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We report complex band structure (CBS) calculations for the four late transition metal monoxides MnO, FeO,
CoO, and NiO in their paramagnetic phase. The CBS is obtained from density functional theory plus dynamical
mean field theory (DMFT) calculations to take into account correlation effects. The so-called β parameters,
governing the exponential decay of the transmission probability in the nonresonant tunneling regime of these
oxides, are extracted from the CBS. Different model constructions are examined in the DMFT part of the
calculation. The calculated β parameters provide theoretical estimation for the decay length in the evanescent
channel, which would be useful for tunnel junction applications of these materials.
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I. INTRODUCTION

Motivated by the application of transition metal oxides
(TMO) in modern electronics, the charge transport through
TMO nanojunctions has been extensively investigated in
the past 20 years, theoretically and experimentally. A large
amount of literature focuses on the nonresonant tunneling
experiments in which the tunneling current decays exponen-
tially, I = I0exp(−βL), as the length of the tunnel junction
(L) increases. Although the β parameter depends on the
interfacial properties between the junction and the metallic
electrodes, it is mainly determined by the electronic prop-
erties of the junction material itself. Since many TMOs are
strongly correlated electronic systems, calculation of β from
first principles with the inclusion of electron correlation would
be necessary and important for understanding TMO nanojunc-
tions. In this work, we report ab initio calculations of β, based
on density functional theory (DFT) and single-site dynamical
mean field theory (DMFT), for the late TMO monoxides.

Existing studies have shown the β parameter is related to a
material’s band gap, the hopping parameter t of the insulating
material, and the alignment of the Fermi level in the metal
electrodes with the band gap of the insulating junction [1,2].
One way to calculate β from first principles is to evaluate the
complex band structure (CBS) [3] rather than the ordinary
real band structure (RBS). Complex band structure is the
energy eigenvalues defined for complex values of �k. The wave
function of a crystal structure has the well-known Bloch form
of ψ = ψ0ei�k·�r , where �k is real. In fact, only the solutions of
Schrödinger’s equation with real wave vector are considered,
and wave functions having complex wave vectors are often
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not considered because they would grow exponentially in
some direction which is physically unreasonable for periodic
systems. However, when dealing with surfaces and interfaces
of semiconductors, i.e., finite or nonperiodic solids, solutions
with complex wave vectors have physical meaning for ener-
gies within the band gap. They represent the states exponen-
tially decaying into the semiconductor, also called evanescent
interface-induced gap states. If �k becomes a complex variable
�k = �kRe + i�kIm, then the wave function can be written as ψ =
ψ0ei�k·�r = (ψ0e−�kIm·�r )ei�kRe·�r , yielding an exponential decay fac-
tor to the amplitude of the wave function. The decay is for
the direction �kRe, and corresponds to the electron nonresonant
tunneling current decay I = I0exp(−βL) in that direction. The
β parameter is associated with the imaginary part �kIm via the
relation β = 2|�kIm|. The energy bands are generalized to be
defined on contours in the complex plane of �k. A very useful
feature of CBS is that one can directly read �kIm thus β from
the band structure without additional calculations. By picking
an arbitrary energy of the wave function within the gap, one
can trace sideways to the nearest complex band at that energy
level and trace down to the corresponding �kIm. In many cases,
it is sufficient to apply the CBS approach with the standard
Kohn-Sham (KS) density functional theory (DFT). However,
it could yield wrong results for materials in which electron
correlation plays an important role. The self-energy due to
correlation must be considered in such cases. There have been
CBS studies based on beyond-DFT calculations. For example,
the GW approximation and hybrid density functionals had
been used to calculate β of simple organic molecules and
yielded better agreement with experimentally known values
[1,2]. In this study, we analyze the CBS and calculate the β

of Mott insulating materials, using NiO, CoO, FeO, and MnO
as examples. The correlation effect is taken into account by
carrying out DFT plus DMFT calculation and β is evaluated
from the DMFT-corrected band structure.
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The series of 3d transition metal monoxides with rock-
salt structure present very rich physical properties. Early
in the series, TiO and VO are metallic materials, whereas
later members, e.g., NiO, CoO, FeO, and MnO, show clear
insulating properties and antiferromagnetic (AFM) ordering
below the Néel temperature TN . At room temperature, NiO is
in AFM phase and the other three are in paramagnetic (PM)
phase (TN = 525, 290, 198, and 120 K for NiO, CoO, FeO,
and MnO, respectively) [4–7]. Because most of the tunnel
junction applications are operated at room temperature or
even lower temperatures, carrying out the calculation of wave-
function decay rate in the PM phase of these materials needs
to be justified, at least for NiO. This is supported by several
experiments as well as developments in the calculation side.
It is well known that DFT in the local density approximation
(LDA) fails to provide a band gap for these materials. Better
matching between the experimental data and the calculated
band structures was reached first by using the spin-resolved
version of LDA, the local spin density approximation (LSDA)
[8,9]. Independent angle-resolved photoemission experiments
[10,11] in the 1990’s studied the valence band property of
bulk NiO below 525 K. The experiments demonstrated that
the valence band structure from a LSDA calculation with
AFM ordering agreed with the experimental data better than
LDA. However, the band structure close to Fermi energy was
still very different from the measured data and the calculated
band gap was too small (<1 eV vs >4 eV). It was later
experimentally observed that there was actually no change in
the photoemission spectra features during the AFM → PM
transition of NiO [12], which contradicts theories that the
band gap of NiO is mainly due to AFM ordering. On the cal-
culation side, the development of the LDA + U method pro-
vided a much improved band gap of 3.4 eV for NiO [13,14],
and the LSDA + U [9,15] calculations also had success in
describing the electronic structure of 3d metal monoxides.
These facts suggest that the band gap of NiO is mainly due
to electronic correlation rather than AFM ordering. The decay
rates of evanescent channel calculated in the PM phase should
not be significantly different than in the magnetic ordered
phase because the β is mainly related to the materials’ band
gap and the band gap is not significantly affected from the
AFM → PM transition. For CoO, FeO, and MnO, we do not
find similar experiments studying whether the photoemission
spectra features change in AFM → PM transition. All three
are in PM phase at room temperature.

The calculations presented here are carried out in a
straightforward way. The four materials’ ground-state band
structures are first calculated using the full potential linearized
augmented plane wave (FP-LAPW) method. The obtained
band structures are then used to construct effective Hamil-
tonian in Wannier orbital basis, and also used to compute
Coulomb interaction matrices using the constrained random
phase approximation (cRPA) method [16]. With the Hamil-
tonian and the U matrices, we perform DMFT calculations
to get the k-resolved spectral functions and analyze the band
gaps. Using the DMFT self-energy, we construct the full
Green’s function and use it to calculate the complex band
structures (CBS) and extract the decay rate.

Outline. The remainder of the paper is organized as fol-
lows. Section II introduces the calculation methods, including
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FIG. 1. Nonmagnetic NiO ground-state band structure (solid
lines), and band characters (open circles) calculated by projecting
Bloch states onto atomic orbital states. The radius of the open circles
is proportional to the weight of the atomic states. Fermi level is at
zero.

the DFT plus DMFT scheme and the way we obtained the
β parameter from CBS. The essential step of computing the
Coulomb interaction U matrices are grouped in the Appendix.
The resulting spectral function, as well as the k dependence of
the β parameter, are described in Sec. III. Section IV provides
the conclusion.

II. METHODS

The CBS can be calculated using either wave functions or
Green’s functions. We used the Green’s function approach
because it is consistent with the DMFT formalism. The
self-energy from DFT + DMFT is used to construct the full
Green’s function, which is then used to evaluate the CBS and
β. We will first describe our DFT and DMFT calculations,
then explain how we calculate CBS from Green’s function,
and how we find β from CBS.

The four monoxides, especially NiO, have been exten-
sively studied in the DMFT community and used as bench-
mark material for novel computational methods [17–19]. The
existing DFT + DMFT calculations of NiO were not done in
the exactly same way. One difference in our calculation is the
use of cRPA method to calculate the U matrices in the same
Wannier orbital basis used for the Hamiltonian construction.
Thus, the hopping and interaction parameters of the effective
Hubbard model are consistently built from the same DFT
ground state.

A. DFT calculation

Our DFT calculation is done using the FP-LAPW method,
as implemented in a modified version of the ELK code [20].
The ground state is calculated within the generalized gradient
approximation (GGA) using the PBE functional. The muffin
tin sphere radii are, for example, 2.02 a0 and 1.72 a0, for
Ni and O, respectively. The experimental values of lattice
constants are used [4–7]. A dense k-point grid of 16 × 16 ×
16 was used to perform Brillouin zone integration. Figure 1
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FIG. 2. Nonmagnetic ground-state band structures (solid curves)
of NiO, CoO, FeO, and MnO. And the TM 4s orbital character only
(open circles). Horizontal solid lines are placed at the maximum of
d-like bands, to make the separation or overlap of s-like and d-like
bands clearly seen. Fermi level is always at zero.

displays the ground-state band structure of NiO and orbital
characters (the amount of overlapping between Bloch states
and atomic orbital states).

It is clearly seen that there are five d-like bands around
the Fermi level, representing the partially filled d states of the
transition metal atom and giving the material a metallic state.
Below them in the [−8.0,−2.0] eV range are three bands
showing p-orbital character. Above the d-like bands, in the
[+2.0,+8.0] eV range, there is a single band of transition
metal (TM) 4s character. It is a common feature of the four
materials that the d-like bands and p-like bands are separated
by a small gap. The group of p-like and d-like bands are
isolated from lower bands, but are very close to the s-like band
at the � point. Within the GGA-PBE calculation, as shown in
Fig. 2, we find that the s-like band is slightly gapped from the
d-like bands in the cases of NiO and CoO but is overlapping
in energy with the d-like bands for FeO and MnO. Although
not shown, we also find that, when using the LDA functional,
the s-like band has overall more overlap with the d-like bands
for these four materials.

The orbitals’ characters in Figs. 1 and 2 display a clear
d-p mixing in these materials, which motivates our model
construction explained in next section. The s-orbital weight is
well located in the singe band in the [+2.0,+8.0] eV range.
We do not observe significant mixing between s and the group
of p and d . We will keep the s-like band in the analysis
because it had been demonstrated in existing DFT + DMFT
studies [21,22] that the TM s-like band has significant con-
tribution to the photoemission spectrum of these monoxides.
In addition, as we will see in later sections, the extension of
the s-like band in the complex domain goes across the gap
region; thus, it should be included for a correct determination
of Fermi level pinning position. So, in order to construct
localized orbital basis for all later calculations, we downfold
the Bloch bands in the energy window [−8.0,+8.0] eV to the
symmetry-preserving Wannier orbital basis that includes the
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FIG. 3. DFT band structure of NiO (solid line), and reconstructed
bands (dots) in symmetry-preserving Wannier orbital basis, which
are identical to DFT bands by construction. Fermi level is at zero.

TM d-like bands, the TM s-like band, and the oxygen p-like
bands. The reconstructed bands of NiO are shown in Fig. 3.

B. DMFT calculation

Dynamical mean field theory is one successful way to
more accurately capture the electronic correlation effect and
remedy the failure of DFT. Application of DMFT to TMOs
originated from the work of Peierls and Mott [23,24]. Usually,
an appropriate correlation subspace was identified as those
electron states in the partially filled, transition metal d shell,
and was associated with interactions including the onsite
intra-d and inter-d interactions. During the past two decades,
the DMFT method [25] has been developed for the low-energy
effective Hubbard model constructed for real materials’ d-
like or f -like bands. The widely adopted numerical scheme
involves selecting DFT bands near the Fermi energy as the
correlation subspace and fitting them to a tight-binding model
using the downfolding technique applied to localized orbitals,
such as Wannier orbitals [26–28]. For each �k point, the
Bloch Hamiltonian is downfolded to the Wannier orbital basis
[20] HWann(�k). Through the Fourier transformation, HWann(�k)
serves as single-particle hopping ti j in the first term of Eq. (1)
below. This Hamiltonian contains contributions from the ef-
fective potential of the DFT calculation that also creates a
double-counting issue, which is explicitly accounted for by
a correction within DMFT.

The multiorbital Hubbard model Hamiltonian with onsite
Coulomb interaction can be expressed within the second
quantization framework as [29]

ĤHubbard = Ĥkinetic + ĤCoulomb

=
∑

i, j,μ,ν

t d p
i j,μν ĉ+

i ĉ j

+ 1

2

∑
i,α,β,γ ,δ

U d
i,αβγ δ ĉ+

i,α ĉ+
i,β ĉi,γ ĉi,δ. (1)

Here, the indices i, j are site indices, and μ, ν are orbital
indices including spin for all orbitals within the correlation
subspace. The indices {α, β, γ , δ} are a subset of {μ, ν}
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to indicate those orbitals associated with onsite Coulomb
interactions. For the four monoxides in this study, due to the
d-p mixing mentioned in Sec. II A, the correlation subspace
includes both d and p orbitals and the subset {α, β, γ , δ} of
interacting orbitals is limited to d only. The Coulomb inter-
action tensor U d

i,αβγ δ can be computed from first principles or
sometimes used as empirical parameters of the model. With
the hopping and Coulomb interaction parameters at hand,
the DMFT method iteratively solves the model by mapping
it to an effective Anderson single-impurity model (ASIM).
The impurity Green’s function is often expressed in the path-
integral formulation, with integration over Grassmann fields
of second quantization creation and annihilation operators ĉ+
and ĉ:

Gimp(i1, τ1; i2, τ2) = −
∫

D[ĉ+]D[ĉ]e−S[ĉ+,ĉ]{ĉ(τ1)ĉ+(τ2)}∫
D[ĉ+]D[ĉ]e−S[ĉ+,ĉ]

.

(2)

In Eq. (2), D[. . .] is the standard integration measure. S[ĉ+, ĉ]
is the effective action as defined in Eq. (3) below for the
impurity:

S[ĉ+, ĉ] = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

i, j

ĉ+
i (τ )G−1

0,i j (τ − τ ′)ĉ j (τ
′)

+
∫ β

0
dτ ĤCoulomb(ĉ+, ĉ). (3)

In Eqs. (2) and (3), i and τ are the site index and imaginary
time. G0,i j is the bare propagator, which is also called the
bath Green’s function. It plays a similar role as the Weiss
field in classical mean-field theory. Specifically, it describes
an effective field coupled to the impurity that contains all
nonlocal information of the underlying lattice, and the lattice
is considered as a reservoir of noninteracting electrons. The
difference from the classical Weiss field arises in its time
dependence, which accounts for local dynamics. We refer
readers to Ref. [30] for explicit definitions of D[. . .] and
S[ĉ+, ĉ].

Given the effective action, there exist several well-
established numerical methods to solve for the impurity’s
Green’s function. The family of quantum Monte Carlo (QMC)
solvers are widely accepted and numerically exact if the sim-
ulation time is sufficiently long. We refer readers to Ref. [31]
for technical details about general QMC impurity solver. In
this work, we are using the continuous-time hybridization
expansion (CT-HYB) QMC solver implemented in the DCA++
code [32,33]. The solver adopts the segment picture [31] to
take into account density-density interactions. The coupling
to the bath is diagonal only in orbital space. Our calculations
are performed at inverse temperature 1/kT = 20. The number
of Monte Carlo sweeps in the QMC calculation is 106 in
each solver run. The continuous-pole-expansion method [19]
is used for obtaining the self-energy and impurity Green’s
function in real frequency domain.

For material-specific calculations, the lattice Green’s func-
tion is constructed, within the correlation subspace, from the

downfolded Hamiltonian:

G(iωn) = 1

Nk

∑
�k

1

(iωn + μ) − HWann(�k) − �(iωn)
, (4)

where Nk is the number of �k points, ωn is the Matsubara
frequency, and μ the chemical potential. The self-energy
�(iωn) is supplied with an initial guess, then updated in
each of the DMFT iterations. One uses the Dyson’s equation
in each iteration to derive the bath Green’s function and
the effective impurity problem numerically, i.e., G−1

0 (iωn) =
G(iωn)−1 + �(iωn), and solve the impurity problem. For the
late TM monoxides with strong d-p mixing, we include five d
and three p orbitals in the correlation window, while limiting
interactions to d orbitals. Thus, the Hamiltonian HWann(�k) and
lattice Green’s function G(iωn) in Eq. (4) are eight dimen-
sional. �(iωn) is always five dimensional, and is added to the
d block of HWann(�k). When constructing the bath G−1

0 (iωn)
for interacting orbitals, we use the d block of G(iωn) together
with �(iωn) in Dyson’s equation.

The value of interaction parameters in ĤCoulomb(ĉ+, ĉ) are
calculated using ab initio methods from the materials’ DFT
ground states. The constrained random phase approximation
(cRPA) method, as explained in details in the Appendix,
is adopted for this step. The important step in cRPA is to
choose a screening window, within which the particle-hole
polarizations are excluded. The d-p mixing gives some ar-
bitrariness here because one cannot find a window of bands
that includes exactly all d weight and excludes all p weight.
There are naturally two choices: excluding both d-like and
p-like bands in [−8.0,+2.0] eV which is often called the d p
model; excluding only the five d-like bands which is called
the d-d p model. We have calculated the onsite Coulomb
interactions of the five Wannier d orbitals for the two models.
The results are discussed in the Appendix. The later complex
band analysis is built on the d-d p model only. We present
the cRPA results of both models in this work for the partial
purpose of benchmarking the current cRPA implementation.

The DFT + DMFT calculation scheme and its variants
have been widely used in the past two decades to study TMOs
that have a pronounced correlation effect. It is worth briefly
reviewing the existing studies and pointing out the differences
and limitations in this work. One of the earliest applications
using DFT + DMFT for real materials was a study of NiO
[34], where a realistic gap and the near-gap spectra were
obtained for a correlation subspace that contains d orbitals
only. Shortly after, the oxygen p states of NiO were included
[35,36], in a way similar to that described in this section,
to provide fuller description of the valence-band spectrum.
It was found in these studies that doping holes leads to the
filling of the correlation gap and a significant transfer of the d
spectral weight. In these studies, the low-energy Zhang-Rice
bands were also obtained. Aside from the paramagnetic state,
magnetic state properties of NiO were also investigated within
the framework of DFT + DMFT [37,38], where the iterated
perturbation theory (IPT) solver and the numerical exact
diagonalization (ED) solver were used to solve the impurity
problem. NiO has also been actively used as a benchmark
material for DFT + DMFT method development, e.g., new
methods related to the double-counting correction [18,22,39]
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and analytical continuation [19]. The other members of the
late TM monoxides, CoO, FeO, and MnO, together with
NiO have been studied within the DFT + DMFT scheme in
a systematic investigation of the band gaps of these materials
[22], investigation of the fundamental quantum entanglement
of indistinguishable particles [40], and as benchmarking ma-
terials in method developments for determining the Coulomb
correlation strength [41,42].

Aside from studies under ambient conditions, there are a
significant number of first-principles calculations focusing on
the beyond-equilibrium properties of the late-TM monoxides,
particularly the changes of electronic structure related to high
pressure and lattice distortions. It was first reported [43] that
MnO experiences a simultaneous moment collapse, volume
collapse, and metallization transition under a pressure of
about 100 GPa. Upon compression of 60–70 GPa, the B1
structure of FeO has a spin-state transition accompanied by
an orbital-selective Mott metal-insulator transition [21,44], in
good agreement with the experimental result [45]. A pressure-
driven orbital selective insulator-to-metal transition is also
observed in CoO [46,47]. Similar to what is seen in FeO,
the t2g orbitals of Co become metallic first at about 60 GPa,
and the eg orbitals remain insulating until the much higher
pressure of about 170 GPa. It is found that the transition
to fully metallic state is driven by a high-spin to low-spin
transition of the Co2+ ions. A systematic study of all four TM
monoxides under high pressure [48] reveals a remarkably high
pressure of 430 GPa for the insulator-metal transition in NiO,
which is well out of the range 170–40 GPa of MnO-CoO.

The full charge-density self-consistent (CSC) DFT +
DMFT scheme is often used in TM oxide calculations un-
der high pressure because the charge density is subject to
change with lattice distortion. In the CSC scheme [49–51],
the DMFT iteration described in this section is nested in an
outer iteration of the charge density. The many-body effect
within the correlation subspace is self-consistently included
in the entire system. It has been demonstrated that the CSC
scheme is necessary in studying the metal-insulator tran-
sition of V2O3 [52], where a strong enhancement of the
a1g-eπ

g crystal-field splitting causes a substantial redistribution
of charge density and thereby influences the lattice struc-
ture due to electron-lattice coupling. In a recent study of
pressure-induced insulator-metal transition in Fe2O3 [53], a
site-selective redistribution of the Fe 3d charges between the
t2g and eg orbitals associated with spin-state transition was
captured within a CSC DFT + DMFT calculation. The CSC
scheme might be important for this study mainly because
the 4s-like band enters the correlation window at the �

point. If the 4s-like band is significantly shifted in a CSC
DFT + DMFT calculation, then its complex extension would
be shifted too and affect the complex band structure within the
Mott gap. Indeed, in existing CSC DFT + DMFT studies of
late TM monoxides under pressure [21,48], the 4s-like band is
significantly lowered (by about 3 eV) to become much closer
to the Fermi energy. However, under ambient conditions, the
4s-like band is not significantly moved in CSC DFT + DMFT
calculations, which makes sense because of the minimum
hybridization between the 4s-like band and the group of p-like
and d-like bands (Fig. 1). Given the fact that a non-CSC
scheme was successfully applied in many studies of the late

TM monoxides [36,44,46], we carry out the calculations in
the non-CSC scheme even when the 4s-like bands of FeO
and MnO enter the correlation window (Fig. 2). Although
the 4s-like band does not take part in the DMFT iteration, it
is used in constructing the final lattice Green’s function for
complex band analysis.

C. Evaluation of CBS and decay rate

As mentioned in the Introduction, the wave-function decay
rate in direction �k can be estimated by supplying an imaginary
part to it, i.e., �k = �kRe + i�kIm, and studying the complex band
structure (CBS). Here, �kRe is the decay direction, and �kIm

yields β. CBS is always defined on the complex plane of
�k where �kRe lies on the real axis. A grid or path of real �k
points in the sense of traditional Brillouin zone sampling in
DFT calculations is not defined here. Contrary to the normal
procedure of solving for eigenenergies after specifying real �k
points, one needs to first specify the value of the eigenenergy,
then search the complex plane of �k at that eigenenergy for
poles of the full Green’s function to locate the �k(s) for that
eigenenergy. In practice, it is convenient to express any �k in
the first Brillouin zone as

�k = C1 · k̂⊥ + (C2 · k̂2 + C3 · k̂3) ≡ �k⊥ + �k‖, (5)

where the real unit vector k̂⊥ is always the decay direction,
and C1 is the complex coefficient that defines the complex
plane of searching for poles, i.e., (C1 · k̂⊥) ≡ �k⊥. Here, the
quantity (Re[C1] · k̂⊥) is same as the �kRe used at the beginning
of this section. And, k̂2 and k̂3 are user-defined real unit
vectors in the plane perpendicular to k̂⊥. C2 and C3 are both
real. C2 · k̂2 + C3 · k̂3 ≡ �k‖ defines the parallel component
of �k.

The DMFT self-energy in real frequency domain is used
to construct the lattice Green’s function of the subspace
containing s, p, and d orbitals (nine dimensional). The full
Green’s function is expressed in the usual way:

G(�k, ω) = 1

ω + μ − H̃Wann(�k) − �DMFT(ω)
. (6)

In Eq. (6), μ is the Fermi energy, �(ω) is the converged
DMFT self-energy after analytical continuation. The original
HWann(�k) is Fourier transformed to real-space hopping ti j ( �R),
then Fourier transformed back to H̃Wann(�k) at any �k, real or
complex, as defined in Eq. (5). For given k̂⊥ and �k‖, H̃Wann(�k)
can be considered as a function of C1 only. Thus, the Green’s
function is a function of C1 and ω, i.e., G(C1, ω). Figure 4
shows an example case of the complex plane defined by
G(C1, ω). In the example, k̂⊥ is chosen to be the unit reciprocal
lattice vector �b3/|�b3| and �k‖ = 0. The poles of G(C1, ω) are
resolved by finding roots of the equation det|G−1(C1, ω)| = 0.
The set of roots for different values of ω gives the complex
bands. In the following work, we study the complex band and
decay rate in three directions: (a) k̂⊥ = (kx, ky, kz ) = (1, 0, 0);
(b) k̂⊥ = (1, 1, 0)/

√
2; (c) k̂⊥ = (1, 1, 1)/

√
3, where kx, ky, kz

are Cartesian coordinates in k space.
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FIG. 4. Complex plane of C1 for searching poles of G(C1, ω), for
the direction k̂⊥ = �b3/|�b3|. Shaded area is the searching area, which
includes the real axis and boundaries of the first Brillouin zone.

III. RESULTS AND DISCUSSION

The main purpose is to study the features of the CBS when
the correlation effect is included. In this section, we first report
the band gaps and spectral functions from DFT + DMFT and
compare it to experimental data and existing calculations.
Then, the CBS and β parameters are studied at the so-called
charge neutrality level within the band gap, which is further
related to the Fermi level pinning position and the height of
Schottky barrier in tunnel junction applications.

A. Band gaps from DFT + DMFT

The resulting density of states (DOS) from the DMFT
calculations is presented in Fig. 5 for the d p and d-d p models.
The band gaps are measured between the widths at half-height
of the conduction band and valence band in DOS. Table I
has the measured band gaps. Here, we briefly compare to
the experiments. NiO and MnO have been extensively studied
in experiments. The band gap of NiO was determined to be
3.7–4.5 eV [54,55]. The experimental values of MnO gap are
in the range of 3.6–4.0 eV [54,56]. The present calculation
of the d-d p model is in agreement with experiments for
these two materials. Experimental values of the band gap
of CoO have diverse values. Some experiments reported a
band gap of 2.5–2.8 eV [57]. Some other studies found higher
values, e.g., 5.4 eV gap based on ellipsometry spectra data
[58] and indirect gap of 2.8 eV and direct gap of 5 eV based
on absorption spectrum from measured dielectric function
[57]. The value of our calculated band gap based on the
d-d p model falls in the range and is close to the conductivity
experiment [59]. Quasiparticle calculations using the hybrid

TABLE I. The band gaps measured from DFT + DMFT den-
sity of states. Sources of the experimental gaps are in the text of
Sec. III A.

Band gap (eV) NiO CoO FeO MnO

DFT + DMFT, d p model 6.74 6.63 6.05 6.74

DFT + DMFT, d-d p model 4.76 3.72 3.37 3.72

Expt. (conductivity) 3.7 3.6 n/a 3.8
Expt. (XAS-XES) 4.0 2.6 n/a 4.1
Expt. (PES-BIS) 4.5 2.5 n/a 3.9
Expt. (absorption) 4.0 2.8 2.4 3.6–3.8

FIG. 5. Total (black), t2g (blue), eg (green), and p (red) spectral
functions A(ω) of the two models of NiO, CoO, FeO, and MnO.

functional and the G0W0 method yields similar value (3.4 eV)
for the band gap [60] of CoO. It seems the absorption ex-
periments underestimate the gap compared to DMFT results.
Unfortunately, there are very limited experiments reporting
the measured band gaps of FeO in PM phase. This is because
the preparation of a pure FeO sample is difficult due to Fe
segregation [61]. Thus, comparison of theoretical calculation
with experimental spectra is very rare. The only reported
experimental estimate that we found is 2.4 eV from an optical
absorption measurement [61]. We are not sure if this is an
underestimated value.

We noticed our band gap result of the d-d p model of
NiO is in general agreement with existing DFT + DMFT cal-
culations. Although the existing calculations are not exactly
same, most of them are performed in the PM state and are
not in CSC scheme. In Ref. [17] a similar model construction
was considered and U = 6.6 eV (no J involved) calculated
from constrained-LDA was used. A band gap of about 4 eV
was obtained. In Ref. [34], only the Ni-d orbitals were taken
into account (which should be called d-d model following
the naming convention used here) and U = 8.0 eV and J =
1.0 eV were used in the calculation. They calculated a band
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FIG. 6. �k-resolved spectral functions of the d-d p model, of
(a) NiO, (b) CoO, (c) FeO, and (d) MnO.

gap of 4.3 eV for NiO. Reference [18] had used NiO to test a
new double-counting method, where they used the same U =
8.0 eV and J = 1.0 eV and involved both d and p orbitals.
The calculation was carried at high T of 2300 K. They found
a band gap of about 4.3 eV as well. Within this study, both the
size of band gap and the position of the p orbital peak below
Fermi energy depending on the double-counting potential.

In our calculation, the correct representation of the U
matrices is important to yield accurate band gaps for the four
materials. We have found results from the d-d p model are
in better agreement with existing experiments than the d p
model, which seems to overestimate the band gap. However,
the preference of the d-d p model over the d p model should be
more carefully supported by taking into consideration other
important factors. For example, it has been proposed that the
current cRPA method could be improved by including the
Pauli exclusion principle in the formalism, and overall the
effect would be a reduction of the interaction strength [62].
There are also other factors within the DMFT, e.g., differ-
ent double-counting methods, that affect the resulting band
gap and spectral function. For example, the double-counting
methods introduced in Refs. [18,63]. Those factors are worthy
of dedicated studies and are outside the scope of this work.
Thus, we limit our discussion to be within the original d-d p
cRPA scheme and with only fully localized limit (FLL) double
counting in the DMFT part. The d p cRPA scheme is not
used in later decay rate analysis, but exists in the Appendix
for the purpose of benchmarking the cRPA implementation.
We would like to emphasize that, for consistency, one set
of projected Wannier orbital basis functions is used in both
the downfolded Hamiltonian H (k) and the cRPA-calculated
Coulomb U matrices, which is different from existing calcu-
lations of these materials.

In order to include the effect of the TM 4s band in the
later complex band analysis, we prepare the full Green’s
function [Eq. (6)] in the Wannier orbital basis containing d ,
p, and s orbitals. The DMFT self-energy is associated with
the d orbitals. The k-resolved spectral function A(�k, ω) =

(−1/π ) Im[G(�k, ω)] of the d-d p model is shown in Fig. 6.
The rest of the calculations are based on this Green’s function.

B. Complex band structure including DMFT self-energy

The complex band structure (CBS) and real band structure
(RBS) are obtained from resolving poles of the Green’s func-
tion, as explained in Sec. II. In this section we analyze the
obtained complex band structure and argue about the pinning
position of the Fermi level for tunnel junction applications and
calculating the β parameter at that energy level.

In a general tunnel junction setup, where the insulating
material is connected to metal leads on both sides, the Fermi
levels of the two materials are brought into coincidence. At
the interface, there are metal-induced gap states (MIGS) [64]
in the insulator gap region decaying exponentially into the
material, which are Bloch states of the insulator with complex
wave vector. For semiconductors, this forms a continuum of
states around the Fermi energy (EF ) within the gap. The
gap states continuously change (as function of energy) from
valence- to conduction-band character, appearing as an arch-
shaped complex band connecting the real valence band with
the real conduction band. The idea of local charge neutrality,
proposed by Tersoff [65], indicates the following: When the
density of MIGS is reasonably large, it is necessary to oc-
cupy those MIGS which are primarily valence-band charac-
ter, while leaving those of mainly conduction-band character
empty. Therefore, EF should be pinned at or near the energy
where the gap states cross over from valence- to conduction-
band character. If the complex band within the gap is a smooth
curve, the crossing over is naturally found at dE/dk → ∞,
which is called the branch point, and the corresponding energy
is called the charge neutrality level EB [65–67].

Figure 7 displays the CBS and RBS for k̂⊥ = �b1/|�b1| and
�k‖ = 0, where �b1 is a reciprocal lattice vector. The CBS part
(Re[C1], Im[C1]) = (0.0,−0.5) → (0.0, 0.0) in the left half
of Fig. 7 contains important information for determining the
charge neutrality level EB and wave-function decay rate β.
One major observation is that the gap states transitioning from
below to above the Mott gap are not continuous. The real con-
duction bands and the top of valence bands are both primarily
d orbitals, as seen in the DOS. The extensions of these bands
into the complex sector cross each other rather than connect
smoothly, which is different from typical semiconductors. For
NiO in Fig. 7, the crossing happens at about 3.5 eV above the
DFT + DMFT Fermi level (EDMFT

F ) and C1 = (0.00,−0.37).
Assuming the charge neutrality condition still applies, the gap
states of valence-band character are occupied and EB should
be pinned at or near the crossing point, where dE/dk has a
finite jump rather than → ∞. This is more clearly shown in
Fig. 8. We call this crossing point the Mott branch point, and
the corresponding energy level EMott

B . The conduction band
obtained from DFT + DMFT is very flat. Its extension in the
complex domain is almost a straight line of small slope, while
the complex band originated from valence bands goes up
steeply from below the gap. This feature leads to the EMott

B be-
ing very close to the conduction-band minimum E cond.

min (which
is found at � in our case). The small difference between
EMott

B and E cond.
min gives a small Schottky barrier height 
B of

the tunnel junction, i.e., 
B = E cond.
min − EMott

B . Our calculation
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FIG. 7. Complex band structures of the d-d p model. The
decay direction being studied is k̂⊥ = �b1/|�b1|, with C2 = C3 =
0 [see Eq. (5) for definition]. The path for the band plot
is (Re[C1], Im[C1]) = (0, −0.5) → (0, 0) → (0.5, 0). The DFT +
DMFT Fermi level EDMFT

F is at zero.

implies NiO is a junction material with large gap and small
barrier height (comparing with the 1.0–1.5 eV band gap and
0.7–1.0 eV barrier height of typical semiconductors like Si
and GaAs). We found 
NiO

B ≈ 0.35 eV from the calculated
CBS of the d-d p model of NiO, as indicated in Fig. 8. There is

FIG. 8. The CBS of the d-d p model of NiO. The x axis is the
path of (Re[C1], Im[C1]). EDMFT

F is at zero (eV). EMott
B is located at

the crossing of the imaginary extension of conduction band (small
slope arrow) and the imaginary extension of valence band (large
slope arrow). EDMFT

F is at zero. Ed-p
B is found within the imaginary

band connecting d- and p-valence bands where dE/dk → ∞. The
conduction-band minimum E cond.

min (short horizontal dashed line) is
found at � at a slightly higher energy than EMott

B . The Schottky barrier
height is measured to be 
B = E cond.

min − EMott
B ≈ 0.35 eV.

not much reported work on tunnel junction experiments using
late transition metal monoxides. We found the most relevant
work was done on the Ni-NiO-Ni tunnel junction [68], where
the system was found to be a very-low-barrier system with

B ≈ 0.2 eV. The barrier height varies slightly from 0.22 eV
at 4 K to 0.19 eV at 295 K. This is in qualitative agreement
with our calculation. Ni was used as metal leads for easy
manufacture. It is possible to tune the composition of the
metal and oxide so as to raise the barrier height slightly.

The 4s band plays an interesting role here. By follow-
ing the path (Re[C1], Im[C1]) = (0.5, 0.0) → (0.0, 0.0) →
(0.0,−0.5), we observe that the real 4s band goes from high
to low energy at the � point, which is a common feature in
Fig. 7. NiO presents a different feature in the complex sector:
it first decreases to about the Fermi energy and then starts
to increase to higher energy, while the 4s bands of the other
three materials decrease in energy monotonically. In the case
of NiO in Fig. 8, the complex 4s band crosses the complex
extension of valence d band at a point very close to EDMFT

F ,
and the real 4s band has E cond.

min ≈ 2 eV at �. By using the 4s
band instead of the conduction 3d band, one keeps the Fermi
level pinned very close to EDMFT

F (i.e., there would be nearly
no shift in a tunnel junction), and 
B ≈ 2 eV for NiO, which
is too far away from experiment. We believe the 4s band is
not responsible for correctly determining the Schottky barrier
height also because the orbital character should not suddenly
change (from 3d to 4s) at the branch point. The correct EMott

B
in Fig. 8 is located by following the same d-orbital character.
The same argument applies to CoO, where the complex 4s
band is just touching the complex valence d band at a point
close to the gap bottom. CoO should also be a very small-
barrier junction material. The 4s bands of FeO and MnO
fall into an area where no other complex band is found. We
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TABLE II. The calculated values of 
B and locations of EMott
B

and Ed-p
B , and the decay rates β in different directions at the corre-

sponding energy levels.

NiO CoO FeO MnO


B = E cond.
min − EMott

B (eV) 0.35 0.32 0.27 0.30

EMott
B (eV, from EDMFT

F ) +3.5 +2.0 +1.5 +1.1

β@EMott
B k̂⊥ : (0,0,1) 0.29 0.31 0.32 0.29

k̂⊥ : (0,1,1) 0.33 0.34 0.35 0.33
k̂⊥ : (1,1,1) 0.37 0.37 0.40 0.38

Ed-p
B (eV, from EDMFT

F ) −2.5 −2.3 −2.8 −3.0

β@Ed-p
B k̂⊥ : (0,0,1) 0.15 0.14 0.16 0.13

k̂⊥ : (0,1,1) 0.17 0.16 0.16 0.13
k̂⊥ : (1,1,1) 0.18 0.16 0.17 0.14

can expect them to be small-barrier materials based on only
complex d bands.

It is worthwhile to mention that we do observe a continuous
transition of “gap” states below EDMFT

F , where real p-orbital
bands and d-orbital bands are connected by continuous com-
plex bands. This is also shown in Fig. 8. The point where
dE/dk → ∞ can be located, and we call it the d-p branch
point. The corresponding energy level is Ed-p

B . The feature
actually exists in the DFT calculation alone, despite the fact
that it yields a metallic ground state. The feature largely
remains after the DMFT calculation. The energy range of the
arch-shaped complex band containing Ed-p

B may decrease due
to the gap opened by DMFT, as seen in the CBS of CoO, FeO,
and MnO in Fig. 7.

Numerically, some regions of the complex and real
bands smear out, for example, near � in energy range
of [−7,−3] eV below EDMFT

F . Such smearing is explained
within the quasiparticle picture in which spectral weights have
spreads, as seen in the �k-resolved spectral functions in Fig. 6.

In the rest of this section, we turn to the calculation of β

at EMott
B for the d-d p model of the four materials and study

the direction dependence of β. The values of the decay rate
β should be anisotropic for crystal structures. As already
mentioned in the end of Sec. II C, we perform the calculation
of β in three decay directions: (a) k̂⊥ = (1, 0, 0), (b) k̂⊥ =
(1, 1, 0)/

√
2, and (c) k̂⊥ = (1, 1, 1)/

√
3. The values EMott

B and
Ed-p

B are determined for each direction. We found EMott
B , or

Ed-p
B , stays the same for the three different decay directions.

If the wave function propagates perfectly along one direction,
then we get the decay rate by directly reading off Im[C1] (thus
β ≡ |2 Im[C1]|) at the branch point. This has been done for
the three directions and for the four materials. The results are
summarized in Table II. We found the values of β at EMott

B are
all within the range of [0.29,0.40].

While Table II gives us an idea of the decay rates at specific
single directions, in reality the wave functions may not be
perfectly propagating along a given direction. The nonper-
pendicular incident components can be taken into account
by simply allowing C2 and C3 [defined in Eq. (5)] to vary,
resulting in a distribution of β(C2,C3) for a certain decay
direction k̂⊥. This means we assume the tunneling barrier

FIG. 9. The distribution of β(C2,C3) at EMott
B for the decay

direction (1,0,0). (a) NiO, (b) CoO, (c) FeO, and (d) MnO.

system has translational symmetry in the plane parallel to the
interface, so that the transmission conserves �k‖. At EMott

B , we
have obtained the β(C2,C3) as shown in Figs. 9, 10, and 11.

At first glance, the symmetry of these distributions is
consistent with the crystal symmetry, which makes sense
because single-site DMFT assumes a completely localized
self-energy. The ranges of values of β are quite different in
different directions. The observation becomes clearer when
one introduces the β-resolved density of states n(β ) [69].
Ideally n(β ) dβ would be the number of “states” with β values
in the infinitesimal interval (β, β + dβ ). Numerically, we
calculated β on the grid of C2 × C3 = 80 × 80 points within
[0, 1] × [0, 1], and applied linear interpolation to make the
grid denser. The resulting density is shown in Fig. 12. It is

FIG. 10. The distribution of β(C2,C3) at EMott
B for the decay

direction (1,1,0). (a) NiO, (b) CoO, (c) FeO, and (d) MnO.
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FIG. 11. The distribution of β(C2,C3) at EMott
B for the decay

direction (1,1,1). (a) NiO, (b) CoO, (c) FeO, and (d) MnO.

clear that the decay rates cluster around 0.3 for the (1,1,1)
direction, and extend to larger and larger values in (0,1,1) and
(0,0,1) directions.

In general, the probability for wave-function transmission
through the tunnel junction can be written as the product of the
probability for transmission across each of the interfaces times
a factor that describes the exponential decay of the electron
probability within the junction material [70,71]:

TB(�k‖) = TL(�k‖) · TR(�k‖) · T evan
tot (d ). (7)

Here, TB is the transmission probability through the junc-
tion. TL and TR are the probabilities for an electron to be

FIG. 12. β-resolved density of state n(β ) for the three directions:
(0,0,1) upper, (0,1,1) middle, (1,1,1) down. The β is measured at
EMott

B . The y-axis scale is the same for the three plots.

FIG. 13. Relative transmission probability on linear and log scale
for the directions: (0,0,1), upper two plots (a) and (b) (log scale);
(0,1,1), middle two plots (c) and (d) (log scale); (1,1,1), lower two
plots (e) and (f) (log scale).

transmitted across the left and right electrode barrier in-
terfaces, respectively, and T evan

tot is the evanescent channel
contribution to the conductance. We use a simplified model
to estimate the evanescent channel transmission probability
T evan

tot . The transmission probability for each �k‖ takes the form
T evan

�k‖
(d ) = T0exp(−β�k‖ · d ), where d is the thickness (number

of layers) of the tunneling barrier and β�k‖ is the distribution
of β(C2,C3) obtained in Figs. 9–11. The total evanescent
transmission probability for the direction k̂⊥, at a given energy
level, is given by

T evan
tot (d ) = 1

N�k‖

∑
�k‖

T evan
�k‖

(d ). (8)

We calculate the relative evanescent transmission probabil-
ity T evan

tot (d )/T evan
tot (d = 0) at EMott

B , as shown in Fig. 13.
The common feature of exponential decay is clear, and the
relative transmission becomes very small after about 10 layers
of the unit cell, for all four materials. The larger values of
β in the (0,0,1) direction result in a slightly faster decay
than for the other two directions. The differences in T evan

tot (d )
between the three directions are overall not significant after
averaging �k‖.

IV. CONCLUSION

In summary, we have performed DFT plus single-site
DMFT calculation for the four transition metal monoxides
NiO, CoO, FeO, and MnO, in the non-spin-polarized phase,
and have studied the complex band structures of them by
including the DMFT self-energy in the Green’s function. The
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d and p orbitals are included in the DMFT calculation, and
the TM 4s orbital is included in the Green’s function for
complex band analysis. Both the d p and d-d p models have
been considered, and the corresponding screened Coulomb in-
teraction parameters are calculated from first principles using
the cRPA method. The resulting spectral functions of the d-d p
model present a clear band gap in general agreement with
experiments, improving upon the gapless DFT ground-state
calculation.

By using the full Green’s function that includes s, p, d
orbitals and the DMFT self-energy, we have observed the
complex band structures of these Mott insulators. Motivated
by the tunnel junction application of these materials, we
analyzed the pinning position of the Fermi level by apply-
ing the charge neutrality condition. In the complex domain,
the gap states transitioning from valence-band character to
conduction-band character display a jump in dE/dk, rather
than the continuous transition seen in traditional semicon-
ductors. The branch point is found to be at the jump point,
and is very close to conduction-band minimum. The TM 4s
band is carefully studied, and we argue that the 4s band is not
responsible for determining the Fermi level pinning position,
which is supported by experiment on NiO tunnel junctions.
The calculated results are in consistence with experimental
observations that NiO has large band gap and small Schot-
tky barrier height. The transmission decay parameter β has
been calculated for different directions in k space to give
us insight into the evanescent channel contribution to the
conductance. We have investigated β in detail at the Mott
branch point within the correlation window. We found that
the β parameter has very different values and distributions
for different directions. When the decay direction and the
incident direction are not the same, β generally becomes
larger and forms nontrivial patterns depending on the relative
direction.

The CBS analysis relies on the DMFT self-energy. Our
DFT + DMFT calculation based on the modified ELK code
and DCA++ code is a single-shot implementation, not a fully
charge-density self-consistent one. This work assumed the
TM 4s band is not significantly shifted in a CSC treatment,
which is reasonable based on existing studies. We noticed
the existing CSC DFT + DMFT calculations of the same
materials have shown the necessity of updating charge density
when structural changes due to pressure and strain are closely
tied to electronic transitions, which raises interesting direction
to motivate our future work.

In conclusion, the presented work carries out a fully
ab initio study of the charge neutrality level and wave-function
decay rate in the evanescent channel of late transition metal
monoxides in their PM phase under ambient condition, by
using the combination of CBS method and DFT + DMFT
calculation. The DFT + DMFT band-gap calculations, along
with the cRPA calculations of Coulomb U matrices, are done
in a standard way. The main physical features are captured.
The newly observed feature of the CBS and location of
branch point of these Mott insulators are different from band
insulators. In addition, the TM 4s band of NiO is found to
have a different feature in the complex domain than that of
the other three materials. The barrier height, values of decay
rate, and its direction dependence can all be obtained from

first principles. This numerical study could be useful when
Mott-insulating materials are used for tunnel junction appli-
cations. The approach could be applied to more complicated
structures or lower-dimensional cases, as long as the applica-
tion of singe-site DFT + DMFT is justified.
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APPENDIX

The onsite Coulomb interaction U matrix is required input
for the impurity problem. One reliable way to calculate these
parameters from first principles is the constrained random
phase approximation (cRPA) method, which has been well
described in the literature [16,72]. Here, we first summarize
the original idea. Then, we explain our implementation based
on the density response function, and list our results of U
matrices for the two models and the four materials.

The cRPA calculation is based on a DFT ground-state
calculation that includes many empty bands. One aims to
get an estimation of the screened Coulomb interaction for
the selected bands of interest, or an energy window. For this
purpose, the particle-hole polarization between all possible
pairs of occupied state and unoccupied state are taken into
account. Within the RPA, the particle-hole polarization is
calculated as [73]

Ptot(r, r′; ω) =
occ.∑

i

unocc.∑
j

ψ∗
i (r)ψ j (r

′)ψ∗
j (r)ψi(r

′)

×
(

1

ω − ε j + εi + iδ
+ 1

ω + ε j − εi − iδ

)
,

(A1)

where ψi and εi are the eigenfunctions and eigenenergies of
the one-particle Hamiltonian in DFT.

The selected bands of interest are often around the Fermi
level, and have a particular orbital character, for example,
d-like in our case. Following the convention in the literatures,
we label the bands of interest or energy window as the d
space. If both the occupied state and the unoccupied state
are within the d space, then the polarization contributes to
Pd (r, r′; ω). All the other pairs of occupied and unoccupied
states contribute to Pr , where r stands for the rest of the
bands. Thus, the total polarization is divided into two parts:
Ptot = Pd + Pr . Pr is related to the partially screened Coulomb
interaction [16]

Wr (ω) = [1 − νPr (ω)]−1ν. (A2)

In the above equation, ν is the bare Coulomb interaction.
It is obvious that the total polarization Ptot screens the bare
Coulomb interaction ν to give the fully screened interaction
W . With the same logic, Pd screens Wr to give the fully
screened interaction W . Thus, Wr is identified as the onsite
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Coulomb interaction for the bands of interest, i.e., U (ω) ≡
Wr (ω), which has included the screening effect from the
realistic environment of the material.

Our cRPA calculation is based on the partial Kohn-Sham
susceptibility [20,73]

χKS
r (r, r′; ω) =

∑
i, j �⊂C.S.

( fi − f j )ψ∗
i (r)ψ j (r′)ψ∗

j (r)ψi(r′)

ω − ε j + εi + iδ
,

(A3)

where fi and εi are the occupancy and energy of the eigenstate
ψi. The summation over band indices runs over all bands ex-
cluding the cases where both i and j are inside the correlation
subspace (C.S. under the summation sign means correlation
subspace). In general, the density response function χ (r, r′; ω)
is related to the Kohn-Sham susceptibility by the following
integral equation [73]:

χ (r, r′; ω) = χKS(r, r′; ω) +
∫∫

dr1dr2 χKS(r, r1; ω)

×
(

1

|r1 − r2| + f xc(r1, r2; ω)

)
× χ (r2, r′; ω),

(A4)

where the f xc is the functional derivative of the exchange-
correlation potential with respect to the charge density, which
is often neglected in the random phase approximation. Since
we are considering periodic crystal structures, the integral
equation is often written in the Fourier-transformed form
where χ (r, r′; ω) becomes χ (q, q′; ω) with q and q′ the recip-
rocal lattice vectors. Due to the invariance of the real-space
response function with respect to a shift by a lattice vector
R: χ (r + R, r′ + R; ω) = χ (r, r′; ω), the χ (q, q′; ω) is only
nonezero when q and q′ differ by a reciprocal lattice vector
G. One can replace q by q + G, replace q′ by q + G′, and
restrict q to be always within the first Brillouin zone. Thus,
the Fourier-transformed integral equation has the form

χGG′ (q, ω) = χKS
GG′ (q, ω) +

∑
G1G2

χKS
GG1

(q, ω)

× (
vG1+qδG1G2 + f xc

G1G2
(q, ω)

) × χG2G′ (q, ω),

(A5)

where vG+q = 4π/|G + q|2 is the expansion coefficient of the
bare Coulomb interaction. By using the partial Kohn-Sham
susceptibility χKS

r,GG′ (q, ω) [Fourier transform of Eq. (A3)] and
neglecting the f xc term in Eq. (A5), we reach the equation for
the partial RPA density response function χRPA

r (q, ω):

χRPA
r,GG′ (q, ω) = χKS

r,GG′ (q, ω) +
∑
G1

vG1+q × χKS
r,GG1

(q, ω)

×χRPA
r,G1G′ (q, ω). (A6)

Note that the subscript r in Eq. (A6) stands for the rest of the
bands, as same as in Eq. (A2). Equation (A6) is first solved
for χRPA

r (q, ω) in the calculation. The rest calculation is based
on the linear respone theory [74], where the partially screened
Coulomb interaction Wr is related to inverse dielectric func-
tion ε−1 and bare Coulomb interaction ν: Wr (r1, r2; ω) =∫

dr ε−1(r1, r; ω)ν(r, r2). The inverse dielectric function ε−1

is determined by ε−1(r1, r; ω) = 1 + νχRPA
r (r1, r; ω). Finally,

the frequency-dependent screened Coulomb interaction is
computed from the partial RPA density response function and
the bare Coulomb interaction:

Wr,GG′ (q, ω) = vG+qδGG′ + vG+qχ
RPA
r,GG′ (q, ω)vG′+q. (A7)

The above calculations have been implemented in the
Exciting-Plus code (a modified version of ELK code) [20,75],
which we used for the U -matrix calculations. The Wannier
orbitals are constructed by projection to preserve symmetry,
and no spatial localization procedure is applied. In addition to
the DFT calculation described in Sec. II A, 100 empty bands
are included for the cRPA calculation.

NiO, d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

9.69 8.03 7.97 8.03 9.10

8.03 9.69 8.82 8.03 8.25

7.97 8.82 10.27 8.82 8.19

8.03 8.03 8.82 9.69 8.25

9.10 8.25 8.19 8.25 10.27

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 7.21 6.97 7.21 8.66

7.21 0.00 8.24 7.21 7.39

6.97 8.24 0.00 8.24 7.15

7.21 7.21 8.24 0.00 7.39

8.66 7.39 7.15 7.39 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

NiO, d-d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

7.29 5.67 5.42 5.67 6.48

5.67 7.29 6.21 5.67 5.69

5.42 6.21 7.38 6.21 5.44

5.67 5.67 6.21 7.29 5.69

6.48 5.69 5.44 5.69 7.38

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 4.85 4.44 4.85 6.04

4.85 0.00 5.64 4.85 4.84

4.44 5.64 0.00 5.64 4.47

4.85 4.85 5.64 0.00 4.84

6.04 4.84 4.47 4.84 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

CoO, d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

9.27 7.70 7.69 7.70 8.73

7.70 9.27 8.47 7.70 7.95

7.69 8.47 9.92 8.47 7.93

7.70 7.70 8.47 9.27 7.95

8.73 7.95 7.93 7.95 9.92

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 6.92 6.73 6.92 8.30

6.92 0.00 7.91 6.92 7.12

6.73 7.91 0.00 7.91 6.93

6.92 6.92 7.91 0.00 7.12

8.30 7.12 6.93 7.12 0.00

⎞
⎟⎟⎟⎟⎟⎠

.
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CoO, d-d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

6.47 4.94 4.71 4.94 5.68

4.94 6.47 5.43 4.94 4.96

4.71 5.44 6.57 5.44 4.74

4.94 4.94 5.44 6.47 4.96

5.68 4.96 4.74 4.96 6.57

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 4.16 3.78 4.16 5.25

4.16 0.00 4.89 4.16 4.15

3.78 4.89 0.00 4.89 3.82

4.16 4.16 4.89 0.00 4.15

5.25 4.15 3.82 4.15 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

FeO, d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

8.91 7.49 7.53 7.49 8.40

7.49 8.91 8.18 7.49 7.75

7.53 8.18 9.59 8.18 7.79

7.49 7.49 8.18 8.91 7.75

8.40 7.75 7.79 7.75 9.59

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 6.76 6.64 6.76 7.98

6.76 0.00 7.65 6.76 6.98

6.64 7.65 0.00 7.65 6.89

6.76 6.76 7.65 0.00 6.98

7.98 6.98 6.89 6.98 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

FeO, d-d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

5.89 4.50 4.33 4.50 5.13

4.50 5.89 4.93 4.50 4.53

4.33 4.93 6.02 4.93 4.35

4.50 4.50 4.93 5.89 4.53

5.13 4.53 4.35 4.53 6.02

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 3.78 3.47 3.78 4.71

3.78 0.00 4.40 3.78 3.78

3.47 4.40 0.00 4.40 3.52

3.78 3.78 4.40 0.00 3.78

4.71 3.78 3.52 3.78 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

MnO, d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

8.68 7.34 7.39 7.34 8.18

7.34 8.68 7.99 7.34 7.59

7.39 7.99 9.34 7.99 7.65

7.34 7.34 7.99 8.68 7.59

8.18 7.59 7.65 7.59 9.34

⎞
⎟⎟⎟⎟⎟⎠

.

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 6.65 6.56 6.65 7.78

6.65 0.00 7.47 6.65 6.87

6.56 7.47 0.00 7.47 6.80

6.65 6.65 7.47 0.00 6.87

7.78 6.87 6.80 6.87 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

MnO, d-d p model:

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

5.59 4.28 4.13 4.28 4.86

4.28 5.59 4.68 4.28 4.31

4.13 4.68 5.73 4.68 4.17

4.28 4.28 4.68 5.59 4.31

4.86 4.31 4.17 4.31 5.73

⎞
⎟⎟⎟⎟⎟⎠

,

U σσ
mm′ =

⎛
⎜⎜⎜⎜⎜⎝

0.00 3.60 3.33 3.60 4.46

3.60 0.00 4.18 3.60 3.61

3.33 4.18 0.00 4.18 3.38

3.60 3.60 4.18 0.00 3.61

4.46 3.61 3.38 3.61 0.00

⎞
⎟⎟⎟⎟⎟⎠

.

The cRPA calculation directly provides the intraorbital,
interorbital, and exchange interaction parameters. We de-
rived single-value intraorbital, interorbital, and exchange
interaction parameters U , U ′, and J from averaging the ma-
trix elements, in order to compare with the existing cal-
culations. By definition, the diagonal elements of U σσ

mm′ are
the intraorbital interactions, and the average value is U =
1
5 TrU σσ

mm′ . The interorbital interactions are the off-diagonal
elements of U σσ

mm′ , thus, U ′ = 1
20

∑
m �=m′ U σσ

mm′ . The interorbital
exchange is the off-diagonal elements of U σσ

mm′ − U σσ
mm′ , so

J = 1
20

∑
m �=m′ (U σσ

mm′ − U σσ
mm′ ). The values of U , U ′, and J for

the two models are summarized in Table III. We found general
agreement with other cRPA calculations of the same materials
in the literature [41].

TABLE III. The values of U , U ′, and J deduced from the cRPA
calculation. Values in parentheses are from Ref. [41] for the exactly
same model construction using a different code based on maximum
localized Wannier functions.

(eV) NiO CoO FeO MnO

U , d p 9.92(10.3) 9.53(9.8) 9.09(9.5) 8.95(9.2)
U , d-d p 7.33(7.6) 6.51(6.8) 5.94(6.3) 5.65(6.1)

U ′, d p 8.35(8.6) 8.03(8.1) 7.71(7.9) 7.64(7.7)
U ′, d-d p 5.81(5.9) 5.07(5.2) 4.62(4.8) 4.40(4.6)

J , d p 0.78(0.9) 0.75(0.8) 0.70(0.8) 0.66(0.7)
J , d-d p 0.77(0.9) 0.73(0.8) 0.68(0.8) 0.64(0.7)
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