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We present an analytical low-energy theory of piezoelectric electron-phonon interactions in undoped Weyl
semimetals, taking into account also Coulomb interactions. We show that piezoelectric interactions generate
a long-range attractive potential between Weyl fermions. This potential comes with a characteristic angular
anisotropy. From the one-loop renormalization group approach and a mean-field analysis, we predict that
superconducting phases with either conventional s-wave singlet pairing or nodal-line triplet pairing could be
realized for sufficiently strong piezoelectric coupling. For small couplings, we show that the quasiparticle decay
rate exhibits a linear temperature dependence where the prefactor vanishes only in a logarithmic manner as the
quasiparticle energy approaches the Weyl point. For practical estimates, we consider the Weyl semimetal TaAs.
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I. INTRODUCTION

The physics of three-dimensional (3D) Weyl semimetals
(WSMs) is presently attracting a lot of interest. For several dif-
ferent candidate materials, experiments have recently revealed
WSM signatures in various observables [1–3]. Within band
theory, WSMs have an even number of touching points (the
so-called Weyl nodes) in the Brillouin zone. Near those spe-
cial points, low-energy quasiparticles have a linear spectrum
and represent Weyl fermions [4–9]. The Weyl character of
low-energy fermions implies the existence of a chiral anomaly
which in turn produces characteristic signatures in experimen-
tally accessible observables such as the magnetoconductivity
[8]. The remarkable transport features of WSMs may also lead
to useful practical applications [10,11].

We here study the theory of electron-phonon (e-ph) inter-
actions in WSMs. Apart from the case of optical phonons
[12–17], the exploration of e-ph coupling effects in WSMs has
not received much attention by theorists so far. However, it has
been pointed out that in the static (frozen phonon) limit, strain
engineering can be used to induce pseudo-scalar and pseu-
dovector potentials that couple to Weyl fermions [18–24]. We
here focus on low-energy long-wavelength acoustic phonons
with linear dispersion, schematically written as �(q) = cph|q|
with sound velocity cph. The linear dispersion of phonons
as well as Weyl fermions suggests the existence of a scale-
invariant effective action that may allow for nontrivial fixed
points under the renormalization group (RG). We shall assume
below that all relevant phonon momenta are well below the
momentum separation b between a time-reversed pair of Weyl
nodes, |q| � b, such that phonons cannot scatter electrons be-
tween Weyl points at low temperatures. However, at elevated
temperatures, T � cphb/kB, this assumption breaks down and
additional processes not considered in this work could take
place.

For insulators or semiconductors, the most important cou-
plings between electrons and acoustic phonons generally

originate from either the deformation potential or the piezo-
electric interaction [25–27]. While the former is a short-range
interaction, the latter represents an anisotropic long-range
interaction that only exists for inversion-symmetry-breaking
crystals. The so-called direct piezoelectric effect refers to
the appearance of an electric polarization when a material
is subjected to static stress. On the other hand, in a metal,
free charge carriers will screen the electric fields produced
by local dipole moments, thereby preventing any macroscopic
polarization. Nonetheless, it is still possible to speak of piezo-
electricity in metals by measuring the bulk electric current in
response to a time-dependent strain [28,29]. Electric currents
in response to strain have been discussed in the context of
WSMs in Ref. [30]. Below we will employ piezoelectric
coupling expressions derived within the phenomenological
theory of electronic insulators [31]. The main assumptions
behind this approach are that the electric field produced by
phonons is approximately longitudinal, and that there are no
free charge carriers responsible for screening. In that case,
∇ · D = 0 can be assumed for the electric displacement field
D. A microscopic derivation of the piezoelectric coupling [32]
gives further support to this phenomenological theory. The
microscopic approach directly applies to insulators, where one
can neglect the frequency dependence of the permittivity at
frequencies well below the energy gap.

In undoped WSMs, the Fermi level is aligned with a Weyl
point. Albeit the spectrum is gapless, screening is absent since
the density of states vanishes at the Weyl point even when
weak disorder is taken into account [33]. In fact, electron-
electron (e-e) interactions are marginally irrelevant in 3D
WSMs, such that the dielectric function picks up only log-
arithmic corrections at low energy scales [34–38]. However,
when computing finite-temperature observables, it may be
necessary to include the dynamic screening effects repre-
sented by these logarithmic corrections, as we will discuss in
Sec. V in more detail.
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We thus conclude that the piezoelectric coupling in
undoped WSMs can be obtained along the lines of
Refs. [27,31,32], see Eq. (21) below. If piezoelectric cou-
plings are finite, then we find that they dominate over all
other types of e-ph couplings which represent RG-irrelevant
short-range interactions. Since many WSMs discovered so
far belong to polar crystal symmetry classes, e.g., the
ditetragonal-pyramidal 4mm class for TaAs, piezoelectric cou-
plings are expected to play an important role for a wide
class of WSM materials. Our general results will below be
illustrated for the concrete case of TaAs, which also represents
one of the experimentally most intensely studied WSMs
[39–48]. For related ab initio results, see Refs. [49,50].

In this paper, we present an analytical theory capturing the
generic low-energy physics of undoped 3D WSMs taking into
account the piezoelectric e-ph interaction. We also include e-e
interactions even though they represent marginally irrelevant
perturbations in WSMs. Nonetheless, their interplay with the
piezoelectric coupling may lead to an instability in the RG
flow [51] which drives the WSM into a Weyl superconductor
[9,52–58] phase. For a similar but different study of e-e and
e-ph interactions in the context of 2D Dirac fermions in
graphene layers, see Ref. [59]. The main limitations of our
theory come from the neglect of disorder and from the often
rather complex band structure of real WSM materials. More-
over, we confine ourselves to bulk properties only, leaving
studies of surface state properties to future research.

The structure of the remainder of this paper is as follows.
In Sec. II, we explain the model used in our study, derive
the piezoelectric coupling Hamiltonian, and introduce a local
field theory capturing both e-e and e-ph interactions. We
use this field theory to derive the effective interaction poten-
tial between two Weyl fermions and show that the phonon-
mediated attractive contribution has a characteristic angular
anisotropy. In Sec. II E, we provide parameter estimates for
the example of TaAs. In Sec. III, we then derive and dis-
cuss the RG equations found from a one-loop analysis. We
continue in Sec. IV by investigating the stability of different
superconducting phases by an analytical mean-field analy-
sis. In addition, in Sec. V, we address the temperature and
momentum dependence of the quasiparticle decay rate for
small piezoelectric couplings where no interaction-induced
instabilities are expected. Finally, we offer our conclusions in
Sec. VI. Technical details can be found in the Appendix. We
put h̄ = kB = 1 throughout.

II. PIEZOELECTRIC INTERACTIONS IN
WEYL SEMIMETALS

In this section, we describe the model used in this work
and derive the piezoelectric coupling between electrons and
acoustic phonons in undoped WSMs. We first briefly summa-
rize the electronic Weyl Hamiltonian in Sec. II A, and then
discuss a general acoustic phonon model in Sec. II B. We
proceed in Sec. II C with a derivation of the piezoelectric
coupling Hamiltonian. Next, in Sec. II D, we introduce a
local field theory approach in order to capture both Coulomb
interactions and piezoelectric interactions on equal footing.
We also derive the attractive phonon-mediated potential and
show that it exhibits a pronounced angular anisotropy.

A. Weyl Hamiltonian

In the absence of e-e and e-ph interactions, fermionic
quasiparticles near a given Weyl node are described by the
Weyl Hamiltonian [4–8],

H0 =
∑

p

ψ†(p)[v⊥p⊥ · σ⊥ + v3 p3σ3]ψ (p), (1)

where the momentum p = (p⊥, p3) is measured with respect
to the Weyl node, ψ = (ψ↑, ψ↓)t is a spinor field operator,
and the Pauli matrices σ⊥ = (σ1, σ2) and σ3 (with identity
σ0) act in spin space. In Eq. (1) we consider anisotropic
Fermi velocities, v3 �= v⊥. In fact, such anisotropies can be
generated by the piezoelectric interaction in crystals with
tetragonal symmetry, see Sec. III A 4 below. However, for
simplicity, we will often specialize to the isotropic case with

v⊥ = v3 = v. (2)

Throughout we assume that the chemical potential is located
exactly at the Weyl node.

WSMs have an even number 2N of Weyl nodes in the Bril-
louin zone. In particular, time-reversal invariant WSMs with
at least four Weyl nodes generically appear as intermediate
phases between the trivial and the topological insulator phases
of noncentrosymmetric semiconductors, where—depending
on the space group of the crystal—all 2N Weyl nodes could
be located at the Fermi level [60,61]. For a continuum model
that produces four Weyl nodes by breaking the reflection
symmetry of a Dirac semimetal, see Ref. [6].

Below we employ the fermionic Matsubara Green’s func-
tion (GF) [25,62] for Weyl fermions near a given node,

Gσσ ′ (x − x′) = −〈Tτψσ (x)ψ†
σ ′ (x′)〉, (3)

where Tτ denotes imaginary time (τ ) ordering, the spin in-
dex is σ =↑,↓, and we use the four-vector notation x =
(τ, r). Taking the Fourier transform, with four-momentum
p = (iω,p), the GF has the spin matrix form

G(x) = 1

βV

∑
p

e−iωτ+ip·r G(p), (4)

where ω denotes fermionic Matsubara frequencies, the vol-
ume is V , and β = 1/T . Equation (1) yields the GF matrix

G(p) = iωσ0 + v⊥p⊥ · σ⊥ + v3 p3σ3

(iω)2 − E2(p)
, (5)

which has poles at iω = ±E (p) with

E (p) =
√

v2
⊥p2

⊥ + v2
3 p2

3. (6)

Such a gapless dispersion relation is characteristic for 3D
Weyl fermions. For the isotropic case (2), this yields the
familiar massless Weyl fermion dispersion with E (p) = v|p|.
Unless noted otherwise, we consider the thermodynamic limit
with T = 0, where all discrete sums such as those appearing
in Eq. (4) are replaced by integrals. This step also implies that
we investigate only bulk physics.

It will sometimes be advantageous to work in the band
basis where G(p) is diagonal. Labeling these bands by μ = ±
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and using Eq. (6), we find

Gμμ′ (p) = δμμ′

iω − μE (p)
≡ δμμ′Gμ(p). (7)

The mode expansion for the fermion field then reads

ψσ (r) = 1√
V

∑
p

Uσμ(p)ψp,μeip·r, (8)

where U (p) is the unitary matrix that diagonalizes the single-
particle Hamiltonian in Eq. (1). Note that U = U (p̂) is a
function of the angles defined by the unit vector p̂ = p/|p|
in momentum space. The Fourier transform of the electron
density operator, ρe(r) = ψ†ψ , is then given by

ρe(q) =
∑

p,μ,μ′
[U†(p)U (p + q)]μμ′ψ†

pμψp+q,μ′ . (9)

Allowing for contributions from all 2N Weyl nodes in the
Brillouin zone (indexed by h), we have ρe(r) = ∑

h ψ
†
hψh .

B. Phonons

We here focus on acoustic phonons at long wave lengths.
The physics is then described by the lattice displacement field
u(r). With the linearized strain tensor,

u jk = 1
2 (∂ juk + ∂ku j ), (10)

and the fourth-order stiffness tensor Ci jkl , the Euclidean action
is given by [25,63]

Sph =
∫

d4x

⎡
⎣ρ0

2
(∂τu)2 + 1

2

∑
i jkl

Ci jkl ui jukl

⎤
⎦, (11)

where ρ0 is the mass density and d4x = dτd3r. Our main
interest in this work is in describing possible electronic in-
stabilities of WSMs due to piezoelectric interactions, and we
will therefore not study a specific phonon model. We assume
instead that all three (J = 1, 2, 3) acoustic phonon modes
have a linear dispersion,

�J (q) = cJ (q̂) |q|, (12)

where the respective sound velocity, cJ (q̂), could depend on
the angular direction q̂ = q/|q|. Using bosonic annihilation
operators, aJ (q), the standard mode expansion of the lattice
displacement field is given by [25]

u(r) =
3∑

J=1

∑
q

εJ (q)eiq·r
√

2ρ0V�J (q)
aJ (q) + H.c., (13)

where the εJ (q) are polarization unit vectors.
Next we define the phonon propagator [62],

Djk (x − x′) = −〈Tτu j (x)uk (x′)〉. (14)

Taking the Fourier transform and using q = (iω,q) with
bosonic Matsubara frequencies ω, we obtain from Eqs. (12)
and (14) the result

Djk (q) = 1

ρ0

∑
J

εJ
j (q)εJ

k (−q)

(iω)2 − �2
J (q)

= Dk j (−q). (15)

For an isotropic continuum, we may identify J = 1 with the
longitudinal mode and J = 2, 3 with the transverse modes,
where c1 = cl and c2,3 = ct denote the longitudinal and trans-
verse sound velocities, respectively. We will often make the
simplifying assumption

ct = cl = cph, cph � v, (16)

on top of the isotropic Fermi velocity condition (2). These
assumptions do not affect scaling properties in an essential
way. Moreover, relaxing those approximations does not pose
conceptual problems and could allow one to take into account
ab initio results, see, e.g., Refs. [50,64].

C. Piezoelectric interaction

A microscopic derivation of the e-ph interaction in insula-
tors encounters short-range as well as long-range interactions
[27,32]. The long-range contributions can be organized in
terms of a multipole expansion of the electron-ion interac-
tion potential. The first term in this expansion is a dipolar
contribution which must vanish due to the acoustic sum rule.
The next terms are quadrupolar contributions which account
for piezoelectric couplings and vanish for centrosymmetric
materials, but not when inversion symmetry is broken. A phe-
nomenological derivation [26,31] starts from the constitutive
relation for the electric displacement,

Di =
∑

jk

ei jku jk +
∑

j

εi jE j, (17)

where E is the external electric field, ei jk the piezoelectric
tensor, and εi j the permittivity tensor [25]. A nonvanishing
piezoelectric tensor arises if strain can induce D �= 0 even for
E = 0. The relation ei jk = (∂Di/∂u jk )E and the symmetry of
the strain tensor, u jk = uk j , imply that the piezoelectric tensor
is symmetric in the last two indices, ei jk = eik j .

In the absence of free charges, from Eq. (17) we have

∇ · D = 0 =
∑
i jk

ei jk∂iu jk +
∑

i j

εi j∂iE j . (18)

Taking the Fourier transform gives∑
i j

εi jqiE j (q) = −i
∑
i jk

ei jkqiq juk (q). (19)

Since the electric field is effectively longitudinal [31], we can
write E(q) � −iq(q) with the scalar potential

(q) = 1

εq2

∑
i jk

ei jkqiq juk (q). (20)

For notational simplicity, we assume an isotropic permittivity
tensor, εi j = εδi j .

The scalar potential (20) now couples to the electronic
charge density, cf. Eq. (9), resulting in the piezoelectric in-
teraction Hamiltonian

Hpz = e

εV

∑
i jk

∑
q �=0

ei jk
qiq j

q2
uk (q)ρe(−q). (21)

We emphasize that the coupling strength in Eq. (21) depends
on the direction of the unit vector q̂, where the q = 0 mode is
omitted to ensure overall electric neutrality. From dimensional
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analysis, Hpz is marginal under RG transformations, and
second-order perturbation theory implies a linear-in-T depen-
dence of the quasiparticle decay rate, see Sec. V for details. At
low T , the piezoelectric interaction will therefore dominate
over RG-irrelevant short-range contributions, e.g., from the
deformation potential. We find that the latter terms generically
cause a quasiparticle decay rate scaling as ∼T 3. In fact, for
insulators and semiconductors, the piezoelectric interaction
is known to dominate small-q scattering if it is allowed by
crystal symmetries [26]. We emphasize that the piezoelectric
interaction is marginal only in three spatial dimensions. In
2D systems, the corresponding operator is relevant instead.
In practice, such interactions are then screened above a length
scale defined by the bare coupling constant.

Finally, in view of the symmetry property ei jk = eik j , it is
customary to express the piezoelectric tensor in Voigt notation
[31],

ei jk = ei( jk) �→ eim, m = 1, . . . , 6, (22)

where matrix elements with (11) �→ 1, (22) �→ 2, and (33) �→
3 correspond to tension or compression, and those with (23) =
(32) �→ 4, (13) = (31) �→ 5, and (12) = (21) �→ 6 describe
shear. Depending on the crystal symmetry, the various compo-
nents in Eq. (22) may be related to one another or they could
vanish identically, see Ref. [65] for useful tables. For instance,
for TaAs with space group I41md , No. 109, one finds only
three independent components, namely e15, e31, and e33. Their
respective values have been computed by ab initio methods
[50].

D. Electron-electron interactions

As we show below, the piezoelectric interaction (21) gen-
erates a long-range e-e interaction that is attractive in the low-
frequency limit where retardation effects can be neglected.
This phonon-mediated potential has a characteristic angular
anisotropy and competes with the repulsive Coulomb interac-
tion in undoped WSMs. We therefore also include Coulomb
interactions from now on.

To that end, we express the Euclidean action of the sys-
tem in local form by introducing a scalar bosonic Hubbard-
Stratonovich field ϕ(x), see Refs. [37,38]. Loosely speaking,
the field ϕ describes photon modes mediating Coulomb inter-
actions. It couples to the sources of the electric field, which
include both the conduction electron density and the effective
charge density generated by strain via the piezoelectric effect.
With the phonon action Sph in Eq. (11), we start from the total
action

S = Sph +
∫

d4x

⎡
⎣Z−1

ψ ψ∗∂τψ − ivψ∗(∇ · σ )ψ

+ Z−1
ϕ

2
(∇ϕ)2 + igeψ

∗ψ ϕ + igph

∑
jkl

e jkl∂ jϕ ukl

⎤
⎦.

(23)

The bare weight of the fermion (Coulomb) field is given
by Zψ = 1 (Zϕ = 1). These factors could, however, change
during the RG flow, see Sec. III. The partition function is

gphge

(a () b)

FIG. 1. Feynman diagrams for the vertices in Eq. (23), cou-
pling the field ϕ (wiggly curve) to (a) electrons (solid line) and
to (b) phonons (dashed). The Coulomb (piezoelectric) vertex ∼ge

(∼gph) is shown as filled (open) circle.

thereby expressed as a functional integral over the fermionic
Grassmann fields (ψ,ψ∗), the displacement field u, and the
field ϕ, i.e., Z = ∫

D[ψ,ψ∗,u, ϕ]e−S [62]. For simplicity,
we here assumed isotropic Fermi velocities, cf. Eq. (2), but
we also discuss the general case in Sec. III. The action (23)
contains two interaction vertices with couplings ge and gph.
Their diagrammatic representation is shown in Fig. 1.

In order to verify that Eq. (23) makes sense, let us now in-
tegrate out the bosonic field ϕ. With ρe = ψ∗ψ and switching
to Fourier space (d4q = dωd3q), the interacting part of the
action is then given by

Sint =
∫

d4q

(2π )4

⎡
⎣ g2

e

2|q|2 ρe(q)ρe(−q)

+ gegph

∑
i jk

ei jk
qiq j

|q|2 uk (q)ρe(−q)

+ g2
ph

2

∑
i jk

∑
lmn

ei jkelmn
qiq jqlqm

|q|2 uk (q)un(−q)

⎤
⎦. (24)

The first term corresponds to the Coulomb e-e interaction
on choosing g2

e = e2/ε, while the second term reproduces
the piezoelectric interaction (21) for gegph = e/ε. The bare
couplings are therefore given by

ge = e√
ε
, gph = 1√

ε
. (25)

We emphasize that the charge e is associated only with the
Coulomb vertex ∼ge in Fig. 1. In Eqs. (23) and (24), we have
tacitly assumed that intra- and internode Coulomb interactions
can be taken identical. Since the effects considered in our
paper come from the long-range 1/r tail of the Coulomb
potential, the couplings between long-wavelength density
fluctuations ρh and ρh′ of electrons near the Weyl nodes h
and h′, respectively, are approximately described by the same
potential. The last term in Eq. (24) describes the energy
density associated with strain-induced electric fields. Being
quadratic in the strain tensor, this contribution generates the
so-called piezoelectric stiffening correction, see Ref. [65] for
details. This modification of the phonon dispersion typically
acts to increase sound velocities [16,65]. Since here our main
interest is centered on electronic instabilities, we will simply
assume that the phonon velocities cJ (q̂) in Eq. (12) already
incorporate piezoelectric stiffening to all orders in gph.
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(a) (b)

FIG. 2. Effective e-e interaction at tree level. (a) Repulsive
Coulomb interaction. (b) Phonon-mediated e-e interaction, see
Eq. (26).

Next we discuss the effective interaction potential between
two Weyl fermions described by the above theory. The two
diagrams determining the effective e-e interaction at tree
level, i.e., to lowest nontrivial order in perturbation theory,
are illustrated in Fig. 2. In particular, Fig. 2(b) defines a
retarded e-e interaction potential, Vph(q), mediated by the
piezoelectric interaction, where q = (iω,q) is the exchanged
four-momentum. Using Eq. (23) and the phonon propagator
in Eq. (15), we find

Vph(q) =
∑

J

g2
eg2

ph/ρ0

(iω)2 − �2
J (q)

∑
i jk

∣∣ei jkqiq jε
J
k (q̂)

∣∣2

|q|4 . (26)

Neglecting retardation effects by going to the static limit,
ω → 0, the potential can be written as

Vph(q) = −g2
eg2

ph

ρ0q2
γ (q̂), γ (q̂) =

3∑
J=1

γJ (q̂), (27)

with the anisotropy functions

γJ (q̂) = 1

c2
J (q̂)|q|4

∣∣∣∣∣∣
∑
i jk

ei jkqiq jε
J
k (q̂)

∣∣∣∣∣∣
2

, (28)

which describe the angular dependence of the phonon-
mediated interaction. We emphasize that γ (q̂) > 0 for all
directions q̂, and thus the interactions in Eq. (27) are always
attractive. Combining Eq. (27) with the long-range Coulomb
interaction in Fig. 2(a), we arrive at the total e-e interaction
potential

Vtot(q) = g2
e

q2

[
1 − g2

ph

ρ0
γ (q̂)

]
. (29)

Let us now consider WSMs in the 4mm crystal class, which
in particular includes TaAs, and also use the simplifications
in Eqs. (2) and Eq. (16). In Voigt notation, see Sec. II C, we
define the ratios of piezoelectric coefficients

A = e15

e33
, B = e31

e33
. (30)

The anisotropy function γ = γ (θ ) now depends only on the
polar angle θ of q̂. To evaluate Eq. (28), the polarization unit
vectors are parametrized as

ε1(q̂) = iq̂, ε2(q̂) = iẑ × q̂
|ẑ × q̂| , ε3(q̂) = q̂ × ε2(q̂), (31)

leading to

γ1(θ ) = e2
33

c2
ph

cos2 θ [1 + (2A + B − 1) sin2 θ ]2

γ2(θ ) = 0 (32)

γ3(θ ) = e2
33

c2
ph

sin2 θ [(B − 1) cos2 θ + A cos(2θ )]2.

The contribution from the J = 2 transverse mode, where the
polarization is always perpendicular to ẑ, vanishes identically.
More generally, γJ (θ ) = 0 whenever εJ · ẑ = 0.

In the simplest approximation, one may just average over
the directions q̂ in Eq. (27), see Refs. [25,31]. We write the
angular-averaged total interaction potential as

V̄tot(q) = g2
e(1 − γ̄ )

q2
. (33)

For the 4mm crystal class, we find from Eq. (32)

γ̄ = g2
ph

2ρ0

∫ π

0
dθ sin(θ )γ (θ ) = wγ

ρ0

(
gphe33

cph

)2

, (34)

with the coefficient

wγ = 1

15
[10A2 + 4A(B + 1) + 2B2 + 3]. (35)

Clearly, for γ̄ > 1, the averaged total interaction (33) is attrac-
tive. One thus expects a gapped superconducting phase with
s-wave singlet pairing. However, as we show in Sec. IV, for
γ̄ < 1, one may also encounter more exotic superconducting
phases exhibiting, e.g., nodal-line triplet pairing.

E. Parameter estimates

To get concrete predictions from our theory, we need
information about the piezoelectric coefficients [66–68], the
permittivity ε, the mass density ρ0, and the Fermi as well
as the sound velocities. Since in TaAs the lattice parameters
are a⊥ � 3.43 Å and a3 � 11.6 Å, and the conventional
unit cell contains 4 Ta and 4 As ions, the mass density is
ρ0 � 1.24 × 104 kg/m3. For simplicity, we here adopt the
simplifying assumptions in Eqs. (2) and (16). For the Fermi
velocity, we take h̄v � 2 eV Å [43], which corresponds to
v � 3 × 105 m/s. The sound velocity is assumed to be given
by cph � 6 × 103 m/s, cf. the value quoted in Ref. [69] for
TaN. For the piezoelectric tensor of TaAs [50], we use e33 =
−1.89 Cm−2 and the ratios in Eq. (30) are A � −2.62 and
B � −0.43. This gives wγ � 4.40. Using the rough estimate
ε ≈ 20ε0 [38], we obtain αeff ≈ 0.24 and γ̄ ≈ 0.20. The latter
is well below the critical value γ̄ = 1. However, the value of
γ̄ could in principle be higher in other materials which might
have, for instance, larger piezoelectric coefficients or smaller
permittivity.

Moreover, the approximation in Eq. (33) neglects the angu-
lar anisotropy of the effective interaction. A polar plot of γ (θ )
based on our estimates for TaAs is shown in Fig. 3(a). The
attractive interaction strength is maximal for θ = π/2. This
shape of γ (θ ) is representative of the regime |e15| > |e33| >
|e31|, which is also realized for the paradigmatic piezoelectric
insulator BaTiO3 [66]. For TaAs, the total e-e interaction
potential is repulsive in all directions. However, for higher
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zz

(a () b)

FIG. 3. (a) Polar plot of the anisotropy function γ (θ ) in Eq. (27)
for the case of TaAs, with γ (θ ) multiplied by g2

ph/ρ0. We take ε =
20ε0, where ε0 is the free-space permittivity. The piezoelectric tensor
values are taken from Ref. [50], where we get γ̄ � 0.20 in Eq. (34).
The blue color indicates that the phonon-mediated interaction is
always attractive. (b) Effective anisotropy function of the total e-e
interaction potential in Eq. (29), where we adjust e33 such that
γ̄ = 0.97. Blue again indicates attraction while orange represents
repulsion.

values of γ̄ and depending on the relative strength of the
Coulomb and the piezoelectric terms, there may be directions
along which the total interaction potential becomes attractive
even for γ̄ < 1. In this case, superconducting phases could be
possible despite the effective repulsion in the s-wave channel.
In Fig. 3(b), we show the angular dependence of the total e-e
interaction potential (29) for γ̄ = 0.97. In this case, the total
e-e interaction potential changes sign as a function of θ and
becomes attractive for θ � π/2.

III. RG ANALYSIS

In this section, we turn to the derivation and solution of the
one-loop RG equations. In an infinitesimal RG step, the flow
parameter changes as � �→ � + d�, where �(�) = e−��0 is
the running high-energy bandwidth cutoff with bare value �0.
We obtain the RG equations by the standard momentum-shell
integration approach, where in each RG step one integrates
over all field modes appearing in the partition function with
energies in the shell �(� + d�) < E < �(�). The resulting
contributions to the partition function are then taken into
account by renormalization of the various couplings in the
action, see Refs. [51,62].

We start from the observation that for the local field
theory (23), perturbative expansions of physical observables
involve only diagrams of the types shown in Fig. 4. In all
these diagrams, fermion loop contributions always involve
the Coulomb vertex ∼ge. This fact can be rationalized by
recalling that the piezoelectric interaction also arises from
an expansion of the Coulomb potential, see Sec. II C. The
vertex gph only appears in regular, perturbative corrections
to the Coulomb propagator. At the one-loop level, perturba-
tion theory in ge generates the diagrams in Figs. 5(a), 5(b),
and 5(c), which are precisely the diagrams that govern the
one-loop renormalization of e-e interactions in the absence of
phonons [38].

Within the static approximation with the angular-averaged
interaction potential in Eq. (33), the piezoelectric interaction

FIG. 4. Schematic form of the possible amplitudes generated by
the local field theory in Eq. (23), where shaded regions represent
dressed vertices in a perturbative expansion.

is combined with the Coulomb e-e interaction and its effect
amounts to replacing g2

e �→ g2
e(1 − γ̄ ). As a consequence, the

essential physics of the system can be studied in terms of
a single dimensionless coupling, namely the effective fine
structure constant

αeff = g2
e(1 − γ̄ )

4πv
. (36)

Within this static approximation, the RG equation for αeff at
the one-loop level follows from the diagrams in Figs. 5(a),
5(b), and 5(c). The result is [38]

dαeff

d�
= −2(N + 1)

3π
α2

eff. (37)

Therefore, the system flows to strong coupling when the effec-
tive fine structure constant becomes negative. This happens
for sufficiently strong piezoelectric coupling, in the regime
γ̄ > 1.

The strong-coupling phase realized for γ̄ > 1 is expected
to be an intrinsic superconductor since the attractive e-ph
interaction then dominates over the repulsive Coulomb inter-
action. Previous work [6,53,56] has discussed intrinsic super-
conductivity in doped WSMs. The new element in our system

(a) (b) (c)

(d) (e)

FIG. 5. Diagrams contributing to the one-loop RG equations.
(a) Coulomb correction to the electronic self-energy. (b) Vertex
correction due to Coulomb interaction. (c) Polarization bubble in-
serted in the Coulomb propagator. (d) Piezoelectric correction to the
electronic self-energy. (e) Piezoelectric vertex correction.
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is the long-range e-e interaction resulting from a combination
of unscreened Coulomb and piezoelectric interactions. We
recall that the standard BCS formula for the superconducting
gap is given by � ∼ e−1/νF |λ|, where νF is the normal density
of states at the Fermi level and λ denotes the strength of
the short-range attractive interaction. For vanishing νF , intrin-
sic superconductivity is not possible unless the short-range
interaction exceeds a critical coupling of the order of the
electronic bandwidth, far beyond the perturbatively accessible
regime. As we will see in Sec. IV, the long-range character
of the piezoelectric interaction allows for the opening of a
finite gap even for the undoped case with νF = 0. In this case,
the gap is a function of the dimensionless parameter αeff < 0.
Eliminating the need for doping to realize superconductivity
in WSMs is important because the density of states cannot be
made very large if one wants to stay below the energy scale
vb, where b is the momentum separation between two Weyl
nodes. In fact, at high energies, nonlinearities will appear in
the dispersion relation.

A. RG equations beyond the static approximation

We can use the RG approach to analyze how the piezoelec-
tric interaction affects the running couplings in the effective
action (23) beyond the static approximation, i.e., including
retardation effects. After performing an infinitesimal RG
transformation and rescaling ψ �→ (1 + δZψ/Zψ )1/2ψ and
ϕ �→ (1 + δZϕ/Zϕ )1/2ϕ to absorb the field renormalizations,
we obtain a correction to the effective action of the form

δS =
∫

d4x

⎡
⎣−iv

(
1 + δv

v
+ δZψ

Zψ

)
ψ∗(∇ · σ)ψ

+ ige

(
1 + δge

ge
+ δZψ

Zψ

+ 1

2

δZϕ

Zϕ

)
ψ∗ψ ϕ

+ igph

(
1 + δgph

gph
+ 1

2

δZϕ

Zϕ

) ∑
jkl

e jkl∂ jϕ ukl

⎤
⎦. (38)

We can compute δge and δgph from the corresponding vertex
corrections, whereas δZψ and δv stem from the electron
self-energy and δZϕ from the polarization insertion in the
Coulomb propagator. The corrections can then be absorbed
as a renormalization of the parameters v, ge, and gph.

At the one-loop level and at lowest order in gph, the con-
tributions from the piezoelectric interaction are represented
by the diagrams shown in Figs. 5(d) and 5(e). The latter are
generated by taking into account the (nondivergent) correction
to the Coulomb propagator at order g2

ph. In the following we
will now separately discuss each of the five diagrams in Fig. 5.

1. Coulomb correction to the electronic self-energy

The standard rainbow diagram in Fig. 5(a) describes the
lowest-order correction to the electronic self-energy due to
Coulomb interactions. A well-known consequence of this
contribution is a renormalization of the Fermi velocities.
Related effects have been predicted and experimentally ob-
served for graphene [70]. The diagram in Fig. 5(a) yields the

self-energy

�ee(p) = −g2
e

∫
d4q

(2π )4

1

q2
G(p + q), (39)

with p = (iω,p). We evaluate Eq. (39) in Appendix A, where
we show that �ee does not depend on the frequency ω and
hence no field renormalization arises from this term, δZψ = 0.
Integrating out the modes of the field ϕ within the high-energy
momentum shell and keeping only self-energy terms linear in
the momentum p, we arrive at the self-energy correction

δ�ee(p) = g2
e

8π2
(η⊥p⊥ · σ⊥ + η3 p3σ3)d�, (40)

where the numbers η⊥ and η3 depend on the Fermi velocity
ratio v3/v⊥, cf. Appendix A. By comparing with Eq. (1), we
see that Eq. (40) generates a correction to the Fermi velocities
v⊥ and v3. For the isotropic case (2), we get η⊥ = η3 = 4/3.
In this case, we obtain

δv = g2
e

6π2
d�. (41)

By itself, this term makes the Fermi velocity increase under
the RG flow.

2. Vertex correction due to Coulomb interaction

Next we turn to the diagram in Fig. 5(b), which pro-
vides a vertex correction due to the Coulomb interaction,
corresponding to a charge renormalization [62]. However,
this diagram actually gives no contribution at all. In fact,
the instantaneous Coulomb interaction does not give rise to
charge renormalization for Weyl (or Dirac) fermions at the
one-loop level [71]. For the corresponding 2D graphene case,
charge renormalization is absent also at the two-loop level
[71].

3. Coulomb propagator: Polarization bubble

At the one-loop level, the self-energy of the field ϕ comes
from the standard polarization bubble in Fig. 5(c). Following
the analysis of Ref. [38], the self-energy correction can be
absorbed by the field renormalization of ϕ,

δZϕ = − Ng2
e

6π2v
Zϕd�, (42)

where the presence of a fermion loop in the diagram implies
that this correction is proportional to the number of Weyl
nodes, 2N . For simplicity, we have again assumed isotropic
Fermi velocities, see Eq. (2).

4. Piezoelectric self-energy correction

Next we turn to the electronic self-energy �ep(iω,p) due
to e-ph interactions, which to one-loop order comes from the
diagram in Fig. 5(d). We evaluate this term in Appendix B, see
Eq. (B2). A nonuniversal contribution arises for ω = p = 0
which can be absorbed by renormalization of the chemical
potential. A similar contribution also comes from e-e in-
teractions, see Appendix A, and we eventually require the
renormalized chemical potential to be located at the Weyl
node. As discussed in Appendix B, for 4mm crystal symmetry
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and again using Eqs. (2) and (16), the self-energy correction
after momentum-shell integration is given by

δ�ep(p) = − 1

4πρ0

(
gegphe33

cph

)2 cph

v

×
(

iωC0

v
σ0 + C⊥p⊥ · σ⊥ + C3 p3σ3

)
d�, (43)

with the numbers C0 � 1.40, C⊥ � 0.29, and C3 � 0.83 for
TaAs. The smallness of the factor cph/v � 1, together with
the fact that in practice we have γ̄ � 1 in Eq. (34), implies
that contributions from Eq. (43) to RG equations are rather
small.

In marked contrast to the Coulomb case, we now encounter
in Eq. (43) a term �ep ∼ ω responsible for field renormaliza-
tion,

δZψ = − C0

4πρ0v

cph

v

(
gegphe33

cph

)2

Zψd�, (44)

implying that the quasiparticle weight Zψ decreases under the
RG flow.

The p �= 0 terms in Eq. (43) can be absorbed by renormal-
ization of the Fermi velocities. In general, even for initially
isotropic velocities, the fact that C⊥ �= C3 implies that piezo-
electric couplings intrinsically generate anisotropic Fermi ve-
locities. Because we have cph/v � 1, however, this Fermi
velocity renormalization is typically subleading against the
dominant Coulomb term in Eq. (41). For simplicity, we here
neglect the RG-generated anisotropy of the Fermi velocities
and only focus on the mean value of the Fermi velocity
defined as v = (2v⊥ + v3)/3, cf. Eq. (2). Taking into account
Eq. (41) and using the number C̄ = (2C⊥ + C3)/3, with C̄ �
0.47 for TaAs, we obtain another correction to the Fermi
velocity which must be added to Eq. (41),

δv′ = − g2
e

4π

C̄cph

ρ0v

(
gphe33

cph

)2

d�. (45)

Since C̄ > 0, the piezoelectric corrections tend to decrease the
Fermi velocities.

5. Piezoelectric vertex correction

One-loop vertex corrections do arise from the piezoelectric
coupling, see the diagram in Fig. 5(e). This diagram is studied
in detail in Appendix C. We obtain a charge renormalization
corresponding to the RG flow of the coupling ge in Eq. (25).
For the 4mm crystal class, and using again Eqs. (2) and (16),
we obtain

δge = C0

4πρ0

cph

v

(
gegphe33

cph

)2

ged�, (46)

with C0 � 1.40 for TaAs. Note the factor of cph/v � 1, which
is a manifestation of Migdal’s theorem for WSMs [72]. The
fact that the same coefficient C0 governs both the vertex
correction and the field renormalization, see Eq. (44), is due
to a Ward identity for electron-phonon interactions [73]. We
also have δgph = 0 because there are no loop corrections in
this vertex.

B. RG equations

We now collect the results of Sec. III A. The one-loop RG
equations are then given by

dZψ

d�
= −C0

cph

v

g2
e

4πv

g2
phe2

33

ρ0c2
ph

Zψ,

dZϕ

d�
= − Ng2

e

6π2v
Zϕ,

dv

d�
= g2

e

6π2

[
1 − 3π (C0 + C̄)

2

cph

v

g2
phe2

33

ρ0c2
ph

]
, (47)

dge

d�
= − Ng3

e

12π2v
,

dgph

d�
= −Ng2

egph

12π2v
.

We note that on effective length scales beyond the mean free
path, disorder effects could modify the above RG equations.
For gph = 0, we recover the RG equations in the absence of
phonons, in which case the Coulomb vertex ge is marginally
irrelevant and the Fermi velocity increases monotonically as
we lower the energy scale. For gph �= 0, the vertex correction
δge/ge due to the piezoelectric interaction gets canceled by
the field renormalization δZψ/Zψ and ge still decreases with
the RG flow. Solving the RG equations numerically with the
initial condition set by the parameters for TaAs, we obtain the
flow diagram in Fig. 6(a).

However, we find that an instability can arise if the piezo-
electric interaction is strong enough to reverse the flow of the
Fermi velocity and make it vanish (or become of the order
of the phonon velocity) at some finite energy scale. A rough
estimate of the condition for this instability is obtained by
imposing that dv/d� must be negative at the beginning of
the RG flow. This requires γ̄ >

2wγ

3π (C0+C̄)
v

cph
. While C0, C̄,

and wγ are constants of order unity, the factor of velocity
ratio v/cph � 1 pushes the critical γ̄ to a higher value than
estimated within the static approximation. Integrating the RG
equations numerically, we find that the renormalized velocity
does vanish when we enhance the piezoelectric coefficient
such that γ̄ � 75, as shown in Fig. 6(b). Therefore, this
RG analysis suggests that retardation effects make the WSM
phase more stable against a superconducting transition.

IV. PHASE DIAGRAM AND SUPERCONDUCTIVITY

We next perform a self-consistent mean-field analysis to
locate superconducting regions in the phase diagram within
the static approximation for the total interaction. We develop
the mean-field approach in Sec. IV A and study the stability
of superconducting phases with singlet or triplet pairing. For
small γ̄ , the WSM phase remains stable but will be charac-
terized by a sizable quasiparticle decay rate �. We determine
the dependence of � on temperature and on the energy of the
quasiparticle in Sec. V.

A. Mean-field theory

Since pairing involves time-reversed partner states, we
consider the effective internode e-e interaction potential

035106-8



SUPERCONDUCTIVITY FROM PIEZOELECTRIC … PHYSICAL REVIEW B 100, 035106 (2019)

(a)

(b)

ge( )/ge(0)
v( )/v(0)

ge( )/ge(0)
v( )/v(0)

FIG. 6. Renormalized Fermi velocity v(�) and Coulomb cou-
pling ge(�) as functions of the RG flow parameter � = ln(�0/�).
(a) Flow diagram obtained using the estimated parameters for TaAs,
corresponding to γ̄ = 0.20, but considering 2N = 4 Weyl nodes.
(b) Flow diagram obtained by enhancing the piezoelectric coefficient
e33 to reach γ̄ � 75. Here we stop the RG flow at the scale where the
Fermi velocity vanishes, at which point the WSM becomes unstable.

Vtot (q) in Eq. (29) for a pair of nodes (h = 1, 2) that are linked
by time reversal. The Hamiltonian is then given by

Heff =
2∑

h=1

∑
p

ψ
†
h (p)(vp · σ )ψh (p)

+ 1

V

∑
k,p,q

Vtot(q)ψ†
1 (p + q)ψ1 (p)ψ†

2 (k − q)ψ2 (k).

(48)

We assume the static approximation for the total e-e interac-
tion, as done in the standard BCS theory for the normal-metal-
superconductor transition. While phonon-induced retardation
effects could be included within Eliashberg theory, we here
explore only the static case defined by Eq. (48). We expect to
encounter a superconducting phase for γ̄ > 1, see Eq. (34),
where the effective interaction Vtot will be attractive in all
directions and the order parameter should describe s-wave
singlet pairing. However, it is worth mentioning that the
breaking of spin-rotational invariance by spin-orbit coupling
in WSMs blurs the distinction between singlet and triplet

pairing [53]. In fact, a mixing of singlet and triplet com-
ponents is generic for noncentrosymmetric superconductors
[74,75]. With this caveat in mind, we now implement the
mean-field approximation for Heff in Eq. (48).

We consider a generic spin-matrix order parameter, �(k),
defined by

〈ψ1σ (k)ψ2σ ′ (−k + q)〉 = δq,0 [�(k)iσ2]σσ ′ . (49)

The gap function then also corresponds to a complex-valued
spin matrix,

�(p) = − 1

V

∑
k

Vtot(p − k)�(k). (50)

Using four-component Nambu spinor operators [25],

�(p) =
[

ψ1(p)

iσ2ψ
†
2 (−p)

]
, ψh(p) =

[
ψh,↑(p)

ψh,↓(p)

]
, (51)

the standard mean-field decoupling scheme yields the
Bogoliubov-de-Gennes (BdG) Hamiltonian

HBdG =
∑

p

{�†(p)HBdG(p)�(p) + Tr[�†(p)�(p)]},

HBdG(p) =
[

vσ · p �(p)

�†(p) −vσ · p

]
. (52)

We will now examine the conditions for superconducting
phases with singlet vs. triplet pairing.

1. Singlet pairing

For the case of singlet pairing, we write �(p) = �0(p)σ0

in a gauge where the scalar function �0(p) is real valued.
Diagonalizing HBdG(p) in Eq. (52), one finds the eigenvalues
±Es(p) with Es(p) =

√
v2p2 + �2

0(p). The gap equation then
follows from Eq. (50) by noting that Eq. (49) is solved
by a spin-isotropic matrix, �(k) = �0(k)

2Es (k)σ0. Using the av-
eraged interaction potential in Eq. (33) with γ̄ in Eq. (34),
the solution follows by assuming a constant gap function,
�0(k) = �0, corresponding to s-wave pairing. For �0 �= 0,
with Eq. (36) we arrive at the gap equation

1 = −1 − γ̄

4π2

∫ b

0
dk k2 g2

e

k2
√

v2k2 + �2
0

= −αeff

π
ln

(
2vb

�0

)
, (53)

where the large-momentum cutoff b corresponds to the mo-
mentum separation between different Weyl nodes. For αeff <

0, corresponding to γ̄ > 1, we then find the isotropic gap

�0 = 2vb e−π/|αeff |. (54)

Assuming that �0 has the same sign at both Weyl nodes
[6,52], we obtain a topologically trivial gapped superconduc-
tor with conventional s-wave singlet pairing. However, it is
worth noting again that a finite gap emerges even though νF

vanishes at the Fermi level. Technically, the 1/k2 momentum
dependence of the long-range interaction potential compen-
sates the density-of-states factor k2 in Eq. (53).
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2. Nodal-line triplet pairing

We next investigate the possibility of other superconduct-
ing phases at γ̄ < 1, where the effective interaction strength
is repulsive along certain directions but a significant attractive
component exists near the q3 = 0 plane, see Fig. 3(b). A
general superconducting order parameter can be written as

�(k) = �0(k)σ0 + a(k) · σ, (55)

where �0(k) is a real scalar function and a(k) is a complex
vector field. For a �= 0, the superconducting phase has a triplet
pairing component [53]. We require that the BdG Hamiltonian
(52) preserves time-reversal symmetry, which implies the
conditions

�0(−k) = �0(k), a∗(−k) = −a(k). (56)

We then expand Eq. (55) to first order in k, where time-
reversal symmetry and Eq. (56) imply

�0(k) = �0, a(k) = M · k + ia2. (57)

Here M is a real 3 × 3 matrix and the vector a2 also has real
entries.

Next, in order to reduce the number of mean-field param-
eters, we take into account global spin and orbital rotation
symmetry around the z axis for tetragonal crystal symmetry.
In this argument, we assume that these symmetries are ap-
proximately realized even when expanding around the Weyl
nodes. This approximation becomes exact if the Weyl points
are separated along the z axis in momentum space. Indeed,
a state that minimizes the energy should take advantage of
the anisotropy in the effective interaction (29). We thus take
a2 = a2ẑ and M = diag(a⊥, a⊥, a‖), leaving us with only four
mean-field parameters in Eq. (57). For �0 = 0, the eigenval-
ues of HBdG(k) are given by ±Et (k) with

E2
t (k) = v2k2 + a2

⊥k2
⊥ + a2

‖k2
3 + a2

2

± 2|k⊥|
√

(v2 + a2
⊥)a2

2 + v2k2
3 (a⊥ − a‖)2. (58)

For a2 = 0, the energy only vanishes at k = 0, and each of the
original Weyl nodes splits into two Bogoliubov-Weyl nodes,
similar to the result of Ref. [52] for pairing between nodes
with opposite chirality. For a2 �= 0, the spectrum instead
exhibits a nodal ring in the k3 = 0 plane,

|k⊥| = |a2|√
v2 + a2

⊥
, k3 = 0. (59)

For a general discussion of noncentrosymmetric nodal super-
conductors, see Refs. [9,76,77]. Interaction-induced instabili-
ties in nodal-line WSMs have also recently been studied, e.g.,
in Ref. [78].

The spectrum in Eq. (58) shows that the parameters a‖
and a⊥ mainly just renormalize Fermi velocities, without
introducing essential new physics. In order to get tractable an-
alytical expressions, we thus consider the case a‖ = a⊥ = 0 in
what follows. In particular, we test whether it is energetically
favorable to convert Weyl nodes into the nodal ring in Eq. (59)
where the attractive interactions are most pronounced. To that
end, self-consistency equations for the order parameters are
derived as shown in Appendix D. We arrive at the coupled

E
(k

)

(a) (b) (c)

k1

k2
k1

k2
k1

k2

FIG. 7. Schematic representation of the dispersion relations of
the two bands for Bogoliubov quasiparticles. Here we set the
mean-field parameters a‖ = a⊥ = 0 and plot the dispersion for
k3 = 0. (a) For a2 = �0 = 0, the Weyl nodes conjugated by time-
reversal symmetry are represented as two degenerate Bogoliubov-
Weyl nodes. (b) For �0 = 0 but a2 �= 0, the spectrum is gapless along
a nodal line located in the k3 = 0 plane. (c) For a2 �= 0 and �0 �= 0,
the spectrum is fully gapped.

equations

a2 = αeffa2

4π

∫ π

0
dθ sin θ [γ (θ ) − 1]

× (1 + sin2 θ ) ln

(
4v2b2

�2
0 + a2

2 cos2 θ

)
, (60)

and

�0 = αeff�0

4π

∫ π

0
dθ sin θ [γ (θ ) − 1] ln

(
4v2b2

�2
0 + a2

2 cos2 θ

)
.

(61)

Note that Eq. (60) differs from Eq. (61) by the factor (1 +
sin2 θ ) in the integrand. This factor enhances the contribution
from θ ≈ π/2 where γ (θ ) has its maximum. This observation
suggests the existence of a parameter window where Eq. (60)
has a solution with a2 �= 0 while �0 = 0 is the only solution
to Eq. (61). In Appendix D, we confirm that an intermediate
parameter regime exists, γ̄ ′ < γ̄ < 1, where such a solution
is stable, at least in the absence of disorder. Using TaAs
parameters, we find γ̄ ′ � 0.91. The respective value for the
order parameter a2 is given by Eq. (D8).

Our mean-field approach suggest that superconductivity
will be absent for γ̄ < γ̄ ′, where the WSM phase presum-
ably remains stable. We study the quasiparticle lifetime in
this regime in Sec. V below. In the intermediate regime
γ̄ ′ < γ̄ < 1, however, the system becomes a gapless triplet
superconductor with internode pairing, where the Weyl nodes
split and form a nodal ring located in the k3 = 0 plane. Finally,
for γ̄ > 1, the system enters a fully gapped superconduct-
ing phase with s-wave singlet pairing, see Sec. IV A 1. The
general picture is illustrated in Fig. 7. We emphasize that all
these phase transitions can already happen for small absolute
values of the fine structure constant α = g2

e/(4πv), within the
perturbatively accessible regime.

3. Other competing phases

So far we have discussed superconducting pairing with
zero Cooper pair momentum in time-reversal-symmetric
WSMs, where a pair of nodes at opposite momenta is con-
jugated by time reversal. By contrast, in inversion-symmetric
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WSMs, the opposite chirality of nodes entails that states with
momentum k and −k do not necessarily have opposite spin. In
such cases, the type of superconducting order is less clear be-
cause pairing between parity-reversed nodes leads to a gapless
superconductor [52,53,57]. The authors of Refs. [53,54] have
argued that a fully gapped Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state with intra-node pairing has lower energy than
the gapless state. On the other hand, in Ref. [56] an odd-parity
BCS state with lower energy than the FFLO state was found.
Using our model, pairing between nodes of opposite chirality
can also be studied and could allow for a nodal FFLO-type
superconducting phase. However, paired states are then not
related by any symmetry, and we find it unlikely that a lower
energy than for the BCS state in Sec. IV A 1 can be achieved
for γ̄ > 1. Moreover, our attractive phonon-mediated interac-
tion favors pairing between time-reversal-conjugated nodes.
In Eq. (21), phonons couple to the total electronic density,
and projecting Hpz onto the Weyl nodes at low energies,
we find the same coupling to all nodes. Nonetheless, the
process of integrating out high-energy modes could lift this
degeneracy, and one pair of Weyl nodes may ultimately have
a stronger coupling. The effective e-e interaction used as input
in Eq. (48) will then favor a pairing of the time-reversal-
conjugated nodes with the strongest coupling, as opposed to
some other combination of nodes.

Let us also comment on the possibility of charge density
wave (CDW) phases, see Ref. [79]. For the model with short-
range attractive interactions in Ref. [79], a CDW instabil-
ity can only occur at strong coupling. It is straightforward
to adapt their calculation to our model with long-range at-
traction. The mean-field Hamiltonian for the CDW state is
essentially as for our singlet pairing state in Sec. IV A 1.
The difference is that the four-component spinor is defined
as (ψ1↑, ψ1↓, ψ2↑, ψ2↓)t , where 1 and 2 now refer to two
nodes with opposite chirality and the order parameter is
〈ψ†

1 (k)ψ2 (k)〉. As this CDW order parameter breaks chiral
symmetry, it leads to an axion insulator where the axion
field is identified with the phase of the charge density wave.
However, in our setting, this type of order depends on the
interaction between nodes which are not related by any sym-
metry. By the above argument, this state should have higher
energy than the BCS state.

In addition, there may be other phases at intermediate
coupling strength, γ̄ � 1. One particularly intriguing pos-
sibility concerns phases that break time-reversal symmetry
spontaneously, e.g., a p + ip superconductor. We leave the
exploration of such phases to future work.

V. QUASIPARTICLE LIFETIME

We next address the temperature and momentum depen-
dence of the on-shell quasiparticle decay rate, �(p,T ), caused
by the piezoelectric e-ph coupling. We assume that γ̄ is
so small that interaction-induced instabilities are absent. We
show below that in this WSM phase, the e-ph interaction is
responsible for a rather large quasiparticle decay rate, scaling
as � ∼ T/ ln(b/|p|) at low-to-intermediate temperatures with
T � cph|p|. To ease notation, we again employ Eqs. (2) and
(16).

A. General expression for the decay rate

Diagrammatically, the lowest-order electronic self-energy
is represented by Figs. 5(a) and 5(d). Since the rainbow
diagram in Fig. 5(a) is a real-valued Hartree-Fock diagram,
it does not contribute to the decay rate. The e-e interaction
only produces a finite decay rate at higher orders and beyond
the Hartree-Fock approximation. In order to compute �, we
therefore study the self-energy due to e-ph interactions, �ep,
see Fig. 5(d). The rate follows from the imaginary part of
�ep(E ,p), which in turn is obtained by analytic continuation
iω → E + i0+, see, e.g., Ref. [80].

To be specific, we study the lifetime of a Weyl quasiparticle
in the state |p, μ = +〉 with momentum p, taken from the
positive-energy (μ = +) band. We consider the on-shell case,
E = v|p|. The quasiparticle decay rate is then given by

�(p,T ) = −2 Im 〈p,+|�ep(p)|p,+〉. (62)

Let us now make use of the results of Sec. III A 4 and
Appendix B. We first observe that the decay rate must van-
ish right at the Weyl point, �(p = 0,T ) = 0, since then
momentum and energy conservation cannot be satisfied for
any phonon momentum q �= 0. For |p| �= 0, it is convenient
to rescale q = ξ |p|q̂ with the dimensionless parameter ξ .
Denoting the integration angles by θq and φq, and using
〈p,+|σ · q|p,+〉 = |q|q̂ · p̂, we find

�(p,T ) = g2
eg2

phc2
ph|p|

8π2ρ0

∫ ∞

0
dξ ξ 2

∫ π

0
dθq sin θq

∫ π

−π

dφq γ (q̂)
∑
s=±

{
F (s)

1 (|p|, ξ , q̂ · p̂)δ[(v + scphξ )2 − v2(1 + ξ 2 + 2ξ q̂ · p̂)]

+ F (s)
2 (|p|, ξ , q̂ · p̂) δ

[
v2(1 − s

√
1 + ξ 2 + 2ξ q̂ · p̂)2 − c2

phξ
2
]}

, (63)

F (s=±)
1 = g(s)

1 (ξ )
nB(scph|p|ξ )

scphξ
[2v + scphξ + vξ q̂ · p̂],

F (s=±)
2 = −g(s)

2 (ξ, q̂ · p̂)
nF (sv|p|

√
1 + ξ 2 + 2ξ q̂ · p̂)

sv
√

1 + ξ 2 + 2ξ q̂ · p̂
[v

√
1 + ξ 2 + 2ξ q̂ · p̂ + sv(1 + ξ q̂ · p̂)], (64)
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with γ (q̂) in Eq. (27), nF (ω) = 1/(eβω + 1), nB(ω) =
1/(eβω − 1), and

g(−)
1 = sgn

(
1 − cphξ

v

)
, g(+)

1 = g(−)
2 = 1,

g(+)
2 = sgn(1 −

√
1 + ξ 2 + 2ξ q̂ · p̂). (65)

B. Zero-temperature limit

Let us first address the T = 0 case, where only F (−)
1 in

Eq. (64) yields a finite contribution to the decay rate,

�(p,T = 0) = g2
eg2

phcph|p|
4π2ρ0v

∫ π

0
dθq sin θq

∫ π

−π

dφq

× γ (q̂)[1 − (q̂ · p̂)2]�(−q̂ · p̂), (66)

where �(x) is the Heaviside step function. Since the integral
in Eq. (66) is finite, we conclude that the T = 0 rate scales as
� ∼ |p| when approaching the Weyl point.

C. Finite temperatures

Next we consider low but finite temperatures in the regime

cph|p| � T � min(v|p|, cphb). (67)

The dominant contributions to the decay rate (63) then stem
from the F (±)

1 terms in Eq. (63), where the Bose factors can be
approximated by nB � ±T/(cph|p|ξ ), respectively. We then
obtain

�(p,T ) = g2
eg2

phT

4π2ρ0v

∫ π

0
dθq sin θq

∫ π

−π

dφq

× γ (q̂)

|q̂ · p̂| [1 − (q̂ · p̂)2]�(−q̂ · p̂). (68)

However, the integral (68) diverges logarithmically at the
boundary of the hemisphere q̂ · p̂ < 0, corresponding to
small-angle scattering processes with ξ → 0. This infrared
divergence is related to the long-range character of the piezo-
electric interaction. Note that so far we have always assumed
T = 0, with the Fermi energy located right at the Weyl point.
In that case, the unscreened Coulomb potential can be used.
For the finite-temperature quasiparticle decay rate, we need
to be more careful since also finite-energy states within an
energy window of width ≈T around the Weyl point are
involved. For such states, the long-range Coulomb interaction
is modified by dynamic screening [38,81]. By taking into
account screening, we now show that the above divergence
is indeed removed.

Dynamic screening of the Coulomb interaction can be
included by replacing the permittivity according to [25]

ε �→ ε(q) =
[

1 − g2
e

q2
�(q)

]
ε, (69)

where �(q) is the polarization function. Within the standard
random-phase approximation, we take �(q) to be the nonin-
teracting polarization bubble, cf. Fig. 5(c), where the T = 0
limit of the polarization function yields a good description
for the temperature regime (67). A temperature dependence
of the decay rate is then generated only by e-ph interactions.

(We note that disorder effects could modify our expres-
sions.) To obtain the dominant terms contributing to �(p,T )
in this regime, the logarithmic on-shell term calculated in
Refs. [38,82] suffices,

�(q) � −N |q|2
6π2v

ln (2b/|q|), (70)

where b serves as large-momentum cutoff again. Note that two
factors of ε−1 appear in Eq. (68), associated with either g2

e or
g2

ph. One can identify these two factors with the two wiggly
lines in the self-energy diagram in Fig. 5(d). Dressing both
lines with the polarization bubble, we arrive at a modified
version of Eq. (68) which takes into account screening,

�(p,T ) = g2
eg2

phT

4π2ρ0v

∫ π

0
dθq sin θq

∫ π

−π

dφq

× γ (q̂)

|q̂ · p̂|
1 − (q̂ · p̂)2[

1 + Ng2
e

6π2v
ln

(
1

|q̂·p̂|
b
|p|

)]2 �(−q̂ · p̂). (71)

Using |p| � b, the regime (67) is therefore characterized by a
quasiparticle decay rate which scales as

�(p,T ) ∼ T

ln(b/|p|) . (72)

We observe that �(p,T ) vanishes for |p| → 0, as expected
from kinematic constraints. However, the slow logarithmic
scaling with |p|, together with the linear-T dependence,
suggests that the quasiparticle lifetime of Weyl fermions is
significantly reduced by the piezoelectric e-ph interaction,
even when one stays in the very close vicinity of a Weyl point.

VI. CONCLUDING REMARKS

In this work we have studied the long-range attractive
interactions mediated by the piezoelectric electron-phonon
coupling in undoped noncentrosymmetric Weyl semimetals.
These interactions exhibit a significant angular dependence
and compete with the repulsive Coulomb interactions. This
competition is mainly governed by the dimensionless piezo-
electric coupling strength γ̄ in Eq. (34). Within a static
approximation for the effective e-e interaction, we find that
for γ̄ > 1 the attractive interactions outweigh the repulsive
Coulomb part. We then predict a conventional BCS supercon-
ductor phase with spin-singlet s-wave pairing, even though the
normal density of states vanishes at the Fermi level. We have
performed a mean-field analysis to study this state in some
detail.

According to our rough estimate γ̄ ≈ 0.20 for TaAs, see
Sec. II E, the above BCS scenario is probably hard to en-
counter in TaAs. However, for γ̄ < 1, other, and even more
interesting, interacting phases may be stabilized. For example,
our analysis in Sec. IV A suggests that a nodal-ring gapless
spin-triplet superconductor will be realized for intermediate
values of γ̄ . Our RG analysis also shows that the critical
values for γ̄ where superconducting instabilities are found can
be pushed upwards by retardation effects.

For small γ̄ , we expect that the Weyl semimetal phase
remains stable. Nonetheless, the piezoelectric coupling should
leave a clear experimental trace in the quasiparticle decay rate
at finite temperature. In particular, we find that this rate scales
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as � ∼ T/ ln(b/|p|) at low-to-intermediate T . Albeit � = 0
right at a Weyl point (p = 0), the weak logarithmic scaling
with |p| suggests that the quasiparticle lifetime will be rather
short even for very small (but finite) |p|. In any case, we hope
that future theoretical and experimental research will continue
to study the interesting consequences of piezoelectric cou-
plings in Weyl semimetals.
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APPENDIX A: ELECTRONIC SELF-ENERGY FROM
COULOMB INTERACTIONS

Here we provide details concerning the electronic self-
energy correction from Coulomb interactions, see Sec. III A 1.
Using Eq. (5) and performing the internal frequency integra-
tion in Eq. (39), we obtain

�ee(iω,p) = g2
e

2

∫
d3q

(2π )3

1

q2

×
[
−σ0+v⊥(p⊥+q⊥) · σ⊥+v3(p3+q3)σ3

E (p+q)

]
,

(A1)

which is independent of the frequency ω. We now expand
Eq. (A1) for |p| � |q|. For p = 0, one finds a nonuniver-
sal constant that can be absorbed by renormalization of the
chemical potential. The renormalized value of the chemical
potential is then assumed to be aligned with the Weyl node.
Universal RG contributions appear at the first order in p. For

instance, from terms linear in p3, we get a contribution of the
form

�ee(p3) = g2
e

2
v3 p3σ3

∫
d3q

(2π )3

v2
⊥q2

⊥
q2E3(q)

, (A2)

where momentum-shell integration yields the self-energy cor-
rection

δ�ee(p3) = g2
e

8π2
η3 p3σ3d�,

η3 = v3

v⊥

∫ π

0
dθ

sin3 θ

[sin2 θ + (v3/v⊥)2 cos2 θ ]3/2
.

(A3)

Self-energy terms ∼p⊥ follow in a similar manner with
η3 replaced by η⊥ = 4v⊥/(3v3). For the isotropic case (2),
we then find η⊥ = η3 = 4/3. The complete linear-in-p self-
energy correction after momentum-shell integration is given
by Eq. (40).

APPENDIX B: ELECTRON SELF-ENERGY
FROM E-PH INTERACTIONS

Next we turn to the self-energy �ep(p) due to piezoelectric
interactions, see Sec. III A 4. The leading term arises from the
diagram in Fig. 5(d),

�ep(p) = −g2
eg2

ph

∑
i jk

∑
lmn

ei jkelmn

×
∫

d4q

(2π )4

qiq jqlqm

|q|4 Dkn(q)G(p + q), (B1)

with the phonon propagator in Eq. (14) and the electronic GF
in Eq. (5). Performing the internal frequency integration, we
obtain

�ep(iω,p) = −g2
eg2

ph

4ρ0

∑
J

∑
i jk

∑
lmn

ei jkelmn

∫
d3q

(2π )3

qiq jql qmε
J
k (q)εJ

n (−q)

|q|4�J (q)E (p + q)

×
∑
±

[iω ± �J (q)]σ0 + v⊥(p⊥ + q⊥) · σ⊥ + v3(p3 + q3)σ3

±iω + �J (q) + E (p + q)
. (B2)

We now integrate out all phonon modes within the high-
energy shell. For 4mm crystal symmetry and using Eqs. (2)
and (16), to linear order in p, we find the correction

δ�ep(p) = −g2
e

(
iζ0ω

v
σ0 + ζ⊥p⊥ · σ⊥ + ζ3 p3σ3

)
d�, (B3)

with, cf. Eq. (30),

ζ0 = C0

ρ0

(
gphe33

cph

)2 cph

v
,

C0 = 1

15π

(
10A2 + 4AB + 4A + 2B2 + 3

) � 1.40. (B4)

The terms ∼p in Eq. (B3) involve dimensionless numbers ζ⊥
and ζ3 defined as in Eq. (B4) but with C0 → C⊥,3, where

C⊥ = 1

105π
(14A2 + 12AB + 12A + 6B2 + 15),

C3 = 1

105π
(42A2 + 4AB + 4A + 2B2 − 9). (B5)

Using Eq. (30) with the parameters quoted in Sec. II E, we
find C⊥ � 0.29 and C3 � 0.83. The self-energy corrections
are summarized in Eq. (43).

APPENDIX C: VERTEX CORRECTIONS

Here we provide details about the vertex correction due
to the diagram in Fig. 5(e), see Sec. III A 5. We define the
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three-point function with fermions in the band basis
�μμ′ (x, x′, x′′) = 〈Tψμ(x)ψ†

μ′ (x′)ϕ(x′′)〉. (C1)

The free boson propagator is Dϕ (x) = 〈ϕ(x)ϕ(0)〉. In momen-
tum space, Dϕ (q) = −|q|−2.

The three-point function at tree level is obtained by
perturbation theory to first order in ge. Taking the Fourier
transform �σσ ′l (p, p′, q) = ∫

d4xd4x′d4x′′ e−ipx−ip′x′−iqx′′

�σσ ′l (x, x′, x′′), we find

�
(1)
μμ′ (p, p′, q) = ige[U†(p)U (p + q)]μμ′Gμ(p)Gμ′ (p + q)Dϕ (q)(2π )4δ(p′ + p + q). (C2)

The vertex correction at the one-loop level appears at order g3
eg2

ph:

�
(3,2)
μμ′ (p, p′, q) = −ig3

eg2
phDϕ (q)(2π )4δ(p′ + p + q)

∑
amb

∑
rns

eamberns

×
∑
μ′′μ′′′

∫
d4q′

(2π )4

q′
aq′

bq′
rq′

s

|q′|4 Dmn(q′)Gμ(p)Gμ′′ (p − q′)Gμ′′′ (p + q − q′)Gμ′ (p + q)

× [U†(p)U (p − q′)]μμ′′[U†(p − q′)U (p + q − q′)]μ′′μ′′′[U†(p + q − q′)U (p + q)]μ′′′μ′, (C3)

with the phonon propagator in Eq. (15) with q′ = (iν ′,q′).
At low energies, all external four-momenta can be assumed small against q′. The integral over the internal frequency ν ′ then

defines the quantities

Iμ′′ =
∫ +∞

−∞

dν ′

2π

[
1

iν ′ − �J (q′)
− 1

iν ′ + �J (q′)

]
1

iν − iν ′ − μ′′E (p − q′)
1

iν + iω − iν ′ − μ′′E (p + q − q′)
. (C4)

Performing the frequency integral, we obtain

I± = − 1

[iν ∓ �J (q′) ∓ E (p − q′)][iν + iω ∓ �J (q′) ∓ E (p + q − q′)]
. (C5)

We now effectively set the external four-momenta to zero, p, q → 0, which results in I± = −1/[�J (q′) + E (q′)]2. In this limit,
U (p − q′)U†(p + q − q′) → σ0, and we arrive at

�
(3)
μμ′l (p, p′, q) = ig3

eg2
ph

2ρ0
[U†(p)U (p + q)]μμ′Gμ(p)Gμ′ (p + q)Dϕ (q)(2π )4δ(p′ + p + q)

×
∑

J

∑
amb

∑
rns

eamberns

∫
d3q′

(2π )3

q′
aq′

bq′
rq′

s

|q′|4
εJ

m(q′)εJ
n (−q′)

�J (q′)[�J (q′) + E (q′)]2
. (C6)

At this point, we compute the one-loop contribution to the RG equations by integrating over phonon modes with momenta within
the high-energy momentum shell. The correction corresponds to a charge renormalization and hence to a renormalization of the
coupling ge in Eq. (25). We find

δge = g3
eg2

ph

2ρ0

∑
J

∫
d3q

(2π )3

∣∣∣∣∣∣
∑
jkl

e jkl
q jqk

|q|2 εJ
l (q)

∣∣∣∣∣∣
2

1

�J (q)[�J (q) + E (q)]2
. (C7)

For the case of TaAs, with the simplifications in Eqs. (2)
and (16), one can then employ similar steps as in Appen-
dices A and B. We thereby arrive at Eq. (46).

APPENDIX D: ON TRIPLET PAIRING

In this Appendix, we provide details concerning the so-
lution of the self-consistency equations in Sec. IV A 2 for
the triplet pairing case, keeping only �0 and a2 as free
parameters. The self-consistency equations are given by

�0 = − 1

2V

∑
k

Vtot(k)Tr[�(k)],

a2 = − 1

2V

∑
k

Vtot(k)ImTr[�(k)σ3]. (D1)

Now suppose that HBdG(k) is diagonalized by the unitary
transformation �(k) = U (k)�̃(k), with eigenvalues ordered
as [E1(k),−E1(k),−E2(k),E2(k)]. For an arbitrary 2 × 2
matrix W , we can use the auxiliary relation

Tr[�(k)W ] = −
∑
λ=2,3

[U †(k)τ−WU (k)]λλ, (D2)

where τ± = τx ± iτy and Pauli matrices τx,y,z act in Nambu
space. The self-consistency equations (D1) then reduce to

�0 = 1

2

∑
λ=2,3

∫
d3k

(2π )2
Vtot(k)[U †(k)τ−σ0U (k)]λλ,

a2 = 1

2

∑
λ=2,3

∫
d3k

(2π )2
Vtot(k)Im[U †(k)τ−σ3U (k)]λλ, (D3)
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where the integration domain is the ball 0 < |k| < b. Defining
the function

R(x, θ ) =
∑
±

a2 ± x sin θ√
a2

2 ∓ 2a2x sin θ + �2
0 + x2

, (D4)

the above equation for a2 takes the form

a2 = α

4π

∫ vb

0
dx

∫ π

0
dθ sin θ R(x, θ ) [γ (θ ) − 1], (D5)

where α = g2
e/(4πv). Performing the integral over x and as-

suming a2,�0 � vb, we obtain Eq. (60). In a similar fashion,
we obtain the equation for �0 in Eq. (61).

Setting �0 = 0 and substituting the form of γ (θ ) in
Eq. (32), we get from Eq. (60)

1 = α

2π

∫ π

0
dθ sin θ [γ (θ ) − 1](1 + sin2 θ ) ln

∣∣∣∣ 2vb

a2 cos θ

∣∣∣∣
= − α

2π

[
L1(γ̄ ) + L2(γ̄ ) ln

(
a2

2vb

)]
. (D6)

We here define the linear functions L1,2(γ̄ ) as

L1(γ̄ ) = 34

9
− γ̄

wγ

(
256A2

75
+ 5408AB

11025
+ 5408A

11025

+ 2704B2

11025
+ 146

1225

)
,

L2(γ̄ ) = −10

3
+ γ̄

wγ

(
18

35
+1

5
12A2 − 88AB

105
−88A

105
− 44B2

105

)
,

(D7)

with wγ � 4.40 in Eq. (35). Solving for a2, we obtain

a2 = 2vb exp

(
−2π + αL1

αL2

)
. (D8)

For α � 1 and γ̄ � 1, the constraint a2 < 2vb simplifies to
L2(γ̄ ) > 0. In order to obtain a nontrivial solution for a2, this
in turn requires that

γ̄ > γ̄ ′ = 175wγ

126A2 + 44AB + 44A + 22B2 + 27
. (D9)

For TaAs parameters, Eq. (D9) yields γ̄ ′ � 0.91.
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