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The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is an unconventional superconducting state found under
the influence of a strong Zeeman field. This phase is identified by finite center-of-mass momenta in the Cooper
pairs, causing the pairing amplitude to oscillate in real space. Repulsive correlations, on the other hand, smear
out spatial inhomogeneities in d-wave superconductors. We investigate the FFLO state in a strongly correlated
d-wave superconductor within a consolidated framework of Hartree-Fock-Bogoliubov theory and the Gutzwiller
approximation. We find that the crucial effects of strong correlations lie in shifting the BCS-FFLO phase
boundary towards a lower Zeeman field and thereby enlarging the window of the FFLO phase. In the FFLO
state, our calculation features a sharp midgap peak in the density of states, indicating the formation of strongly
localized Andreev bound states. We also find that the signatures of the FFLO phase survive even in the presence
of an additional translational-symmetry-breaking competing order in the ground state. This is demonstrated by
considering a broken-symmetry ground state with a simultaneous presence of the d-wave superconducting order
and a spin-density wave order, often found in unconventional superconductors.
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I. INTRODUCTION

A magnetic field destroys superconductivity in two ways.
One is through the orbital effect, which couples the magnetic
field to the orbital motion of the electrons. This creates vor-
tices in a superconductor by puncturing holes in the supercon-
ducting pairing amplitude, through which the magnetic flux
lines penetrate. With increasing magnetic field, the density
of the vortices increases and the pairing amplitude fails to
recover between them, causing superconductivity to collapse
progressively [1]. The second one is the Zeeman effect, where
the magnetic field couples to the spin degrees of freedom of
the electrons. This strains the spin-singlet configuration of
the Cooper pairs owing to the split Fermi surfaces of spin-up
and spin-down electrons. As the Zeeman field h, increases,
a superconducting to normal state (NS) transition occurs at
the Clogston-Chandrasekhar [2,3] limit, where the magneti-
zation energy due to the Fermi surface splitting overcomes
the condensation energy of the Cooper pairs. However, it
was later shown that the Cooper pairs can survive beyond
the Clogston-Chandrasekhar limit by having a finite pairing
momentum, which can make the superconducting pairing
amplitude spatially modulating, as proposed by Fulde and
Ferrell [4] and by Larkin and Ovchinnikov independently
[5]. The advantage of having spatially modulating pairing
amplitude in a Zeeman field is to accommodate the magneti-
zation in regions in which the pairing amplitude vanishes and
thereby generating periodically inhomogeneous distribution
of spatial order parameters. Hence, both the superconducting
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pairing amplitude and the magnetization survive in the same
system by periodically avoiding each other in space and the
superconductivity is stabilized even at sufficiently large h. As
a result, the system undergoes a transition from a usual BCS
superconducting state at small h to a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state at an intermediate range of h and
finally to an NS at very high h.

Interestingly, a state with modulating pairing amplitude has
also been proposed recently in the context of high-temperature
cuprate superconductors, where the periodic inhomogeneity
in pairing amplitude arises from strong electronic correlations
in the underdoped regime of the cuprate phase diagrams. This
phase is termed the pair-density wave (PDW) in the literature
[6–10]. The modulations in pairing amplitudes in the FFLO
and PDW phases are identical in nature. Their difference,
however, lies in the fact that the FFLO phase breaks the
time-reversal symmetry explicitly due to Zeeman effects,
whereas the PDW does not necessarily break the time-reversal
symmetry [11]. Naturally, the PDW state does not support a
net magnetization either, unlike the FFLO phase [12]. In the
present scenario, we only focus on the FFLO phase, where
the generation of a spatially oscillating pairing amplitude is
entirely due to the exposure to a Zeeman field.

The existence of the FFLO state had long been a theoretical
truism [13–28], but it evaded experiments for many years.
Two primary reasons behind this are the dominance of the
orbital effect of applied magnetic field and the presence
of disorder. The orbital effect, if dominant, often destroys
superconductivity even before the appearance of the FFLO
phase. The relative importance of the Zeeman effect and the
orbital effect is characterized by the Maki parameter [29]
αM = √

2Horb
c2

(T = 0)/Hp(T = 0), where Horb
c2

is the orbital
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critical field and Hp is the Pauli-limiting field. The orbital-
limited materials, characterized by αM < 1, are thus unfavor-
able to conceive the FFLO phase. A modulating FFLO phase
is generally believed to be extremely fragile in response to
potential disorder [30,31], though there are recent studies that
raise doubt on such inferences [32,33]. Despite these facts, the
FFLO phase has gained renewed interest in recent times in
the context of some unconventional superconductors. These
include heavy-fermion superconductors such as CeCoIn5

[34–45] and CeCu2Si2 [46], organic superconductors [47–57],
Fe-based superconductors [58–60], and also cuprate super-
conductors [61–63]. Earlier, the possibility of the FFLO phase
in cuprate superconductors attracted significant research en-
deavors. These are layered materials in which superconductiv-
ity is believed to arise in CuO2 planes. Thus the magnetic field
can be applied parallel to these planes to minimize orbital ef-
fects and couple only with the electronic spins [64]. However,
their large Hp values obscure possibilities of realization of
the FFLO phase [62]. The heavy-fermion superconductors are
ideal for supporting this phase as they are Pauli-limited [65]
and obtained in a reasonably clean form. Several experiments
in CeCoIn5 have indicated a modulating magnetic ordered
state (coined the Q phase) in the presence of magnetic fields
that survives only with superconductivity [39,44,66,67]. Note
that the modulating pairing amplitude of the FFLO state also
drives a spatial modulation in the magnetization. Therefore
several proposals suggest that this magnetic order arises from
the FFLO modulation [68–70], although there also exist other
proposals for this observation [71–73]. More recently, nuclear
magnetic resonance experiments on CeCu2Si2 [46] and the
organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 [47] have
signaled the presence of Andreev bound states when magnetic
fields were applied parallel to their conduction planes, one
characteristic of the FFLO phase.

Most of these unconventional superconductors are proto-
types of strongly correlated [74–81], quasi-2D superconduc-
tors [82,83]. Some of these superconductors, such as CeCoIn5

and cuprates, also feature the d-wave symmetry in their
superconducting energy gap [84,85]. In this work, we focus
on exploring the effects of strong electronic correlations in
a d-wave superconductor, exposed to a Zeeman field, with
a perspective on the FFLO phase. Earlier theoretical studies
on d-wave superconductors suggest that strong interactions
change the nature and the degree of inhomogeneities and
smear out the small-scale spatial charge fluctuations [86–88].
Strong correlations are thus expected to modify the existence
or the nature of the FFLO phase, which exhibits periodic
inhomogeneities in charge and spin densities. Moreover, the
interplay of strong correlations with the magnetic field is
also expected to uncover interesting physics. The effect of
spin-dependent mass enhancement on the Fulde-Ferrell (FF)
phase [4], the spatially homogeneous counterpart of the FFLO
phase, has been studied recently [22].

We investigate the role of strong correlations in the FFLO
state in a d-wave superconductor within an integrated frame-
work of Hartree-Fock-Bogoliubov theory and the Gutzwiller
approximation. The crux of our findings is as follows: (i)
At T = 0, near the optimal doping for superconductivity,
strong correlations renormalize the different energy scales
of the system. As a result, their subtle balance shifts the

boundaries of the FFLO phase, and consequently, it increases
the FFLO window of the Zeeman field. (ii) The behaviors of
the order parameters and the pairing momenta in the presence
and absence of strong correlations are contrasting in nature
owing to the renormalizations of different parameters in the
Hamiltonian. (iii) Strong correlations cause a sharper and
narrower midgap peak appearing at the density of states in
the FFLO phase. This is due to a strong localization of the
Andreev bound states at regions having zero pairing amplitude
owing to its sharp sign change near those regions. (iv) The
signature of the FFLO phase survives even when the h = 0
ground state (GS) has competing orders. We show this by
considering a GS that has a competing spin-density wave
(SDW) order in addition to the d-wave BCS order.

The rest of the paper is organized as follows: In Sec. II
we give the details of the model used in our calculations
emphasizing the way the effects of strong correlations are
introduced through Gutzwiller factors. We also discuss the
computational method of our study at T = 0. In Secs. III A–
III D we present our results in which we compare the phase
diagrams, the behavior of the parameters, and the observables
with respect to the applied magnetic field in the presence and
absence of strong correlations. In Sec. III E we discuss the
phase diagrams in the presence of an additional competing
SDW order. Finally, we conclude in Sec. IV.

II. MODEL AND METHODS

We describe our system by the microscopic Hubbard
Hamiltonian:

HHub = −t
∑
〈i j〉σ

(ĉ†
iσ ĉ jσ + H.c.) + U

∑
i

n̂i↑n̂i↓. (1)

Here, t is the hopping energy of the electrons to its nearest
neighbors, denoted as 〈i j〉, on a 2D square lattice, and U is the
on-site repulsion energy between the electrons. In the strongly
correlated limit U � t , an effective low-energy Hamiltonian
can be obtained from HHub that lives in a restricted Hilbert
space that prohibits double occupancy of any site due to strong
on-site repulsions. The resulting Hamiltonian is known as
the t-J model, which can be considered as the perturbative
expansion of HHub up to the quadratic order in t/U :

Ht−J = −t
∑
〈i j〉σ

(c̃†
iσ c̃ jσ + H.c.) + J

∑
〈ij〉

(
S̃i · S̃j − ñiñj

4

)
.

(2)

Here, the exchange interaction J = 4t2/U emerges via
Schrieffer-Wolff transformation. The renormalized creation
operator c̃†

iσ = (1 − n̂iσ )ĉ†
iσ is defined to operate on the Hilbert

space that excludes all double occupancies. In order to probe
the FFLO state, we introduce the Zeeman field h and redefine
Ht−J as Ht−J − ∑

iσ σhn̂iσ . Analyzing the Hamiltonian in
Eq. (2) is challenging due to the projection operators that
are usually dealt with using variational quantum Monte Carlo
methods [89]. A simpler implementation of the projections
is achieved through a Gutzwiller approximation (GA) [90],
an approximation method that incorporates the Hilbert-space
restrictions in a spirit similar to that of a mean-field theory.
Within the framework of the GA, we write the GS wave
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function as |ψ〉 = �i(1 − n̂i↑n̂i↓)|ψ0〉, where |ψ0〉 is the GS
wave function in the unrestricted Hilbert space. In GA, the
effects of projection are mimicked in Gutzwiller renormal-
ization factors (GRFs) [91] represented as gt,σ

i j , gJ,z
i j , gJ,xy

i j ,
which depend on the local densities, magnetization, pairing
amplitude, and kinetic energies. The explicit expressions of
the Gutzwiller factors are provided in Appendix A 1. Finally,
using GA, the Hamiltonian for strongly correlated d-wave
superconductors in a Zeeman field is shaped as

HGA = −t
∑
〈i j〉σ

gtσ
i j (ĉ†

iσ ĉ jσ + H.c.) −
∑

iσ

σhn̂iσ

+ J
∑
〈i j〉

[
gJ,z

i j Ŝz
i Ŝz

j + gJ,xy
i j

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

2

)
− n̂in̂ j

4

]
.

(3)

We define our local order parameters as follows:

�i jσ = σ 〈ψ0|ĉiσ ĉ jσ |ψ0〉, (4)

τi jσ = 〈ψ0|ĉ†
iσ ĉ jσ |ψ0〉, (5)

niσ = 〈ψ0|ĉ†
iσ ĉiσ |ψ0〉, mi = 1

2

∑
σ

σniσ . (6)

Using the above order parameters, the mean-field decompo-
sition of HGA in Hartree, Fock, and Bogoliubov channels,
whose details are provided in Appendix A 2, leads to

HMF =
∑
iασ

[
−tgtσ − J

2
gxyτσ − J

4
(gz − 1)τσ + 	α

iσ

]
ĉ†

iσ ĉi+ασ

+
∑

iα

{[
−J

2
gxy�α

i↓− J

4

(
gz+1

)
�α

i↑

]
ĉ†

i↑ĉ†
i+α↓+H.c.

}

−
∑

iα

[(
θα

i↑ĉ†
i↑ĉ†

i+α↓ + θα
i↓ĉ†

i+α↑ĉ†
i↓

) + H.c.
]

+
∑
iασ

J

4
[(gz − 1)ni+ασ − (gz + 1)ni+ασ ]n̂iσ

+
∑

iσ

(φiσ − μσ )n̂iσ , (7)

where the notations gtσ , gxy, gz, μσ , τσ , τσ are
abbreviations corresponding to gtσ

i,i+α, gJ,xy
i,i+α, gJ,z

i,i+α, μ +
σh, τi,i+ασ , τi,i+ασ , respectively. Here, 	α

iσ , θα
iσ , and φiσ

subsume the terms involving the derivatives of GRFs in
∂W/∂τi,i+ασ , ∂W/�α

iσ , and ∂W/∂niσ , respectively, where
W = 〈ψ0|HGA|ψ0〉 − λ(〈ψ0|ψ0〉 − 1) − μ(

∑
i ni − 〈n〉), and

α stands for nearest-neighbor spacings from i. Here, λ is a
Lagrange multiplier fixing the wave-function renormalization
〈ψ0|ψ0〉 = 1, and μ is the chemical potential that takes
care of the average density 〈n〉 = N−1 ∑

i ni of the system.
In this work, we focus on the d-wave symmetry of the
local superconducting pairing amplitude, defined as �i =∑

σ (�+x̂
i,σ + �−x̂

i,σ − �
+ŷ
i,σ − �

−ŷ
i,σ )/4. A closely related pairing

anisotropy is the local extended s-wave pairing amplitude,
defined as �xs

i = ∑
σ (�+x̂

i,σ + �−x̂
i,σ + �

+ŷ
i,σ + �

−ŷ
i,σ )/4;

however, we choose model parameters for which the strength
of �xs

i is negligible (see Appendix B for details). To gauge the
effects of strong correlations, we compare two sets of results

obtained in the presence and absence of strong correlations.
In the presence of strong correlations, we rely on the
framework based on the Gutzwiller approximation augmented
with Hartree-Fock-Bogoliubov theory, as discussed
already, whereas in the absence of strong correlations,
we employ Hartree-Fock-Bogoliubov theory on the
unrestricted Hilbert space, i.e., without any double-occupancy
prohibition. Operationally, this is equivalent to setting the
Gutzwiller factors to unity. We will use the notation IMT
(inhomogeneous mean-field theory) to refer to the calculation
based on Hartree-Fock-Bogoliubov theory, and RIMT
(renormalized inhomogeneous mean-field theory) to refer to
the scheme based on Hartree-Fock-Bogoliubov theory and
the Gutzwiller approximation in our discussions from now
on. We set U = 12t for RIMT [92], and choose U = 3.077t
and set the Gutzwiller factors to unity for IMT. This yields
the same d-wave superconducting gap at h = 0 in these
two schemes. We place 〈n〉 at 0.84, a value that ensures a
pristine superconducting state away from the dominance of
the competing orders. For example, such 〈n〉 value is known
as the optimal doping for cuprate superconductors. This is
convenient for our case, since the primary motivation here
is to study the effects of strong correlations in the FFLO
phase, i.e., a superconducting phase with finite-momentum
Cooper pairs. However, it is also interesting to study the
effects in the presence of competing orders, which we will
discuss later in Sec. III E. In our investigation, we will focus
on the Larkin-Ovchinnikov (LO) state in which the pairing
profile in the lattice is �i ≈ 2�q cos(q · ri ). Here, q is the
pairing momentum of the Cooper pairs and ri denotes the
position of the ith lattice site. Such a behavior of the pairing
amplitude arises due to the coupling of the single-particle
states |k, σ 〉 with both | − k + q, σ 〉 and | − k − q, σ 〉.
The states | − k + q, σ 〉 and | − k − q, σ 〉 also connect to
|k + 2q, σ 〉 and |k − 2q, σ 〉, respectively, in the Cooper
channel. This links the single-particle state |k, σ 〉 with the
states |k ± 2q, σ 〉, |k ± 4q, σ 〉, and so on with progressive
weaker coupling. Subsequently, an intertwined spin-density
wave (SDW) order and a charge-density wave (CDW) order
are generated with modulating wave vectors 2q, 4q, etc.,
which seeds many intriguing consequences in the presence of
strong electronic correlations. Note that allowing only FF [4]
pairing (�i = �qeiq·ri ) does not generate any such SDW or
CDW order. We finally solve the mean-field Hamiltonian in
the momentum space, owing to the periodic inhomogeneity
in the FFLO phase. Drawing from the above discussions, the
spatial profile of spin densities looks like

niσ = nσ
0 + 2nσ

2q cos(2q · ri ) + 2nσ
4q cos(4q · ri ) + · · · , (8)

where nσ
Q = N−1 ∑

k〈ĉ†
k+Qσ

ĉkσ 〉0, where Q = 0, ±2q, ±4q
and so on. Here, 〈· · · 〉0 signifies expectation value with re-
spect to the unprojected wave function |ψ0〉. As the GRFs are
functions of local spin densities, we fuse the following ansatz
for them:

gtσ
i,i+α = gtσ

0 + 2gtσ
2qα cos(2q · ri ) + 2gtσ

4qα cos(4q · ri) + · · · ,

(9)

gJ,ν
i,i+α = gJ,ν

0 + 2gJ,ν
2qα cos(2q · ri ) + 2gJ,ν

4qα cos(4q · ri ) + · · · ,

(10)
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where ν = xy or z. Using the periodic translational symmetry
of this phase, we solve Eq. (7) in the momentum space. We
take the spin densities up to nσ

4q mode, pairing amplitude up
to �3q (which along with the higher-order modes also arise
naturally with a weaker coupling as a result of the connected
chains of single-particle states), and neglect the higher-order
modes to simplify our calculations. We have checked our
results by considering the higher-order modes in the spin
densities and the pairing amplitude in our Gutzwiller mean-
field theory calculations, and our results indicate that their
effects are minimal in determining the phase boundaries and
the important features of the physical observables we have
studied here.

Building on these ideas, HMF in the momentum space
becomes

HMF =
∑

k,Q,σ

ξ
(r)
k+Qσ

ĉ†
kσ

ĉk+Qσ

+
∑
k,Qp

(
�

(r)
k,−k+Qp

ĉ†
k↑ĉ†

−k+Qp↓ + H.c.
)
. (11)

Here, Q = 0, ±2q, ±4q, and Qp = ±q, ±3q. The explicit
expressions of ξ

(r)
k+Qσ

and �
(r)
k,−k+Qp

and the self-consistent
equations of the order parameters are given in Appendix A 3.
The Hamiltonian in Eq. (11) can be written in Nambu space
as

HMF = �†ĤMF�. (12)

Here, ĤMF is a 2N × 2N matrix, which has the form

ĤMF =
[
ξ̂kpσ �̂kp

�̂∗
kp −ξ̂ ∗

kpσ

]
, (13)

where the ξ̂kpσ , �̂kp components of the N × N matrices (k and
p both take up N values) are expressed as follows:

ξ̂kpσ = δkpξ
(r)
pσ + δk+Q,pξ

(r)
pσ , (14)

�̂kp = δ−k+Qp,p�
(r)
kp , (15)

�† = [
ĉ†

k1σ
, . . . , ĉ†

kN σ
, ĉk1σ , . . . , ĉkN σ

]
. (16)

Here, N = L × L indicates the total number of sites in the
lattice, with L being the length of the same. We exploit the
translational symmetry of the system and block-diagonalize
ĤMF in Eq. (13) into smaller matrices. A typical size of
the block is 2L × 2L, which can be further reduced depending
on the periodicity of the order parameters in the lattice.
Most of our calculations are for L = 200, except the results
shown in real space, which are for L = 40. We diagonalize
the resulting Hamiltonian using the transformations ĉkσ =∑

n(uk,nσ γnσ − σv∗
k,nσ γ

†
nσ ), where γnσ and γ

†
nσ are Bogoli-

ubov quasiparticle operators and uk,nσ and vk,nσ satisfy the
equation ∑

p

[
ξ̂kpσ �̂kp

�̂∗
kp −ξ̂ ∗

kpσ

][
up,nσ

vp,nσ

]
= Enσ

[
uk,nσ

vk,nσ

]
. (17)

The Hamiltonian in Eq. (11) in the presence of the Zeeman
field describes the d-wave BCS, FFLO, and spin-polarized NS
phases, as well as CDW or SDW order and interplay among
these in the GS.

As mentioned earlier, we will also present some of the
results in real space in Secs. III A, III B, and III E, for which
we use Bogoliubov–de Gennes (BdG) transformations [93],
ĉiσ = ∑

n(γnσ ui,nσ − σγ
†
nσv∗

i,nσ ), for diagonalizing Eq. (7).
This results in the following eigenequation,∑

j

[
ξ̂i jσ �̂i j

�̂∗
ji −ξ̂ ∗

i jσ

][
u j,nσ

v j,nσ

]
= Enσ

[
ui,nσ

vi,nσ

]
, (18)

which is self-consistently solved for all the local order param-
eters defined in Eqs. (4), (5), and (6). The matrix equation in
Eq. (18) leads to the following equations,

ξ̂i jσ =
[
−tgtσ

i j − J

2
gJ,xy

i j τi jσ − J

4

(
gJ,z

i j − 1
)
τi jσ + 	i jσ

]
δi+α, j

−
∑

α

J

2

[(
gJ,z

i,i+α + 1
)
ni+ασ − (

gJ,z
i,i+α − 1

)
ni+ασ

]
δi, j

+ (φiσ − μσ )δi, j, (19)

�̂i j =
[
−JgJ,xy

i j �i j↓ − J

2

(
gJ,z

i j + 1
)
�i j↑ − θi j↑

]
δi+α, j . (20)

Diagonalizing the BdG matrix in Eq. (18) is numerically ex-
pensive. So, we solve the BdG matrix to obtain the real-space
pictures only for L = 40. Considering smaller systems comes
with an energy cost for the FFLO state, as it puts constraint on
the possible q values for the variational determination of the
lowest-energy state.

III. RESULTS

In the following we discuss the fate of the FFLO phase due
to strong correlations at T = 0 by contrasting the behavior of
different observables obtained within RIMT and IMT calcula-
tions.

A. Phase diagram

Earlier theoretical studies on superconductors subjected to
a Zeeman field h suggest that a BCS superconductor with
spatially uniform pairing amplitude undergoes a phase tran-
sition to an FFLO phase with a periodically modulated order
parameter at h = h1. Upon increasing h further, superconduc-
tivity gets fully suppressed for h � h2 (here, h2 > h1), leading
to a spin-polarized normal state (NS) [13,17,20,32,61,94–96].
The FFLO phase is thus sandwiched between a uniform BCS
(for low h � h1) and a spin-polarized NS (at large h � h2).
These three phases are identified by blue, pink, and white
shades in Fig. 1 (and also later in Figs. 2, 3, 6, 12, 13). These
phases are realized in our calculations as the GS for different
h values within the framework of a Hartree-Fock-Bogoliubov
description of Ht−J, in both RIMT and IMT calculations. The
location of the phase boundaries, i.e., the values of h1 and
h2, differ from the two methods of calculations, as shown in
Fig. 1. The differences arise because of the physics of strong
electronic correlations captured by the RIMT method, as we
proceed to discuss below.

We identify the GS by considering the possible broken-
symmetry solutions, and then choosing the one with the
lowest energy as shown in the main panel of Fig. 1. We
find that the introduction of the Gutzwiller factors lowers h1
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FIG. 1. Energetics of ground states with h for different broken
symmetries, calculated within RIMT (a) and IMT (b) methods (see
Sec. II for model parameters). A d-wave BCS state (blue curve),
an FFLO state (red curve) and a normal state (green curve) are
considered for comparison. Though the FFLO ground state is found
sandwiched between the d-wave BCS state (low h) and the normal
state (large h) both in RIMT and IMT, it is realized in a wider
range of 0.18 � h � 0.38 in RIMT findings (a) than that from
IMT (b) window of 0.22 � h � 0.38. We mark the FFLO and BCS
regions by pink and blue shades, respectively. The inset in each
panel shows that the nature of modulations of the superconducting
pairing amplitude within the FFLO phase changes from a stripe to
a checkerboard form (see Sec. III A for details). Such a changeover
occurs at h ≈ 0.25 in the RIMT calculation (a) and at h ≈ 0.33 in the
IMT scheme (b).

(while keeping h2 more or less unaltered) and thus enhances
the window of stability of the FFLO GS. In particular, for
our model parameters, i.e., J/t = 0.33 and average density
〈n〉 = 0.84, we obtain h1 ≈ 0.18 and h2 ≈ 0.38 (expressed
in units of t) by the RIMT method in Fig. 1(a). In contrast,
the IMT calculation, based on the weak-coupling description,
results in h1 ≈ 0.24 and h2 ≈ 0.38, as shown in Fig. 1(b) for
comparable model parameters (as discussed in Sec. II). This is
a narrower window of h than what is found from RIMT. The
possibility of correlation-induced enhancement of the FFLO
phase in the parameter space is exciting in the context of
strongly correlated systems.

Our investigation on the origin of this enhancement sug-
gests that a subtle balance among relevant energy scales
plays the most crucial role. In particular, the intricate in-
terplay between components of the total mean-field energy

FIG. 2. Determination of q∗, the optimal modulation wave vector
of the pairing amplitude, versus h, from RIMT (a) and IMT (c) cal-
culations. The h dependence of q∗ from RIMT and IMT findings
is shown in panels (b) and (d), respectively. For small h, Et (q)
achieves the minimum for q = 0, indicating a uniform BCS d-wave
ground state. On the other hand, Et (q) features a minimum at finite
q∗ for 0.18 � h � 0.38 in RIMT calculations in panel (a), and for
0.22 � h � 0.38 in plain IMT calculations in panel (c), signaling an
FFLO ground state. For large h > h2, the energy minimum is lost and
the d-wave pairing amplitude becomes feeble, indicating the collapse
of FFLO phase. The evolution of q∗ with h is strongly sublinear, with
apparent saturation at large h within the RIMT scheme (b), whereas
its dependence is approximately linear in IMT calculations (d). The
insets in the panels (b) and (d) focus on the energy landscapes with
respect to q for specific h = 0.25 in panel (b) and h = 0.26 in panel
(d) within the FFLO region in RIMT and IMT, respectively.

Et (= 〈ψ0|HGA|ψ0〉) corresponding to the the pairing ampli-
tude (the pairing energy Ep), the spin imbalance (the mag-
netic energy Em), and the hopping of electrons (the kinetic
energy EK ) decides the window of the FFLO phase. All

N
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N
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m0

|m2q|n2q

(a) (b)

BCS
d-wave

FFLOFFLO

BCS
d-wave

RIMT IMT

FIG. 3. Evolution of different order parameters as a function of
h, obtained from (a) RIMT and (b) IMT calculations. The primary or-
ders shown here are root-mean-square pairing amplitude �rms (blue
curves), average magnetization m0 (red curves), and the intertwined
SDW m2q (magenta curves) and CDW n2q (green curves) orders
(defined in Sec. III B), all presented at q = q∗(h). In d-wave BCS
regime �rms remains nearly constant and m0 is small. The onset of
FFLO regime at h1 [h1 = 0.18 and 0.25 in panels (a) and (b)] is
signaled by a sharp fall of �rms and a steep rise in m. These two
orders keep decreasing and increasing in the FFLO regime, with
a much slower rate in RIMT results than in IMT. The exit from
FFLO regime to NS at h2 (h2 = 0.38 in both panels) is signaled by a
near vanishing of �rms while m0 reaches its normal-state value. The
self-generated orders m2q and n2q survive only in the FFLO regime
and are stronger in RIMT results than in IMT findings.
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of these components are renormalized by the GRFs (also
see the discussions in the next paragraph). We note that
within the FFLO regime the nature of spatial modulation
of the superconducting pairing amplitude and magnetization
changes from a stripe modulation at the lower range of h to a
checkerboard pattern at the higher h side of the FFLO phase,
as highlighted in the insets of Fig. 1. Here, stripe implies
a unidirectional modulation with q = ±q(1, 0), whereas the
checkerboard modulation with wave vector q is identified
with an equal superposition of modulations with ±q(1, 0) and
±q(0, 1). This transformation of the nature of modulation is
consistent with the earlier calculations [20] on a square lattice.
We find this transition from stripe to checkerboard modulation
to occur at h = 0.25 in RIMT findings (inset of Fig. 1) and
at h = 0.33 in the IMT method [inset of Fig. 1(b)]. We also
mention here that although the main panels of Fig. 1 present
results obtained on a much larger system of size 200 × 200,
the results in the insets highlighting the transition in the
modulation pattern are solved on a system size of 40 × 40.
This results in a weaker energy resolution compared to the
curves presented in the main panel. A smaller system size for
the checkerboard pattern of modulation is needed due to its
reduced translational symmetry.

In order to develop a deeper understanding of the change
of phase boundaries between RIMT and IMT results, we
note that both Em and EK of the total energy Et lead to
an energy gain in the FFLO phase as h is increased. In
contrast, the spatially modulated pairing amplitude results
in an energy loss, when compared to a homogeneous BCS
state. It is this fine balance between these gains and losses of
energy that dictates the boundaries between different phases
as h increases. On the other hand, the prohibition of double
occupancy through Gutzwiller factors in RIMT renormalizes
the separate components of energy differently, and hence
it is natural that the aforementioned balance will occur for
different h values in RIMT and IMT calculations. We have
elaborated this aspect quantitatively in Appendix C to provide
a comprehensive picture.

As discussed already, the FFLO phase is characterized by
a spatially modulating pairing amplitude and magnetization.
It is crucial to decide the correct modulation wave vector.
Other than possibilities for the different natures of modula-
tions (consistent with the square symmetry of the underlying
lattice), e.g., stripe and checkerboard patterns as discussed
already, we also determine the optimal magnitude of q∗ by
variationally minimizing the total energy Et of the FFLO state
over the entire range of q. This is illustrated in Figs. 2(a)
and 2(b), where Et (q) curves are presented (considering stripe
pattern of modulation) using RIMT and IMT calculations
respectively. Representative h values in Fig. 2 are chosen
from each of BCS, FFLO, and spin-polarized NS. We find
for very small h 
 h1 that Et (q) has a minimum value at
q = 0. For h � h1, a second minimum in Et (q) emerges at
a finite q∗, although Et (q∗) � Et (q = 0). In the FFLO phase
for h1 � h � h2, however, Et (q) develops a global minimum
at q∗.

The value of q∗ is expected to increase [13,94,97] with h.
A larger q∗ ensures a larger number of nodes in the spatial
profile of the pairing amplitude causing more domain walls.
These domain walls support the magnetization arising from h.

Hence, with increasing h, the FFLO state gains more energy
by increasing domain wall density. As a result, q∗ increases
with h. Our results, however, establish that the nature of this
rise is different in RIMT and IMT calculations. While q∗
follows an apparent sublinear increase in RIMT method as
in Fig. 2(c), it rises approximately linearly in IMT results as
seen in Fig. 2(d). In RIMT, q∗ increases rapidly for h � h1

and then gets saturated in a large part of the FFLO window.
This is because of an increased role of the effective repulsive
energy between domain walls at higher h. In RIMT, � un-
dergoes a rapid change of magnitude and sign across narrow
domain walls, particularly at small h (for reasons discussed
in Sec. III B). Hence, the effective repulsion between the
domain walls has little role when their density is small near
h1. However, at large h, the increased effective repulsion
between these domain walls does not allow their density to
rise as much for large h, leading to a near-saturation of q∗.
In contrast, the qualitative behavior of q∗ in IMT agrees well
with the previous studies [13]. Here, the profile of the pairing
amplitude is sinusoidal in the entire FFLO window, and the
role of effective repulsion remains weak in the entire FFLO
regime, which results in an approximately linear q∗(h).

In addition to the variational determination of q∗ outlined
above, the energetics of the FFLO, the BCS (i.e., q = 0), and
the underlying spin-polarized NS are compared to identify
the true GS, for each value of h. The q resolution of our
calculation is enhanced as we have exploited the translational
symmetry of the FFLO phase across the lattice as mentioned
earlier in Sec. II and solve the eigensystem of Eq. (17) for
HMF in the momentum space for a large system. This yields
good precisions for the individual components of energy.

B. Order parameters

The phase diagram in Fig. 1 identifies the boundaries
between distinct phases, whereas the energy minimum at q∗
decides the stability of the broken-symmetry GS. The differ-
ent energy scales in each of these states and their behavior
with h are characterized by the h dependence of various order
parameters characterizing our system. With this motivation,
we study in Fig. 3 the behavior of the root-mean-square pair-
ing amplitude (�rms), average magnetization (m0), and self-
generated intertwined SDW (m2q) and CDW (n2q) orders as a
function of h. The �rms takes a value �0 in the homogeneous
BCS state and

√
2�q in the FFLO state. Here,

�Qp = 1

4N

∑
k

[〈c−k+Qp↓ck↑〉0ηk + 〈c−k+Qp↓ck↑〉0η−k+Qp],

(21)

mQ =
∑

σ

σnσ
Q

2
, nQ =

∑
σ

nσ
Q, (22)

where Qp = 0 or q, Q = 0 or 2q, and ηk = 2[cos(kx ) −
cos(ky)] is the d-wave form factor. Here, nσ

Q is defined in
the text following Eq. (8). The behavior of different order
parameters is contrasted from the two calculations: RIMT and
IMT. For all h, the average magnetization m0 attains a higher
value in RIMT, as seen in Fig. 3(a). This is due to the reduced
bandwidth upon prohibition of double occupancy. The super-
conducting order parameter is also found stronger in RIMT;
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FIG. 4. Evolution of the spatial profiles of order parameters [see Eqs. (4) and (6) and the text following Eq. (7) for definitions] in the FFLO
phase from IMT calculations. The spatial profiles are featured in a 3 × 3 panel on the left side using color-density plots. The evolution of �

is shown in the left column with h increasing from top to bottom. Similarly, magnetization m and accompanying CDW order are shown in the
middle and right columns, respectively. The wavelength of the stripe modulation decreases with increasing h from 0.26 to 0.32, and finally
leads to a checkerboard pattern at a higher field (h = 0.34). The line plots on the right side provide a cross-sectional view of these profiles
along the x̂ direction for stripe (h = 0.26, 0.32) and along the x̂ + ŷ direction for checkerboard (h = 0.34) modulation.

see Fig. 3. This is because of our choice of exchange coupling
J in the Hamiltonian in Eq. (2) in the two methods of cal-
culation to obtain the same value of superconducting energy
gap at h = 0 in the RIMT and IMT methods. The energy gap
and the pairing amplitude differ in RIMT calculations as they
obtain different Gutzwiller renormalization. The m0 and �rms

calculated within the RIMT scheme experience little change
with h, inside the FFLO region (up to h ≈ 0.36, a value close
to h2), as depicted in Fig. 3(a). These order parameters reach
their NS values with further increase in h. Such behavior of
the order parameters is related to the saturation of q∗ for a
wide window of h, followed by a quick change of q∗ near
h2 within the FFLO region (see Fig. 2). The order parameter
values largely depend on q∗. For a given q∗, increasing h
causes only little changes in the order parameters. In IMT,
these orders change continuously across the FFLO regime,
finally attaining their NS values beyond h2. The magnitudes
of the coexisting SDW (m2q) and CDW (n2q) orders, which
are self-generated due to the modulated pairing amplitude,
even though they have small values, also increase with strong
correlations.

Having understood the behavior of the global order pa-
rameters, we next focus on their spatial profiles for different
values of h. The self-consistent spatial structure of modulat-
ing pairing amplitude, magnetization, and charge density are
depicted in color-density plots on the left side in Fig. 4 and
Fig. 5 from IMT and RIMT schemes, respectively, whereas
the cuts on the right side emphasize the one-dimensional
modulations. The panels from top to bottom present results for

increasing h. These results are obtained using real-space BdG
simulations carried out on a system of size 40 × 40. We find
from Fig. 4 that the wavelength of the stripe modulations of
all three order parameters from IMT calculations decrease as
h is increased from h = 0.26 to h = 0.32. The corresponding
wavelength is inversely proportional to the pairing momentum
of the Cooper pairs. In the RIMT scenario, however, the
wavelength of stripe modulation changes marginally by going
from h = 0.18 to h = 0.26, which is roughly consistent with
the weak dependence of q∗ on h within the FFLO regime in
the RIMT scheme, as shown in Fig. 2, also discussed earlier
in Sec. III A. The magnetization m nucleates near the location
of nodes of the superconducting pairing amplitude �; thus the
modulating wavelength of magnetization becomes half of the
superconducting pairing amplitude. The modulation in local
density n also has this same wavelength.

In the RIMT scenario, � goes through a sharp fall where it
changes sign. This is because strong electronic repulsions act
to suppress the nanoscale density fluctuations locally causing
a relatively smooth variations in the spatial density which in
turn flattens the small-scale variations in the superconducting
pairing amplitude self-consistently in the lattice [86–88]. As
a result, the magnitudes of the higher-order modes in the
superconducting pairing amplitude and the density modula-
tion increase in a self-consistent manner. These factors make
a steeper spatial variation of the superconducting pairing
amplitude �, where it changes sign in the presence of strong
correlations as depicted in Fig. 5, panels (a1) and (a4), com-
pared to that from the IMT outcomes as shown in Fig. 4,
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FIG. 5. Evolution of spatial profiles of order parameters [see Eqs. (4) and (6) and the text following Eq. (7) for definitions] in the FFLO
phase, similar to Fig. 4 but from RIMT calculations, is shown to emphasize the role of strong repulsive correlations here. The line plots on
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system. Note the sharp rise and fall of orders across the line of zero of � (discussed in Sec. III D) and the robustness of the wavelength of
modulation of the order parameters with increasing h, consistent with our momentum-space findings in Fig. 2(c).

panels (a1) and (a4). This leaves a narrower space for local m
to nucleate compared to what is found from the IMT method.
The sharpness of the fall of � in RIMT, however, reduces
with increasing h, reflecting a reduction in the dominance of
strong correlations in higher fields. We note that within the
FFLO phase, the superconducting order parameter with an
extended s-wave symmetry develops near regions in which the
d-wave order parameter becomes zero. However, its ampli-
tude remains negligible enough to not make any changes in
our qualitative and quantitative findings. We have elaborated
more on the possibility of self-consistently obtaining the
extended s-wave pairing amplitude in Appendix B.

C. Renormalized parameters

The distinctive features associated with the global and local
properties of the order parameters at different values of h are
dictated by the renormalized parameters in the Hamiltonian.
The mean-field Hamiltonian in Eq. (7) can be recast in terms
of the renormalized parameters using the form

HMF =
∑
i,α,σ

−tσ
eff (i, α)(ĉ†

iσ ĉi+ασ + H.c.) +
∑
i,σ

μσ
eff (i)ĉ†

iσ ĉiσ

+ pairing terms involving �α
i↑,�α

i↓. (23)

The explicit expressions of tσ
eff (i) and μσ

eff (i) can be obtained
by comparing Eq. (7) with Eq. (23). The major contribution in
tσ
eff in RIMT comes from the GRF for hopping, gtσ (= 0.275

at 〈n〉 = 0.84, when h = 0), which restricts the hopping solely
to the unoccupied sites. Strong correlations also induce spin
dependence in the hopping parameters at finite h. At finite
h, the number of sites occupied by the down-spin species

decreases in the lattice. Thus the up-spin electrons find it
easier to hop around and vice versa (assuming up-spin is
favored by h), also reflected in the expressions of gtσ in
Eq. (A2). We show in Fig. 6 the evolution of renormalized
hopping parameter tσ

eff = ∑
i,α tσ

eff (i, α) as a function of h.
The reduced teff (≈0.4 at h = 0), and thereby the reduced
bandwidth and the spin dependence of tσ

eff , enhances the
average magnetization in RIMT calculations. Within the IMT
framework, on the other hand, the renormalization of the
hopping parameter (teff ≈ 1.13 at h = 0) and its spin depen-
dence is negligible, as seen in Fig. 6(b), arising only from
the Fock shifts in HMF. The externally applied magnetic field
h also gets renormalized to an effective magnetic field heff

[= ∑
iσ σμσ

eff (i)/2] in both RIMT and IMT by Hartree shifts
of HMF, defined in Eq. (7). The variation of heff with respect
to the external field h is depicted in Figs. 6(c) and 6(d) from
the RIMT and IMT methods, respectively. The suppression is
significant in RIMT due to the additional action of φiσ , i.e.,
the derivatives of GRFs, e.g., (dgJ,z/dn), consumed within
μσ

eff in RIMT calculations. teff (i) locally plays a key role
in homogenizing small-scale inhomogeneities in the spatial
profiles of the densities of the system [87].

D. Density of states

Another key feature of a superconducting state is its single-
particle density of states (DOS), which carries specific signa-
tures when h is turned on. In order to explore the effects of
correlations on the DOS, we study it at different values of h
within the RIMT and IMT schemes. The spin-resolved DOSs
are evaluated using BdG eigenvalues {Enσ } and eigenvectors
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FIG. 6. Behavior of the effective hopping parameter teff [sub-
tracting teff (h = 0)] versus h from RIMT (a) and IMT (b) findings.
The h dependence of the effective magnetic field heff from RIMT
(c) and IMT (d) outcomes. The strong correlations in panel (a) cause
up- and down-spin hopping (denoted by red and blue curves, respec-
tively) to branch out weakly in the BCS regime, while their difference
rises sharply in the FFLO phase. The difference increases strongly
again upon exiting FFLO phase into NS. In contrast, the up- and
down-spin hoppings maintain nearly identical value across the entire
range of h within the IMT method (the weak difference is only due to
Fock shifts). The behavior of heff follows a linear trend with bare h in
both RIMT (c) and IMT (d) findings for all h. The RIMT calculation
results in a somewhat lower heff in the BCS region and significantly
lower heff in the FFLO and NS region compared to IMT results. heff

faces jumps at h1 in both RIMT and IMT calculations—the jump
being more significant in RIMT. heff also undergoes a weak jump
near h2 in RIMT, unlike in IMT, where only a continuous change in
heff across h2 is found.

{ui,nσ , vi,nσ } as

Nσ (ω)= 1

N

∑
i,n

gtσ
ii {|ui,nσ |2δ(ω − Enσ ) + |vi,nσ |2δ(ω + Enσ )}.

(24)

The DOSs characterizing different phases obtained by tuning
h from the RIMT and IMT methods are shown in Fig. 7 in the
left and right columns, respectively. For the d-wave BCS state
at a low h (< h1), the DOSs of the two spin flavors split; the
up-spin DOS gets shifted towards the left and the down-spin
towards the right with respect to the Fermi level by an amount
of heff as shown in Figs. 7(a) and 7(b).

For intermediate magnetic fields h1 � h < h2, the FFLO
state is identified by a midgap peak [20,32] appearing at
ω = ∓heff for up- and down-spin DOSs respectively. This
is because the paired states in the FFLO phase reside near
the Zeeman-split Fermi surfaces and the single-particle states,
which cause finite magnetization, occupy the energies in
between them. In real space, the single-particle states are piled
up at the zeros of the superconducting pairing amplitude �,
where it changes sign, and form domain walls. The nearly
“square-wave” nature of the � modulation within RIMT, as
seen in Fig. 5, supports domain walls within narrow regions
in real space. The resulting spatial profile of m thus features
strong peaks at these narrow domain walls. Such strong
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FIG. 7. Spin-resolved average DOS from RIMT (left column)
and IMT methods (right column). Panels (a) and (b) show DOS
for d-wave BCS state, featuring standard profile where up- and
down-spin DOSs are oppositely shifted in energy from Fermi level
by heff . Panels (c) and (d) present DOS in the FFLO phase close to
corresponding h1 highlighting the signature of a bound state through
the midgap peak. Notice that the presence of strong correlations
makes the midgap peak much sharper in panel (c) compared to
IMT outcome in panel (d). Further increase of h deep inside FFLO
regime in panels (e) and (f) begins to broaden and subsequently split
the midgap peak. Finally, for h > h2 pairing amplitude collapses
altogether as seen in panels (g) and (h), and the resulting DOS
features standard profile of tight-binding electrons in the presence
of a magnetic field in the normal state.

localization of the single-particle states leads to a rather sharp
midgap feature in the resulting density of states from RIMT
calculations, as seen in Fig. 7(c). These midgap states and
the corresponding midgap peak in DOS are reminiscent of the
bound states formed due to the Andreev reflections along the
nodal lines of a superconductor. Note that the superconducting
order parameter changes its sign on the nodal line. The
nature of modulation of pairing amplitude in the IMT scheme,
however, maintains near-sinusoidal form (higher harmonics
less relevant) and as a result, the midgap feature in the
corresponding density of states is much less sharp, as can be
seen from Fig. 7(b).

As h increases, the domain walls get closer to each other
with increasing q∗. This facilitates stronger hybridization of
the Andreev bound states, resulting in a broader bandwidth
of the midgap peak. In IMT, q∗ increases continuously with
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FIG. 8. Spatial distribution of the low-lying wave function
|φn(ri )|2 ≡ |ui,n↑|2 + |vi,n↑|2 for En ≈ −heff to illustrate its bound-
edness. Panel (a) demonstrates that |φn(ri )|2 at h = 0.18 is a more
tightly bound state in RIMT calculations than in plain IMT result
for |φn(ri )|2 in panel (b) for h = 0.26. Note that the lack of tight
boundedness in the IMT wave function leads to a relatively broader
midgap peak in DOS, e.g., in Fig. 7(d).

h within the FFLO region. As a result, the broadening of the
midgap peak happens continuously with increasing h and the
single-particle states in the midgap peak become unbounded
at higher h values, as shown in Fig. 7(f) [94]. However, in
RIMT, the midgap states remain bounded even at high h
values [see Fig. 7(e)] as a result of the q∗ saturation over a
range of h.

The sharpness of the midgap feature of DOS in the RIMT
results, particularly at lower magnetic fields at h = 0.18 in
Fig. 7(c), is also due to the reduction of bandwidth to 8teff

(teff ≈ 0.4 at h = 0). This reduction further becomes spin-
dependent in the presence of h, as shown in Fig. 6(a). The
reduced bandwidth also makes the DOS better resolved with
closely spaced energy levels in RIMT.

The sharp change of the pairing amplitude and sign near the
zeros in RIMT results makes the wave function corresponding
to the midgap energy far more localized near the domain walls
compared to the IMT findings. This is shown for the lowest-
lying wave function |φn(r)|2 (here, En ≈ −heff ) in Figs. 8(a)
and 8(b) from the RIMT and IMT calculations, respectively,
to highlight their contrast. The boundedness of the low-lying
wave functions reduces as the steepness of the � modulation
decreases with the increase in h.

E. Fate of FFLO phase in the presence of competing order

Our results in the previous subsections illustrate how an
application of Zeeman field h generates an FFLO state from
a pristine d-wave superconducting GS (for h = 0). One of
the hallmarks of most strongly correlated superconductors is
that they often carry translational-symmetry-broken orders in
their GS—for example, charge orders [98,99] and antiferro-
magnetism [100,101] in cuprate superconductors, and spin-
density wave (SDW) order in heavy-fermion superconductors
[76,77] and Fe-based superconductors [102,103]. Motivated
by this, we consider a broken-symmetry GS with d-wave
superconducting order and a commensurate SDW order [104]
at h = 0 and scan the phase space traced by h. The SDW order
is often found in strongly correlated superconductors at small
doping values. We begin with the Hamiltonian in Eq. (3), and
its spin rotational symmetry gets broken by the SDW order
even at h = 0.
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FIG. 9. Energetics of the proposed competing phases with dif-
ferent broken symmetries, calculated within RIMT (a) and IMT
(b) methods. We consider the d-wave BCS state (blue dashed
curves), the FFLO phase (red dashed curves), the normal state (green
dashed curves), a state with both the d-wave BCS order and a
competing SDW order with (π, π ) modulation (dark blue curves),
a state with FFLO modulation + competing SDW order with (π, π )
modulation (pink curves), and a normal state with (π, π ) SDW order
(dark green curves) as the possible candidates for comparison, from
which the true GS emerges as the one with minimum energy at the
given h. The state with FFLO modulation with SDW order (pink
shade) is realized as the GS between d-wave BCS + SDW state for
low h and the normal state at large h with both RIMT and IMT
schemes. This phase is realized for a range of h1 ≈ 0.23 to h2 ≈ 0.45
in RIMT findings (a), and from IMT (b) window of h1 ≈ 0.2 to
h2 ≈ 0.43.

For this calculation, we fix 〈n〉 = 0.9. With this average
density, we focus on addressing the following question: can
a translational-symmetry-breaking SDW order in the GS at
h = 0 perturb the modulating pairing amplitude in the FFLO
phase at finite h? The phase diagrams including SDW order
using the RIMT and IMT schemes are shown in Figs. 9(a) and
9(b), respectively. Here, we allow the following competing
states to emerge at different h values: the d-wave BCS state,
a state with the d-wave BCS order coexisting with the SDW
order (d-wave BCS + SDW), the FFLO state, a state with an
FFLO modulation coexisting with the SDW order (we coin
this the FFLO + SDW state), a normal state (NS) with spin
imbalance, and the NS with the SDW order (NS-SDW). The
FFLO + SDW phase carries an SDW order with a wave vector
(π, π ) − ε and an FFLO-like modulation in the paring ampli-
tude with q ‖ ε. Here, ε = (ε, 0), where ε is a small number. A
similar state has recently been studied in Ref. [105]. The final
energetics at BdG self-consistency determines the true GS.

We compare the phase diagrams including the competing
SDW order for both IMT and RIMT calculations. For a
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FIG. 10. Evolution of the spatial profiles of different order parameters [see Eqs. (4) and (6) and the text following Eq. (7) for definitions]
with h, with a ground state that features a competing SDW order along with the d-wave superconducting order and at h = 0, for the chosen set
of model parameters, as mentioned in Sec. III E. The 2 × 3 panels with color-density plots show the spatial profiles of superconducting pairing
amplitude (left panels), magnetization (middle panels), and charge density (right panels) on the left side for h = 0.2 (top panels) and h = 0.36
(bottom panels) obtained from plain IMT calculations. The 2 × 3 right-side panels are similar depictions from RIMT calculations for h = 0.25
and h = 0.35, respectively.

legitimate comparison, we fix J ≈ 1.47 in IMT calculations.
This fetches the same d-wave pairing gap in the presence of
this SDW order at h = 0 in RIMT and IMT. The phases in the
GS and the phase boundaries, as obtained from the energetics,
are shown in Fig. 9. The calculation for the case with strong
correlation is done in a 40 × 40 lattice, yielding weaker q
resolution than our results obtained in momentum space on
systems of size 200 × 200. Our crucial finding from this study
is that the GSs for all h, shown in Fig. 9, are essentially
those obtained in Fig. 1, but in addition accommodate the
competing SDW order, as we discuss below. Note that while
the SDW order is put in by hand at h = 0, it survives in the
self-consistent GS for all h in both RIMT and IMT, as shown
in panels (a) and (b) of Fig. 9.

We find that the d-wave BCS + SDW state (dark blue
curves) and the NS-SDW state (dark green curves) are al-
ways energetically favorable over the FFLO state (red curves)
generated from the pristine d-wave superconducting state in
both RIMT and IMT, as shown in Fig. 9. However, we further
find that the FFLO + SDW state energetically survives for a
window of h in the phase diagram. The spatial modulations of
different order parameters are shown in Fig. 10 on the left side
with IMT results, and on the right side with RIMT results. The
upper and lower panels correspond to two strengths of h. The
FFLO + SDW state turns out to be the lowest-energy state
sandwiched between the d-wave BCS + SDW (at low h � h1)
and NS-SDW (at high h � h2) states. In the RIMT scheme,
the FFLO + SDW phase ranges from h1 ≈ 0.23 to h2 ≈ 0.45,
and in IMT this region ranges from h1 ≈ 0.2 to h2 ≈ 0.43.
The balances of energy gain and loss from the individual
components of the total energy deciding the boundaries of
the FFLO + SDW phase for the RIMT and IMT schemes are
shown in Fig. 13 in Appendix C. In fact, this window in h
in which FFLO + SDW is the ground state appears wider
compared to the window in which FFLO was energetically

favorable if SDW order was ignored (as shown in Fig. 1) for
both the RIMT and IMT calculations.

Thus, our “toy” calculation indicates that the signature of
modulating pairing amplitude, i.e., the impression of FFLO,
survives with competing orders in the corresponding GS at
T = 0.

IV. CONCLUSION

In conclusion, we have studied the effects of strong elec-
tronic correlations in the FFLO state of a d-wave supercon-
ductor. Thus our results are of great relevance for the search of
FFLO signatures in strongly correlated d-wave superconduc-
tors, such as CeCoIn5 and the cuprates. Our findings indicate
that the strong correlations renormalize all relevant energy
scales, whose intricate balance decides the phase space for the
FFLO state. Consequently, we found an increased window of
the magnetic field for the FFLO phase. We make definitive
predictions for the behaviors of the order parameters, pair-
ing momenta, and DOS; all feature interesting distinctions
between RIMT and IMT findings. In RIMT, the modulating
wave vector of the pairing amplitude rises sharply from zero
near the lower critical field and remains nearly saturated over
a large part of the FFLO phase. A near saturation of the
modulating wave vector of a magnetic order with respect to
an external magnetic field has been observed in the Q phase
of CeCoIn5 [44]. Had this Q phase been similar to the FFLO
state, this near saturation in the modulation of the magnetic
order would imply a near saturation of the pairing-amplitude
modulation—a feature consistent with our findings. How-
ever, the spatial modulation of the magnetic order can arise
from other considerations as well [71–73], unrelated to the
FFLO phase. Strong interactions were found to homogenize
small-scale variations in the � landscape, which cause it to
change sign rather sharply near � = 0. This, in turn, localizes
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a high density of Andreev bound states on these domain walls,
leading to a narrow and sharp midgap peak in the density of
states of the FFLO phase within RIMT. This is consistent
with the recent nuclear magnetic resonance experiment on
CeCu2Si2, which is suggestive of the presence of a high
density of Andreev bound states in its inhomogeneous super-
conducting state in Zeeman fields [46].

A natural question might arise: Why do we not encounter
the FFLO phase in strongly correlated superconductors, e.g.,
high-Tc cuprate superconductors? In our calculations, we have
not included the orbital effect of the applied field in our
analysis and considered only the Zeeman effect. In reality, it
is challenging to disentangle the orbital and Zeeman effect
of an applied field. In particular, for cuprate superconductors,
the orbital effect produces vortices at weaker field strengths
(Horb

c2
∼ 100 T for YBCO near the optimal doping [106])

compared to the Clogston-Chandrasekhar limit (Hp ∼ 170 T
for YBCO (within BCS theory) near the optimal doping [62]),
where the Zeeman effect becomes crucial. Thus, it is quite
possible that homogeneous superconductivity might become
completely disordered, preempting FFLO modulations due to
the proliferation of vortices.

On the other hand, Pauli-limited superconductors pos-
sessing large Maki parameters [29] (>1.8), which also are
strongly correlated, such as heavy-fermion superconductors
CeCoIn5, CeCu2Si2, and some of the organic superconduc-
tors, show signatures of the FFLO phase, when exposed to
a magnetic field. We also have not included the effects of
quantum phase fluctuations in either of our recipe: IMT and
RIMT. It will be interesting to explore the effects of quantum
phase fluctuation on the FFLO physics, particularly at lower
doping where the strong correlation effects are significant.
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APPENDIX A: OBTAINING RENORMALIZED
MEAN-FIELD HAMILTONIAN HMF OF EQ. (7)

1. Detailed expressions for GRFs used in Eq. (3) [107,108] as
functions of the order parameters defined in Eqs. (4), (5), (6)

In the process of handling the constraint of strong on-
site repulsion (U � t) in the Hubbard model at our start-
ing point in Sec. II, we employed a Gutzwiller projection
operator to focus on a restricted Hilbert space, which pro-
hibits all the double occupancies from the system. While
this reduces the Hamiltonian in Eq. (1) to that in Eq. (2),
standard manipulation demands further simplifications for the
implementation of the constraints. One intuitive and elegant
(through approximation) way of implementing the constraint
is called the Gutzwiller approximation, which actually gets
rid of the constraints at the expense of renormalization of the
Hamiltonian parameters locally. The resulting Hamiltonian
is given in Eq. (3). Here we have the Gutzwiller renormal-
ization factors (GRFs), i.e., all g’s are local variables, to be
determined self-consistently. The form of such GRFs can be
derived from a phase-space argument [109] or from infinite-
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FIG. 11. Spatial profiles of the magnitude of the pairing ampli-
tude with d-wave [panels (a) and (b)] and extended s-wave [panels
(c) and (d)] symmetries, shown in the FFLO phase for h = 0.18 (left
panels) and h = 0.35 (right panels) within RIMT calculations. In
panels (e) and (f) corresponding average DOSs for up-spin electrons
are shown, which are obtained by fully suppressing the d-wave
pairing and considering only the self-consistent extended s-wave
pairing. The extended s-wave pairing has very small amplitudes in
regions where the d-wave pairing in suppressed, and elsewhere it is
negligible. In fact, the resulting DOS for both values of h resembles
that of the underlying NS of a nearest-neighbor tight-binding model,
confirming the irrelevance of the extended s-wave pairing in the
FFLO phase.

dimensional calculations [110], and they also depend on the
broken-symmetry ground state that we would like our ground
state to describe. For our case, we wish to accommodate
d-wave superconducting order as well as magnetization in our
ground state, and within such premises, the explicit forms of
GRFs have been worked out in Ref. [111]. For completeness
we list below the expressions of these GRFs in terms of all
the order parameters. The GRFs are similar to that used by
Ref. [107]:

gtσ
i j =

√
gtσ

i gtσ
j , (A1)

gtσ
i =

√
2δi(1 − δi )(

1 − δ2
i + 4m2

i

) 1 + δi + σ2mi

1 + δi − σ2mi
, (A2)

gJ,xy
i j = gJ,xy

i gJ,xy
j , (A3)

gJ,xy
i j = 2δi(1 − δi )(

1 − δ2
i + 4m2

i

) , (A4)
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gJ,z
i j = gJ,xy

i j

2
(
�2

i j + τ 2
i j

) − 4mimjX 2
i j

2
(
�2

i j + τ 2
i j

) − 4mimj
, (A5)

X 2
i j = 1 + 12(1 − δi )(1 − δ j )

(
�2

i j + τ 2
i j

)
√(

1 − δ2
i + 4m2

i

)(
1 − δ2

j + 4m2
j

) . (A6)

Here, δi = 1 − ni, where ni = ∑
σ niσ , �i j =∑

σ �i jσ /2, τi j = ∑
σ τi jσ /2.

2. Details of mean-field decomposition
of Ht−J defined in Eq. (2)

The method of derivation of the mean-field Hamiltonian of
nature as given in Eq. (7) starting from the bare Hamiltonian
like in Eq. (3) is standard and can be found in the literature
[87]. Here, we proceed to describe the procedure specifically
for our investigation of the FFLO state, for the sake of
completeness.

We minimize 〈ψ0|HGA|ψ0〉 with respect to |ψ0〉 (Sec. II),
under the constraints of fixed total electron density

N−1 ∑
i ni = 〈n〉 and normalization of the wave function

〈ψ0|ψ0〉 = 1, or equivalently we minimize the functional
W = 〈ψ0|HGA|ψ0〉 − λ(〈ψ0|ψ0〉 − 1) − μ(

∑
i ni − 〈n〉) as

follows:

HMF =
∑
〈i j〉σ

∂W

∂τi jσ
(ĉ†

iσ ĉ jσ + H.c.) +
∑

iσ

∂W

∂niσ
n̂iσ

+
∑
〈i j〉σ

∂W

∂�i jσ
σ ĉiσ ĉ jσ , (A7)

which leads to the renormalized mean-field Hamiltonian HMF

of Eq. (7).

3. Expressions of ξ
(r)
k+Q,σ and �

(r)
k,−k+Qp

of Eq. (11)

For the periodic and clean system we have considered,
HMF in Eq. (7) can be best solved in momentum space after
performing Fourier transformation, as obtained in Eq. (11).
Here, we present the detailed expressions ξ

(r)
k+Qσ

and �
(r)
k,−k+Qp

appearing in Eq. (11):

ξ
(r)
k+Qσ

= −
∑

α=±x̂,±ŷ

(
gtσ

Qα + 	α
Qσ

)
eik·α + J

4

[(
gJ,z

0 − 1
)
nσ

Q − (
gJ,z

0 + 1
)
nσ

Q

]
γQ + J

2

∑
Q′,α′=x̂,ŷ

(
gJ,z

Q′−Q,α′
)(

nσ
Q′ − nσ

Q′
)

cos(Q · α′)

− J

2
gJ,xy

0 τσ
Q γk+Q − J

∑
Q′α′

gJ,xy
Q′−Q,α′τ

1σ
Q′,α′ cos[(k + Q) · α′] − J

∑
Q′α′

gJ,xy
Q′−Q,ατ 2σ

Q′,α′ sin[(k + Q) · α′] − J

4

(
gJ,z
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)
τσ

Q γk+Q

− J

2

∑
Q′α′

gJ,z
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2
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�
(r)
k,−k+Qp

= −J

2
gJ,xy

0 �′
Qp

η−k+Qp − J

4

(
gJ,z

0 + 1
)
�′

Qp
ηk − J

∑
Q′

p,α
′
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∑
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∑
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θα′
Qp↑ cos[(k − Qp) · α′] −
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α′
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Qp↓ cos(k · α′). (A9)

Here,

τσ
Q = 1

4N

∑
k

〈ĉ†
kσ

ĉk−Q,σ 〉0γk,

τ 1σ
Q,α′ = 1

N

∑
k

〈ĉ†
kσ

ĉk−Q,σ 〉0 cos(k · α′),

τ 2σ
Q,α′ = 1

N

∑
k

〈ĉ†
kσ

ĉk−Q,σ 〉0 sin(k · α′); (A10)

�′
Qp

= 1

4N

∑
k

〈ĉ†
−k+Qp↑ĉ†

k↓〉0ηk,

�1′
Qp,α′ = 1

N

∑
k

〈ĉ†
−k+Qp↑ĉ†

k↓〉0 cos(k · α′),

�2′
Qp,α′ = 1

N

∑
k

〈ĉ†
−k+Qp↑ĉ†

k↓〉0 sin(k · α′), (A11)

where Q′ = 0,±2q,±4q, Q′
p = ±q,±3q, γk =

2[cos(kx ) + cos(ky)], ηk = 2[cos(kx ) − cos(ky)], nσ
Q = N−1

〈ĉ†
kσ

ĉk−Q,σ 〉0, and gtσ
Qα, gJ,xy

Qα , gJ,z
Qα, 	α

Qσ , θα
Qpσ

, φQσ are

Fourier modes of gtσ
iα, gJ,xy

iα , gJ,z
iδ , 	α

iσ , θα
iσ , φiσ , respectively.

APPENDIX B: POSSIBILITY OF EXTENDED s-WAVE
SYMMETRY IN PAIRING AMPLITUDE

The t-J model can, in principle, give rise to anisotropic
pairing amplitude in both d-wave and extended s-wave chan-
nels. However, within our parameter regime, the strength of
the extended s-wave component is very weak—essentially
zero in both RIMT and IMT results—in the absence of orbital
field, i.e., h = 0. Therefore, we start (at h = 0) with a pure d-
wave homogeneous state. When this phase becomes spatially
modulated in the FFLO regime at a finite h (h1 � h � h2), a
weak extended s-wave symmetry is induced in regions where
the d-wave pairing amplitude vanishes due to modulations,
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FIG. 12. Differences of the components of Et near the phase
boundaries (h1 and h2) as a function of h in RIMT (a) and IMT
(b) methods. The shaded regions in pink represent the FFLO state.
Here, Et gain of the FFLO equals Et of the competing phase, such as
BCS or NS, minus Et of the FFLO phase, and Et loss of the FFLO
equals Et of the FFLO phase minus Et of the competing phase, such
as BCS or NS. Et gain of the FFLO (red curve near h1) phase through
EK and Em crosses the Et loss of the FFLO (blue curve near h1)
due to Ep with respect to the BCS state at h1, which occurs early
in RIMT. At h2 the difference of Et components between FFLO and
NS approaches zero. Consequently, Et gain and Et loss of FFLO with
respect to NS merge with each other at the FFLO-NS boundary.

as depicted in Figs. 11(a) and 11(b) and in Figs. 11(c) and
11(d) for h = 0.18 and h = 0.35, respectively. However, the
amplitude of this extended s-wave component is negligibly
small compared to the d-wave counterpart (maximum value
of extended s-wave component is about 10% and 5% of
the maximum of d-wave component at h = 0.18 and h =
0.35, respectively) and it does not affect our qualitative and
quantitative conclusions. We have checked this by calculating
the average DOS by considering the self-consistency in cal-
culations by allowing only the extended s-wave component of
the pairing amplitude and suppressing the d-wave component
to zero everywhere. We find that the resulting DOS resembles
that of the underlying noninteracting tight-binding model
and carries essentially no signature of the extended s-wave
pairing, as portrayed in Figs. 11(e) and 11(f). This conclusion
remains unaltered in results obtained from IMT calculations
as well; we do not show that result explicitly for simplicity.

APPENDIX C: EVOLUTIONS OF THE ENERGY GAIN
AND LOSS WITH RESPECT TO THE MAGNETIC FIELD

AT THE PHASE BOUNDARIES

Our main result in Sec. III showed that the phase bound-
aries between BCS, FFLO, and NS move around depending
on the inclusion of strong correlations in the fold of the
calculation. It was also argued that the signatures of strong
correlations renormalize different components of energy in a
different manner, such that the subtle balance between these
components is achieved at different strengths of the Zeeman
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FIG. 13. Differences of the components of Et near the phase
boundaries as a function of h in RIMT (a) and IMT (b) methods.
The shaded regions in pink represent FFLO + SDW state. Here, Et

gain of the FFLO + SDW equals Et of the competing phase, such
as d-wave BCS + SDW or NS-SDW, minus Et of the FFLO + SDW
phase, and Et loss of the FFLO + SDW equals Et of the FFLO +
SDW phase minus Et of the competing phase, such as d-wave BCS +
SDW or NS-SDW. Et gain of the FFLO + SDW (black curve near h1)
through Em crosses the Et loss of the FFLO + SDW (magenta curve)
due to Ep and EK at h1, which occurs at 0.23 and 0.2 in RIMT and
IMT, respectively. At h2 the difference of Et components between
FFLO + SDW and NS-SDW approaches zero. Consequently, Et gain
and Et loss of FFLO + SDW with respect to NS merge with each
other at the h2 boundary, which is ≈0.43 and ≈0.45 in RIMT and
IMT.

field h, causing the phase boundaries to be different for
RIMT and IMT. Here, we illustrate the above statement in the
following manner in terms of our results.

The differences of the energy components of the competing
phases without the competing SDW order near their phase
boundaries with respect to h obtained from the RIMT and
IMT schemes are shown in Fig. 12. The pairing energy (Ep)
favors a uniform BCS phase over the FFLO phase, because the
spatial modulation of the order parameter comes at an energy
cost, most easily seen from a Ginzburg-Landau expansion of
free energy [1]. In contrast, the magnetization energy (Em) and
effective kinetic energy (EK ) costs are better accommodated
in the FFLO phase, because of the nucleation of the Em and
EK at the domain walls formed along the nodes of � in real
space in the FFLO phase. Because of the GRFs appearing in
the Hamiltonian HMF in Eq. (11), which are self-consistently
determined for specific location in the parameter space, inde-
pendent components of energies evolve differently with h. As
a result, the changeover from BCS to FFLO and subsequently
from FFLO to normal state can occur at different h1 and h2

in principle, from RIMT and IMT calculations. The crossing
of (Em + EK ) gain and Ep loss in the FFLO phase as found
at h1 reduces in RIMT, because the rate of change of energy
gain in FFLO due to (Em + EK ) increases compared to the
energy loss from Ep near h1. This is expected because strong
correlations homogenize the small-scale variations in � in
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the FFLO phase and make the zero region of � narrower by
steepening the fall of � nearly the same as depicted in Fig. 5.
Therefore, even near a reduced h1, the FFLO state becomes
energetically favorable compared to the BCS state as the loss
of Ep in the FFLO state is less compared to the gain in Em

which mainly stems from the increased magnetization due to
lowering of bandwidth in RIMT. On the other hand, inside the
FFLO region the gap filling, or in other words, the decay of
Ep (Ep ≈ 0 determines h2), occurs at a relatively slower rate
in RIMT due to renormalization of the effective magnetic field
heff as shown in Fig. 6(c), and therefore h2 does not shift in a
fashion similar to that of h1.

Figure 13 shows the balances in the energy components
at the phase boundaries of the competing phases with the
competing SDW order from the RIMT and IMT calculations.
The competing phases here are d-wave BCS + SDW phase,
FFLO + SDW phase, and the underlying normal state. Near
h1, the FFLO + SDW phase is favored by Em and the d-wave
BCS + SDW phase is favored by Ep and EK . Renormalization
of the parameters is due to Gutzwiller factors and as a result
of that the renormalized energy components cause different
h1 values in RIMT and IMT. The h2 in the two cases are also
different due to different renormalization of the parameters in
RIMT and IMT.
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