the
smallest relevant scale (e.g., vison gap in the Z2 spin-liquid
phase) is large. As a consequence, we have used an imaginary
time step �τ t = 0.01. The biggest challenge turns out to be
large autocorrelation times. We tried to improve this issue by
using global moves that mimic vison excitations, as well as
by implementing parallel tempering schemes. Nevertheless,
these long autocorrelation times remain the limiting factor
to access system sizes bigger than those presented here, in
particular 3 × 3 and 6 × 3 unit cells. For both lattice sizes and
the considered periodic boundary conditions, Dirac points are

present. However, only the 6 × 3 allows us to satisfy Ŝ f ,z
� = 0

for all hexagons. Note that mass gaps generically decrease
with system size in this setup [45,46], which is confirmed by
the comparison of spectra on 3 × 3 and 6 × 3 lattices, such
that gapless Dirac cones constitute strong evidence for the
decoupling of the Z2 spin liquid and the Dirac fermions.

We compute spin-spin correlations SAFM =
1/L

∑
IIIJJJ〈Ŝx

III Ŝx
JJJ + Ŝy

III Ŝy
JJJ〉 where the net spin per unit cell III ,

ŜSSIII = ∑
iii∈III ŜSS

f
iii + ∑

xxx∈III (−1)xxxŜSS
c
xxx, captures the aforementioned

ferromagnetic-antiferromagnetic order of the f spins
and conduction electrons. The spectral function of the
conduction electrons Ac(kkk, ω) = − 1

π
Im Gret

c (kkk, ω) can be
extracted from the imaginary time-resolved Green’s function
Gc(kkk, τ ) = ∑

α,σ 〈ĉ†
kkk,α,σ

(τ )ĉkkk,α,σ
(0)〉 using the MaxEnt

method [47,48]. Here α is the orbital index. The auxiliary
field QMC method also allows us to study the entanglement
properties of fermionic models [49–54]. In particular, as
shown in Refs. [50,51], the second Renyi entropy S2 can
be computed from the knowledge of Green’s-functions GA,
restricted to subsystem A, for two independent Monte Carlo
samples. An alternative approach exploits the replica trick,
e.g., for fermionic [55–58], bosonic [29], and spin systems
[59,60]. For a given subsystem of conduction electrons �c and
of spins � f , the Renyi mutual information between �c and
� f is I2(�c, � f ) ≡ −S2(�c ∪ � f ) + S2(�c) + S2(� f ). We use
the two sequences for � as shown in Figs. 2(b), 2(c) 2(d), and
2(e). In the calculation of the Renyi mutual information, we
restore the C3 lattice symmetry by averaging over rotationally
equivalent �s.

IV. RESULTS

From here on, we fix J⊥ = t and use t = 1 as the unit
of energy. The BFG model shows a transition from the
ferromagnetic state to the Z2 spin liquid at Jz

c  7.07 [29].
Alongside with spin excitations, the Z2 spin liquid hosts
vison excitations. Recent simulations of the dynamics of the
BFG model [61] estimate the spin and vison gaps at Jz = 8.3
to �s  7.12 and �v  0.2. We expect that the vison gap
remains nonzero at the transition and that the spin gap scales
as (Jz − Jz

c )νz with dynamical critical exponent z = 1 and
ν  0.67, which correspond to the exponents of the 3D XY*
model [27,62,63].

Figure 3 shows a scan at Jz = 7.5 as a function of JK .
We have set the temperature to β = 12. From the above
discussion, this choice of temperature places us well below the
spin gap and allows us to resolve the vison gap. As apparent
in Fig. 3(c), the single particle spectral function at the Dirac
point remains gapless. As a function of JK it looses spectral
weight and a full gap opens sightly before JK = 1.5. At this
energy scale, the spin-spin correlations SAFM show a marked
upturn [see Fig. 3(a)]. In the presence of long-ranged magnetic
order SAFM scales as the volume of the system. Comparison
between the 3 × 3 and 3 × 6 lattices shows that SAFM grows
as a function of system size beyond JK = 1.5.

Small values of JK are associated with small energy scales
which may be difficult to resolve on our finite sized systems
at finite temperatures. To confirm the above result, we present
a scan at fixed JK = 1 and vary Jz in Fig. 4. Upon analysis
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(a) (b)

(c) (d)

FIG. 3. We consider lattices L = 3 × 3 and L = 3 × 6 unit cells
at an inverse temperature β = 12 and at Jz = 7.5 (a) Spin-spin corre-
lations SAFM (see text), (b) Renyi mutual informations I2(�c, � f ) per
site of the patch �c ∪ � f for L = 3 × 6. Here we consider the patches
listed in Figs. 2(b)–2(e). (c) Conduction electron spectral function at
the Dirac point KKK for the 3 × 6 lattice. (d) Same as (c), but at the
�-point. The imaginary time data from which panels (c) and (d) stem
are presented in Appendix C.

of Figs. 4(a) and 4(c), one concludes that the magnetic order
and the single-particle gap track each other. In particular, the
single-particle gap closes in the Z2 spin-liquid phase.

Signatures of the Z2 spin-liquid phase can be picked up
in the spectrum of the conduction electrons. In Figs. 3(d)
and 4(d), we plot the single-particle spectral function at the
� point. In the FL* phase one notices spectral weight at
low energies that we interpret as a signature of the vison.
In particular, since the vison carries no Z2 charge, it will

(a) (b)

(c) (d)

FIG. 4. We consider lattices L = 3 × 3 and L = 3 × 6 unit cells
at an inverse temperature β = 12 and at JK = 1 (a) Spin-spin corre-
lations SAFM (see text), (b) Renyi mutual information I2(�c, � f ) per
site of the patch �c ∪ � f for L = 3 × 6. Here we consider the patches
listed in Figs. 2(b)–2(e). (c) Conduction electron spectral function at
the Dirac point KKK for the 3 × 6 lattice. (d) same as (c), but at the
�-point. The imaginary time data from which panels (c) and (d) stem
are presented in the Appendices.

generically couple to conduction electrons and show up in the
spectral function.

It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c
electrons and the f spins introduced above provides one such
measure [64]. It is important to note that this quantity is
both IR and UV sensitive since we are considering mutual
information between two Hilbert spaces that overlap in real
space. Despite the decoupling of conduction electrons and
local moments at low energies in the FL* phase, one therefore
doesn’t except that the mutual information will be exactly
zero in this phase. It vanishes only at the RG fixed point
corresponding to JK = 0, where these two Hilbert spaces com-
pletely decouple. In the opposite limit when the c electrons
and f spins are maximally entangled, the Renyi mutual infor-
mation will attain its maximum possible value of 4 log(2)/5
per site (recall that the unit cell of our model contains three
f spins and two c electrons). In the magnetically ordered
phase, one expects that the Renyi mutual information will not
be close to this maximum due to the entanglement between
the local moments themselves. From Figs. 3(b) and 4(c), we
see that the QMC data is consistent with this expectation.
The most notable feature is that the Renyi mutual information
per site is an order of magnitude smaller in the FL* phase
compared to the magnetically ordered phase. Such a dramatic
drop is not seen in the generic Kondo lattice [64]. Further-
more, even on a limited size lattices such as ours, one can
already see signatures of the transition from the magnetically
ordered phase to the FL* phase as evidenced by the change of
slope in the coefficient of the Renyi mutual information at the
transition.

V. CONCLUSION AND DISCUSSION

In this paper, we introduced a model amenable to negative
sign free Monte Carlo simulations that can host a fractional-
ized Fermi liquid (FL*) phase. The most prominent feature of
this phase is a violation of the Luttinger theorem due to the
onset of topological order. This proof of principle calculation
paves the way to many other investigations. We have consid-
ered a model where the fractionalization inherent to topolog-
ical order is “emergent,” i.e., the lattice model is written in
terms of spins. A different, and possibly numerically more
tractable approach, would be to simulate directly a theory of
spinons coupled to Z2 gauge fields following Refs. [65–67]
and where spinons are also Kondo coupled to conduction
electrons. Such an approach might be particularly useful for
studying the quantum phase transition between the FL* phase
and the magnetically ordered phase. A field theory description
of this transition was provided in Ref. [63], where it was found
that the Kondo coupling is irrelevant at the critical point due
to the large anomalous exponent of the spins, and therefore
one expects that the conduction electrons have a well-defined
electronlike quasiparticle even at the critical point, while the
local moments will inherit the critical exponents of the 3D
XY* transition [27,62].

It might also be interesting to explore the possibility of
obtaining nontrivial symmetry-protected topological phases in
frustrated Kondo models along the lines of Ref. [68] where
it was shown that under certain conditions, one can obtain
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symmetric states without any topological order even when the
unit cell contains an odd number of spins but the magnetic
unit cell has an integral number of spins.

Another avenue to explore would be the universal sub-
leading contribution of the Renyi entanglement entropy for a
spatial bipartition. In the FL* phase, one expects that this con-
tribution is given as γ = γtopo + γDirac, where γtopo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while γDirac is the
shape-dependent universal contribution from the Dirac con-
duction electrons [69,70]. Similarly, at the transition, owing
to the aforementioned irrelevance of the Kondo coupling, one
expects that γ = γtopo + γDirac + γ3D XY where γ3D XY is the
universal shape-dependent entanglement contribution at the
3D XY transition [69].

Finally, as mentioned in the introduction, the violation of
the Luttinger sum rule is central to several questions in heavy
fermion materials as well as frustrated Kondo lattice systems.
Our approach opens a potential window to quantitatively
explore these and related questions as well.
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APPENDIX A: SYMMETRIES AND HEAVY
FERMI LIQUIDS

In this section, we consider nonmagnetic mean-field solu-
tions such as the Kondo insulator and the heavy Fermi liquid
phase realized in conventional Kondo systems. To this end, it
is convenient to introduce the following two operators: �̂0

xxx,iii =∑
s ĉ†

xxx,s f̂iii,s + H.c. and �̂z
xxx,iii = ĉ†

xxx,↑ f̂iii,↑ − (−1)xxxĉ†
xxx,↓ f̂iii,↓ + H.c.

so the Kondo coupling of Eq. (1) of the main text can be writ-
ten as ĤK = − JK

4

∑
〈xxx,iii〉(�̂

z
xxx,iii )

2. Whereas the former usually
generates the Kondo insulator in conventional Kondo systems
at half filling and also the heavy Fermi liquid at finite doping,
the later is more natural in the model defined by Eq. (1) of
the main text due to the sign structure of the Kondo coupling.
In the following, we first describe the symmetries of the
system and then discuss their implications for nonmagnetic
mean-field approximations.

Our model, Eq. (1) of the main text, has several continu-
ous and discrete symmetries. Among continuous symmetries,
the number of conduction electrons is conserved, and so is
the projection of the total spin along the z direction, i.e.,∑

xxx Ŝc,z
xxx + ∑

iii Ŝ f ,z
iii .

TABLE I. Table of independent particle-hole symmetries. See
text for the notation.

U σ x σ z σ 0 σ 0

α − − + −
βx − + − −
βy + + + −
βz + − − −

The model also exhibits several unitary and antiunitary
particle-hole symmetries which we list in Table I. They
are implemented by a matrix U via ĉ†

xxx,s → (−1)xxxUs,s′ ĉxxx,s′

and f̂ †
iii,s → Us,s′ f̂iii,s′ together with the sign α distinguishing

between unitary and antiunitary transformations:
√−1 →

α
√−1. We list their action on the spin operators by the signs

βββ = (βx, βy, βz ) with Ŝc,l
xxx → βl Ŝc,l

xxx as well as Ŝ f ,l
iii → βl Ŝ

c,l
iii .

One can also combine the particle-hole symmetries in
Table I to define two different antiunitary time-reversal sym-
metries. The first one, T R1, is defined via ĉ†

xxx,s → iσ y
s,s′ ĉ

†
xxx,s′ and

f̂ †
iii,s → iσ y

s,s′ f̂ †
iii,s′ along with

√−1 → −√−1. This transforma-

tion flips all three components of the spin operators ŜSS
c
xxx → −ŜSS

c
xxx

as well as ŜSS
f
iii → −ŜSS

f
iii . The second one, T R2, replaces iσ y by

σ x so only the z component of the spin operators gets reversed.
At the level of free fermion band-structure, the particle-

hole symmetries listed above lead to flat bands. In particu-
lar, either of the symmetries (U, α) = (σ 0,−) and (U, α) =
(σ z,−) guarantee that there is a flat band. This is because
these transformations do not mix up and down spin compo-
nents, which leads to an odd number (= five) of bands for
each spin sector. Furthermore, the antiunitary nature of the
symmetry implies that c(k) → c†(k). Thus there always exists
a flat band at zero energy in each spin sector. Such a flat band
will generically be unstable to interactions, e.g., according to
Table I, a magnetically ordered state in the z direction will
break both of these particle-hole symmetries.

A natural mean-field approximation uses the hybridization
term �̂z = ∑

〈xxx,iii〉 �̂
z
xxx,iii which preserves the PHS listed as

(σ x, −) in Table I, but breaks (σ z,−), (σ 0,+) and (σ 0,−), as
well as T R1 and T R2. The mean-field Hamiltonian Ĥc + �̂z

still has a spin-degenerate flat band at the chemical potential
such that a magnetization in the z direction, which respects the
Sz-spin-rotation symmetry, should be included as well. This
is a magnetically ordered state and numerically we find no
evidence for a finite magnetization in the z direction.

Let us next consider mean-field solutions based on sym-
metry arguments. As discussed before, to obtain dispersive
bands one would need to break at least some symmetries.
One option is the uniform hybridization,

∑
〈xxx,iii〉 �̂

0
xxx,iii, that

preserves the time-reversal symmetries T R1 and T R2, but
breaks all particle-hole symmetries. As a consequence, one
should also allow direct f -electron hopping terms given by∑

〈iii, jjj〉,s f̂ †
iii,s f̂ jjj,s + H.c. The mean-field Hamiltonian for such a

heavy Fermi Liquid is then given as

ĤhFL = Ĥc + �
∑
〈xxx,iii〉

�̂0
xxx,iii + t ′ ∑

〈iii, jjj〉,s
f̂ †
iii,s f̂ jjj,s + H.c. (A1)
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FIG. 5. Cut of the spectrum from K ′ to K with the Fermi energy
marked by the dashed, orange line constraint to the half-filled case
and Fermi surface (blue, dashed) of a heavy Fermi Liquid state with
� = 0.4 and t ′ = 0.2. The shaded area marks the occupied part of
the BZ.

The resulting band structure is depicted in Fig. 5 for � = 0.4
and t ′ = 0.2, where the left-hand side shows a cut from K ′ to
� to K . We clearly recognize a dispersive band in the middle
of the spectrum replacing the aforementioned flat band at zero

energy. Each band is spin degenerate which enhances the Sz

symmetry to a full SU (2) and consequently, the state is para-
magnetic. The right-hand side of the figure shows the Fermi
surface (blue, dashed) where we have kept the electron density
fixed at half-filling. Consistent with Oshikawa’s argument [4],
one finds that the Fermi surface is large, and occupies half
of the Brillouin zone which is depicted by the shaded area
in Fig. 5. The effective chemical potential required for half-
filling is marked by the dashed orange line in the left-hand
side of Fig. 5.

To summarize, the natural mean-field decoupling of Eq. (1)
of the main text leads to a magnetic phase and a symmetry-
based approach generates a heavy Fermi liquid that we do not
find numerically in the investigated range of parameters.

APPENDIX B: DETAILS OF THE METHOD

Let us first write down the fermionized Hamiltonian that is
simulated, Ĥqmc, and then show its equivalence to Eq. (1) of
the main text:

Ĥqmc = −t
∑

〈xxx,yyy〉,σ
ˆ̃c†
xxx,σ

ˆ̃cyyy,σ + H.c. − J⊥

4

∑
〈iii, jjj〉

⎡
⎣2

(∑
σ

ˆ̃f †
iii,σ

ˆ̃f jjj,σ + H.c.

)2

+ (
n f̃

iii + n f̃
jjj − 1

)2

⎤
⎦

− Jz

4

∑
�

∑
iii�< jjj�

(
n f̃

iii − n f̃
jjj

)2 − JK

4

∑
〈iii,xxx〉

(∑
σ

ˆ̃f †
iii,σ

ˆ̃cxxx,σ + H.c.

)2

, (B1)

with ( ˆ̃c†
xxx,↑, ˆ̃c†

xxx,↓) = (ĉ†
xxx,↑, (−1)xxxĉxxx,↓) and ( ˆ̃f †

iii,↑, ˆ̃f †
iii,↓) =

( f̂ †
iii,↑, f̂iii,↓). The Hamiltonian above is identical to Eq. (1)

of the main text up to the following five terms in
Ĥqmc − Ĥ . The first term +(J⊥ + 4Jz )

∑
iii(n

f
iii − 1)2

is the well-known repulsive Hubbard interaction that
suppresses charge fluctuations. The local parity of the
f electrons (n f

iii − 1)2 commutes with the Hamiltonian
as the relevant terms +J⊥ ∑

〈iii, jjj〉 f̂ †
iii,↑ f̂ †

iii,↓ f̂ jjj,↓ f̂ jjj,↑ + H.c.

and + JK
2

∑
〈iii,xxx〉(−1)xxx f̂ †

iii,↑ f̂ †
iii,↓ĉxxx,↓ĉxxx,↑ + H.c. modify the

local occupation by 2. Hence the Hubbard interaction
projects onto the sector with singly occupied f -electron
sites exponentially fast and the relevant scale is set by
β(J⊥ + 4Jz ). In this subspace, all other contributions of
+ J⊥

2

∑
〈iii, jjj〉(n

f
iii − 1)(n f

jjj − 1) and + JK
4

∑
〈iii,xxx〉(n

f
iii − 1)(nc

xxx − 1)

vanish such that Ĥqmc|(n f
iii −1)2=0 = Ĥ . The interested reader

is referred to the Supplemental Material, i.e., Eq. (9) of
Ref. [25].

The efficient projection due to the repulsive Hubbard in-
teraction, however, also introduces a challenge for the numer-
ical stability of the algorithm. Here we have to control the
various scales of Aj = ∏ j

i=0 Bi where Bi is the product of all
exponentiated operators on the ith time slice. Apparently, this
model generated eigenvalues in Aj which exceeded the range
of double precision which is of order 10±308. To overcome this
issue, we implemented the following stabilization scheme.
Assume that we already have a QR decomposition of Aj−1 =
Qj−1eλ j−1 Rj−1 where Qj−1 is the orthogonal part, eλ j−1 is

diagonal and separates the main scales, and Rj−1 contains
the mixing of them. To generate Aj = BjAj−1 we perform the
following steps:

(1) Calculate Mj = BjQj−1.
(2) Use the permutation Pj to sort the columns of Mj =

M̃ jPj according to the column norm of Mjeλ j−1 . Permute λ j−1

and Rj−1 with P−1
j to correct this manipulation.

(3) Perform a QR decomposition of Mj = QjR̃ j without
pivoting.

(4) Extract the scales of R̃ as (Dj )n = |(R̃ j )nn|.
(5) Determine the new scales λ j = log(Dj ) + λ j−1.
(6) Calculate Rj = D−1

j e−λ j−1 R̃ jeλ j−1 Rj−1.
This scheme keeps all the advantages of QR decomposition

with pivoting to handle exponentially large and small scales
of Aj which is paramount to a stable Blankenbecler Scalapino
Sugar (BSS) algorithm, even when double precision suffices.
Here, we did not store the scales as Ds but rather as eλ j−1 to
handle numbers much larger than 10±308.

APPENDIX C: TIME-DISPLACED GREEN’S FUNCTION

Here we provide the imaginary time displaced
Green’s functions of conduction electrons, Gc(kkk, τ ) =∑

α,σ 〈ĉ†
kkk,α,σ

(τ )ĉkkk,α,σ
(0)〉 where α is the orbital and σ the

spin index. The dynamical data presented in the main text, is
obtained by solving

Gc(kkk, τ ) = 1

π

∫
dω

e−τω

1 + e−βω
Ac(kkk, ω) (C1)
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FIG. 6. The simulations were performed on the L = 3 × 6 lattice at an inverse temperature of β = 12. Left panels corresponds to the JK

scan at Jz = 7.5 and the right to the Jz scan at JK = 1.0. For large JK or small Jz, we restricted the time domain in (c) and (d) to τ < 3.5 and
τ < 3.75, respectively, since beyond this scale, the data becomes very noisy.

for Ac(kkk, ω) using the stochastic maximum entropy method
[47,48]. The features present in the dynamical data can clearly
be detected in the imaginary time data which we report in this
section. In Fig. 6, the left-hand side panels presents the JK

scan at a fixed Jz = 7.5 whereas on the right-hand side we
show the Jz scan at constant JK = 1.0.

Figures 6(a) and 6(b) depict the Green’s function at the
Dirac points. In both cases, the gapless mode is clearly vis-
ible in the FL* phase since Gc(KKK, τ ) shows a plateau at large
imaginary times. This height of the plateau corresponds to the
quasiparticle residue.

Figures 6(c) and 6(d) present the equivalent data but at the
� point. In the FL* phase, we see a clear feature with small
intensity at large values of τ . It is this feature in the imaginary
time Green’s function that generates the low-energy spectral

weight in Figs. 3(d) and 4(d) of the main text in the FL*
phase. As mentioned in the paper, we interpret this feature
as a signature of the vison excitation.

Another possible analysis stems from the identity

lim
β→∞

βGc(kkk, τ = β/2) = Ac(kkk, ω = 0), (C2)

which holds provided that Ac(kkk, ω) is a smooth function. At
finite values of β, βGc(kkk, τ = β/2) will provide an estimate
of the spectral weight in an energy window around ω = 0 of
width set by 1/β. Panels (e) and (f) of Fig. 6 plot this quantity
both at the � and Dirac points. Overall, these panels again
confirm that in the FL* phase we observe low-energy excita-
tions with small intensity at the � point and low-energy excita-
tions with large spectral weight at the Dirac point. Note that in
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panel (e) of Fig. 6, corresponding to the JK scan, the intensity
of the feature at the � point first grows and then decreases
since both at JK = 0, where the spin and conduction electrons

decouple and the conduction electrons form a Dirac spectrum,
and at JK � 1, where in the magnetic insulating phase, no
low-lying single particle weight is expected at the � point.
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