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Charge carriers with fractional exclusion statistics in cuprates
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We show that in the SU (2) × U (1) spin-charge gauge approach we developed earlier one can attribute
consistently an exclusion statistics with parameter 1/2 to the spinless charge carriers of the t-J model in two
dimensions, as it occurs in one dimension. Like the one-dimensional case, the no-double occupation constraint
is at the origin of this fractional exclusion statistics. With this statistics we recover a large Fermi volume of
holes at high dopings, close to that of the tight binding approximation. Furthermore, the composite nature of the
hole, made of charge and spin carriers only weakly bounded, can provide a natural explanation of many unusual
experimental features of the hole-doped cuprates.
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I. INTRODUCTION

Despite continuous experimental advances an agreement
has not yet been obtained on the interpretation of the low-
energy physics of cuprates; see, e.g., Ref. [1] for an excel-
lent, state-of-the-art review. A general consensus has been
achieved, however, that most of the relevant phenomena in
hole-doped materials can be derived from modeling the CuO
planes in these materials in terms of a two-dimensional (2D)
t-J model on the copper sites with the Hamiltonian:

Ht−J =
∑
〈i, j〉

PG[−tc∗
iαc jα + J �Si · �S j]PG, (1.1)

where 〈i, j〉 denotes the nearest-neighbor (NN) sites, ciα

the hole field operator with spin index α on site i, PG the
Gutzwiller projection eliminating double occupation, and
summation over repeated spin (and vector) indices is under-
stood hereafter. The Gutzwiller projected holes describe the
Zhang-Rice singlets [2] of cuprates.

A way of implementing the Gutzwiller projection is to
apply to fermions of the model a spin-charge decomposition
formalism. It has been pioneered by Anderson [3] and Kivel-
son [4] and it is suggested for cuprates by the rather different
response of charge and spin degrees of freedom in many
experiments: One rewrites the fermion field cα as a product
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of a spinless holon field h carrying the charge degree of free-
dom and a spin-1/2 spinon field sα carrying the spin degree
of freedom, imposing on them a constraint reproducing the
Gutzwiller projection. Due to this decomposition an emergent
(slave-particle) U (1) gauge symmetry appears, since holon
and spinon fields can be multiplied by factors with opposite
phases leaving the original fermion field unchanged. For this
reason only slave-particle gauge-invariant fields are physical
and therefore neither the holon nor the spinon by themselves
are physical and they are strongly coupled by gauge fluctua-
tions. However, by gauge fixing this gauge symmetry one can
consider gauge-dependent fields, which may be convenient
in the description of at least some momentum-energy range,
as gluons and quarks in high-energy QCD, in spite of the
fact that only mesons and baryons are physical in the strict
sense. It makes sense then to discuss the statistics of holon
and spinon fields and of the quasiparticle excitations, in this
generalized sense, that they might generate in the low-energy
limit. This is a key issue of this paper. Notice that the spin-
charge decomposition formalism does not prohibit a priori
that the fermion field cα describes an elementary excitation
without a composite structure, as it happens, e.g., for the
meson field written in terms of quark fields in lattice QCD
in the superconfining phase, as discussed in Ref. [5]. Whether
the fermion excitation described by cα is composite or not is
a dynamical question, it does not have a purely kinematical
character as, on the contrary, the spin-charge decomposi-
tion does. Somewhat related considerations on the kinemat-
ical character of the spin-charge decompositions versus the
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dynamical character of their low-energy excitations can be
found in Ref. [6].

As rigorously shown in Ref. [7], spin-charge decom-
position can be achieved in the Lagrangian formalism by
coupling the original fermions with suitably chosen Chern-
Simons gauge fields. Furthermore, one may change the braid
statistics of holons and spinons, while still keeping the
Fermi statistics of the original holes. Different choices of
Chern-Simons actions precisely reflect these different braid
statistics.

In one and two dimensions Abelian braid statistics of par-
ticles (or of field operators that create them) can be character-
ized by the phase factor e±i(1−α)π acquired by their many-body
wave function (or the product of equal-time field operators)
when one performs an oriented exchange among two of them,
with α ∈ [0, 2) and ± referring to the two orientations (see,
e.g., Ref. [8]). Fermions(bosons) correspond to α = 0 (1),
while excitations with α = 1/2 are called semions.

All appropriate choices of holon and spinon statistics
reproduce exactly the correlation functions of the original
fermion fields, as shown in the specific examples of slave
bosons, slave fermions and slave semions in Ref. [7], and
using techniques developed there many more schemes can be
employed, e.g., the slave anyons considered in Ref. [9] or a
variant of the slave semion approach considered in Ref. [10],
on which our subsequent discussion is based. Slightly differ-
ent roads follow, e.g., the approach of Ref. [11], as commented
in this spirit in Ref. [12].

Although all Chern-Simons choices are completely equiva-
lent if implemented exactly, as soon as one makes some mean-
field-like approximation they give rather different results [12].
It is then crucial to understand which choice is better to
perform mean-field treatments. As discussed below, a key
issue is the area (2D volume) of the Fermi surface and that
issue is in turn closely linked to another form of statistics
for the elementary excitations of the model, i.e., the exclusion
statistics.

The exclusion statistics was introduced by Haldane [13] to
generalize the Pauli exclusion principle. It can be character-
ized at finite density by the average occupation of momenta at
T = 0 as follows [14]: Consider a Fermi gas with fixed vol-
ume (in two dimensions later on called area) enclosed by the
Fermi surface and let n0 be the corresponding fermion density;
we say that a particle obeys exclusion statistics with parameter
g if the particle density with the same Fermi volume, denoted
by ng, satisfies

n0 = (1 − g)ng. (1.2)

This implies that at a fixed momentum (neglecting other
internal degrees of freedom) a particle with exclusion statistics
1/2 can have an occupation number twice that of a free
fermion, so that the volume of its Fermi surface is half of
that of a Fermi gas with the same density. In simpler terms,
one might say that a semion in momentum space behaves like
one-half of a fermion.

For the statistics of quasiparticle excitations of the 2D t-J
model and the related Fermi surface area we have two sources
of suggestions: The solvable one-dimensional t-J model and,
under the assumption initially made, the experiments on
cuprates.

Concerning the 1D model the answer for the braid statis-
tics is unique: Both holon and spinon fields and the related
low-energy quasiparticles should be semions, i.e., with braid
statistics parameter 1/2, to reproduce in a suitable mean-field
treatment the correct scaling limit of correlation functions
obtained via Bethe ansatz or conformal field theory methods
[15,16].

Furthermore, the holon in one dimension has exclusion
statistics parameter g = 1/2. As shown in Ref. [17], in general
there is no relation between the braid and exclusion statistics
in one dimension. In fact one can introduce the braid statistics
coupling 1D spinless fermions to a Chern-Simons field and
then perform its dimensional reduction. The physical gauge-
invariant field is obtained by adding to the fermion field a
gauge string and it obeys a braid statistics consistent with
the Chern-Simons coefficient. The Fermi points are shifted by
the gauge string but the Fermi 1D volume remains constant,
hence the corresponding low-energy excitations still obey an
exclusion Fermi statistics. A nontrivial exclusion statistics
emerges if the fermionic fields have a Luttinger interaction,
a connection previously clearly stated in Ref. [18]. In the
approach of Ref. [16] to the 1D t-J model, neglecting at first
the coupling with spinons, the holon at large scale behaves
as a free U (1) semion; spinons are described by Gutzwiller
projected fermions in a squeezed chain obtained by omitting
the holon sites and at large scale they form a semion gas
with exclusion parameter g = 1/2 described effectively by a
Luttinger liquid theory. We then perform a field redefinition,
eliminating the Fermi surface for the spinon fields by suitably
stripping away their gauge strings and adding them to the
holon in the correlation functions of the physical hole. As
result the 1/2 exclusion statistics of spinons is transferred
to holons; holons then have g = α = 1/2 statistics, so that
the Fermi momentum of the U (1) semionic holon equals the
Fermi momentum of the original spin-1/2 fermion treated in
the tight binding approximation, in agreement with the exact
solution of the model. In fact in such exact solution the Fermi
points of the hole are in the position expected for a spin-1/2
fermion with the standard Pauli principle, consistently with
the Luttinger theorem, as extended to 1D Luttinger liquids
in Ref. [20]. Since in the spin-charge decomposition spinons
with the above redefinition do not have a Fermi surface while
holons are spinless, that result is correctly recovered by the
1/2 exclusion statistics of holons.

We now turn to the suggestion coming from experiments
on cuprates. In overdoped materials the Fermi surface seen
in ARPES is close to that obtained in a tight-binding ap-
proximation of a t-t ′-J model and satisfies the standard Lut-
tinger theorem. (The introduction of a next-nearest-neighbor
(NNN) hopping parameter t ′, and possibly a NNNN t ′′, in
the formalism discussed here is straightforward and it does
not change the qualitative features, so it will not be elabo-
rated anymore). To reproduce this result in the spin-charge
decomposition formalism we have two natural options: Either
the spin-1/2 spinon is fermionic with Fermi surface and the
holon is a hard-core boson, as in the slave-boson approach
(see, e.g.. Ref. [6]), or the spinless holon has Fermi surface
with exclusion statistics parameter 1/2, hence with the same
Fermi surface of spinons of the slave-boson approach, while
the spinon has no Fermi surface.
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We see that, if both spinon and holon are semions, the
second case would be a close analog to what happens in one
dimension. We remarked above that in one dimension the
natural condition for the appearance of exclusion statistics is
the Luttinger interaction; analogously on general grounds we
proved in Ref. [19] that in two dimensions we have g = α if
the original fermionic system without Chern-Simons coupling
has Hall conductivity 1/2π and is incompressible. The main
goal of this paper is to show that indeed these conditions can
be satisfied for the holon in the 2D t-J model and the second
approach considered above to get the correct Fermi area can
be consistently implemented, sketching also a derivation from
it of some consequences for cuprates.

II. SU (2) × U (1) SPIN-CHARGE GAUGE APPROACH

To implement a semionic decomposition of the hole in the
2D t-J model we start by making use of the following theorem
[7,16].

Theorem. We embed the lattice of the 2D t-J model in a
three-dimensional space, denoting by x = (x0, x1, x2) coor-
dinates of the corresponding 2+1 space time, x0 being the
euclidean time. We couple fermions of the t-J model to a
U (1) gauge field, Bμ, gauging the global charge symmetry,
and to an SU (2) gauge field, V μ, gauging the global spin
symmetry of the model, and we assume that the dynamics
of the gauge fields is described by the Chern-Simons actions
−2SU (1)

c.s. (B) + SSU (2)
c.s. (V ) with:

SU (1)
c.s. (B) = 1

4π i

∫
d3xεμνρBμ∂νBρ (x),

SSU (2)
c.s. (V ) = 1

4π i

∫
d3xTrεμνρ

[
V μ∂νV ρ + 2

3
V μV νV ρ

]
(x),

(2.1)

where εμνρ is the Levi-Civita antisymmetric tensor in three
dimensions. Then the spin-charge [or SU (2) × U (1)] gauged
model so obtained is exactly equivalent to the original t-J
model. In particular the spin and charge invariant correla-
tion functions of the fermion fields c jα of the t-J model
are exactly equal to the correlation functions of the fields
exp(−i

∫
γ j

B)P[exp(i
∫
γ j

V )]αβc jβ , where c denotes now the
fermion field of the gauged model, γ j a string at constant
Euclidean time connecting the point j to infinity and P(·)
the path ordering, which amounts to the usual time ordering
T (·), when time is used to parametrize the curve along which
one integrates. One can view the result of this theorem as an
analog of the construction of composite fermions in Jain’s ap-
proach to the quantum Hall effect [21]. In that case magnetic
vortices with even quantum flux (depending on the filling) are
bound to the electron and the resulting composite entity is still
a fermion, dubbed composite fermion; in the present case the
electron of the t-J model is bound to a charge-vortex of flux
−1/2 and a spin-vortex of flux 1/2, while the resulting entity
still being a fermion. Notice that, contrary to what one might
naively think, although the Chern-Simons actions individually
explicitly break the parity and time-reversal symmetries, the
particular combination considered above still preserves ex-
plicitly these two symmetries.

We now rewrite the hole field c of the gauged model
as a product of a charge 1 spinless fermion field h and
a neutral spin-1/2 boson field s̃α: cα = h∗s̃α . Then we
identify exp[i

∫
γ j

B]h j as the holon and P(exp[i
∫
γ j

V ])αβ s̃ jβ

as the spinon fields. The Chern-Simons coupling au-
tomatically ensures that both corresponding field oper-
ators obey semionic braid statistics. The holon h be-
ing spinless implements exactly the Gutzwiller constraint
due to the Pauli principle. Furthermore, if the constraint
(P(exp[i

∫
γ j

V ])αβ s̃ jβ )†(P(exp[i
∫
γ j

V ])αβ ′ s̃ jβ ′ ) = s̃∗
α s̃α = 1 is

imposed, as c∗
αcα = 1 − h∗h we see that (exp[i

∫
γ j

B]h j )∗

(exp[i
∫
γ j

B]h j ) = h∗
j h j is just the density of empty sites in the

model, corresponding to the Zhang-Rice singlets.
The charge-flux associated to the electrons produces a

π -flux phase for every plaquette, plus vortices centered on
the empty sites, i.e., on the holon positions. More precisely,
introducing a Coulomb gauge fixing ∂μBμ = 0 for the U (1)
charge gauge symmetry, one finds

b̄μ(z) = 1

2

⎡
⎣∑

j

∂μ arg(�z − j)(h∗
j h j )(z

0)

⎤
⎦ (2.2)

and we can choose

B̄〈i,i±�ex〉 = ±π/4, B̄〈i,i±�ey〉 = ∓π/4, (2.3)

where i is a site of the even Néel sublattice and �ex, �ey the
two unit vectors along the link directions. We recognize
∂μ arg(�z − j) as the vector potential of a vortex centered at
the holon position j, i.e., centered at an empty site of the t-J
model. Vortices in Eq. (2.2) appear in the charge U (1) group
and are responsible for the semionic nature of holons.

Neglecting at first these charge vortices, through Hofs-
tadter mechanism the π flux converts the spinless holon field
h into a pair of Dirac fields in the magnetic Brillouin zone
(BZ), with pseudospin indices corresponding to the two Néel
sublattices and two small FS centered at (±π

2 ,±π
2 ). If we

reinsert the charge-vortices, and assume for the corresponding
semionic holons an exclusion statistics 1/2, then these holons
have the same FS of the fermionic spinons of the slave-boson
approach in the π -flux phase [6], and the same dispersion:
ωh ∼ 2t[

√
cos2 kx + cos2 ky − δ], where δ denotes the density

of empty sites, corresponding in cuprates to the in-plane dop-
ing concentration. When these holons are coupled to spinons
through the self-generated slave-particle gauge field, as a
consequence of the Dirac structure of the holons the resulting
holon-spinon bound state generated in the low-energy limit
exhibits Fermi arcs qualitatively consistent with those found
in ARPES experiments in the pseudogap phase in cuprates
[22]. The underlying FS for the hole is modified w.r.t . the
holon FS by the spinon gap proportional to δ1/2 discussed
later. Furthermore, using the techniques of Refs. [22,23] and
assuming a doping independent renormalization of the spinon
gap, the fraction of BZ enclosed can be for all dopings
approximately δ/2, where the factor 1/2 comes precisely from
the 1/2 exclusion statistics [24].

We can now use the SU (2) gauge freedom to rotate the
spinons s̃ to a configuration s̃m, depending on the holon
configuration, optimizing on average the holon-partition func-
tion in that spinon background, in a Born-Oppenheimer
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approximation. In this configuration spinons are antiferro-
magnetically ordered along the magnetization direction of the
undoped model, which we arbitrarily fix along z. There is in
addition a spin flip on the sites where holons are present, also
for the final site of a hopping link of holons, at the time of
hopping. Above a crossover temperature T ∗ we find that s̃m

involves also a phase factor canceling the contribution of B̄
in the loops of hopping links of holons, so that the hopping
holons feel an approximately zero flux [25]. Assuming the
exclusion statistics with parameter 1/2 for the holon (to be
proved in the next section), the disappearance of the π flux
implies that the Hofstadter mechanism does not hold anymore
and above T ∗ one recovers for holons the large FS of the
tight-binding approximation. In particular the fraction of BZ
enclosed is of order (1 + δ)/2 and the factor 1/2 comes
precisely again from the 1/2 exclusion statistics. This FS will
be inherited by the physical hole as a holon-spinon bound state
[25], and, with the addition of a t ′ term and a renormalization
of the spinon gap, it is in approximate agreement with the
FS observed in ARPES in the strange-metal region of the
phase diagram of the cuprates [24]. For this reason we call
pseudogap (PG) for the t-J model in our approach the region
below T ∗ and strange metal (SM) the region above it. Ac-
tually, although only qualitatively, the above results on the FS
have been proved in Refs. [22,25] in a rough approximation in
which the 1/2 Haldane statistics for the holon was assumed,
but, somewhat inconsistently, the semionic nature of the holon
field was not taken into account, keeping, on the other hand,
the treatment of the spinon consistent with this approximation.
As discussed in the introduction the proof of the Haldane
statistics of the holon is the main aim of this paper, but this
proof needs some more details on the spin-charge approach
that we now provide. At the end of the paper some results
obtained with this approach, including a non-BCS mechanism
for superconductivity, are outlined, making also contact with
experiments in cuprates.

Having used the SU (2) gauge freedom to rotate spinons to
the optimal configuration s̃m, we need to integrate the SU (2)
gauge field V over all its configurations. Therefore, we split
the integration over V into an integration over a field V̄ ,
satisfying the Coulomb gauge fixing ∂νV̄ ν = 0 with ν = 1, 2
and its gauge transformations expressed in terms of an SU (2)-
valued scalar field U, i.e., V μ = U †V̄ μU + U †∂μU . Notice
that P[exp(i

∫ y
x V )] = U †

y P[exp(i
∫ y

x V̄ )]Ux. U describes fluc-
tuations of spinons around the “optimal” configuration and
can be written as:

U =
(

s1 −s∗
2

s2 s∗
1

)
, (2.4)

with s satisfying the constraint:

s∗
α j sα j = 1. (2.5)

We will call in the following sα again spinons. Up to now
no approximation has been made and the model in terms
of h, s, and V̄ is still equivalent to the original t-J model.
However, due to the optimization procedure on the spinon, we
expect that the configurations of U are dominated by small
fluctuations around identity. As discussed in Ref. [12], the
spin flip due to the SU (2) gauge freedom in s̃m allows a
simultaneous optimization in terms of the spinon s both of

the t and the J term in the Born-Oppenheimer approximation
considered above, because (neglecting V̄ ) s appears in the
form s∗

αisα j on links in the t term and as |εαβsαisβ j |2 and the
identity |s∗

αisα j |2 + |εαβsαisβ j |2 = 1 holds. This phenomenon
occurs also in one dimension and might be the origin of the
good mean-field approximation for the semionic statistics.

We now briefly discuss a mean-field approximation essen-
tially based on the conjecture that the fluctuations U are small.
If we neglect fluctuations U in the calculation of V̄ (up to an
irrelevant field-independent term) one gets (with μ = 1, 2):

V̄ μ(z) = −1

2

∑
j

(−1)| j|∂μ arg(�z − j)h∗
j h j (z

0)σz. (2.6)

We recognize in the term (−1)| j|∂μ arg(�z − j) of Eq. (2.6)
the vector potential of a vortex centered at the holon position
j, with vorticity (or chirality) depending on the parity of | j| =
jx + jy. We call these vortices antiferromagnetic (AF) spin
vortices, since they record in their vorticity the Néel structure
of the lattice. Hence they are still a peculiar manifestation of
the AF interaction, such as the more standard AF spin waves.
As one can see, they are the topological excitations of the
U (1) subgroup of the original SU (2) spin group unbroken in
the AF phase, along the spin direction z of the magnetization.

These vortices are of purely quantum origin, since, as in
the Aharonov-Bohm effect, they induce a topological effect
far away from the position of the holon itself, where their
classically visible field strength is supported. Hence in this
approach the empty sites of the 2D t-J model, mimicking the
Zhang-Rice singlets and corresponding to the holon positions,
are cores of the AF spin vortices, quantum distortions of the
AF spin background. These vortices have no analog in the
slave-boson approach and in our approach are responsible for
both short-range AF order, which we now outline since it will
be used in the proof of Haldane statistics, and a new pairing
mechanism leading to superconductivity, sketched in the final
section, referring to Ref. [26] for details. Semionic holons
dressed by AF spin vortices are similar to semionic holons
in one dimension with attached a spinon-derived spin string;
the role of kinks as topological defects in one dimension is
replaced by vortices in two dimensions.

We can write the total action of the system as a sum of a
spinon action Ss and a holon action Sh. For our purpose of
the spinon action it is enough to know [10] that in the long
wavelength continuum limit it is given by a O(3) nonlinear σ

model (in CP1 form) for spinons describing the continuum
limit of the undoped Heisenberg model, with an additional
coupling between spinons s and the AF spin vortices:∫

d3x(V̄ μV̄μ)(x)s∗
αsα (x). (2.7)

A quenched average, 〈·〉, over positions of centers for
spin-vortices yields the following estimate [10]: 〈V̄ μV̄μ〉 ≈
δ| log δ|. Hence the term (2.7) provides a mass-gap to spinons,
converting the long-range AF order of the Heisenberg model,
corresponding to zero doping, to short-range AF order at finite
dopings; therefore, spinons s have no FS. The spinon system
behaves as a spin liquid since spinon confinement is avoided
by the interaction with the gapless holons. However, in spite
of the presence at lattice level of a Chern-Simons term, which
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turns spinons into semions, in the mean-field long-wavelength
limit considered involving the coupling to the holons via AF
spin vortices, it is not a chiral spin liquid and spinons s in
the low-energy limit can be considered as spin-1/2 hard-core
boson quasiparticles excitations. Although not confined, in
the entire system spinons are weakly bound to holons and
antispinons by slave-particle gauge fluctuations to form the
physical composite holes and magnons, respectively.

By making in Eq. (2.7) a mean-field approximation for
s∗
αsα (x), instead of what was previously considered for

V̄ μV̄μ(x), we obtain the term

〈s∗
αsα〉

∑
i, j

(−1)|i|+| j|−1(i − j)h∗
i hih

∗
j h j, (2.8)

where  is the 2D Laplacian. In the static approximation for
holons Eq. (2.8) describes a 2D lattice Coulomb gas with
charges ±1 depending on the Néel sublattices. In particular
the interaction is attractive between holons in opposite Néel
sublattices, with maximal strength for nearest-neighbor sites,
along the lattice directions with a d-wave symmetry. Putting
back coefficients one finds that the coupling constant of this
interaction is Jeff = J (1 − 2δ)〈s∗

αsα〉, which decreases with
increasing doping. For 2D Coulomb gases with the above
parameters, pairing appears below a temperature Tph ∼ Jeff .
Hence the charge pairing originates from the attraction be-
tween AF spin vortices with opposite chirality, eventually
leading to superconductivity as sketched in the final section.

We write now explicitly the holon action, Sh, since its
expression is needed in the proof of exclusion statistics. In
PG region Sh can be written as:

Sh =
∫

dx0
∑

j

[h∗
j [∂0 − ib0( j) − 2tδ]h j]

− h∗
j h j (σ

| j|
x [U †

j ∂0Uj + iv0σz]σ
| j|
x )11

−
∑
〈i, j〉

th∗
j exp

(
iB̄〈i, j〉 − i

∫ j

i
b

)

× hi

[
σ |i|

x U †
i exp

(
i
∫ j

i
vσz

)
Ujσ

|i|
x

]
11

− 2SU (1)
c.s. (b)

+ 2SU (1)
c.s. (v). (2.9)

The fact that σx has the same power at both ends of a hopping
link is due to the spin-flip generated by s̃m. b is a gauge
field of the U (1)-charge group and v is a gauge field of the
U (1) subgroup of the spin group SU (2) previously selected
by choosing the directions of s̃m. The factor 2 in the Chern-
Simons action is due to a normalization needed passing from
SU (2) to its U (1) subgroup. Integrating over b0 and v0 one
reproduces the previous description in terms of b̄μ and V̄μ.
Notice that since coefficients of the Chern-Simons terms for
b and v have opposite sign, at this stage the parity (P) and
time-reversal (T) symmetries are still explicitly preserved.
Formally this can be seen by rewriting the gauge fields in
the combinations b1 + vσ3 and b1 − vσ3, where 1 is the
2 × 2 identity matrix. Holons are coupled only to b1 − vσ3,
so integrating b1 + vσ3 from the Chern-Simons one gets a
δ function for the field strength of b1 − vσ3 which is P and
T invariant. We argue, however, that the continuum limit

should not be taken considering simultaneously the coupling
of holons to b and v, but firstly only to b, to make the holon
field U (1) charge-gauge invariant and to enforce the semionic
statistics, and only afterwards introducing the coupling with
the spin degrees of freedom.

To summarize, in PG Sh describes fermionic lattice holons
in the presence of π flux per plaquette with attached charge-
vortex generated by b that turn them into semions, interacting
with spinons s and the AF spin vortices described by V̄ . In SM
the π flux in the hopping is suppressed.

III. 1/2 EXCLUSION STATISTICS OF HOLONS

Having explained the relevance for self-consistency of the
exclusion statistics 1/2 for the holon in the spin-charge gauge
approach to cuprates, in this section we turn to its proof.

A. Braid-exclusion statistics relation

A key ingredient of the proof is the result contained in
Ref. [19], connecting braid and exclusion statistics under
some conditions, that we now sketch. Consider a planar Hall
system consisting of fermions in a thermodynamically large
domain with a boundary; it is well known that there are chiral
edge modes on the sample boundary leading to a boundary
current. We then couple the system to a Chern-Simons field
bμ, defined in the whole space time, with coupling strength α,
while keeping fixed the chemical potential μ. We denote by
N (μ, α) the number of particles contained in the considered
domain with Chern-Simons coupling α. The Lagrangian (in
real time) reads

L = LM − bμJμ + 1

4πα

∫
d3xεμνλbμ∂νbλ, (3.1)

where Jμ is the current density. The exact form of the
Lagrangian LM of fermions is not so important, and it is only
required to provide a nonvanishing Hall conductance σH .

By differentiating Eq. (3.1) w.r.t . bν (ν = 1, 2), one obtains
the following relation between the current and the electric
field: �E ≡ ∂0�b − �∇b0 = 2πα(ẑ × �J ), where ẑ is the unit vec-
tor perpendicular to the plane of the system. Thus a current
I (μ) flowing on the boundary leads to an electric field normal
to the boundary.

In the scaling limit the fermion Hall system contributes a
Chern-Simons term to the gauge-effective action with coeffi-
cient −σH/2 in the bulk (plus a term localized at the boundary
by gauge invariance). Taking into account this contribution
in random phase approximation (RPA) leads to an effective
Chern-Simons coupling for the b field: α̃ ≡ α/(1 − 2πσHα).
The above electric field generated by the boundary current im-
plies a jump V = −2πα̃I (μ) of the scalar potential across
the sample boundary. Then the change of the free energy F
due to the Chern-Simons coupling reads

F (μ, α) = F (μ, 0) − 2πα̃I (μ)N (μ, 0). (3.2)

Differentiating both sides of Eq. (3.2) with respect to μ, we
obtain

N (μ, α) = N (μ, 0) + 2πα̃
∂I

∂μ
N (μ, 0) + 2πα̃I (μ)

∂N (μ, 0)

∂μ
,

(3.3)
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where ∂I/∂μ = σH and ∂N/∂μ is proportional to the com-
pressibility. For an incompressible liquid, one obtains

N (μ, 0) = (1 − 2πσHα)N (μ, α). (3.4)

Since μ was kept invariant, by comparing Eq. (3.4) with
Eq. (1.2) one concludes that anyons of the system described
in Eq. (3.1) obey an exclusion statistics with parameter g =
2πσHα. In particular, if 2πσH = 1 we have g = α.

Let us now come back to our holon system. The above ar-
gument shows that if holons without Chern-Simons coupling
to b have a Hall conductivity 1/2π and the system is incom-
pressible, then the semionic holons obtained by coupling with
b obey exclusion statistics 1/2, as we would like to prove.

B. Free holons

In the holon action Eq. (2.9) if no further approximations
are made the holon density remains δ, since the Gutzwiller
projection is still exactly implemented by U ∈ SU (2) with
the constraint Eq. (2.5) being satisfied. In particular when
δ = 0 the holon density vanishes, correctly reproducing the
vanishing density of Zhang-Rice singlets at half-filling.

However, in the large-scale continuum limit we have seen
that, thanks to the interaction with AF vortices, the spinon s(x)
is gapped. It implies that in this limit the constraint Eq. (2.5)
is not fully satisfied, as the spinon mass gap is incompatible
with it, so the Gutwiller projection is not anymore exactly
implemented. To understand the situation let us first consider
the free holons without coupling to spinons and the Chern-
Simons fields b and v, while still keeping fixed the chemical
potential. The corresponding action is given by

S0
h =

∫
dx0

∑
j

h∗
j (∂0 − 2tδ)h j −

∑
〈i, j〉

th∗
j exp[iB̄〈i, j〉]hi. (3.5)

Due to the staggered π flux implemented by B̄〈i, j〉, we
divide the square lattice into two sublattices, A (even sites)
and B (odd sites). On these sublattices, the annihilation oper-
ators of holons are denoted by ha and hb, respectively. Let us
choose a unit cell with A and B sites along the x direction,
then the Hamiltonian corresponding to the free holon action
Eq. (3.5) can be recast in a quadratic form, with a matrix in
the momentum space given by:

H (�k) = 2t

(
0 cos kx + i cos ky

cos kx − i cos ky 0

)
. (3.6)

In Eq. (3.6), the momentum k only takes values in the range
[−π, π ] × [−π/2, π/2], which is a half of the original BZ.
One can easily see that it describes two massless Dirac double
cones with vertices at (±π/2, π/2). Shifting the two Dirac
nodes to the origin in k space, inserting the chemical potential
μ = 2tδ, and taking the continuum limit, we see that the
corresponding continuum fields are described by massless
Dirac fields with two flavors, corresponding to the two double
cones. The two upper bands of the double cones are filled up
to energy 2tδ, hence even at δ = 0 the lower bands of the
two Dirac double cones are filled, so that the holon density no
more vanishes even in the half-filling case. The lower bands
are thus an artifact produced by the violation of the constraint
Eq. (2.5) introduced when we treat in mean field Eq. (2.7).

Since spinons are gapped, the Gutzwiller constraint is
relaxed in the large-scale continuum limit. Going back to the
lattice model with no-double-occupation constraint ignored
temporarily, one expects that at half-filling with δ = 0 the
number of holons equals the number of unprojected holes,
hence one expects the holon number is 1 per site on average.
If these holons were fermions obeying Fermi statistics, both
upper and lower bands would be completely filled, which is
at odds with the previous half-filling result obtained from the
free holon Lagrangian.

This would lead to an inconsistency in the above contin-
uum limit. However, if holons satisfy the semionic exclusion
statistics with g = 1/2, at half-filling they fill the lower bands
leaving the upper bands empty to give a density 1 on average.
Since these semionic holons in the lower bands are a result
of relaxing the Gutzwiller projection, they are spurious and
describe the singly occupied sites in the original unprojected
lattice model. When the doping holes are introduced in the
t-J model, the corresponding physical holons partially fill the
upper bands and are responsible for the low-energy physics.
Although the spurious lower band holons are not directly
relevant to the low-energy physics in the scaling limit, they are
responsible for the 1/2 exclusion statistics when coupled to
the U (1) statistical field b, making the theory self-consistent,
as we prove below. Before closing this section, we emphasize
that one should be careful not introducing an unphysical cou-
pling of the spurious holons in the lower bands with spinons,
so that the density of physical holons coupled to spinons still
correctly vanishes at δ = 0.

C. Hall conductivity of spurious holons

According to the strategy outlined in Sec. III A we now
compute the Hall conductivity of the holon system without
Chern-Simons couplings. If we look at the corresponding
holon action in Eq. (2.9), we see that for sites in the A
sublattice and links starting from the A sublattice the coupling
with spinons and the v field is of the form (U †

j ∂0Uj +
iv0σz )11 and [U †

i exp(i
∫ j

i vσz )Uj]11, whereas for the B sublat-
tice the corresponding terms are (U †

j ∂0Uj + iv0σz )22 and [U †
i

exp(i
∫ j

i vσz )Uj]22. Since (U †
j ∂0Uj + iv0σz )22 = (U †

j ∂0Uj +
iv0σz )∗11 and [U †

i exp(i
∫ j

i vσz )Uj]22 = [U †
i exp(i

∫ j
i vσz )

Uj]∗11, the action is not invariant under time reversal, but is
invariant under time reversal combined with interchange of
the two Néel sublattices realized by parity transformation
with respect to a line in the dual lattice. This can be intuitively
understood since the time-reversal operation reverses the
chirality of the spin vortices described by v, but an exchange
of the Néel sublattices also does the same job.

As is well known [27], to compute the Hall conductivity
of massless Dirac fields we need to introduce an infrared
regulator (such as a mass) with a parameter m, respecting the
symmetry of the system; at the end of the computation one
takes the limit m → 0. The reason for introducing a regulator
is that, due to the parity anomaly one cannot consistently
define a gauge-invariant coupling for massless Dirac fermions
in two dimensions. The mass regulator breaks parity and even
after it is sent to zero, in the gauge-effective action its remnant
is still there, keeping the information of the mass sign in the
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coefficient of the generated Chern-Simons action. However,
for our system one cannot take as regulator simply a mass
term in the lattice as in the standard systems, since it would
preserve the time-reversal symmetry, broken in our case.

A regularized free Hamiltonian for the field (ha(�k), hb(�k))t

maintaining the above discussed symmetry has a matrix form
in the momentum space given by:

H (�k) =
(

m cos(kx + ky) 2t (cos kx + i cos ky)

2t (cos kx − i cos ky) m cos(kx − ky)

)
.

(3.7)

One can check directly that this Hamiltonian with the regu-
lator added respects the combined symmetry of time reversal
and the exchange of Néel lattice of the original Hamiltonian.
To be specific the time-reversal operation is implemented by
complex conjugation and �k → −�k, while the interchange of
Néel sublattices corresponds to ky → −ky (a mirror reflection
about the x axis) followed by a similarity transformation
implemented by σ x. In our units the Hall conductivity of the
lower bands is given by c1/(2π ), where c1 is the Chern num-
ber of the corresponding bands. For a two-dimensional H (�k)
as ours, c1 can be computed as follows (see, e.g., Ref. [28]):
We write H (�k) in terms of σμ = (1, �σ ), with μ = 0, 1, 2, 3
and �σ the Pauli matrices: H (�k) = ∑

μ Hμ(�k)σμ. We call D the
set of points in the BZ where H1 = H2 = 0, which are called
Dirac points, then

c1 = 1

2

∑
x∈D

sign[H3(x)]sign

[
ε3i j

∂Hi

∂k1

∂Hj

∂k2
(x)

]
. (3.8)

If we compute the Chern number c1 of the lower bands
of H (�k), describing spurious holons as discussed above, one
then finds 1, since at the two Dirac points (becoming for
m = 0 the Dirac nodes) the regulator term has opposite sign:
H3(−π/2, π/2) = m, H3(π/2, π/2) = −m and the second
sign in Eq. (3.8) is also opposite at those points. We then
see that the lower bands in our holon system contribute
sgn(m)/(2π ) to the Hall conductivity.

In order to discuss the spinon coupling to the physical
upper bands taking into account the gap of spinons, as done in
the next section, one needs to go to the long-wavelength con-
tinuum limit. In that limit the lower bands of the above Hamil-
tonian are just the lower bands of two Dirac double cones reg-
ularized with the same mass m. Since every cone contributes
to the Hall conductivity with m/(4π |m|) [27], we see again
that the lower bands in our system contribute sgn(m)/(2π ).

D. Hall conductivity of physical holons

In the absence of the spinon coupling, for free Dirac holons
the partially filled upper bands would contribute exactly the
opposite Hall conductivity of the lower bands, since in case of
partial filling the Hall conductivity of the free system is zero.
Introducing a mass, we get a nonvanishing result only if the
chemical potential is in the mass gap, which is not our case.
However, the coupling of the upper band to spinons changes
the situation.

To discuss the effect of spinon coupling we need to ex-
tract an effective action and compute the coefficient of the

corresponding Chern-Simons term for the b field. This cal-
culation involves a mixing of the upper physical and lower
spurious bands. In order to minimize such mixing, a careful
treatment is needed. In fact, we need only consider the mixing
in an infinitesimal neighborhood of the Dirac nodes following
the procedure outlined below; more details are deferred to the
Appendix.

We consider one partially filled Dirac double cone,
while the other one can be treated in the same way. To identify
the Green’s function of the continuum fields associated with
the two bands we start with rewriting the relevant free Dirac
propagator G with chemical potential μF at T = 0 in the
following form: let γ μ with μ = 0, 1, 2 denote the 2+1 Dirac
γ matrices and kμ = ω, �k the three-momentum.

Then we find [29]:

G = (/k − m)

[
�(−k0)

1

k2 − m2 + iε

+�(k0)

(
�(k0 − μF )

k2 − m2 + iε
+ �(μF − k0)

k2 − m2 − iε

)]
. (3.9)

Naively the first term corresponds to the lower band, but
to take into account the problem of mixing quoted above
we extend the first term up to a small cutoff η with μF �
η � |m| to include the bottom of the upper band, replacing
�(−k0) by �(−k0 + η) and subtracting the corresponding
contribution in the second term of Eq. (3.9). Note that η

is eventually sent to zero, after the limit m → 0 has been
taken. Hence the introduction of the small cutoff η takes into
account only the contribution from the conduction band edge.
Since the relevant contribution for physical holons at large
scales comes only from the region near the Fermi surface,
it is unmodified by the above operation. According to the
previous discussion we then insert in the modified second
term (assumed to describe the physical holons) the minimal
coupling to b, to spinons s and to v, whereas we insert only the
minimal coupling to b in the modified first term describing the
spurious holons appeared with the violation of the Gutzwiller
projection.

We have already calculated above the Hall conductivity
of the first term, σH = 1/(2π ); correspondingly the leading
contribution in the long wavelength continuum limit of the
effective action is given by the Chern-Simons term SU (1)

c.s. (b).
We now discuss the Hall conductivity of the second term.

The long wavelength continuum limit of the spinon interac-
tion is just the minimal coupling of holons to the slave-particle
gauge field Aμ(x) ∼ s∗(x)∂μs(x). This is the gauge field of the
CP1 representation of the O(3) spinon σ model, implementing
in the continuum the slave-particle gauge invariance. Then the
leading term of the effective action due to physical holons
turns out to be −SU (1)

c.s. (b + A) − SU (1)
c.s. (v), as shown in the

Appendix.
We now need to integrate A to find both Hall conductivity

and, as required by Eq. (3.3), the compressibility of the
holon system. The compressibility is proportional to the scalar
polarization bubble evaluated at zero energy in the limit of
zero momenta.

Since the upper band is partially filled, the leading con-
tribution comes from a region near the Fermi surface. Then
at ω = 0 in the limit k → 0 in the Coulomb gauge its
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polarization bubble matrix is given by:

πh(�k) =

⎛
⎜⎝

χh
0 −k2σ

h
H k1σ

h
H

k2σ
h
H

�k2χh
⊥ 0

−k1σ
h
H 0 �k2χh

⊥

⎞
⎟⎠, (3.10)

where χh
0 , χh

⊥, σ h
H = −1/(2π ) are the density of states at the

Fermi energy, the diamagnetic susceptibility and the Hall
conductivity, respectively.

As spinons are gapped, integrating them out one obtains a
Maxwell effective action for the slave-particle gauge field Aμ;
the spinon polarization bubble matrix at ω = 0 is then given
by the diagonal matrix

π s(�k) = diag
(
χ s

0k2, �k2χ s
⊥, �k2χ s

⊥
)
, (3.11)

with χ s
0, χ

s
⊥ the electric and the diamagnetic susceptibility of

the spinon system. The scaling analysis presented in Ref. [30]
based upon a tomographic representation of fermion Green’s
functions suggests that the RPA approximation gives the
leading term in the scaling limit of the polarization bubbles of
holons in the presence of the Maxwell interaction originated
from spinons, described by (π s)−1, since such interaction is of
long range. The polarization bubble of holons dressed by the
spinon interaction in RPA in the small k limit is then given by

�h(�k) = πh[1 + (π s)−1πh]−1, (3.12)

where the scalar component (corresponding to compressibil-
ity) reads

�h
0(�k) = χ s

0k2, (3.13)

while the Hall polarization bubble by

σH (�k) = σ h
H k2χ s

0χ
s
⊥(

σ h
H

)2 + χh
0 (χ s

⊥ + χh
⊥)

; (3.14)

therefore both vanish at k = 0, implying that the upper bands
of physical holons are incompressible and do not contribute
to the Hall conductivity for b. The origin of incompressibility
can be traced back to the unscreened long-range 2D Coulomb
repulsion generated by the slave-particle gauge field, due to
the spinon gap. Hence it is a consequence of the Gutzwiller
constraint, origin of the gauge field, and of the destruction of
the Néel order due to the AF vortices introduced by doping.

Since the lower holon bands are completely filled it then
turns out that the total holon system before it is coupled to
the Chern-Simons b field is incompressible and provides Hall
conductivity 1/(2π ). Hence, according to the result stated at
the beginning of the section, after coupling with b the resulting
semionic holons have exclusion statistics parameter 1/2, as
we would like to prove.

As seen in the proof, the role of the slave-particle gauge
field, as a direct consequence of the no-double occupation
constraint, is crucial to obtain the 1/2 exclusion statistics,
exactly as in the 1D case, where the constraint is also crucial to
realize the 1/2 exclusion statistics by producing a Luttinger-
type interaction. Notice that incompressibility of the holon
liquid does not imply incompressibility of the hole liquid,
because the polarization bubble of the hole involves also the
renormalization of the gauge propagators due to the holons.

Furthermore, since the Chern-Simons term of v does not
contain a coupling to A one finds that the total Chern-Simons
contribution to the effective action of (both physical and
spurious) holons in the bulk is given by SU (1)

c.s. (b) − SU (1)
c.s. (v).

(Also a gauged Wess-Zumino-Novikov-Witten boundary term
is generated by gauge invariance [31,32].) Therefore, although
broken by the system of semionic holons alone, parity and
time-reversal symmetries are still explicitly preserved in the
holon system coupled to the spinon-inherited v field. In fact,
the bands of spurious holons produce a chiral structure, due to
b, but the bands of physical holons produce an opposite chiral
structure, due to v. The induced additional Chern-Simons
terms change, however, the braid statistics of the low-energy
holon quasiparticle excitations (in Landau’s sense) near the
ground state of the semionic holon liquid. Since the coeffi-
cients of the total, original plus induced, Chern-Simon actions
for b and v are −1 and +1, respectively, we expect that the
statistics of such quasiparticles is fermionic, as indeed sug-
gested by preliminary calculations based on an approximate
explicit expression for the low-energy behavior of the holon
Green’s function that will be presented in a separate paper.

This change of statistics from the fields to the Landau
quasiparticle excitations is somewhat analogous to what hap-
pens in the composite fermion theory of the Fractional quan-
tum Hall effect [21], where the quasiparticle excitations near
the composite fermion ground state are anyons.

Above we discussed the situation in the PG phase, now
we add a brief comment for the SM phase. As stated in
Sec. II, the optimal spinon configuration s̃m, around which we
expand the spinon fluctuations described by s, acquires for
hopping holons −π -flux phase factors in the SM phase that
cancel the original π -flux phase factors. The spinon coupling
occurs only for the upper band and this additional phase
factor modifies the dispersion of the upper band so that close
to the Fermi surface it is turned into that of the t-J model
in the tight-binding approximation; both compressibility and
the Hall conductivity of the upper band still vanish. Since
the lower band is not involved in the modification its Hall
conductivity remains 1/(2π ), hence even in SM phase the
hopping holons have exclusion statistics 1/2.

On the basis of the result on the Fermi surface discussed in
Sec. III and the generalization of the Luttinger theorem dis-
cussed in Ref. [33], we suspect that the physical hole system,
at least in the PG phase, possesses a Z2 topological order of
the kind considered in the above quoted references [33].

IV. CONCLUSIONS

Let us summarize our results. The Gutzwiller projection
and the low dimensionality (1D or 2D), allow a gauging of
the U (1)-charge and SU (2)-spin symmetries of the t-J model
leaving its physics completely unmodified. As a result at
the lattice level the charge degrees of freedom, described by
spinless holons, and the spin degrees of freedom, described by
spinons, of the t-J model acquire a semionic braid statistics
both in two dimensions, and in one dimension, where this
statistics holds also for the corresponding low-energy quasi-
particles and can be explicitly checked comparing with the
exact solution. The additional freedom provided by the SU (2)
gauging allows a better simultaneous optimization of both t
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and J terms, and in two dimensions it introduces a novel kind
of excitations, i.e., the AF spin vortices. These are quantum
distortions of the AF spin background in the U (1) subgroup of
the SU (2)-spin group unbroken by antiferromagnetism. Their
cores are located on the empty sites of the 2D t-J model, mim-
icking the Zhang-Rice singlets of cuprates, and they record in
their vorticity the Néel structure of the lattice. In a mean-field
treatment at large scales their interaction with the spin degrees
of freedom turn the long-range AF order of the model at
half-filling into a short-range AF order above a critical doping
and this implies a relaxation of the Gutzwiller constraint at
large scales. Although with the Gutzwiller projection exactly
implemented the charge degrees of freedom have physical
bands empty at half-filling, at mean-field level the constraint is
relaxed and spurious filled lower holon bands appear, describ-
ing the unprojected holes at half-filling. With a proper regu-
larization, the role of these spurious holon bands is to give an
approximate but self-consistent description of the Gutzwiller
projection on holons, providing an effective vacuum in which
the physical hopping holons move. But this vacuum is topo-
logically nontrivial, as shown by its nonvanishing Chern num-
ber or Hall conductivity, and this nontriviality deeply affects
the physical upper bands, in particular forcing a 1/2 exclusion
statistics for their semionic holons, as in one dimension. The
slave-particle gauge attraction between holon and spinon then
produces a Fermi surface for holes, as holon-spinon low-
energy bound states, with the addition of a t ′ term, approxi-
mately consistent with the ARPES experiments in hole-doped
cuprates [24]. As in one dimension the parity and time-
reversal symmetry are broken separately for the holon and
spinon subsystems, due to their semionic nature, but for phys-
ical slave-particle gauge-invariant quantities they are restored.

To conclude, we remark that the spin-charge gauge ap-
proach allows us to recover, sometimes even semiquanti-
tatively, many unusual experimental features of hole-doped
cuprates, and for completeness we now briefly mention the
most relevant results. We believe that the most interesting
feature of the approach is that holes are composites made of
only weakly bound holons and spinons, so that some phys-
ical responses are dominated by the spin carriers, in totally
non-Fermi-liquid manner. As noticed above, previously this
approach was implemented in the approximation in which the
1/2 Haldane statistics for the holon was assumed, but, some-
what inconsistently, its semionic nature was not taken into
account, consistently neglecting, however, the influence of AF
spin vortices on holon hopping. The expected fermionic na-
ture of the Landau holon quasiparticle discussed in the previ-
ous section nevertheless suggests that the approximation made
was already not unreasonable. Anyway a careful account of
the two neglected effects mentioned above cannot change
significantly the physical responses dominated by spinons,
which are responsible for results that we now sketch in words,
referring to the original papers for explicit formulas and plots.

A phenomenon naturally explained by this approach is
the metal-insulator crossover (MIC) found decreasing T in
the in-plane resistivity of underdoped cuprates (see, e.g.,
Ref. [34]). Although it is often attributed to disorder-induced
localization, that interpretation is at odds with the fact that, de-
pending on materials and dopings, MIC occurs from far below
to far above the Ioffe-Regel limit. That interpretation is also

at odds with the existence in a large range of temperatures,
including the MIC, of a universal curve [35] for a normalized
resistivity as a function of T/T ∗, where T ∗ can be identified as
an inflection point in the in-plane resistivity. For these reasons
we believe that the MIC is intrinsic, although disorder-induced
localization may play a role at lower temperatures where,
in fact, universality breaks down. In the spin-charge gauge
approach the MIC can be easily explained: Due to the
slave-particle gauge string binding spinon to holon, the
velocity of the hole-bound state is determined by the slowest
among spinon and holon (Ioffe-Larkin rule [36]). The holon
has a metallic behavior with a FS, whereas, due to the AF
gap, at low T the spinon can only move by thermal diffusion
leading to a semiconducting behavior. However, at higher
temperatures its dynamics is dominated by the dissipation
growing with T induced by slave-particle gauge fluctuations,
leading to a metallic behavior. The universality is explained by
the spinon dominance [12], leading to insensitivity to details
of the FS, and even quantitatively the universal curve can
be well reproduced [37]. We call T ∗ the low-pseudogap
temperature at which the resistivity curve exhibits an
inflection point and, on the basis of the comparison between
the experimental and the theoretically derived resistivity
curve, we identify it with the crossover from PG to SM in
our approach. A similar crossover with increasing T from
a AF-gap-dominated region to a gauge-induced dissipation
dominated region can explain the peak in the spin-lattice
relaxation rate 63(1/T1T ) in underdoped cuprates [38].

The spin-charge gauge approach provides a three-step
mechanism for superconductivity that might explain several
crossovers appearing in the phase diagram of cuprates.
First, at a temperature that we denote by Tph, the attraction
mediated by the AF-spin vortices described in Eq. (2.8)
produces charge pairing, the spin degrees of freedom being
still unpaired. Since the formation of charge pairs induces a
reduction of the spectral weight on the FS of holons, inherited
then by holes, we identify in cuprates Tph as the temperature
below which a pseudogap appears in the spectral weight of
the hole (even well above T ∗ in the t-t ′-J model [23]), and
we call this temperature high pseudogap. Qualitatively many
features of this high pseudogap in the hole spectral weight
derived in Ref. [23] are consistent with experimental data, but,
according to the result of the present paper the influence of
the semionic nature of the holon field should be reconsidered.

At a lower temperature, Tps, the slave-particle gauge
attraction between holon and spinon induces the formation
of short-range spin-singlet (RVB) spinon pairs, in a sense,
using the holon pairs as the source of attraction, thus leading
to a finite density of incoherent hole pairs. Comparing the
behavior of spinon-pair density [26,39] with the intensity
of the Nernst signal [40] seen in cuprates, we identify this
crossover as the onset of the diamagnetic/Nernst signals
induced by magnetic vortices.

Finally, at an even lower temperature, the superconducting
transition temperature Tc, the hole pairs become coherent and
a d-wave hole condensate appears, leading to superconductiv-
ity. The presence of three crossover temperatures T ∗, Tph, Tps

is typical of this approach and finds a reasonable correspon-
dence in the experimental phase diagram of cuprates [39].

In particular, for the same reason given for in-plane resis-
tivity, the superfluid density satisfies Ioffe-Larkin rule and is
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dominated by spinons in the underdoped region. Below Tps

the low-energy effective action obtained integrating out the
massive spinons is a Maxwell-gauged 3D XY model, where
the angle field of the XY model is the phase of the long-wave
limit of the hole-pair field and the gauge field is the slave-
particle gauge field. This explains the 3D XY critical exponent
of the superfluid density found in experiments. Furthermore,
as in the case of resistivity, the spinon dominance explains
the experimental observation of a universal curve for the nor-
malized superfluid density as a function of T/Tc [41], which
can be well reproduced even quantitatively by the spin-charge
gauge approach [37].

Let us end this paper by remarking that we are computing
some physical response dominated by holons, to check the ef-
fect of the semionic nature of the holon field in our approach,
in comparison with the experimental data of cuprates. Prelim-
inary calculations suggest that the main effect with respect
to the previous approximate treatment is a modification of
the wave-function renormalization constant of the hole, which
becomes temperature independent allowing, for example, a re-
covery of the experimentally observed Fermi-liquid behavior
of the Knight shift at high T in the strange-metal phase of
hole-doped cuprates (see, e.g., Ref. [42]).
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APPENDIX

In this Appendix we outline the calculation of the Chern-
Simons term for the upper band of holons in one of the Dirac
double cones. For simplicity we consider only the coupling to
a ≡ A + b, the coupling with v can be done in a similar way.
The two terms do not mix due to the σ z factor in the v coupling
arising from the fact that the two components of the Dirac
field arise from different Néel sublattices, hence with opposite
charge for v. Following Ref. [27] we consider a coupling to a
field a of constant field strength fμν , calculate the expectation
of the induced current

〈Jμ〉 = Tr[γ μGa(x, x′)]x→x′ (A1)

with Ga the gauge invariantly regularized Green’s function in
the presence of a, and we keep only the term proportional to
εμνρ fνρ . Its coefficient, which we denote by JCS , multiplied by
4π is the coefficient of the Chern-Simons action. We define
Kμ = kμ + aμ and consider the case a0 = 0. According to the
discussion in Sec. III D, the Green’s functions for free physical
holons in momentum space is given by

G = (/k − m)�(k0)

[(
�(k0 − μF )

k2 − m2 + iε
+ �(μF − k0)

k2 − m2 − iε

)
− �(η − k0)

1

k2 − m2 + iε

]
, (A2)

with μF � η � |m|. Then, using Schwinger’s proper time formalism, the Green’s function Ga for the physical holons in the
limit x → x′ can be represented as:

[Ga(x, x′)]x→x′ = −i
∫

d3k

(2π )3
( /K − m)

∫ ∞

0
ds�(k0)

[
�(k0 − μF )eis(k2

0−m2 )e−is �K2
eis[γ ν ,γ ρ ] fνρ/2

−�(μF − k0)e−is(k2
0−m2 )eis �K2

e−is[γ ν ,γ ρ ] fνρ/2 − �(η − k0)eis(k2
0−m2 )e−is �K2

eis[γ ν ,γ ρ ] fνρ/2
]
. (A3)

The relevant term for the Chern-Simons action in Tr(γ μ( /K − m)eis[γ ν ,γ ρ ] fνρ/2) is given by msεμνρ fνρ . Inserting this term in (A1),
(A3) and performing the integral over spatial momenta one finds

JCS = m

8π2

∫
dk0

∫ ∞

0
ds�(k0)

[
�(k0 − μF )eis(k2

0−m2 ) − �(μF − k0)e−is(k2
0−m2 ) − �(η − k0)eis(k2

0−m2 )]

= 1

16π

m

|m|
[
�(|m| − μF ) − �(μF − |m|) − �(η − |m|) + 2i

π

∫ η/|m|

0
P

(
1

x2 − 1

)
dx

]
, (A4)

where P(·) denotes the principal value. In the limit m → 0 the imaginary term disappears and one recovers the result − 1
8π

m
|m| . A

similar calculation can be done for the band of spurious holons with free Green’s function defined, as discussed in Sec. III D, by

G = (/k − m)

[
�(η − k0)

1

k2 − m2 + iε

]
.

Analogously one obtains, besides an imaginary term vanishing in the limit m → 0,

JCS = 1

16π

m

|m| [�(η − |m|) + �(η + |m|)] = 1

8π

m

|m| ,

proving that indeed the lower band of spurious holons has the Hall conductance calculated in Sec. III C.
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