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The semiclassical approach introduced by Sachdev and collaborators proved to be extremely successful in the
study of quantum quenches in massive field theories, both in homogeneous and inhomogeneous settings. While
conceptually very simple, this method allows one to obtain analytic predictions for several observables when
the density of excitations produced by the quench is small. At the same time, a novel generalized hydrodynamic
(GHD) approach, which captures exactly many asymptotic features of the integrable dynamics, has recently
been introduced. Interestingly, also this theory has a natural interpretation in terms of semiclassical particles
and it is then natural to compare the two approaches. This is the objective of this work: we carry out a
systematic comparison between the two methods in the prototypical example of the sine-Gordon field theory.
In particular, we study the “bipartitioning protocol” where the two halves of a system initially prepared at
different temperatures are joined together and then left to evolve unitarily with the same Hamiltonian. We
identify two different limits in which the semiclassical predictions are analytically recovered from GHD: a
particular nonrelativistic limit and the low-temperature regime. Interestingly, the transport of topological charge
becomes subballistic in these cases. Away from these limits we find that the semiclassical predictions are only
approximate and, in contrast to the latter, the transport is always ballistic. This statement seems to hold true even
for the so-called “hybrid” semiclassical approach, where finite time DMRG simulations are used to describe the
evolution in the internal space.

DOI: 10.1103/PhysRevB.100.035108

I. INTRODUCTION

Semiclassical approaches have accompanied the study of
quantum mechanics ever since its first formulations [1], and
nowadays represent a standard toolbox for theoretical physi-
cists. These approaches allow one to simplify the description
of quantum systems by treating classically some aspects of
their dynamics, and are of interest even when more sophis-
ticated tools are available. Consider, for instance, the case
of one-dimensional integrable models with internal degrees
of freedom [2]. While these systems are amenable to exact
analyses, such as the nested Bethe ansatz [3], some of their
properties remain generically hard to determine, most notably
correlation functions. In this case, Sachdev and collaborators
[4–8] showed that the low-temperature correlators can be
determined by an intuitive semiclassical picture formulated in
terms of quasiparticles propagating through the system (see
also Refs. [9]).

Semiclassical approaches are even more relevant in the
study of nonequilibrium physics [10]. Indeed, the full descrip-
tion of the out-of-equilibrium dynamics is notoriously hard,
even in simple protocols such as quantum quenches [11], and
semiclassical approaches often represent the only option to
obtain analytical insight [12–18]. It is then crucial to under-
stand their precise range of applicability, testing them against
exact results coming from integrability in instances where the
latter are available. In this respect, (1 + 1)-dimensional inte-
grable quantum field theories are of particular interest. Indeed,

they offer powerful tools coming from the combination of
integrability, relativistic invariance, and nontrivial analytical
structures in momentum space [19], for instance, form-factor
expansions [20,21].

Specifically, an ideal testing ground where both semiclas-
sical and integrability based methods can be applied is given
by the sine-Gordon field theory. Apart from being the proto-
typical example of an integrable quantum field theory with
an internal O(2) symmetry, this theory also attracts a large
amount of attention from the condensed matter community,
mainly because it provides a description of the low-energy
physics of several spin chains [22], and of interacting one-
dimensional bosons [23,24].

The quench dynamics of the sine-Gordon field theory was
first investigated in [25] by combining form factor expansions
with the quench action method [26–28], an exact approach
deeply rooted in the theory of integrability. There, the au-
thors considered homogeneous settings and determined the
full dynamics of a particular vertex operator in the limit of
small energy densities. Remarkably, the results of Ref. [25]
were later exactly recovered in Ref. [18] by a generalisation
of Sachdev’s semiclassical approach, revealing all its appeal
also out of equilibrium. Furthermore, it was shown that this
semiclassical approach can be developed further into a hybrid
method where, at first order, quantum effects could be taken
into account either via Monte Carlo simulations or via a
complete quantum mechanical treatment of internal degrees
of freedom [29,30].
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More recently, increasing interest has been devoted to the
study of inhomogeneous situations. A particularly simple,
yet nontrivial, setting which has been widely investigated is
the so-called bipartitioning protocol, where two semi-infinite
systems, initially held at different temperatures, are suddenly
joined together and left to evolve unitarily under a homoge-
neous Hamiltonian. While this protocol is of obvious interest
for the study of transport, until recently its analytic under-
standing was limited to the cases of free [31–48] or confor-
mally invariant models [49–60], with a few notable exceptions
[61,62]. A major breakthrough came in Refs. [63,64], with
the introduction of the theory of generalized hydrodynamics
(GHD) which allows one to treat transport even in interacting
integrable models. Within this approach, at large times the
system is described by a family of space-dependent quasi-
stationary states, determined by a set of continuity equations
for the densities of conserved charges.

Bipartitioning protocols have been investigated in detail
using GHD in different models, ranging from spin chains
[65–78] and electronic systems [79,80], to nonrelativistic
quantum gases [81–84] and classical field theories [85],
unveiling a rich phenomenology in the transport of one-
dimensional integrable theories. Remarkably, it was found in
Ref. [86] that the GHD equations are in a sense classical; for a
given quantum system, one can find quite generally a classical
counterpart which is described by the same set of hydrody-
namic equations in the limit of large space and timescales. In
light of this, it is natural to wonder what the relation between
GHD and Sachdev’s semiclassical approach is. Investigating
such relation is the purpose of this paper. Our strategy is
to compare their predictions for the transport generated by
bipartitioning protocols in the sine-Gordon model.

A semiclassical analysis of bipartitioning protocols has al-
ready been performed in Ref. [87] and a number of interesting
qualitative features have been revealed. Most prominently,
Ref. [87] pointed out that the transport of the charge asso-
ciated with the internal degree of freedom is always diffusive.
In essence, this is due to the fact that each semiclassical
particle carries a discrete unit of the internal charge and two
semiclassical particles originated close to each other can not
get too far due to the interactions with the other particles;
this bounds the spreading of the charge. Note that GHD can
also predict similar subballistic transport, e.g., in the case
of gapped XXZ spin-1/2 chains [65]. This happens when
the GHD particles responsible for the transport of a certain
charge become nondispersive, i.e., they all move with a single
velocity.

Our results can be summarized as follows. First, we show
that the semiclassical predictions for the profiles of local
observables can be analytically recovered from GHD in two
cases: (i) low temperatures and (ii) a particular nonrelativis-
tic limit. The first case is very close to the setting where
Sachdev’s semiclassical approach was first introduced, and
corresponds to a small density of excitations over the ground
state. In the second case, the limit is taken in such a way
that the assumptions of the semiclassical theory are exactly
fulfilled by the quantum dynamics, so that the semiclassical
predictions become exact even at finite densities. Away from
these regimes, however, we find that the semiclassical predic-
tions are only approximate. In particular, we find that, contrary

to the semiclassical prediction, the charge associated with the
internal symmetry [topological charge] always spreads ballis-
tically. This seems not to be captured even by more refined
versions of the semiclassical approach, such as the “hybrid”
version of Ref. [29]; as we discuss later on, we ascribe this to
the fact that the semiclassical picture is formulated in terms of
the “wrong” quasiparticles.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce the sine-Gordon field theory and its
thermodynamic Bethe ansatz (TBA) description. In Sec. III,
we summarize semiclassical and GHD descriptions of the
transport generated by the bipartitioning protocol. In Sec. IV,
we show how the semiclassical predictions are analytically
recovered from GHD in the aforementioned limiting cases. In
Sec. V, we compare the two approaches for generic tempera-
tures and couplings. Finally, Sec. VI contains our conclusions.
A number of appendices complements the main text with
more technical aspects.

II. THE SINE-GORDON FIELD THEORY

A. Hamiltonian and S matrix

The sine-Gordon field theory is a (1 + 1)-dimensional
bosonic quantum field theory described by the following
Hamiltonian:

H =
∫

dx

[
c2

2
: �2 : +1

2
: (∂x�)2 : −c2α2

β2
sG

: cos(βsG�) :

]
,

(1)

where the real bosonic field � and its conjugate momentum
� satisfy the canonical commutation relations

[�(x),�(y)] = iδ(x − y). (2)

In (1), : · · · : denotes normal ordering with respect to the
physical ground state, the parameter α gives a mass scale,
the parameter βsG is the coupling, and c is the speed of light
(and we set h̄ = 1). Note that, without loss of generality,
we can choose βsG � 0. Moreover, the Hamiltonian (1) is
bounded from below, and thus physically meaningful, only for
βsG � √

8π/c [88].
The field theory defined by (1) is integrable, i.e., it features

an infinite number of local conservation laws (or charges)
{In}n=1,2,... which constrain the dynamics. This set includes the
momentum I1 = P, the Hamiltonian itself I2 = H , together
with the “higher” conservation laws In>2. The constraints
imposed by the latter are most easily described by viewing (1)
as a scattering theory of relativistic particles corresponding
to excitations above a vacuum (this is always possible for
field theories in Minkowski space). The presence of the set
{In}n=1,2,... forces the scattering of such particles to be purely
elastic and completely factorisable in terms of two-body
processes [19]. An immediate consequence of this is that the
number N of such particles is conserved; it is, however, not an
independent charge as its conservation is “encoded” in the set
{In}n=1,2,....

Together with the charges {In}n=1,2,... the theory also fea-
tures two important internal symmetries. First of all, it is
immediate to see that the Hamiltonian (1) is left invariant by
the following Z2 symmetry transformation:

�(x) �→ R�(x) = −�(x). (3)
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Moreover, even if it is not apparent from (1), the theory also
displays an additional O(2) symmetry, which becomes man-
ifest in the fermionic formulation of the model [88], where
it corresponds to the conservation of electric charge. The
conserved quantity associated with this continuous symmetry
is called “topological charge” and is defined as

Q = βsG

2π

∫
dx ∂x�. (4)

This O(2) symmetry is also explicitly displayed by the eigen-
states of (1) as we now briefly review.

The spectrum of the model for βsG ∈ [0,
√

8π/c] is conve-
niently parametrized in terms of the “renormalized” coupling
[89]

ξ = cβ2
sG

8π − cβ2
sG

. (5)

For ξ � 1, the system is in the “repulsive regime” and the
eigenstates of the Hamiltonian can be viewed as scattering
states of two elementary relativistic particles of equal mass
M and opposite charge ±1, called “soliton” and “antisoliton.”
The expression of the mass M in terms of the Hamiltonian’s
parameters has been determined in Ref. [90]; in our conven-
tions, it reads

M

√
4 cot

(
πξ

2

)
(1 + ξ )c

α

βsG
. (6)

For ξ ∈ [0, 1[, instead, the system is in the so-called “attrac-
tive regime,” where solitons and antisolitons can form bound
states called “breathers.” Specifically, for a given ξ ∈ [0, 1[,
the spectrum features �1/ξ� different breathers with masses
given in terms of M as follows:

Mk = 2M sin

(
πkξ

2

)
, k = 1, . . . , �1/ξ�. (7)

The point ξ = 1 is special, as for this value of ξ , the theory is
equivalent to a free massive Dirac fermion.

Note that the appearance in the spectrum of solitons and
antisolitons is a nonperturbative effect: these particles cannot
be observed in perturbation theory in βsG. For instance, this
can be seen by expanding (6) for small βsG and verifying that
the expansion is not written in terms of a power series. Indeed,
the explicit calculation yields

M = 8α

cβ2
sG

+ O
(
β0

sG

)
. (8)

The “perturbative” particle associated to the field � for small
βsG is the first breather. Consistently, its mass has the follow-
ing expansion for small βsG:

M1 = α + O(βsG). (9)

In this work, we always consider the nonperturbative
regime ξ � 1 where the field � does not create single-
particle excitations. In this case, one can construct a basis of
stationary scattering states by means of a pair of Faddeev-
Zamolodchikov creation operators. This basis, together with
the scattering matrix of the field theory in the repulsive
regime, is explicitly reported in Appendix A.

B. Eigenstates in finite volume

Up to now we described the properties of the sine-Gordon
field theory in infinite volume. To treat finite densities of
particles, however, we need to consider the theory confined
in a finite volume L and take the thermodynamic limit, i.e.,
L, N → ∞ with a finite ratio N/L. This situation is conve-
niently analysed within the framework of the thermodynamic
Bethe ansatz (TBA) for relativistic integrable quantum field
theories [91], which we briefly review in the following.

The leading effect of confining the theory in a finite vol-
ume is that the rapidities characterising a given eigenstate of
the Hamiltonian become quantized. In other words, a given
eigenstate of H is allowed in finite volume only if its rapidities
fulfill some conditions depending on L. In general, since the
theory is nontrivially interacting, the quantisation conditions
couple together all the rapidities of the state. To be more
specific, let us consider an eigenstate of the Hamiltonian
specified by the rapidities θ = {θk}N

k=1 and impose periodic
boundary conditions. In this case, the allowed eigenstates are
those in the kernel of the operators

O j (θ) = T (θ j |θ) − e−iLMc sinh θ j1, j = 1, . . . , N, (10)

where 1 is the 2N × 2N identity and T (λ|θ) is the N-particle
transfer matrix, defined through its matrix elements in the
infinite-volume eigenbasis (A8) as

T (λ|θ)b
a = Sc1b1

cN a1
(λ − θ1) · · · ScN bN

cN−1aN
(λ − θN ). (11)

Here, Scd
ab (θ ) is the S matrix of the repulsive sine-Gordon field

theory in infinite volume. The condition of being in the kernel
of the operators (10) can be interpreted as the requirement that
subsequently swapping any particle in the state with all the
others is the same as translating it by L. As the transfer matrix
is nondiagonal in the basis (A8), the states in the kernel of (10)
are linear combinations of scattering states, namely,

|θ〉s =
∑

a

�s
a(θ)|θ〉a, s = 1, . . . , 2N (12)

with

T (λ|θ)b
a�

s
b(θ) = (λ|θ)s�s

a(θ), s = 1, . . . , 2N . (13)

For each state (12) with s = 1, . . . , 2N , the condition of being
in the kernel of the operators (10) is turned into a set of N
algebraic equations for the rapidities

(θ j |θ)s = e−iLMc sinh θ j , j = 1, . . . , N, (14)

known as “Bethe equations.” Note that, since the scattering
matrix fulfils the Yang-Baxter equation [cf. Eq. (A5a)], trans-
fer matrices with different spectral parameters commute

[T (λ|θ), T (μ|θ)] = 0, μ, λ ∈ R, (15)

so {T (θ j |θ)}N
j=1 are all simultaneously diagonalisable.

The coefficients �s
b(θ) and the eigenvalues (θ j |θ)s can

be determined via an algebraic Bethe ansatz construction
[25,92]. In this framework, instead of the index s, the states
are conveniently parametrized by 1 � r � N auxiliary param-
eters λr = (λ1, . . . , λr ), namely,{

�s
a(θ)

}2N

s=1 → {
�a(θ|λr )

}N

r=1. (16)
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These parameters can be thought of as the rapidities of some
fictitious particles called “magnons” that carry no energy
and momentum but encode the topological charge struc-
ture of the multisoliton states. Each magnon corresponds to
a “topological-charge flip” in the reference state which is
taken to be the all-soliton state [i.e., a = (+,+, . . . ,+) in
Eq. (A9)]. Consequently, the topological charge of a state with
N physical particles and r magnons is Q = N − 2r.

The algebraic Bethe ansatz construction ensures that one
can find a �a(θ|λr ) fulfilling (13) if the magnonic rapidities
satisfy

N∏
k=1

ST (λ j − θk )−1 =
r∏

k 
= j

ST (λk − λ j )

ST (λ j − λk )
, j = 1, . . . r, (17)

where ST (θ ) is defined in (A3b). In this case the eigenvalue
reads as

(λ|θ|λr ) =
{

N∏
k=1

ST (λ − θk )
r∏

k=1

ST (λ − λk )−1

+
r∏

k=1

ST (λk − λ)−1

}
N∏

k=1

S0(λ − θk ), (18)

where S0(θ ) is introduced in (A4). Here we do not report an
explicit expression of the coefficients as it is not needed. The
interested reader can find it in Refs. [25,92].

Plugging (18) into the Bethe equations (14), we finally
have

eiLMc sinh θ j

r∏
k=1

ST (λk − θ j )
−1

N∏
k=1

S0(θ j − θk ) = 1 (19)

with j = 1, . . . , N . The coupled set of equations (19) and (17)
are known as “nested” Bethe Ansatz equations because they
result from two subsequent applications of Bethe ansatz.

C. Thermodynamic Bethe ansatz

In the large volume limit, the roots of the magnonic Bethe
equations (17) organize themselves in regular patterns in the
complex plane called “strings”, i.e., sets of complex roots with
the same real part (called string center) and imaginary parts
differing by integer multiples of iπ [93]. To classify all the
possible string solutions it is useful to note that equations (17)
can be mapped to the Bethe ansatz equations for the gapless
XXZ spin-1/2 chain, and use the well known classification of
the solutions of the latter [93].

For generic values of ξ , strings of arbitrary length exist.
In order to have a finite number of string species, we shall
focus on the case where ξ is an integer. In this case, there are
only ξ different species of strings: “positive parity” strings
of length 1, 2, . . . , ξ − 1 centered on the real axis and a
“negative parity” string of length 1 and imaginary part ξπ/2
[93].

Once the string solutions have been identified, one takes
the product of all equations referring to rapidities of the same
string and writes a set of equations involving only the real
string centres. In this way, the equations are interpreted as
the quantisation conditions in a system with ξ + 1 species of
particles, one physical and ξ “magnonic,” interacting with a

diagonal scattering matrix. This procedure is explicitly carried
out in Appendix B.

In the thermodynamic limit, the solutions of the quantisa-
tion conditions densely cover the real line and it is convenient
to describe the states using their densities {ρk (θ )}ξk=0, known
as “root densities.” Here we labeled the physical particles by
k = 0 and the magnons by k = 1, . . . , ξ with species ξ being
the negative parity string of length 1. These densities can be
thought of as generalisations of the “occupation numbers”
commonly used to characterize states in free systems. It is
also useful to introduce the so-called “hole densities” ρh

k (θ )
representing the densities of values of the rapidities allowed
by the quantisation conditions but not populated in the specific
state. As a consequence of the quantisation conditions, root
and hole densities are connected by the following equations
(see Appendix C for an explicit derivation):

ρk (θ ) + ρh
k (θ ) = δk,0

Mc cosh θ

2π
− νk

ξ∑
m=0

(akm ∗ ρm)(θ ),

(20)

known as thermodynamic Bethe-Takahashi equations. Here,
νk = 1 for 1 � k � ξ − 1 and ν0 = νξ = −1; the notation

( f ∗ g)(λ) =
∫

dμ

2π
f (λ − μ)g(μ) (21)

denotes the convolution, and the explicit expressions for the
kernels anm(θ ) are given in Appendix C. As customary in
TBA, one can exploit a set of identities relating the kernels
akm(θ ) (see Appendix C) to cast the Bethe equations (20) in
a partially decoupled form, in which each species is coupled
only to a small subset of other species. For ξ > 2, the result
reads (see Appendix C for ξ = 2)

ρ t
0(θ ) = Mc cosh θ

2π
+ s ∗ ρh

1 (θ ), (22a)

ρ t
1(θ ) = s ∗ (

ρ0 + ρh
2 + δξ,3 ρ3

)
(θ ), (22b)

ρ t
k (θ ) = s∗(ρh

k−1 + ρh
k+1

)
(θ ), 1 < k < ξ − 2, (22c)

ρ t
ξ−2(θ ) = s∗(ρh

ξ−3 + ρh
ξ−1 + ρξ

)
(θ ), ξ > 3, (22d)

ρ t
ξ−1(θ ) = ρ t

ξ (θ ) = s∗ρh
ξ−2(θ ), (22e)

where we introduced the “total” root densities

ρ t
k (θ ) ≡ ρk (θ ) + ρh

k (θ ), (23)

and the function

s(θ ) ≡ 1

cosh θ
. (24)

Note that the coupling pattern of the different species corre-
sponds to the topology of the Dξ+1 Dynkin diagram [94].

The standard assumption of TBA is that, in the ther-
modynamic limit, the root densities {ρk (θ )}ξk=0 of a given
eigenstate of the Hamiltonian fully specify the expectation
values of all local observables in that eigenstate. In other
words, they give all the necessary information about the
state. In general, however, the expression of the expectation
value of local observables in terms of the root densities are
unknown. An important exception are the densities of (local)
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conserved charges. Specifically, the expectation value of the
conserved charge density ô(t, x) in an eigenstate characterized
by {ρk (θ )}ξk=0 reads as

o =
ξ∑

k=0

∫
dθ ok (θ )ρk (θ ), (25)

where the functions {ok (θ )}ξk=0 are known as “bare charges.”
For example, considering the expectation values of the densi-
ties of particles (n), energy (e), momentum (p), and topologi-
cal charge (q), we have

nk (θ ) = δk,0, ek (θ ) = δk,0Mc2 cosh θ, (26a)

pk (θ ) = δk,0Mc sinh θ, qk (θ ) = 3δk,0 − 2�k, (26b)

where � j is the length of the jth string, namely, � j = j for
1 � j < ξ and �0 = �ξ = 1. So,

n =
∫

dθ ρ0(θ ), (27a)

e =
∫

dθ Mc2 cosh θ ρ0(θ ), (27b)

p =
∫

dθ Mc sinh θ ρ0(θ ), (27c)

q =
∫

dθ ρ0(θ ) − 2
ξ∑

m=1

�m

∫
dθ ρm(θ ). (27d)

More general examples of expectation values of local charges
of the sine-Gordon model can be found in Ref. [95]. Note
that a form like (25) holds for all expectation values of local
conserved charge densities in any TBA solvable model.

Together with the conserved charge densities, there is
another class of local observables of which the expectation
values are explicitly known in terms of the root densities.
These are the “currents” of conserved charges, defined in
terms of the charge densities through an operatorial continuity
equation. More specifically, given a conserved charge Ô with
density ô(t, x), its current Ĵo(t, x) is defined by

∂t ô(t, x) + ∂xĴo(t, x) = 0, (28)

and tr[Ĵo(t, x)] = 0. The expectation value of Ĵo(t, x) in a state
described by {ρk (θ )}ξk=0 reads as [63,64]

Jo =
ξ∑

k=0

∫
dθ ok (θ )ρk (θ )vdr

k (θ ). (29)

Here, {ok (θ )}ξk=0 are the same functions as those appearing
in the expectation value of ô(t, x), while {vdr

k (θ )}ξk=0 are
the group velocities of excitations on the state specified by
{ρk (θ )}ξk=0. The latter are defined as

vdr
m (λ) = edr

m
′
(λ)

pdr
m

′(λ)
, (30)

where edr
m (λ) and pdr

m (λ) are respectively the energy and the
momentum of the elementary excitation consisting in the
addition of a particle of species m and rapidity λ. Note that,
as a consequence of the interactions, adding or removing a
particle changes the total energy and momentum of the state

by a quantity which is different from its bare energy and mo-
mentum. In Bethe ansatz, this is manifested in the change of
the rapidities of all the particles in a given state when a particle
is added or removed. Using the quantization conditions for the
string centres, one can write down the following linear integral
equations for the velocities (cf. Appendix C):

ρ t
k (θ )vdr

k (θ ) = e′
k (θ )

2π
− νk

ξ∑
m=0

(
akm ∗ ρmvdr

m

)
(θ ). (31)

The form (29) is conjectured to apply to all TBA solvable
models. Currently, however, an explicit proof is only avail-
able for relativistic integrable field theories with diagonal
scattering [64,96]. In the case of the XXZ spin-1/2 chain,
although not proven, Eq. (29) has been thoroughly tested
against DMRG simulations [63,65].

Root densities of the thermal state

Let us consider the system in a thermal equilibrium state

ρ = e−β(Ĥ−μ1N̂−μ2Q̂)

tr[e−β(Ĥ−μ1N̂−μ2Q̂)]
, (32)

where β−1 = T is the temperature, and the two chemical
potentials μ1 and μ2 control the densities of particles and of
topological charge, corresponding to the operators N̂ and Q̂,

respectively. The state (32) can be represented microcanoni-
cally in terms of an eigenstate of the Hamiltonian, and thus,
in the thermodynamic limit, it corresponds to a set of root
densities {ρk (θ )}ξk=0.

Following Yang and Yang [97], these root densities can be
obtained by minimising the grand potential density

g = e − μ1n − μ2q − T s (33)

with respect to {ρk (θ )}ξk=0. The densities of energy, particles,
and topological charge are expressed in terms of the root
densities in Eqs. (27), while the entropy density s assumes
the so-called Yang-Yang form

s =
ξ∑

m=0

∫
dθ

[
ρm(θ ) ln(1 + ηm(θ ))

+
ξ∑

m=0

∫
dθρh

m(θ ) ln
(
1 + η−1

m (θ )
)]

, (34)

where we introduced the functions

ηm(θ ) = ρh
m(θ )

ρm(θ )
. (35)

The minimization procedure, with the constraints (20), leads
to the following TBA equations:

ln η0(θ ) = Mc2 cosh θ − μ1 − μ2

T

+
ξ∑

m=0

νmam0 ∗ ln
(
1 + η−1

m

)
(θ ), (36a)

ln ηk (θ ) = 2μ2

T
�k +

ξ∑
m=0

νmamk ∗ ln
(
1 + η−1

m

)
(θ ), (36b)
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where k = 1, . . . , ξ . We stress that these equations can also be
brought to a partially decoupled form with the same structure
of (22) (see Appendix C). Finally we note that using (36) and
(20) one can prove that

g = −T
∫

dθ

2π
M cosh θ ln

(
1 + η−1

0

)
(θ ). (37)

The equations presented so far provide a complete descrip-
tion of the thermodynamics of the model at equilibrium. Fur-
thermore, as we will see in the following, they also represent
a key ingredient for the analysis of bipartitioning protocols
and, more generally, for a macroscopic description of the
sine-Gordon theory out of equilibrium.

III. BIPARTITIONING PROTOCOL

As we have discussed in Sec. I, in this work, we investigate
the nonequilibrium dynamics of the sine-Gordon field theory
following a bipartitioning protocol. This protocol is simple
enough to allow for exact statements, but, on the other hand,
it displays all the interesting features associated with breaking
of translational invariance at finite energy density.

More specifically, we are interested in the quantum quench
from the initial state

ρ0 = ρL
0 ⊗ ρR

0 , (38)

where

ρα
0 = e−βα (Hα−μ1,αNα−μ2,αQα )

tr[e−βα (Hα−μ1,αNα−μ2,αQα )]
, α ∈ {L, R}, (39)

and operators with subscripts L and R are defined by restrict-
ing the integrals of their density respectively to x < 0 and
x > 0.

We will study this problem by means of two different meth-
ods: (i) a generalisation of Sachdev’s semiclassical approach,
reviewed in Sec. III A; (ii) generalized hydrodynamics, re-
viewed in Sec. III B. A systematic comparison of the two
approaches is carried out in Secs. IV and V.

A. Semiclassical approach

The semiclassical approach considered in this work con-
cerns quantum systems with multiple species of long-lived
quasiparticle excitations distinguished by some internal de-
gree of freedom (different species). The method was intro-
duced in Refs. [5,6] to describe low-temperature correlations
in a transverse field Ising chain, and, then, applied for the
study of several systems both in Refs. [7–9] and out of
[12–18,29,30,87] equilibrium. The main idea is that when the
density of quasiparticles is low, they propagate along classical
trajectories. On the contrary, the collisions among the particles
are governed by quantum mechanics. In 1D collisions are
inevitable, but at low enough densities it is sufficient to
consider two-particle scatterings only.

Different versions of the method differ in how accurately
they treat the scattering. In this section, we consider the
simplest approximation, called “universal limit,” in which one
assumes that all quasiparticles have negligibly small momenta
(see Sec. V for refinements). For local interactions, the range
of the scattering potential is then much smaller than the de

Broglie wavelength of the particles, so the potential can be
substituted by a Dirac-delta and the scattering matrix becomes
that of nonrelativistic hard-core particles. At small momenta
this scattering matrix becomes independent of the incoming
momenta and fully reflective in the space of internal quantum
numbers [4]. The simple nature of the two-body S-matrix
turns the problem into a fully deterministic classical many-
particle problem. The expectation values of observables are
obtained by averaging over an ensemble of possible initial
configurations. This classical formulation allowed for ana-
lytic calculations in various models and physical setups [5–9,
12–18,87]. In particular, at large space scales and timescales,
this problem can be treated by means of a hydrodynamic
approach [98], where the state of the system is assumed to
be locally stationary and completely fixed by the conserved
quantities of the flow.

Note that the above description directly applies to the case
of the sine-Gordon field theory in the repulsive regime. In this
case, as discussed in Sec. II A, the relevant quasiparticles are
solitons and antisolitons and the internal degree of freedom is
the topological charge (4). Since the model is integrable, the
quasiparticles are stable [infinitely long-lived] and the scatter-
ing is exactly factorized into sequences of two-body processes
for any density. As explicitly shown in Eqs. (A3), however, the
two-body scattering matrix generically depends nontrivially
on the momentum. It takes the universal form (A6) only at
small rapidities. This situation is realized, for instance, after
a bipartitioning protocol, when the temperatures of the two
leads (39) are low enough.

In the case of the bipartitioning protocol, one assumes
that quasiparticles on the left (L) and right (R) leads are
initially evenly distributed in space with densities nR/L, and
their momenta and charges are drawn from the factorized
distribution

fα (Q, p) = fα (p)gα (Q), α ∈ {L, R}, (40)

where p ∈ R is the momentum, Q ∈ {+,−} is the internal
charge, and we have∫

d p fα (p) =
∑

Q∈{±}
gα (Q) = 1, α ∈ {L, R}. (41)

We point out that the factorized form (40) is a necessary
ingredient for the feasibility of the semiclassical calculation,
however, the explicit form of fα (Q) and gα (Q) is not [87].
Here we keep them generic and specify them in order to
match the GHD solution. Moreover, in writing (40) and (41)
we specialized to the case where the internal charge takes
only two distinct values, as it is the relevant one for us.
The treatment, however, can be directly generalized to higher
number of species.

Due to one-dimensional kinematics, the collisions are
fully elastic: momenta are always transmitted and topological
charges are always reflected. This suggests to adopt a modified
picture of the dynamics, in analogy with the treatment of one-
dimensional hard rods [99,100]. We split each quasiparticle in
momentum and charge “tracers” that have respectively fixed
momentum and fixed internal charge. Initially, the momentum
and charge tracers corresponding to the same particle move
with the same velocity, but upon scattering momentum tracers
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are transmitted while charge tracers are reflected. Moreover,
since the quasiparticles are pointlike, tracers of momentum p
move along straight lines with slope

v(p) = dε(p)

d p
= p

M
, (42)

where we introduced the quasiparticle dispersion

ε(p) = Mc2 + p2

2M
, (43)

and, since the universal limit applies at small momenta, we
considered the nonrelativistic form.

The dynamics can be translated in a hydrodynamic lan-
guage (see, e.g., Ref. [98]) by introducing n(p, x, t ), the den-
sity of tracers of momentum p averaged over the distribution
of initial configurations. The microscopic conditions on the
scattering described above imply that n(p, x, t ) is locally
conserved, namely,

∂t n(p, x, t ) + ∂xJ (p, x, t ) = 0 ∀p, (44)

where J (p, x, t ) is the current of tracers with momentum p.
Since momentum tracers move along straight lines we simply
have

J (p, x, t ) = v(p)n(p, x, t ). (45)

Plugging this into (44), we find

n(p, x, t ) = nL(p)�[v(p) − x/t] + nR(p)�[x/t − v(p)],

(46)

where �[x] is the Heaviside step function and we introduced
nα (p), the density of tracers of momentum p in the lead
α = {L, R} averaged over the initial configurations. Using
(40) we have

nα (p) = nα fα (p). (47)

Going back to the quasiparticle formulation, n(p, x, t ) is the
density of quasiparticles of momentum p, counting both those
with positive and those with negative internal charge. This
quantity can be used to compute the expectation values of
observables to which the two species of particles contribute in
the same way. For example, the total density of quasiparticles
and the corresponding current read as

n(x, t ) =
∫

d p n(p, x, t ), (48)

Jn(x, t ) =
∫

d pv(p)n(p, x, t ). (49)

The energy density and current are given by analogous ex-
pressions with the integrands containing an extra factor of
ε(p). Note that these expressions depend solely on the scaling
variable

ζ = x/t, (50)

i.e., the “ray” in the (x, t ) plane. Accordingly, we use the
notation

n(x, t ) �→ n(ζ ), Jn(x, t ) �→ Jn(ζ ). (51)

It is easy to see that n(p, x, t ) are not the only conserved
quantities in the classical problem under exam. Indeed, the

number of charge tracers of each given species is also con-
served. By construction, the total density of charge tracers
coincides with (48), but the difference between the number of
charge tracers of the two species is an independent conserved
quantity. This is nothing but the the topological charge. In
hydrodynamic language, we then have

∂t q(x, t ) + ∂xJq(x, t ) = 0, (52)

where q(x, t ) is the of topological charge density and Jq(x, t )
the corresponding current. As opposed to momentum trac-
ers, however, the charge tracers scatter nontrivially, and the
expression of Jq(x, t ) in terms of the conserved quantities is
significantly more complicated than (45). This expression is
reported in Ref. [87] and it is rather unwieldy, as it contains
derivatives of the conserved quantities. In the scaling limit

lim
sc,ζ

≡ lim
x, t → ∞
x/t = ζ

, (53)

however, all derivatives can be neglected and we have

lim
sc,ζ

Jq(x, t ) = v(ζ )q(ζ ). (54)

Here we introduced the “fluid velocity”

v(ζ ) ≡ Jn(ζ )

n(ζ )
. (55)

Plugging (55) in (52) we obtain the Euler equation for the
topological charge. Its solution reads as

lim
sc,ζ

q(x, t ) = n(ζ )(q̃R�[ζ − v(ζ )] + q̃L�[v(ζ ) − ζ ]), (56)

where we introduced the topological charge per particle in the
lead α ∈ {L, R}

q̃α =
∑

Q∈{±}
Q gα (Q). (57)

Interestingly, we see that both the density and the current of
the topological charge feature a jump at the ray v∗, defined as
the solution of

ζ − v(ζ ) = 0. (58)

This jump, however, is not a physical shock: the subleading
corrections to Jq(x, t ) show that it is a diffusively broadening
front. The associated diffusion constant reads as [87]

D∗ = �(v∗)

n(v∗)2
, (59)

where

�(v∗) =
∫

d p�[v∗ − v(p)]nR(p)(v∗ − v(p))

=
∫

d p�[v(p) − v∗]nL(p)(v(p) − v∗) (60)

is the flux of particles (from left to right and from right to left).

B. Generalized hydrodynamics

The GHD treatment of the bipartitioning protocol relies
on very different premises and analyses the problem fully
quantum-mechanically. The starting point is the assumption
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FIG. 1. Profiles of energy density (left) and current (right) as a function of the velocity ζ = x/t at infinite times after a quench from
the bipartite state. The plots are obtained by a numerical solution of the GHD equations. The left half is initially prepared in a state with
βL = μ1,L = μ2,L = 1, while the parameters corresponding to the right initial state are (a) βR = 2, μ1,R = 0.5, μ2,R = 1; (b) βR = 1, μ1,R = 1,
μ2,R = 1; and (c) βR = 1, μ1,R = 0.5, μ2,R = 2. All plots correspond to ξ = 3 and c = 1.

that, at large times t and distances x from the junction, expec-
tation values of local observables are described by a slowly
varying stationary state, specified by an appropriate set of root
densities {ρn,x,t (θ )}ξn=0 [63,64]. Accordingly, observables dis-
play nontrivial profiles connecting the values corresponding to
the two reservoirs far away from the junction. Exploiting the
conservation of the infinitely many charges of the integrable
Hamiltonian, it is possible to write down a set of continuity
equations connecting root densities at different points. These
equations are the central result of the theory and read as
[63,64]

∂tρn,x,t (θ ) + ∂x
(
vdr

n,x,t (θ )ρn,x,t (θ )
) = 0. (61)

Here, vdr
n,x,t (λ) is the dressed velocity of excitations on the

state described by {ρn,x,t (λ)}. It is determined by solving
the Bethe-Takahashi equations (20) combined with (31) in the
state specified by ρn,x,t (θ ), namely,

ρ t
n,x,t (θ ) = p′

n(θ )

2π
− νn

ξ∑
m=0

(anm ∗ ρm,x,t )(θ ), (62)

vdr
n,x,t (θ )ρ t

n,x,t (θ ) = e′
n(θ )

2π
− νn

ξ∑
m=0

(anm ∗ vdr
m,x,tρm,x,t )(θ ).

(63)

As shown in Refs. [63,64], one can write down an implicit
solution to Eq. (61) as follows. First, one argues that the
rapidity distribution functions only depend on the ray ζ = x/t
in the case of the bipartitioning protocol. Next, one can derive
from (61) a set of equations for the “filling functions”

ϑn,ζ (θ ) = ρn,ζ (θ )

ρt
n,ζ (θ )

= 1

1 + ηn,ζ (θ )
, (64)

[cf. Eq. (35)], which read(
vdr

n,ζ (θ ) − ζ
)
∂ζϑn,ζ (θ ) = 0. (65)

These equations are immediately solved by

ϑn,ζ (θ ) = [ϑn,L(θ ) − ϑn,R(θ )]�
[
vdr

n,ζ (θ ) − ζ
] + ϑn,R(θ ).

(66)

Here, ϑn,L/R(θ ) are the filling functions of the states on the two
sides of the junction. Even though (66) represents an implicit
solution to the continuity equation (as the dressed velocities
also depend on the filling functions), it allows us to obtain an
explicit numerical solution to high precision. Indeed, Eq. (66)
can be solved by iteration; as a first step, one starts with an
initial ansatz for the filling functions ϑn,ζ (θ ); next one uses
this ansatz to compute the dressed velocities; finally, plugging
these into (66) one obtains a better approximation for the
filling function (64). This procedure is seen to converge very
quickly. After a solution for ϑn,ζ (θ ) is found, one can plug
the latter into the Bethe equations to obtain a final result for
the rapidity distributions functions ρn,ζ (θ ). The knowledge of
ρn,ζ (λ) allows us to compute the space-time profiles of local
observables. In particular, charge densities and currents are
found using (25) and (29). We report in Figs. 1 and 2 examples
for the profiles of the density and current of the energy and
the topological charge respectively, computed implementing
this numerical procedure. The plots correspond to ξ = 3, and
show different curves obtained for different choices of the
initial parameters.

The key observation connecting the GHD approach with
the semiclassical one is that (61) can be interpreted as
the hydrodynamic equations for the conserved quantities
{ρn,x,t (θ )}ξn=0 of a gas of ξ + 1 species of classical particles.
Actually, this can be done in two different ways. First, as
noted already in Ref. [63], one can view {ρn,x,t (θ )}ξn=0 as
the conserved numbers (at fixed rapidity θ ) of some free
“macroscopic” classical particles, moving with a space-time
dependent velocity vdr

n,x,t (θ ) that encode all the effects of the
interactions. The second, more microscopic, interpretation is
given in Ref. [86]. One views {ρn,x,t (θ )}ξn=0 as the conserved
numbers [at fixed rapidity θ ] of some interacting classical par-
ticles moving with space-time independent “bare” velocities

vn(θ ) = e′
n(θ )

p′
n(θ )

, (67)

where bare energy and momentum are defined in Eqs. (26).
For example, in the case of the Lieb-Liniger model, the
analogues of (61) are obtained as the classical hydrodynamic
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FIG. 2. Profiles of topological charge (left) and topological current (right) as a function of the velocity ζ = x/t at infinite times after a
quench from the bipartite state. The plots are obtained by a numerical solution of the GHD equations. The left half is initially prepared in a
state with βL = μ1,L = μ1,L = 1, while the parameters corresponding to the right initial state are (a) βR = 2, μ1,R = 0.5, μ2,R = 1; (b) βR = 1,
μ1,R = 1, μ2,R = 1; and (c) βR = 1, μ1,R = 0.5, μ2,R = 2. All plots correspond to ξ = 3 and c = 1.

equations of a “flea gas”: an interacting classical gas where
the particles, upon colliding, jump forward or backward by a
distance that depends on their velocities [86].

Even if both GHD and the semiclassical approach can
be formulated in terms of classical hydrodynamic problems
they are manifestly inequivalent. Indeed, they generically
give qualitatively different predictions. This is clearly demon-
strated by the topological charge density and current profiles
reported in Fig. 2: as opposed to the semiclassical prediction
in Eq. (56) they do not show jumps. Moreover, we note
that the topological charge profile clearly shows points of
nonanalyticity for |ζ | < 1 in correspondence to the velocity of
magnons. This feature has been observed before in the context
of GHD, for example, for XXZ Heisenberg chains [65], and
it is again absent in the semiclassical prediction. Shedding
some light on the connection between the two approaches is
the objective of the two following sections.

IV. FROM GHD TO SEMICLASSICS:
ANALYTIC TREATMENT

Here we start our systematic comparison by showing
that GHD recovers exactly the semiclassical solution in two
limiting cases. First, we consider a particular nonrelativistic
limit of the sine-Gordon theory where the soliton scattering
becomes fully reflective. In this case, the assumptions of the
semiclassical approach are exactly fulfilled and should be
recovered by GHD; in Sec. IV A, we show analytically that
this is indeed the case. In Sec. IV B, instead, we study the
low-temperature limit of the GHD profiles, and show that
their leading order is correctly described by the semiclassical
theory.

A. Nonrelativistic limit

The fully reflective scattering regime is achieved by con-
sidering the following nonrelativistic limit

c → ∞, c β2
sG = fixed, (68)

where we also keep fixed the momentum of any
given soliton, so that we must accordingly scale its

rapidity

k = Mc sinh θ (k) ⇒ θ (k) = k

Mc
+ O

(
1

c2

)
. (69)

In this limit, the renormalized coupling and the soliton mass
are fixed, but solitons and antisolitons have vanishing rapidity,
so that their scattering matrix takes the “universal form” (A6).
Note that in this case we are making no assumption on the
density of particles.

Taking the nonrelativistic limit of the Bethe equations, and
shifting the magnonic rapidities

λ j �→ λ j + iπ/2, (70)

we find[
sinh[(iπ/2 − λ j )/ξ ]

sinh[(iπ/2 + λ j )/ξ ]

]N

=
r∏

k 
= j

sinh[(λ j − λk − iπ )/ξ ]

sinh[(λ j − λk + iπ )/ξ ]
,

(71)
for j = 1, . . . , r, and

eiLk j

r∏
k=1

sinh (iπ/2ξ − λk/ξ )

sinh (iπ/2ξ + λk/ξ )
= (−1)N (72)

for j = 1, . . . , N . We see that the first system coincides with
the Bethe equations of the XXZ spin-1/2 chain, apart from a
factor (−1)N+1 on the left-hand side. Since this factor does
not modify the rapidity distribution functions, we expect the
TBA equations describing the magnonic sector to coincide
with those of the XXZ spin-1/2 chain. The second equation,
instead, is a free twisted quantisation condition for the rapidi-
ties k j

r∏
k=1

sinh (iπ/2ξ − λk/ξ )

sinh (iπ/2ξ + λk/ξ )
= ei, (73)

where  is the total momentum in the magnonic chain. Since
the twist does not affect the rapidity distribution, we expect the
TBA equations describing the distribution of real momenta k j

in the semiclassical limit to be free.
Computing explicitly the nonrelativistic limit of the Bethe-

Takahashi equations (20) (see Appendix D for details), we find
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that our expectations are indeed confirmed. In particular, we
obtain

ρ̃t
0(k) = 1

2π
, (74a)

ρ t
k (θ ) = n

2π
νkak (θ ) − νk

ξ∑
m=1

(akm ∗ ρm)(θ ), (74b)

where 1 � k � ξ , n is the density of particles of the first
species [cf. Eq. (27)], and we introduced the total root density
of real momenta

ρ̃t
0(k) = ρt

0(θ (k))
dθ (k)

dk
= ρt

0(θ (k))

Mc cosh θ (k)
. (75)

Note that (74a) is a Bethe–Takahashi equation for free parti-
cles while (74b) are that of the XXZ spin-1/2 with anisotropy
� = cos(π/ξ ) (originating from a chain of nL sites). The
only non trivial coupling between the two equations is given
by the density n = N/L. Introducing the root density of real
momenta

ρ̃0(k) = ρ0(θ (k))
dθ (k)

dk
= ρ0(θ (k))

Mc cosh θ (k)
, (76)

we can express the density as

n =
∫

dk′ ρ̃0(k′). (77)

We stress that the main assumption in the derivation of
(74) is that, in the nonrelativistic limit, the root density of
real momenta has support on a finite region. This assumption
is analogous to (69) and selects the relevant states in the
nonrelativistic limit: those where the particles have finite
momentum.

Proceeding in the same way, we can also compute the
nonrelativistic limit of the equations (31) that give access to
the dressed velocities. The result reads as

ρ̃
(t )
0 (k)vdr

0 (k) = k

2πM
, (78a)

ρ t
k (λ)vdr

k (λ) = Jn

2π
νkak (θ ) − νk

ξ∑
m=1

(
akm ∗ ρmvdr

m

)
(θ ),

(78b)

where 1 � k � ξ and we introduced the particle current
[cf. (29)]

Jn =
∫

dk′ ρ̃0(k′)v0(k′). (79)

Equation (78a) is again completely decoupled from the rest.
Combined with (74a) it implies that, in the nonrelativis-
tic limit (68), the physical particles move with a state-
independent velocity, which corresponds to the group velocity
of free nonrelativistic particles,

vdr
0 (k) = k

M
. (80)

Looking more closely, however, we see that also Eqs. (78b)
are special. As usual, these equations have the same form as
the corresponding Bethe-Takahashi equations [cf. (74b)]. In

the case at hand, however, a much stronger property holds.
Indeed, the driving terms are proportional. This means that

ρ (t )
m (λ)

Jn

n
, and ρ (t )

m (λ)vdr
m (λ) (81)

solve the same equations. Assuming that the solution is unique
(this is necessary for the TBA treatment to be well-defined),
we then have that the two sets coincide, namely,

vdr
m = ρ (t )

m (λ)vm(λ)

ρ
(t )
m (λ)

= Jn

n
=

∫
dk′ ρ̃0(k′)v0(k′)∫

dk′ ρ̃0(k′)
≡ v. (82)

This equation is remarkable. It states that the velocities of
all the magnons coincide for any state, and are given by the
fluid velocity v of the physical particles. This also means that
the magnons are nondispersive, i.e., vm does not depend on
λ, which immediately implies the presence of jumps in the
profiles of local observables.

Combining equation (80) with the solution (66), we have

ϑ̃0,ζ (k) = [ϑ̃0,L(k) − ϑ̃0,R(k)]�[k − Mζ ] + ϑ̃0,R(k), (83)

where ϑ̃0,ζ (k) is the filling function for real momenta, defined
as ϑ̃0,ζ (k) = ϑ0,ζ (λ(k)), and the subscript α ∈ {L, R} denotes
filling functions of the thermal states in the two leads. Using
(74a) we then find

ρ̃0,ζ (k) = [ρ̃0,L(k) − ρ̃0,R(k)]�[k − Mζ ] + ρ̃0,R(k), (84)

where ρ̃0,L/R(k) = ϑ̃0,L/R(k)/2π . Plugging ρ̃0,ζ (k) in (82) we
find v(ζ ), the fluid velocity at ray ζ , which fixes the velocity
of all magnons. Substituting it in (66), we then have

ϑk,ζ (λ) = [ϑk,L(λ) − ϑk,R(λ)]�[v(ζ ) − ζ ] + ϑk,R(λ). (85)

Note that the solutions (83) and (85) are totally explicit:
ϑ0,ζ (θ ) is fixed by (80), while all other ϑk,ζ (θ ) depend only
on ϑ0,ζ (θ ) [through v(ζ )]. Plugging (85) into (74b), we arrive
at

ρ t
k,ζ (θ )

n(ζ )
= 1

2π
νkak (θ )

−
[
νk

ξ∑
m=1

(
akm ∗ ϑm,L

ρt
m,ζ

n(ζ )

)
(θ )

]
�[v(ζ ) − ζ ]

−
[
νk

ξ∑
m=1

(
akm ∗ ϑm,R

ρt
m,ζ

n(ζ )

)
(θ )

]
�[ζ − v(ζ )],

(86)

where n(ζ ) is obtained by plugging (84) in (77). Consider
now ζ > v(ζ ). In this case, ρ t

k,ζ (θ )/n(ζ ) fulfils the same
equation as ρ t

k,R(θ )/nR, where nR and ρ t
k,R(θ ) are respectively

the particle density and the total root density of the kth species
of magnons in the thermal state on the right lead. Analogous
considerations hold for ζ < v(ζ ), with ρ t

k,R(θ )/nR replaced
by ρ t

k,L(θ )/nL. Since the solution of (86) must be unique we
have

ρ t
k,ζ (λ)

n(ζ )
=

[
ρ t

k,L(λ)

nL
− ρ t

k,R(λ)

nR

]
�[v(ζ ) − ζ ] + ρ t

k,R(λ)

nR
,

(87)
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which implies

ρk,ζ (λ)

n(ζ )
=

[
ρk,L(λ)

nL
− ρk,R(λ)

nR

]
�[v(ζ ) − ζ ] + ρk,R(λ)

nR
. (88)

At this point, the only missing step for a complete solution of the GHD problem is an expression of the “boundary conditions”
{ρ̃0,L/R(p), ρk,L/R(θ )}. These are obtained in Appendix D by writing and solving the nonrelativistic limit of the TBA equations
(36). The solution reads as

ρ̃0,α (k) = 1

2π

[
1 +

exp
[

k2

2MTα
− μ̃1,α

Tα

]
2 cosh

(μ2,α

Tα

)
]−1

, (89a)

ρk,α (λ) = ρk

(
λ,

μ2,α

Tα

, nα

)
, α ∈ {L, R}, (89b)

where we introduced

ρk (λ, h, n) = n tanh(h) sinh(h)

4π sinh[(k + 1)h]

[
ak (λ)

sinh[kh]
− ak+2(λ)

sinh[(k + 2)h]

]
, 1 � k � ξ − 2, (90a)

ρξ−1(λ, h, n) = n tanh[h]
(
sinh[h] + e−ξh sinh[(ξ − 1)h]

)
4π sinh[(ξ − 1)h] sinh[ξh]

aξ−1(λ), (90b)

ρξ (λ, h, n) = n(e−ξh sinh[h] + sinh[(ξ − 1)h])

4π cosh[h] sinh[ξh]
aξ−1(λ). (90c)

Note that, to have a nontrivial result in the limit (68), one has to shift μ1 by the soliton rest energy Mc2, namely,

limNR(μ1 − Mc2) = μ̃1. (91)

Putting everything together we obtain the expectation value of a generic charge density ô(x, t ) [cf. (25)] and the associated
current Ĵo(x, t ) [cf. (29)]

o(ζ ) =
∫

dk o0(θ (k))ρ̃0,ζ (k) + n(ζ )

nL
�[v(ζ ) − ζ ]

(
oL −

∫
dk o0(θ (k))ρ̃0,L(k)

)

+ n(ζ )

nR
�[ζ − v(ζ )]

(
oR −

∫
dλ o0(θ (k))ρ̃0,R(k)

)
, (92a)

Jo(ζ ) =
∫

dk
k

M
o0(θ (k))ρ̃0,ζ (k) + Jn(ζ )

nL
�[v(ζ ) − ζ ]

(
oL −

∫
dk o0(θ (k))ρ̃0,L(k)

)

+ Jn(ζ )

nR
�[ζ − v(ζ )]

(
oR −

∫
dλ o0(θ (k))ρ̃0,R(k)

)
(92b)

=
∫

dk
k

M
o0(θ (k))ρ̃0,ζ (k) + v(ζ )

(
o(ζ ) −

∫
dk o0(θ (k))ρ̃0,ζ (k)

)
, (92c)

where oα is the expectation value of the charge in the lead
α ∈ {L, R}.

Equations (92) simplify when the charge is only sensi-
tive to the physical particles, i.e., when oj (k) = 0 for all
j = 1, . . . , ξ . In this case, we obtain the noninteracting result

o(ζ ) =
∫

dk o0(θ (k))ρ̃0,ζ (k), (93a)

Jo(ζ ) =
∫

dk
k

M
o0(θ (k))ρ̃0,ζ (k). (93b)

Another simplification occurs when the charge has o0(θ ) = 1,
as, for instance, the topological charge. In this case, we have

Jo(ζ )

Jn(ζ )
= o(ζ )

n(ζ )
= �[v(ζ ) − ζ ]

oL

nL
+ �[ζ − v(ζ )]

oR

nR
. (94)

In particular, for the topological charge, the boundary condi-
tions are exactly evaluated to (see Appendix D)

qα

nα

= tanh(μ2,αβα ), α ∈ {L, R}. (95)

Note that (93) and (94) [with the boundary conditions (95)]
coincide with the semiclassical expressions (48) and (56) if
one chooses

nα =
∫

dk′ ρ̃0,α (k′), (96a)

fα (p) = ρ̃0,α (p)

nα

, (96b)

gα (Q) = eμ2,αQ

2 cosh μ2,α

, α ∈ {L, R}, (96c)
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where ρ̃0,α (k′) is defined in Eq. (89a). This completes the
derivation of the semiclassical predictions from the nonrela-
tivistic limit of the GHD equations.

B. Low-temperature regime

In this section, we study small temperatures: the second
regime in which we expect to recover the semiclassical pre-
diction from the GHD equations. In particular, we set

βL = β, (97)

βR = β + �β, (98)

and consider an asymptotic expansion of the GHD solution for
large β while keeping �β fixed. Note that this is the natural
setup to study low-temperature bipartitioning protocols in
gapped systems. For instance, the analogous setup was studied
in Ref. [72] for gapped XXZ Heisenberg chains. In our case,
we also fix

βLμ2,L = hL, (99a)

βRμ2,R = hR, (99b)

while we assume that μ1,L and μ1,R are strictly smaller than
Mc2 so that the system is gapped.

We point out that the limit studied here is conceptually very
different from the one considered in the previous section. Pre-
viously the whole time-evolving Hamiltonian was rescaled,
while here we are simply restricting to a special class of initial
states. As we now show, however, the analytic treatment turns
out to be very similar. A simple way to see this is to consider
the low-temperature limit of Eqs. (62) and (63). As shown in
Appendix E, the leading order contribution reads as

ρ̃t
0(k) = 1

2π
, (100)

ρ̃t
0(k)vdr

0 (θ ) = 1

2π

ck√
M2c2 + k2

, (101)

ρ t
k (λ) = νn(an ∗ ρ0,ζ )(λ) − νk

ξ∑
m=1

(akm ∗ ρm)(λ), (102)

ρ t
n,ζ (λ)vdr

n,ζ (λ) = νn
(
an ∗ ρ0,ζ v

dr
0,ζ

)
(λ)

− νn

ξ∑
m=1

(
anm ∗ ρm,ζ v

dr
m,ζ

)
(λ), (103)

where we again used the root density of real momenta
[cf. (76)]. The first two equations immediately give

vdr
0 (k) = ck√

M2c2 + k2
, (104)

namely, the physical particles are once again moving as free
particles, this time, however, with a relativistic dispersion.
Moreover, expanding the driving terms of the last two equa-
tions for small temperatures, we have (see Appendix E)

(an ∗ ρ0,ζ )(λ) = 1

2π
an(λ)n(ζ ) + O(β−1), (105a)

(an ∗ ρ0,ζ v
dr
0,ζ )(λ) = 1

2π
an(λ)Jn(ζ ) + O(β−1), (105b)

where n(ζ ) and Jn(ζ ) are again the physical particle density
and current at ray ζ . Crucially, we see that at the leading order
(105a) and (105b) are again proportional, and we can repeat
the argument of Sec. IV A to find

vdr
n,ζ (λ) = v(ζ ) + O(β−1). (106)

Here, v(ζ ) = Jn(ζ )/n(ζ ) is again the fluid velocity of the
physical particles.

Due to the validity of Eqs. (104) and (106), the analysis of
the previous section directly applies also to the current case. In
particular, the root densities are again given by the equations
(84) and (88). The only difference is that in this case physical
particles have a relativistic dispersion. This means that the
velocity v0(k) is given by (104) and ρ̃0,L/R(k) read as

ρ̃0,α (k) = 1

2π

[
1 + exp[

√
(M2c4 + c2k2 − μ1,α )/Tα]

2 cosh(hα )

]−1

.

(107)

At the leading order in β, however, relativistic and non-
relativistic dispersions produce the same predictions for the
profiles of local observables. This can be seen by noting that
both ρ̃0,L(k) and ρ̃0,R(k) are peaked around k = 0 with a width
that scales with β−1. So that∫

dk f (k)
(
ρ̃0,ζ (k) − ρ̃NR

0,ζ (k)
)

∫
dk f (k)ρ̃0,ζ (k)

= O(1/β ), (108)

where ρ̃NR
0,ζ (k) is the root density constructed with a nonrela-

tivistic dispersion and f (k) is a generic smooth function. In
summary, at the leading order in 1/β, our results are again
in agreement with the semiclassical predictions (48) and (56)
supplemented with the identifications (96).

We stress that the asymptotic expansion considered here is
valid only if

lim
β→∞

Mc2 − μ1,α > 0, ∀α ∈ {L, R}, (109)

meaning that the density of real particles must be exponen-
tially small in β in order for the semiclassical predictions to
apply. This is in contrast to the limit studied in the previous
subsection, where the density of real particles is arbitrary.

V. FINITE ENERGY SCALES: BREAKDOWN
OF THE SEMICLASSICAL APPROACH

In this section, we compare GHD and the semiclassical ap-
proach in the case of finite energy scales and densities of parti-
cles. As we have seen in the previous section, the two methods
provide the same predictions in the nonrelativistic limit (68)
and in the low-temperature regime (97)–(99). A common
feature of both of these cases is that the velocities of all
magnons approach the same constant value, cf. Eqs. (104) and
(106). This is the crucial property that enables one to recover
the semiclassical prediction. Indeed, as discussed in Sec. III A,
in the semiclassical approach “charge tracers”—carrying in-
formation on the topological charge—move with a single
velocity v(ζ ) [cf. (55)]. This feature is explicitly demonstrated
in Fig 3, where we report the dressed velocities vdr

1,ζ=0(λ) and
vdr

2,ζ=0(λ) of the first two magnons for various bipartitioning
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FIG. 3. Dressed velocities vdr
j,ζ (λ) for the first magnons in the nonequilibrium steady state (NESS), corresponding to ζ = 0. (a) and (b) show

the behavior approaching the nonrelativistic limit (68) by plotting vdr
j,ζ for increasing values of the speed of light c while keeping c β2

sG fixed.
The initial bipartite thermal state corresponds to M=1, μ̃1,L = 1, μ̃1,R = 2, μ2,L = 0.25, μ2,R = 0.5, βL = 1.2, and βR = 2.4. The curves
are clearly converging to the dashed line as the nonrelativistic limit is approached, indicating the value of v(ζ ) defined in Eq. (82). (c) and
(d) correspond to the small temperature limit defined by Eqs. (97)–(99b). The parameters of the quench are displayed on the figure (with
μ1,L = μ1,R = 0). Since in this case v(ζ ) vanishes as β → ∞, the plots display the ratios vdr

1,ζ (λ)/v(ζ ) which are seen to converge to 1.

protocols. In particular, in the panels (a) and (b), we show
data for the nonrelativistic limit, where the chemical potential
is correctly rescaled as in (91). As c increases, the curves
are clearly converging to the constant value v(ζ ), defined in
Eq. (82). In the panel (c) and (d), instead, we report data
for low temperatures. The velocities vdr

j,ζ (λ) are now rescaled
with v(ζ ) [defined in (106)], which is vanishing as β →
∞. In particular, since v(ζ ) = O(β−1/2) (see Appendix E),
we have vdr

k,ζ (λ)/v(ζ ) = 1 + O(β−1/2). This explains the large
finite-β corrections observed in the plot.

Importantly, however, Fig. 3 also shows that when the
value of c and β are finite, the velocities vn,ζ (λ) are not
constant and we expect this to cause a deviation of the profiles
from the semiclassical prediction. Our numerical results show
that this expectation is confirmed. Consider, for example,
Fig. 4, where we report the comparison between the semi-
classical prediction and GHD numerical results obtained at
finite values of c. We see that as c increases, the profiles of the
topological charge approach the semiclassical prediction, as
they should. For finite values of c, however, there is no abrupt
jump (depicted in the figure by dashed lines), and the profiles
remain continuous.
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FIG. 4. Comparison between the semiclassical result (56) and the
numerical evaluation of the GHD equations in the nonrelativistic
limit (68). The curves correspond to M = 1, μ̃1,L = 1, μ̃1,R = 2,
μ2,L = 0.25, μ2,R = 0.5, βL = 1.2, and βR = 2.4. Different curves
correspond to increasing values of the speed of light c. The solid
black line is the semiclassical result (94), which displays a disconti-
nuity at ζ ∗ � −0.225.
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FIG. 5. Comparison between the semiclassical result (56) and the numerical evaluation of the GHD equations in the low-temperature limit.
The plots correspond to a bipartitioning protocol in the low-temperature limit defined by Eqs. (97)–(99b). The parameters of the quench are
displayed on the figure (with μ1,L = μ1,R = 0 and c = 1).

A completely analogous scenario is observed for low tem-
peratures. This is demonstrated in Fig. 5, where we report a
comparison between GHD numerical results and the semiclas-
sical predictions. Note that in this case the magnitude of the
topological charge decreases as the temperature is lowered. As
for the nonrelativistic limit we see that, outside of the light-
cone |ζ | < 1, the semiclassical predictions provide very good
quantitative approximation to the correct result. However, at
any finite temperature the profiles are always continuous, in
contrast to the semiclassical result.

These numerical observations can be explained by not-
ing that the classical many-particle problem associated with
GHD has more “conserved modes” than that emerging from
Sachdev’s semiclassical approach. In particular, in GHD the
magnonic rapidities—carrying information on the topolog-
ical charge—can “decouple” from the real momenta, and
spread ballistically with a spectrum of different velocities.
This phenomenon can be interpreted as a sort of spin-charge
separation, and it is in stark opposition with what happens
in the semiclassical approach, where the topological charge

degrees of freedom are “dragged” by the fluid of physical
particles.

In turn, this observation suggests that the main weakness of
the semiclassical approach is not in the assumption of classical
trajectories nor in that of low momenta, but is in the “choice of
quasiparticles,” or, in other words, in the choice of the classi-
cal problem to which the original one is mapped. In principle,
instead of the “bare” particles (solitons and antisolitons in our
case), one would need to use the “Bethe ansatz” particles,
namely, physical particles and magnons. These are indeed the
only ones allowing for a diagonalisation of the interaction
and a separation of “charge” (particle number) and “spin”
(topological charge).

That being said, it is interesting to wonder whether some
existing refinement of Sachdev’s semiclassical method can
overcome this weakness without changing the quasiparti-
cle content. Here we considered what is arguably the most
refined of all: the recently developed “semi-semiclassical”
approach [29]. In short, this is a hybrid method that describes
the scattering of internal degrees of freedom fully quantum
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FIG. 6. Hybrid “semi-semiclassical” profiles of the topological charge at finite times indicated in the plots after the quench from a bipartite
state in the reference frame moving at the velocity v∗, rescaled ballistically (left) and diffusively (right). The left half is initially prepared in
a state with βL = 0.75, hL = −∞, while the parameters corresponding to the right initial state are βR = 1.5, hR = ∞, so the two halves
are completely “polarized” with opposite sign (μ1,L = μ1,R = 0). The diffusive rescaling gives a good collapse of the finite time profiles near
x∗(t ) = v∗t .
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mechanically while maintaining the classical trajectories. This
is achieved by building an effective “spin chain” from the
consecutive quantum numbers (topological charges) of the
quasiparticles and evolving it by the exact two-body S matrix
whenever there is a collision of the semiclassical trajectories
using a matrix product state algorithm (e.g., TEBD). Note
that, due to the full quantum mechanical treatment of the
scattering, this method cannot be interpreted as a classical
many-particle problem. Indeed, quantum superpositions are
allowed in the internal space and possible quantum interfer-
ence effects are also accounted for.

In this approach, charge degrees of freedom are still at-
tached to the physical particles, but since there are finite
amplitudes of transition and reflection, we cannot a priori
exclude that it reproduces the GHD results. Simulations at
finite times, however, indicate that even though the shape
of the topological charge profile changes quantitatively, the
broadening of the jump is still diffusive. This is demonstrated
in Fig. 6 where the topological charge profiles, plotted at
different times, are rescaled around the jump suggested by
a ballistic and a diffusive broadening. The latter yields a
better collapse of the profiles suggesting that the broadening
remains diffusive even in the hybrid semiclassical approach.
This subballistic behavior leads in the hydrodynamic scaling
limit (53) to a discontinuous the profile, which is in contrast
with the GHD results. For a definite conclusion, however, a
more systematic study for larger times aimed at excluding a
possible crossover from early diffusive to a late time ballistic
behavior would be necessary.

VI. CONCLUSIONS

In this work, we studied the dynamics of integrable quan-
tum field theories with internal degrees of freedom in in-
homogeneous settings by comparing the predictions of an
out-of-equilibrium generalisation of Sachdev’s semiclassical
approach [5,6,87], with the exact result obtained via GHD
[63,64]. Specifically, we focused on bipartitioning protocols
in the sine-Gordon field theory. We identified two regimes
where the semiclassical picture becomes exact: low temper-
atures and a particular nonrelativistic limit. Away from these
regimes, however, the semiclassical approach leads to incor-
rect qualitative predictions on the transport of topological
charge. In particular, we found that at finite energies the
topological charge always spreads ballistically, contrary to the
semiclassical predictions. These discrepancies seem to remain
in the improved “hybrid” semiclassical approach of Ref. [29],
where the evolution of internal degrees of freedom are de-
scribed quantum-mechanically using DMRG simulations.

The limitations of the semiclassical picture are not to be
ascribed to its classical nature, but rather to the choice of
the quasiparticles which always correspond to the “bare”
excitations of the field theory. Indeed, as shown in Ref. [86],
the GHD equations can always be thought of as hydrodynamic
equations of a classical many-particle system. In this case,
however, the classical particles correspond to the “Bethe
ansatz” excitations that diagonalize the scattering. It is then
interesting to wonder whether an improved semiclassical ap-
proach could be devised which considers such excitations as
the quasiparticles.

In summary, our results point out that while semiclassical
approaches are often the only possibility to gain analytic
understanding on a complicated many-body problem, one
should always be careful in interpreting their results.
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APPENDIX A: INFINITE-VOLUME EIGENBASIS

In this Appendix, we explicitly report a basis of eigenstates
of the infinite-volume sine-Gordon field theory in the repul-
sive regime. The starting point is to introduce the following
set of Faddeev-Zamolodchikov creation and annihilation op-
erators [101,102]:

Z†
a (θ ), Za(θ ), a = ±, θ ∈ R. (A1)

These operators are interpreted as creation and annihilation
operators for solitons [a = +] and antisolitons [a = −] with
rapidity θ , and obey the following algebra:

Za1 (θ1)Za2 (θ2) = Sb1b2
a1a2

(θ1 − θ2)Zb2 (θ2)Zb1 (θ1), (A2a)

Z†
a1

(θ1)Z†
a2

(θ2) = Sb1b2
a1a2

(θ1 − θ2)Z†
b2

(θ2)Z†
b1

(θ1), (A2b)

Za1 (θ1)Z†
a2

(θ2) = 2πδ(θ1 − θ2)δa1,a2

+ Sb2a1
a2b1

(θ2 − θ1)Z†
b2

(θ2)Zb1 (θ1). (A2c)

Here the sum over repeated indices is implicit and we de-
noted by Scd

ab (θ ) the two-particle scattering matrix of the sine-
Gordon model in the repulsive regime. The nonzero elements
of Scd

ab (θ ) read as [101,103]

S++
++ (θ ) = S−−

−− (θ ) ≡ S0(θ ), (A3a)

S+−
+− (θ )

S0(θ )
= S−+

−+ (θ )

S0(θ )
=

sinh
(

θ
ξ

)
sinh

(
iπ−θ

ξ

) ≡ ST (θ ), (A3b)

S+−
−+ (θ )

S0(θ )
= S−+

+− (θ )

S0(θ )
=

i sin
(

π
ξ

)
sinh

(
iπ−θ

ξ

) ≡ SR(θ ), (A3c)
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where we introduced

S0(θ ) = − exp

[
i
∫ ∞

0

dt

t
sin

(
tθ

πξ

) sinh
(

ξ−1
2ξ

t
)

sinh
(

t
2

)
cosh

(
t

2ξ

)
]
.

(A4)

The S matrix fulfils the Yang-Baxter equation together with
crossing and unitarity relations

Sb2b3
a2a3

(θ2 − θ3)Sb1c3
a1b3

(θ1 − θ3)Sc1c2
b1b2

(θ1 − θ2)

= Sb1b2
a1a2

(θ1 − θ2)Sc1b3
b1a3

(θ1 − θ3)Sc2c3
b2b3

(θ2 − θ3), (A5a)

Sc1c2
a1a2

(θ )Sb1b2
c1c2

(−θ ) = δb1
a1

δb2
a2

, (A5b)

Scd
ab (iπ − θ ) = Sād

c̄b (θ ) = Scb̄
ad̄ (θ ), ā = −a. (A5c)

Moreover, we have

Sb1b2
a1a2

(0) = −δb2
a1

δb1
a2

. (A6)

In this framework, the ground state |0〉 is defined as the state
annihilated by all the Faddeev-Zamolodchikov annihilation
operators,

Za(θ )|0〉 = 0. (A7)

With these ingredients, a basis of eigenstates of H is obtained
as follows:

B = {|θ〉a : θ j ∈ R, a j ∈ {±}, θ j < θ j+1}, (A8)

where θ = (θ1, . . . , θN ) and a = (a1, . . . , aN ) are
N-component vectors, while we introduced

|θ〉a ≡ Z†
a1

(θ1) . . . Z†
aN

(θN )|0〉. (A9)

The states (A8) simultaneously diagonalize the infinite set
of commuting conserved charges in involution related to
the integrability of the model. Moreover, they also di-
agonalize the topological charge (4). In particular, their

eigenvalues of energy, momentum, and topological charge
read as

a〈θ|H |θ〉a =
N∑

j=1

Mc2 cosh θ j, (A10a)

a〈θ|P|θ〉a =
N∑

j=1

Mc sinh θ j, (A10b)

a〈θ|Q|θ〉a =
N∑

j=1

a j . (A10c)

APPENDIX B: DERIVATION OF THE
BETHE-TAKAHASHI EQUATIONS

In this Appendix, we provide further details on the deriva-
tion of the Bethe-Takahashi equations for the string centres.

We begin by recalling that, for generic values of ξ , strings
of arbitrary length exist. In order to have a finite number of
string species, we shall focus on the case where ξ is an integer.
In this case there are only ξ different string species: positive
parity strings of length 1, 2, . . . , ξ − 1 and a negative parity
1-string [93].

Following the same steps as in the XXZ model,
the magnonic equations (71) can be rewritten in terms
of the strings. We achieve this by multiplying the equations for
the λ j belonging to a given string and on the right-hand side
we group the factors in the product over λk according to the
strings. Many factors cancel and the result can be written in
compact form in terms of the real string centers. We introduce
the notations

g(λ, k) ≡
sinh

[
1
ξ

(
λ − k i π

2

)]
sinh

[
1
ξ

(
λ + k i π

2

)] ,

g−(λ, k) = g
(
λ + iξ

π

2
, k

)
=

cosh
[

1
ξ

(
λ − k i π

2

)]
cosh

[
1
ξ

(
λ + k i π

2

)] . (B1)

For the product on the left-hand side, we use the identity∏
λ j∈n−string at λ

g(λ j, 1) = g(λ, n), (B2)

while on the right-hand side, we encounter factors like

Gn,m(λ − μ) ≡
∏

λ j∈n−string at λ

∏
μk∈m−string at μ

g(λ j − μk, 2)

= g(λ − μ, |n − m|)1−δnm g(λ − μ, |n − m| + 2)2 . . . g(λ − μ, n + m − 2)2g(λ − μ, n + m) 1 � n, m < ξ.

(B3)

We label the negative parity 1-string as the ξ th string species for which

Gξ,m(λ − μ) =
∏

μk∈m−string at μ

g(λ + iξπ/2 − μk, 2) = g−(λ − μ, m − 1)g−(λ − μ, m + 1), 1 � m < ξ, (B4a)

Gm,ξ (μ − λ) =
∏

μk∈m-string at μ

g(μk − λ − iξπ/2, 2) = g−(μ − λ, m − 1)g−(μ − λ, m + 1), 1 � m < ξ, (B4b)

Gξ,ξ (λ − μ) = G1,1(λ − μ) = g(λ − μ, 2). (B4c)
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Using these identities, we find

(−1)N� j

N∏
k=1

g
(
λ( j)

α − θk, n j
) = (−1)� j

ξ∏
k=1

Mk∏
β=1

Gj,k
(
λ( j)

α − λ
(k)
β

)
, 1 � j < ξ, (B5a)

(−1)N
N∏

k=1

g−(
λ(ξ )

α − θk, 1
) = −

ξ∏
k=1

Mk∏
β=1

Gξ,k
(
λ(ξ )

α − λ
(k)
β

)
, (B5b)

eiML sinh θα

ξ−1∏
k=1

Mk∏
β=1

g
(
θα − λ

(k)
β , k

)−1
Mξ∏
β=1

g−(
θα − λ

(ξ )
β , 1

)−1
N∏

β=1

S0(θα − θβ ) = (−1)r, (B5c)

where λ
( j)
α ∈ R is the center of the αth string of type j [λ(0)

α = θα], Mk is the number of k-strings [M0 = N], and � j is the length
of the j-string with � j = j for 1 � j < ξ and �0 = �ξ = 1. The sign (−1)� j on the right-hand side comes from the fact that the
unrestricted product now includes also the scattering of the roots with themselves and this gives a minus sign for each root in a
string.

Taking the logarithm of Eqs. (B5), we obtain

N∑
k=1

−i ln g
(
λ( j)

α − θk, n j
) = 2π I ( j)

α +
ξ∑

k=1

Mk∑
β=1

−i ln Gj,k
(
λ( j)

α − λ
(k)
β

)
, 1 � j < ξ, (B6a)

N∑
k=1

−i ln g−(
λ(ξ )

α − θk, 1
) = 2π I (ξ )

α +
ξ∑

k=1

Mk∑
β=1

−i ln Gξ,k
(
λ(ξ )

α − λ
(k)
β

)
, (B6b)

ML sinh θα −
ξ−1∑
k=1

Mk∑
β=1

−i ln g
(
θα − λ

(k)
β , k

) −
Mξ∑
β=1

−i ln g−(
θα − λ

(ξ )
β , 1

) +
N∑

β=1

−i ln S0(θα − θβ ) = 2π I (0)
α , (B6c)

where I ( j)
α are integers or half-integers. The building blocks of the scattering phase shifts are

−i ln[−g(λ, k)] = 2 arctan

[
tanh

(
λ
ξ

)
tan

(
kπ
2ξ

)
]
, (B7a)

−i ln g−(λ, k) = −2 arctan

[
tanh

(
λ

ξ

)
tan

(
kπ

2ξ

)]
. (B7b)

Whenever these phase shifts are at k = ξ we should take 0 for them.

APPENDIX C: DETAILS ON THE THERMODYNAMIC DESCRIPTION OF THE SINE-GORDON MODEL

In this Appendix, we derive in detail the thermodynamic limit of the Bethe equations. We start by recalling that, in this limit,
the rapidities of the kinks as well as those of the magnons become dense, such that Lρ j (λ)dλ gives the number of roots for
centres of j-strings. We have

I ( j)
α = L

∫ λ
( j)
α

dλ ρ t
j (λ), 0 � j < ξ, (C1a)

I (ξ )
α = L

∫
λ

(p)
α

dλ ρ t
p(λ), (C1b)

where ρ t
j (λ) = ρ j (λ) + ρh

j (λ) is the total density of states (we label the physical particles by j = 0), and we took into account
that ML sinh θ and −i ln g(λ, j) are monotonically increasing for 0 � j < ξ while −i ln g−(λ, 1) is monotonically decreasing.
Taking the derivative of the equations, we get

N∑
k=1

anj

(
λ( j)

α − θk
) = 2πLρ t

j (λα ) +
ξ∑

k=1

Mk∑
β=1

a j,k
(
λ( j)

α − λ
(k)
β

)
, 1 � j < ξ, (C2a)

N∑
k=1

a−
1

(
λ(ξ )

α − θk
) = −2πLρ t

ξ (λα ) +
ξ∑

k=1

Mk∑
β=1

aξ,k
(
λ(ξ )

α − λ
(k)
β

)
, (C2b)

ML cosh θα −
ξ−1∑
k=1

Mk∑
β=1

ak
(
θα − λ

(k)
β

) −
Mξ∑
β=1

a−
1

(
θα − λ

(ξ )
β

) +
N∑

β=1

ϕ0(θα − θβ ) = 2π I (0)
α , (C2c)
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where

ϕ0(θ ) = −i
d

dθ
ln S0(θ ) = 1

2

∫ ∞

−∞
dω

sinh πω
2 (ξ − 1)

sinh πωξ

2 cosh πω
2

eiωθ , (C3)

and

anm(λ) = (1 − δnm)a|n−m|(λ) + 2a|n−m|+2(λ) + · · · + 2an+m−2(λ) + an+m(λ), 1 � n, m < ξ, (C4a)

aξm(λ) = amξ (λ) = (1 − δm1)a−
m−1(λ) + (1 − δm,ξ−1)a−

m+1(λ), 1 � m < ξ, (C4b)

aξξ (λ) = a11(λ) = a2(λ) (C4c)

with

an(λ) = 2

ξ

sin
(

nπ
ξ

)
cosh

(
2λ
ξ

) − cos
(

nπ
ξ

) , (C5a)

a−
n (λ) = −2

ξ

sin
(

nπ
ξ

)
cosh

(
2λ
ξ

) + cos
(

nπ
ξ

) . (C5b)

As discussed above, we should take a−
ξ (λ) ≡ 0, which ex-

plains the 1 − δm,ξ−1 factor in Eq. (C4b).
We can write all the equations in a unified form defining

pn(θ ) = δn,0 m sinh θ (C6)

and

am0 = a0m = −am, 1 � m � ξ − 1, (C7a)

aξ0 = a0ξ = −a−
1 , a00 = ϕ0. (C7b)

With these notations we find

p′
j

(
λ( j)

α

)
L +

ξ∑
k=0

Mk∑
β=1

a jk
(
λ( j)

α − λ
(k)
β

) = −ν j2πL ρ t
j

(
λ( j)

α

)
,

(C8)
where ν j = 1 for 1 � j � ξ − 1 and ν0 = νξ = −1. Equa-
tions (B6) can also be written in a similar form,

ξ j
(
λ( j)

α

)
L +

ξ∑
k=0

Mk∑
β=1

� jk
(
λ( j)

α − λ
(k)
β

) = (2δ j,0 − 1)2π I ( j)
α ,

(C9)
where

� jk (λ) = −i ln Gjk (λ), j, k = 1, . . . , ξ , (C10a)

�0k (λ) = i ln g(λ, k), �0ξ (λ) = i ln g−(λ, 1),

�00(θ ) = −i ln S0(θ ). (C10b)

In the thermodynamic limit, the sums over string centers
can be written as integrals, which leads to

−νnρ
t
n(θ ) = p′

n(θ )

2π
+

ξ∑
m=0

(anm ∗ ρm)(θ ) (C11)

or

ρ t
n(θ ) = δn,0

M cosh θ

2π
− νn

ξ∑
m=0

(anm ∗ ρm)(θ ). (C12)

Note that from aξ−1,m = −aξ,m it follows that

ρ t
ξ−1(θ ) = ρ t

ξ (θ ). (C13)

These equations can be brought to a partially decoupled
form by exploiting functional identities linking the kernels
anm(θ ) with different indices [93]. In particular, the following
identities hold for 0 � m � ξ (for ξ > 2):

a1m = s ∗ a2m + s(δ2,m − δ0,m − δm,ξ δξ,3), (C14a)

anm = s ∗ (an−1,m + an+1,m) + s(δn−1,m

+ δn+1,m − δn,ξ−2δm,ξ ), 1 < n < ξ − 1,

(C14b)

aξ−1,m = −aξ,m = s ∗ aξ−2,m + s δξ−2,m, (C14c)

a0m = −s ∗ a1m − s δ1,m, (C14d)

where

s(θ ) = 1

cosh(θ )
. (C15)

Note that

a00 = ϕ0 = −s ∗ a10 = s ∗ a1 (C16)

which extends the standard XXZ identities and links the sine-
Gordon kink scattering phase shift to those of the magnonic
strings.

For ξ = 2,

a1 = −a01 = a01− = −a1− = s, a11 = a11− = 0,

s ∗ a1 = a00 = ϕ0, (C17)

where

ϕ0(θ ) = 1

4

∫ ∞

−∞
dω

1

cosh2
(

πω
2

)eiωθ = θ

π sinh θ
. (C18)

Following the steps in Ref. [93], one arrives at the decou-
pled equations (22). For the sake of completeness, we also
give the equations for ξ = 2:

ρ t
0 = M cosh θ

2π
+ s ∗ (

ρh
1 + ρ2

)
, (C19a)

ρ t
1 = ρ t

2 = s ∗ ρ0. (C19b)

The density, energy, and topological charge density in the
thermodynamic limit are given by

n =
∫

dθρ0(θ ), e =
∫

dθM cosh θρ0(θ ),

q =
∫

dθρ0(θ ) − 2
ξ∑

m=1

�m

∫
dθρm(θ ), (C20)

035108-18



TRANSPORT IN THE SINE-GORDON FIELD THEORY: … PHYSICAL REVIEW B 100, 035108 (2019)

and, as there are at most as many magnons as solitons
(r � N ),

∫
dθρ0(θ ) −

ξ∑
m=1

�m

∫
dθρm(θ ) � 0. (C21)

To fully specify the thermodynamic state a relation is
needed between the density of roots and the density of holes.
This is encoded in the filling functions

ηm(θ ) = ρh
m(θ )

ρm(θ )
. (C22)

In thermal equilibrium, they can be obtained by minimizing
the generalized free energy density

g = e − T s − μ1n − μ2q. (C23)

The standard procedure leads to the TBA equations (36).
These equations can also be written in a partially decoupled
form. For ξ > 2, the resulting equations are

ln η0 = M cosh θ

T
− s ∗ ln(1 + η1), (C24a)

ln η1 = s ∗ ln
[(

1 + η−1
0

)
(1 + η2)

] + δξ,3s ∗ ln
(
1 + η−1

ξ

)
,

(C24b)

ln ηn = s ∗ ln[(1 + ηn−1)(1 + ηn+1)] 1 < n < ξ − 2,

(C24c)

ln ηξ−2 = s ∗ ln
[
(1 + ηξ−3)(1 + ηξ−1)

(
1 + η−1

ξ

)]
, (C24d)

ln ηξ−1 = ξ
μ

T
+ s ∗ ln(1 + ηξ−2), (C24e)

ln ηξ = ξ
μ

T
− s ∗ ln(1 + ηξ−2). (C24f)

For ξ = 2, they read

ln η0 = M cosh θ

T
− s ∗ ln

[
(1 + η1)

(
1 + η−1

2

)]
, (C25a)

ln η1 = 2μ

T
+ s ∗ ln

(
1 + η−1

0

)
, (C25b)

ln η2 = 2μ

T
− s ∗ ln

(
1 + η−1

0

) = 4μ

T
− ln η1. (C25c)

Finally, we consider the elementary excitations of over a state.
For this, it is useful to return to the Bethe-Takahashi equations
(C9) in finite volume. Excitations correspond to changing a
finite number of the integers {I ( j)

α }. Since the equations are
coupled, all rapidities will be shifted. Even though these shifts
are O(L−1), the number of rapidities is O(L) leading to an
O(1) contribution to the momentum, energy as well as to
all the other conserved charges. So the bare charges of the
excitation get “dressed up” by the presence of the sea of other
particles. Following the standard treatment using the shift
function [3], the dressed charges are given by

±qdr
m (λ) = qm(λ) +

ξ∑
k=0

∫
dλ′

2π
hk (λ′)�km(λ′ − λ), (C26)

where hk (λ) is the solution of the integral equation

hk (λ) = q′
k (λ)νkϑk (λ)−

ξ∑
n=0

∫
dλ′

2π
hn(λ′)ank (λ′ − λ)νkϑk (λ).

(C27)

The sign ± in Eq. (C26) corresponds to particle and hole
excitations. Taking the derivative of the dressed charge with
respect to the rapidity, we find

± qdr′
m(λ) = q′

m(λ) −
ξ∑

k=0

∫
dλ′

2π
hk (λ′)akm(λ′ − λ). (C28)

Using standard manipulations, one can show that qdr′
m(λ±)

satisfies the integral equation

±qdr
m

′
(λ) = q′

m(λ) −
ξ∑

k=0

∫
dλ′

2π
qdr

k
′
(λ′)νkϑk (λ′)akm(λ′ − λ),

(C29)

which can also be seen by comparing its iterative solution with
that of Eq. (C27). In particular, comparing with Eq. (C11) we
see that for the dressed momentum

pdr
m

′
(λ) = −νm2πρ t

m(λ). (C30)

The dressed (or effective) velocity of an elementary excitation
is defined as

vdr
m (λ) = edr

m
′
(λ)

pdr
m

′(λ)
, (C31)

and it satisfies

−νmρ t
m(λ)vdr

m (λ) = e′
m(λ)

2π
+

ξ∑
k=0

(
amk ∗ (

ρkv
dr
k

))
(λ). (C32)

We note that, using again Eq. (C11) on the left-hand side of
Eq. (C32), we can write it as

p′
m(λ)vdr

m (λ)

= p′
m(λ)vm(λ)

+
ξ∑

k=0

∫
dλ′

2π
amk (λ − λ′)ρk (λ′)

[
vdr

k (λ′) − vdr
m (λ)

]
, (C33)

which is the form written in Ref. [64] for a single-particle
species.

APPENDIX D: TECHNICAL DETAILS ON THE
NONRELATIVISTIC LIMIT

In this Appendix, we provide a derivation of the
nonrelativistic-limit formulas presented in Sec. IV A.

1. Nonrelativistic limit of the Bethe-Takahashi equations

Here we explicitly take the nonrelativistic limit (68) of the
Bethe-Takahashi equations (20). Let us start by computing
the limit of (20) for k = 0. Using the definition (75), we
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have

ρ̃
(t )
0 (k) = 1

2π
+ 1

Mc cosh θ (k)

ξ∑
m=0

(a0m ∗ ρm)(θ (k)). (D1)

We now show that the second term on the right-hand side is
O(1/c). This is achieved by showing that the every element
of the sum is well defined in the nonrelativistic limit. Let us
consider the first

limNR(a00 ∗ ρ0)(θ (k)) = limNR

∫
dk′

2π
a00(θ (k) − θ (k′))ρ̃0(k′)

= limNR

∫
dk′

2π
a00

(
k − k′

Mc

)
ρ̃0(k′)

= a00(0)
n

2π
. (D2)

Here we used that ρ̃0(k) has support on a finite region in the
nonrelativistic limit, so that (69) applies. Instead, for 0 < m �
ξ we have

limNR(a0m ∗ ρm)(θ (k)) = limNR

∫
dλ

2π
a0m(θ (k) − λ)ρm(λ)

=
∫

dλ

2π
a0m(λ)ρm(λ). (D3)

Equations (D2) and (D3) prove that the second term on the
right-hand side of (D1) is indeed negligible in the nonrel-
ativistic limit and we find (74a). Considering now (20) for
1 � k � ξ , we have

ρt
k (λ) = νk (ak ∗ ρ0)(λ) − νk

ξ∑
m=1

(akm ∗ ρm)(λ), (D4)

Proceeding as in (D2), we find

limNR(ak ∗ ρ0)(λ) = ak (λ)
n

2π
. (D5)

This shows that the nonrelativistic limit of equation (D4) is
indeed (74b) and concludes the derivation.

2. TBA in the nonrelativistic limit

In this section, we write down and solve the thermody-
namic Bethe ansatz equations in the nonrelativistic limit (68).

a. Nonrelativistic limit of the thermodynamic
Bethe ansatz equations

The first step is to take the nonrelativistic limit of
the thermodynamic Bethe ansatz equations (36). This can
be done by making two simple observations. First, we note
that any convolution involving ln(1 + η−1

0 )(θ ) is negligible
in the limit. This is because, by assumption, ρ̃0(k) has
support on a finite region in the nonrelativistic limit, so
that

η0(θ (k)) = ρ̃h
0 (k)

ρ̃0(k)
≡ η̃0(k) (D6)

is also supported on a finite region in the nonrelativistic
limit. Considering the convolution of ln(1 + η−1

0 )(θ ) with any

smooth function a(θ ), we then find

a ∗ ln
(
1 + η−1

0

)
(θ )

=
∫

dk

2π
√

M2c2 + k2

× a[θ − sinh−1(k/(Mc))] ln
(
1 + η̃−1

0

)
(k)

= a(θ )

Mc

∫
dk

2π
ln

(
1 + η̃−1

0

)
(k) + O

(
1

c2

)
. (D7)

The second observation is that, since am0(θ ) are
smooth functions of θ and k is fixed, any convolution
am0 ∗ ln(1 + η−1

m )(θ (k)) becomes am0 ∗ ln(1 + η−1
m )(0) in the

nonrelativistic limit. Using the two observations above and
the definition

limNR(μ1 − Mc2) = μ̃1, (D8)

from (36) we obtain

ln η̃0(k) = k2/(2M ) − μ̃1 − μ2

T

+
ξ∑

m=1

νmam0 ∗ ln
(
1 + η−1

m

)
(0), (D9a)

ln ηk = 2μ2

T
�k +

ξ∑
m=1

νmamk ∗ ln
(
1 + η−1

m

)
. (D9b)

Note that these equations could have been obtained by min-
imising the functional

g̃ =
∫

dk
k2

2M
ρ̃0(k) − μ̃1n − μ2q − T s, (D10)

and using the equations (74). The constant
∑ξ

m=1 νmam0 ∗
ln(1 + η−1

m )(0) on the right-hand side of (D9a) comes from
the variation of n in (74b).

Equations (D9) can be further simplified by noting that,
since the driving term of (D9b) is constant, {ηk}ξk=1 are inde-
pendent of λ. Using∫

dλ

2π
aξ0(λ) = −

∫
dλ

2π
a−

1 (λ) = 1

ξ
, (D11a)

∫
dλ

2π
am0(λ) = −

∫
dλ

2π
am(λ)

m − ξ

ξ
,

m = 1, . . . , ξ − 1, (D11b)

we then find

ln η̃0(k) = k2/(2M ) − μ̃1 − μ2

T
− 1

ξ
ln

(
1 + η−1

ξ

)

−
ξ−1∑
m=1

[
1 − m

ξ

]
ln

(
1 + η−1

m

)
, (D12a)

ln ηk = 2
μ2

T
�k +

ξ∑
m=1

νmamk ∗ ln
(
1 + η−1

m

)
. (D12b)

Here, for later convenience, we kept the convolution in the
second equation.
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b. Solution of Eqs. (D12)

Equations (D12) can be solved exactly. The explicit solu-
tion can be found as follows. First we note that (D12b) are the
TBA equations of a gapless XXZ spin-1/2 chain at infinite
temperature and finite magnetization, their solution reads as
[93]

ηk (h) =
[

sinh[(k + 1)h]

sinh(h)

]2

− 1, 1 � k < ξ − 1,

(D13a)

ηξ−1(h) = eξh sinh[(ξ − 1)h]

sinh(h)
, (D13b)

ηξ (h) = eξh sinh(h)

sinh[(ξ − 1)h]
, (D13c)

where h = μ2/T . Using the identity

ξ−1∑
m=1

[
1 − m

ξ

]
ln(1 + η−1

m (h)) + 1

ξ
ln(1 + η−1

ξ (h))

= ln(1 + e−2h) (D14)

we finally obtain

η̃0(k) = e
k2/(2M )−μ̃1

T

2 cosh(μ2/T )
. (D15)

c. Solution of Eqs. (74)

The analytic expressions (D13) and (D15) can now be
plugged into the linear equations (74), obtaining a closed
system for the functions ρ̃0(k) and ρn(k). Remarkably also
this system can be solved exactly as we now show. First,

plugging (D15) in (D12a), we find

ρ̃0(k) = 1

2π

[
1 + exp

[
k2

2MT − μ̃1

T

]
2 cosh

(
μ2

T

)
]−1

. (D16)

Next, we consider the decoupled form of (74b)

ρ t
1(θ ) = 1

2π
r(θ )n + r ∗ ρh

2 (θ ), (D17a)

ρ t
k (θ ) = r ∗ (

ρh
k−1 + ρh

k+1

)
(θ ), 2 � k � ξ − 3, (D17b)

ρ t
ξ−2(θ ) = r ∗ (

ρh
ξ−3 + ρh

ξ−1 + ρξ

)
(θ ), (D17c)

ρ t
ξ (θ ) = ρ t

ξ−1(θ ) = r ∗ ρ
(h)
ξ−2(θ ), (D17d)

where n is the particle density in the thermal state and we
introduced

r(x) ≡
∫ ∞

−∞
dy

e−ixy

2 cosh
(

πy
2

) . (D18)

We then define

F
[
ρh

k

]
(x) = fk (x), k = 0, . . . , ξ − 2, (D19a)

F
[
ρh

ξ−1 + ρξ

]
(x) = fξ−1(x) (D19b)

such that fk (x) fulfill the recurrence equation

(e
π
2 x + e− π

2 x )αk fk (x) = fk−1(x) + fk+1(x), (D20)
where

αk = sinh2[(k + 1)h]

sinh[(k + 2)h] sinh[kh]
, (D21)

and, to lighten notation, we set h = μ2/T . The boundary
conditions on fk (x) are given by

f0(x) = n, (D22a)

2 cosh
(πx

2

)
sinh(hξ ) fξ−1(x)

= 2 cosh(h) sinh(h(ξ − 1)) fξ−2(x). (D22b)

The system (D20) coincides with Eq. 8.62 in Chapter 8.4.2 of
Ref. [93] and has the following general solution:

fk (x) =A(x)

[
sinh[(k + 2)h]

sinh[(k + 1)h]
e− π

2 k|x| − sinh[kh]

sinh[(k + 1)h]
e− π

2 (k+2)|x|
]

+ B(x)

[
sinh[(k + 2)h]

sinh[(k + 1)h]
e

π
2 k|x| − sinh[kh]

sinh[(k + 1)h]
e

π
2 (k+2)|x|

]
.

(D23)

Imposing the boundary conditions we find

fk (x) = n

2 cosh(h)

(
sinh[(k + 2)h]

sinh[(k + 1)h]

sinh
[
(ξ − k)πx

2

]
sinh

[
ξ πx

2

] − sinh[kh]

sinh[(k + 1)h]

sinh
[
(p − k − 2)πx

2

]
sinh

[
ξ πx

2

]
)

, (D24)

where k = 0, . . . , ξ − 1. Taking the inverse Fourier transform and using (D17d), we finally obtain

ρk (λ, h, n) = n tanh(h) sinh(h)

4π sinh[(k + 1)h]

[
ak (λ)

sinh[kh]
− ak+2(λ)

sinh[(k + 2)h]

]
, 1 � k � ξ − 2, (D25a)

ρξ−1(λ, h, n) = n tanh[h](sinh[h] + e−ξh sinh[(ξ − 1)h])

4π sinh[(ξ − 1)h] sinh[ξh]
aξ−1(λ), (D25b)

ρξ (λ, h, n) = n(e−ξh sinh[h] + sinh[(ξ − 1)h])

4π cosh[h] sinh[ξh]
aξ−1(λ). (D25c)
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d. Expectation value of topological charge

Given the analytic knowledge of ρ̃0(k) and ρn(λ) we can
determine all the charge densities, which are then simple
integrals. In the case of the topological charge, however, these
integrals can be further simplified. To proceed we consider the
functional g̃ in Eq. (D10). By means of the identity Eq. (37),
we readily obtain

g̃ = −T
∫

dk

2π
ln

(
1 + 2 cosh(μ2β )e−β(k2/(2M )−μ̃1 )

)
. (D26)

Note that

dg̃ = −s dT − n dμ1 − qdμ2, (D27)

so we have

s = 1

T 2

∂ g̃

∂β

∣∣∣∣
μ̃1,μ2

, (D28a)

n = − ∂ g̃

∂μ̃1

∣∣∣∣
β,μ2

=
∫

dk

2π

2 cosh(μ2β )

2 cosh(μ2β ) + eβ(k2/(2M )−μ̃1 )

=
∫

dkρ̃0(k), (D28b)

q = − ∂ g̃

∂μ2

∣∣∣∣
β,μ̃1

=
∫

dk

2π

2 sinh(μ2β )

2 cosh(μ2β ) + eβ(k2/(2M )−μ̃1 )

= tanh(μ2β )n, (D28c)

Note that the last equation implies the nontrivial identity

1

n

ξ∑
m=1

�m

∫
dθ ρm(θ, h, n) = e−h

2 cosh(h)
, (D29)

where {ρm(θ, h)} are those in Eqs. (D25). We could not prove
this identity analytically but we verified it numerically to
arbitrary precision.

APPENDIX E: TECHNICAL DETAILS ON THE
SMALL-TEMPERATURE LIMIT

In this Appendix, we provide a derivation of the formulas
presented in Sec. IV B. The starting point is to take the small
temperature limit of (36). Assuming

η0 = O(eAβ ), A > 0, ηn = O(β0), 1 < n < ξ, (E1)

we can neglect all terms containing ln(1 + η−1
0 )(θ ) and the

equations completely decouple, yielding

ln η0(θ ) = β(M cosh θ − μ1) − h

−1

ξ

ξ−1∑
m=1

(ξ − m) ln
(
1 + η−1

m

)

− 1

ξ
ln

(
1 + η−1

ξ

) + O(e−Aβ ), (E2a)

ln ηn = 2h

�n
+

ξ∑
m=1

νmamn ∗ ln
(
1 + η−1

m

) + O(e−Aβ ),

n = 1, . . . , ξ , (E2b)

where we used the identities (D11). Equations (E2b) are
solved in Appendix D 2 b. Using the explicit solution (D13)

and the identity (D14), we then find

η0(θ ) = eβ(Mc2 cosh θ−μ1 )

2 cosh h
. (E3)

Note that the solution is consistent with the assumption (E1).
Plugging these expressions in (61)–(63) and neglecting sub-
leading corrections we have

η0,ζ (λ) = η0,L(λ)�[v0,ζ (λ) − ζ ] + η0,R(λ)�[ζ − v0,ζ (λ)],

(E4a)

ηn,ζ (λ) = ηn(hL)�[vn,ζ (λ) − ζ ] + ηn(hR)�[ζ − vn,ζ (λ)],

(E4b)

ρ t
0,ζ (λ) = 1

2π
Mc cosh λ +

ξ∑
m=0

(
a0m ∗ 1

1 + ηm,ζ

ρ t
m,ζ

)
(λ),

(E5a)

ρ t
k,ζ (λ) = −νk

ξ∑
m=0

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ

)
(λ), 1 � k � ξ,

(E5b)

ρ t
0,ζ (λ)vdr

0,ζ (λ) = 1

2π
Mc2 sinh λ

+
ξ∑

m=0

(
a0m ∗ 1

1 + ηm,ζ

ρ t
m,ζ v

dr
m,ζ

)
(λ),

(E6a)

ρ t
k,ζ (λ)vdr

k,ζ (λ) = −νk

ξ∑
m=0

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ v

dr
m,ζ

)
(λ),

1 � k � ξ . (E6b)

Here η0,L/R(λ) are of the form (E3) where the parameters
have subscripts L and R. To simplify (E5) and (E6), we make
the following assumptions:

ρ t
0,ζ (λ) = O(1), (E7a)

ρ t
k,ζ (λ) = O

(
β−1/2e−Mc2β

)
, 1 � k � ξ . (E7b)

At the end of the calculation, we will verify the consistency of
these assumptions. Using these assumptions, we have

ρ t
0,ζ (λ) = 1

2π
Mc cosh λ, (E8)

vdr
0,ζ (λ)ρ t

0,ζ (λ) = 1

2π
Mc2 sinh λ, (E9)

so that we can write

vdr
0,ζ (λ) = ρ t

0,ζ (λ)v0,ζ (λ)

ρ t
0,ζ (λ)

= c tanh λ, (E10)

and thus

η0,ζ (λ) = eβL (Mc2 cosh θ−μ1,L )

2 cosh(hL)
�[tanh λ − ζ/c]

+ eβR (Mc2 cosh θ−μ1,R )

2 cosh(hR)
�[ζ/c − tanh λ] (E11)
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and

ρ0,ζ (λ) = Mc cosh λ cosh(hL)

π
[
2 cosh(hL) + eβ(Mc2 cosh θ−μ1,L )

]�[tanh λ − ζ/c] + Mc cosh λ cosh(hR)

π
[
2 cosh(hR) + eβ(Mc2 cosh θ−μ1,R )

]�[ζ/c − tanh λ]. (E12)

Plugging back into (E5b) and (E6b), we have

ρ t
k,ζ (λ) = νk

(
ak ∗ 1

1 + η0,ζ

ρ t
0,ζ

)
(λ) − νk

ξ∑
m=1

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ

)
(λ), 1 � k � ξ, (E13)

ρ t
k,ζ (λ)vdr

k,ζ (λ) = νk

(
ak ∗ 1

1 + η0,ζ

ρ t
0,ζ v

dr
0,ζ

)
(λ) − νk

ξ∑
m=1

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ v

dr
m,ζ

)
(λ), 1 � k � ξ . (E14)

Let us consider the driving term of (E13). Writing it explicitly, we have

νk (ak ∗ 1

1 + η0,ζ

ρ t
0,ζ )(λ) =

∫
dμ

2π
νkak (λ − μ)ρ0,ζ (μ) = 1

2π
νkak (λ)n(ζ ) + O(β−1), (E15)

where we introduced

n(ζ ) =
∫

dμ ρ0,ζ (μ)

=
∫

dμ

2π

(
2 cosh hLMc cosh μ

2 cosh hL + eβL (Mc2 cosh θ−μ1,L )
�[tanh μ − ζ/c] + 2 cosh hRMc cosh μ

2 cosh hR + eβR (Mc2 cosh θ−μ1,R )
�[ζ/c − tanh μ]

)

=
√

M

2πβ

(
e−�Lβ cosh hLerfc

(√
MβL

2
ζ

)
+ cosh hRe−�Rβe−M�βerfc

(
−

√
MβR

2
ζ

))
(1 + O(β−1/2)) (E16)

with �L/R = Mc2 − μ1,L/R. Analogously, we have

νk

(
ak ∗ 1

1 + η0,ζ

vdr
0,ζ ρ

t
0,ζ

)
(λ) =

∫
dμ

2π
νkak (λ − μ)vdr

0,ζ (μ)ρ0,ζ (μ) = 1

2π
νkak (λ)Jn(ζ ) + O(β−1), (E17)

where

Jn(ζ ) =
∫

dμ vdr
0,ζ (μ)ρ0,ζ (μ)

=
∫

dμ

(
2 cosh hLMc2 sinh μ

2 cosh hL + eβL (Mc2 cosh θ−μ1,L )
�[tanh μ − ζ/c] + 2 cosh hRMc2 sinh μ

2 cosh hR + eβR (Mc2 cosh θ−μ1,R )
�[ζ/c − tanh μ]

)

= c

πβ

(
e−�Lβ cosh hLe− MβL

2 ζ 2 − cosh hRe−�Rβe−M�βe− MβR
2 ζ 2)

(1 + O(β−1/2)). (E18)

Putting all together, at the leading order, we find

ρ t
k,ζ (λ) = 1

2π
νkak (λ)n(ζ ) − νk

ξ∑
m=1

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ

)
(λ), 1 � k � ξ, (E19)

ρ t
k,ζ (λ)vdr

k,ζ (λ) = 1

2π
νkak (λ)Jn(ζ ) − νk

ξ∑
m=1

(
akm ∗ 1

1 + ηm,ζ

ρ t
m,ζ v

dr
m,ζ

)
(λ), 1 � k � ξ . (E20)

Since the driving terms are proportional we immediately find

vdr
n,ζ (λ) = ρ t

n,ζ (λ)vdr
n,ζ (λ)

ρ t
n,ζ (λ)

= Jn(ζ )

n(ζ )
≡ v(ζ ). (E21)

Plugging it back in Eqs. (E4) and following the steps outlined in Sec. IV A, we then find

ρk,ζ (λ) = n(ζ )

nL
ρk,L(λ)�[v(ζ ) − ζ ] + n(ζ )

nR
ρk,R(λ)�[ζ − v(ζ )], (E22)

where the root densities {ρm,L/R(θ )} solve (D17). We can then use the solutions (D25) (respectively setting h = hL/R).
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Finally, we note that the assumption (E7a) is verified, as demonstrated by (E8). Moreover, as reported in (D25), {ρk,ζ (λ)}ξk=1

are proportional to the density of particles. Using that n = O(β−1/2e−Mc2β ) [cf. (E16)], we have that the assumption (E7b) is also
verified. This proves the self-consistency of our solution.
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