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Non-Bloch topological invariants in a non-Hermitian domain wall system
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We study non-Bloch bulk-boundary correspondence in a non-Hermitian Su-Schieffer-Heeger model in a
domain wall configuration where the left and right bulks have different parameters. Focusing on the case where
chiral symmetry is still conserved, we show that non-Hermitian skin effects of bulk states persist in the system,
while the definition of the non-Bloch winding number of either bulk depends on parameters on both sides of
the boundary. Under these redefined non-Bloch topological invariants, we confirm non-Bloch bulk-boundary
correspondence under the domain wall configuration, which exemplifies the impact of boundary conditions in
non-Hermitian topological systems.
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I. INTRODUCTION

A prominent feature of topological matter is the existence
of robust topological edge states at boundaries, whose ex-
istence are related to bulk topological invariants according
to the principle of bulk-boundary correspondence [1–7]. In
recent studies, it has been shown that bulk-boundary corre-
spondence in some non-Hermitian topological systems should
be modified in order to correctly predict the number of topo-
logical edge states at their boundaries [8–22]. Such a phe-
nomenon is closely related to the non-Hermitian skin effect,
where bulk states in the corresponding non-Hermitian sys-
tems become localized at boundaries [10,11,14,15,19]. The
deviation of bulk-state wave functions from extended Bloch
waves subsequently necessitates the extension of the Brillouin
zone onto the complex plane, where non-Bloch topological
invariants capable of accounting for topological edge states
can be defined [10,11].

Non-Hermitian skin effects and non-Bloch topological in-
variants significantly extend the conventional understanding
of bulk-boundary correspondence, and are of fundamental
theoretical importance for a deeper understanding of topolog-
ical phenomena in non-Hermitian systems. In light of recent
advances in engineering non-Hermitian topology in synthetic
systems [23–30], the study of bulk-boundary correspondence
in non-Hermitian settings is also experimentally relevant. In
previous studies of non-Bloch topological invariants however,
the focus has been on non-Hermitian topological systems
with open boundary conditions [10,11,18]. Experimentally, a
common alternative is a domain wall configuration, where two
bulks with distinct parameters are in contact through a com-
mon boundary. To construct non-Bloch topological invariants
in this case requires a complete understanding of bulk-state
wave functions, which could be quite different from those
under the open boundary condition.

In this work, we study non-Bloch bulk-boundary corre-
spondence in a non-Hermitian Su-Schieffer-Heeger (SSH)
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model [8,10,12,31,32] under a domain wall configuration
where the left and right bulks have different parameters.
We focus on a model where non-Hermitian skin effects are
present and the conventional Bloch bulk-boundary correspon-
dence breaks down. Importantly, we show that localized bulk
wave functions on either side of the boundary are affected
by parameters of both bulks. Because of this complication,
for the left or the right bulk alone, one can construct two
different generalized Brillouin zones based on localized bulk
wave functions. We prove that different generalized Brillouin
zones for a given bulk yield the same non-Bloch topological
invariant, which, together with the non-Bloch topological
invariant of the other bulk, yields the correct bulk-boundary
correspondence of the domain wall configuration. We provide
a detailed characterization of the evolution of the energy
spectrum, winding numbers and bulk- and edge-state wave
functions with varying system parameters. In particular, we
systematically study the effects of the size of bulks on non-
Bloch winding numbers. Our work explicitly reveals the im-
pact of the domain wall boundary condition on the non-Bloch
bulk-boundary correspondence, and provides a solid founda-
tion for future experimental studies of non-Bloch topological
invariants.

The paper is organized as follows. In Sec. II we present
the model Hamiltonian as well as the Bloch topological
invariants. We then study bulk-state wave functions in Sec. III,
which allow us to construct the generalized Brillouin zones
and non-Bloch winding numbers for each bulk. In Sec. IV we
confirm the the non-Bloch bulk-boundary correspondence by
numerically characterizing the energy spectrum, and bulk- and
edge-state wave functions. We then study in detail the impact
of the length ratio of two bulks on the energy spectrum and
the non-Bloch winding numbers in Sec. V. We summarize in
Sec. VI.

II. MODEL AND BLOCH TOPOLOGICAL INVARIANTS

As illustrated in Fig. 1, we consider a non-Hermitian
SSH model in a domain wall configuration on a ring. The
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Left Right

FIG. 1. Illustration of a non-Hermitian SSH model under the
domain wall configuration. The intracell hopping from sublattice
sites a to b in the left(right) bulk is t L(R)

1 − γ /2, while the intracell
hopping from b to a is t L(R)

1 + γ /2. For simplicity, we assume both
bulks have the same t2 and γ .

Hamiltonian can be written as

H = HL + HR, (1)

where

Hα =
∑
j∈Jα

(
tα
1 + γ

2

)
a†

j b j +
(

tα
1 − γ

2

)
b†

ja j

+ t2a†
j+1b j + t2b†

ja j+1. (2)

Here α = (L, R) denotes the left or right bulk, and a†
j (a j) and

b†
j (b j) are, respectively, the creation (annihilation) operators

for the sublattice sites a and b on the jth unit cell. The left
(right) bulk contains NL (NR) unit cells, which we label as JL =
{x ∈ Z|1 � x � NL} and JR = {x ∈ Z|NL+1 � x � NR + NL},
respectively. Since the system has a ring geometry, we
take a†

NL+NR+1(aNL+NR+1) = a†
1(a1) and b†

NL+NR+1(bNL+NR+1) =
b†

1(b1). The intracell hopping difference γ controls the non-
Hermicity of the system, such that when γ = 0 the Hamilto-
nian is reduced to a conventional Hermitian SSH model. The
non-Hermitian SSH model has chiral symmetry �H�−1 =
−H , with the chiral-symmetry operator � = ∑NL+NR

j=1 (a†
j a j −

b†
jb j ).

Following the conventional definition of winding numbers
in the Hermitian case, one can define the Bloch winding
numbers from the Bloch Hamiltonians hα (k) of the two bulks,
where

hα (k) = hx
α (k)σx + hy

α (k)σy. (3)

Here hx
α = tα

1 + t2 cos k and hy
α = t2 sin k + γ

2 i, and σx and
σy are Pauli matrices. The corresponding eigenenergy

spectrum is

Eα (k) = ±
√(

tα
1 + t2 cos k

)2 +
(

t2 sin k + γ

2
i

)2

, (4)

where the energy gap closes at the exceptional points tα
1 =

±t2 ± γ

2 .
The Bloch winding numbers for the two bulks are then

given by

να = 1

π

∫ 2π

0

〈χα|i∂k|ψα〉
〈χα|ψα〉 dk, (5)

where |ψα〉 (|χα〉) is the right (left) eigenvector of hα (k), with
hα (k)|ψα〉 = Eα (k)|ψα〉 and h†

α (k)|χα〉 = E∗
α (k)|χα〉. How-

ever, due to the non-Hermitian skin effects of bulk states,
one cannot predict the correct number of zero modes in the
domain wall configuration from νR − νL. For that purpose, we
need to use the non-Bloch winding numbers, which require an
understanding of bulk-state wave functions.

Finally, substituting the explicit forms of |ψα〉 and |χα〉 into
Eq. (5), we have

να = 1

2π

∫
dk

−hx
α

∂hy
α

∂k + hα
y

∂hx
α

∂k(
hx

α

)2 + (
hy

α

)2 , (6)

which will be useful later for the construction of non-Bloch
winding numbers

III. BULK-STATE WAVE FUNCTIONS

We study bulk-state wave functions by writing down the
eigenstates as

|�〉 =
NL+NR∑

j=1

(ψa, ja
†
j + ψb, jb

†
j )|0〉, (7)

where ψa(b), j are the on-site wave functions. Substituting
Eqs. (1), (2), and (7) into the Schrödinger’s equation H |�〉 =
E |�〉, we obtain the recurrence relation

Eψa, j =
(

tα
1 + γ

2

)
ψb, j + t2ψb, j−1, (8)

Eψb, j =
(

tα
1 − γ

2

)
ψa, j + t2ψa, j+1, (9)

from which we have

t2

(
tα
1 + γ

2

)
ψa(b), j+1 + t2

(
tα
1 − γ

2

)
ψa(b), j−1

+
(

tα
1

2 − γ 2

4
+ t2

2 − E2

)
ψa(b), j = 0. (10)

Apparently, ψa, j and ψb, j are decoupled from each other.
It is then possible to write the general solution for bulk states
as (

ψa, j

ψb, j

)
=

(
φ(1)

a

φ
(1)
b

)
λ

j
L,1 +

(
φ(2)

a

φ
(2)
b

)
λ

j
L,2, (11)
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for j ∈ JL and(
ψa, j

ψb, j

)
=

(
ϕ(1)

a

ϕ
(1)
b

)
λ

j−NL
R,1 +

(
ϕ(2)

a

ϕ
(2)
b

)
λ

j−NL
R,2 , (12)

for j ∈ JR. Here coefficients φ
(i)
a,b, ϕ

(i)
a,b satisfy

φ(i)
a

φ
(i)
b

= E(
tL
1 − γ

2

) + t2λL,i
= fi, (13)

ϕ(i)
a

ϕ
(i)
b

= E(
tR
1 − γ

2

) + t2λR,i
= gi, (14)

while λα,i satisfy the following characteristic equation of the
linear recurrence relation Eq. (10):

t2

(
tα
1 + γ

2

)
λα,i + t2

(
tα
1 − γ

2

)
1

λα,i

+ (
tα
1

)2 − γ 2

4
+ t2

2 − E2 = 0, (15)

where i = (1, 2) denote different roots of Eq. (15).
Substituting Eqs. (11)–(14) into the Schrödinger’s equation

at the boundary, we derive a set of linear equations for the
coefficients [φ(1)

b , φ
(2)
b , ϕ

(1)
b , ϕ

(2)
b ] (see Appendix A). Sending

the determinant of the coefficient matrix to zero, we have(
1 − λ

NL
L,1λ

NR
R,1

)(
1 − λ

NL
L,2λ

NR
R,2

)
(
λL,1 f1 − λR,1g1

)(
λL,2 f2 − λR,2g2

)
=

(
1 − λ

NL
L,1λ

NR
R,2

)(
1 − λ

NL
L,2λ

NR
R,1

)
(
λL,1 f1 − λR,2g2

)(
λL,2 f2 − λR,1g1

) . (16)

While λα,i can be regarded as functions of eigenenergy E
through Eq. (15), Eq. (16) gives all bulk-state eigenenergies.
Furthermore, λα,i give the non-Bloch description of the real-
space wave functions, which are crucial for constructing the
non-Bloch Brillouin zones. For simplicity we first assume
NR = NL = N and will discuss the case of NR �= NL in Sec. V.
For NR = NL = N and in the thermodynamic limit with N →
∞, solutions of λα,i satisfy

ζ (λL,1, λL,2, λR,1, λR,2) = 0, (17)

where the specific form and derivation of ζ is given in
Appendix B.

Equation (17) can be regarded as an equation with a single
complex variable E , as λα,i are all related to E through
Eq. (15). Solution of Eq. (17) thus determines the bulk energy
spectrum. This is confirmed in Figs. 2(a) and 2(b), where
the solution of Eq. (17) agrees well with the numerically
calculated energy spectrum of the domain wall system. More
importantly, as E varies, the trajectories of λα,i on the com-
plex plane can be related to generalized Brillouin zones. In
Figs. 2(c) and 2(d) we plot λα,i in the complex plane. In the
Hermitian limit (γ = 0), λα,i are all located on a unit circle
on the complex plane. Thus one can identify them as λα,1 =
eik and λα,2 = e−ik , in which case Eqs. (11) and (12) are
reduced to the Bloch wave functions, and arg(λ) correspond
to quasimomenta k in the Brillouin zone. In contrast, when the
Hamiltonian becomes non-Hermitian, λα,i are deformed from
the unit circle, which give rise to deformed Brillouin zones.
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FIG. 2. (a) and (b) Theoretical (black lines) and numerical (green
dots) results of bulk-state energy spectrum. The length of chain is
NL = NR = 20 for (a) and NL = NR = 40 for (b). (c) Non-Bloch
Brillouin zones of the left bulk, represented by λL,1 (red dash-dotted
line) and λL,2(blue dashed line) on the complex plane. (d) Non-Bloch
Brillouin zones of the right bulk, represented by λR,1 (red dash-dotted
line) and λR,2(blue dashed line) on the complex plane. In (c) and (d),
we take the thermodynamic limit NL = NR → ∞, and we also plot
the Bloch Brillouin zones with black solid lines for comparison. For
all subplots, we take t L

1 = −t2, tR
1 = 1.5t2, γ = 1.33t2.

Different from a non-Hermitian SSH model with an open
boundary condition, under the domain wall configuration that
we consider here, one can define four different deformed
Brillouin zones. Nevertheless, in the next section, we will
show that non-Bloch bulk-boundary correspondence can still
be established based on winding numbers defined on these
deformed Brillouin zones.

IV. NON-BLOCH TOPOLOGICAL INVARIANTS

We now calculate non-Bloch winding numbers by deform-
ing the Brillouin zone using parameters of the bulk-state wave
functions. Replacing eik with λα,i in hα (k) and defining pα,i as
the phase of λα,i, we have the non-Bloch Hamiltonian

H̃α,i(k) = h̃x
α,iσx + h̃y

α,iσy, (18)

where

h̃x
α,i = tα

1 + t2
|λα,i(pα,i )|eipα,i + 1

|λα,i (pα,i )|e
−ipα,i

2
, (19)

h̃y
α,i = γ

2
i + t2

|λα,i(pα,i )|eipα,i − 1
|λα,i (pα,i )|e

−ipα,i

2i
. (20)

We obtain non-Bloch winding numbers by replacing hx(y)
α

with h̃x(y)
α in Eq. (6):

ν̃α,i = 1

2π

∫
d pα,i

−h̃x
α,i

∂ h̃y
α,i

∂ pα,i
+ h̃y

α,i
∂ h̃x

α,i

∂ pα,i(
h̃x

α,i

)2 + (
h̃y

α,i

)2 . (21)
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FIG. 3. (a)–(c) Contour plots of absolute values of the energy-spectrum minimum on the t L
1 –tR

1 plane. Here we take NL = NR = 40. We also
take γ = 0 for (a), γ = 0.67t2 for (b), and γ = 1.33t2 for (c). The black solid lines are given by t L

1 = tR
1 , where the domain wall configuration

is reduced to a single homogeneous bulk with a periodic boundary condition. The magenta dashed lines are given by tL
1 = −tR

1 , where the
bulk-state wave functions satisfy |λL,1| = |λL,2|, the same as those under the open-boundary condition. The red dashed-dotted line in (a)–
(c) correspond to parameters we use in (d)–(f) with tR

1 = 1.5t2. (d)–(f) The absolute values of the energy spectrum (upper panels) and various
winding numbers (lower panel). In the lower panel, we show the Bloch winding numbers for the left bulk νL (magenta dashed lines) and the
right bulk νR (black dashed lines), as well as non-Bloch winding numbers for the left bulk ν̃L (red solid lines) and the right bulk ν̃R (blue solid
lines).

In Appendix C we prove ν̃α,1 = ν̃α,2(α = L, R), so that we
can denote ν̃α,1 = ν̃α,2 = ν̃α . The two deformed Brillouin
zones give the same winding number, consistent with the
requirement of bulk-boundary correspondence.

In Figs. 3(a)–3(c) we show eigenenergy minima on the
tL
1 -tR

1 plane. Zero-energy modes exist in dark blue regions,
where finite winding-number difference should exist as dic-
tated by the bulk-edge correspondence. Furthermore, param-
eters for the right and left bulks are identical when tL

1 = tR
1

(black lines), in which case the system becomes homoge-
neous. It follows that the Bloch wave-vector k is a good quan-
tum number and the energy spectrum is dictated by the Bloch
Hamiltonian Eq. (3). As we show in Fig. 3, gapless points
along these black lines occur at tα

1 = ±t2 ± γ /2, consistent
with those predicted by Eq. (4).

In contrast, for the case of tL
1 = −tR

1 (magenta dashed
lines), the winding numbers of domain wall systems become
the same as those of open-boundary systems under the same
parameters (tL

1 = −tR
1 ). This is seen by rewriting Eq. (15)

as

E2 =
(

tL
1 − γ

2
+ t2λL,i

)(
tL
1 + γ

2
+ t2

1

λL,i

)
, (22)

E2 =
(

tL
1 + γ

2
− t2λR,i

)(
tL
1 − γ

2
− t2

1

λR,i

)
, (23)

from which we deduce λL,i = −1/λR,i. Assuming N to be an
even number, we reduce Eq. (16) into

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)

×
[

1 −
(

−λL,1

λL,2

)N
][

1 −
(

λL,2

λL,1

)N
]

= 0. (24)

This implies |λL,1| = |λL,2| and |λR,1| = |λR,2| in the limit of
NL = NR → ∞, which coincide with conditions of an open-
boundary system [10]. Accordingly, the gapless points on

magenta dashed lines are given by tL
1 = −tR

1 = ±
√

t2
2 + γ 2

4 .
The validity of the non-Bloch bulk-boundary correspon-

dence is confirmed in Figs. 3(d)–3(f), where we compare
non-Bloch and Bloch winding numbers with the numerical
energy spectrum. In the Hermitian case γ = 0, non-Bloch
and Bloch winding numbers give the same results, as the
system has no zero modes when (|tL

1 | − |t2|)(|tR
1 | − |t2|) > 0.

As γ increases, difference in the non-Bloch winding numbers
of the two bulks correctly give the number of topologically
protected zero modes, whereas the Bloch winding numbers
fail to do so. Furthermore, we note that the non-Bloch winding
number of a given bulk typically varies with parameters
of the other bulk, an important feature of the domain wall
configuration. For instance, ν̃R changes from 0 to 0.5 around
tR
1 ≈ 0.16 in Fig. 3(f), whereas all parameters of the right

bulk stay the same. We note that, due to finite-size effects

035102-4



NON-BLOCH TOPOLOGICAL INVARIANTS IN A … PHYSICAL REVIEW B 100, 035102 (2019)

FIG. 4. Norm of eigenstate wave functions on sublattice a (upper row) and site b (lower row) with increasing γ . The black lines correspond
to bulk-state wave functions and the red lines correspond to zero-mode wave functions. In (a) and (d) we have γ = 0; in (b) and (e) γ = 0.11t2;
in (c) and (f) γ = 1.33t2. Other parameters are t L

1 = −0.1t2, tR
1 = 1.5t2, and NL = NR = 40.

[33], edge-state energies in Fig. 3 not exactly zero and they
merge smoothly into the bulk-state spectrum in the vicinity
of phase boundaries. However, for our numerical calculation
with NL = NR = 40, the system is already sufficiently large
such that we are able to confirm the validity of non-Bloch
winding numbers despite small finite-size effects.

In Fig. 4 we plot both bulk-state wave functions and those
of zero modes. In the Hermitian case [see Figs. 4(a) and 4(d)],
bulk states are extended and zero modes are all localized at
the two boundaries. In contrast, in the non-Hermitian case
[see Figs. 4(b), 4(c), 4(e), and 4(f)], all bulk states are local-
ized. Since localization of bulk-state wave functions can be
understood from Eqs. (11) and (12), when |λL,i| (|1/λR,i|) is
larger, the corresponding bulk states become more localized.
We have numerically confirmed this point for bulk states
appearing in Fig. 4.

Furthermore, the localization of zero-mode wave functions
are parameter dependent in the non-Hermitian case. As γ

increases from zero, the occupation of zero modes near the
boundary j = 1, NL + NR on sublattice site a decreases grad-
ually, whereas for large enough γ zero-mode wave functions
are completely localized near j = NL. Conditions for the
location of zero modes can be derived by setting E = 0 in
Eq. (8). Defining ra(b) := ψa(b), j+1

ψa(b), j
for j ∈ Jα , we have for the

zero modes

rα
a =

(
tα
1 − γ

2

)
t2

, (25)

rα
b = t2(

tα
1 + γ

2

) . (26)

Apparently, in the presence of zero modes and when |rL
a(b)| < 1

or |rR
a(b)| > 1, the zero modes on sublattice site a(b) are

localized around j = 1 and j = NL + NR. In contrast, when
|rL

a(b)| > 1 or |rR
a(b)| < 1, the zero modes on sublattice site a(b)

are localized around j = NL.

V. NON-BLOCH TOPOLOGICAL
INVARIANTS WITH NR �= NL

In this section we study non-Bloch winding numbers for
NR �= NL. We define the length ratio rN = NR/NL. For rN �= 1,
we simply replace λR,i with λ

rN
R,i in Eq. (17) (see Appendix B).

Then the ζ function also becomes a function of rN , from which
we calculate the rN -dependent winding numbers. We show the
phase diagram of the non-Bloch winding-number difference
on the plane of tR

1 -ln(rN ) in Fig. 5(a). In Figs. 5(b) and 5(c)
we confirm that non-Bloch winding numbers still dictate the
number of zero modes in the case of rN �= 1.

Notice that in the limit of rN → ∞, we can neglect the con-
tribution of λ

NL
L,i in Eq. (16). We can then derive the non-Bloch

winding number of the right bulk without any information
of the left bulk. Equation (17) is then reduced to |λR,1| = 1
or |λR,2| = 1. Therefore, the non-Bloch winding number of
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FIG. 5. (a) Topological phase diagram in the plane of t L
1 –ln(rN )

with the parameters tR
1 = 1.5t2 and γ = 1.33t2. The violet region has

a vanishing non-Bloch winding-number difference �ν = ν̃R − ν̃L =
0, and the green region has a finite difference �ν = 1. The red
and blue dashed lines correspond to the parameters in (b) and (c),
respectively. (b) and (c) The absolute values of the energy spectrum
(upper panel) and the non-Bloch winding number difference (lower
panel). We take NR = 4NL = 80 in (b), and 2NR = NL = 60 in (c).

the right bulk is the same as the Bloch one. Similarly, when
rN → 0, the non-Bloch winding number of the left bulk is the
same as the Bloch one as |λL,1| = 1 or |λL,2| = 1.

VI. SUMMARY

We have systematically studied non-Bloch winding num-
bers and zero modes for a non-Hermitian SSH model in a
domain wall configuration on a ring. Similar to the non-
Hermitian SSH model with open boundary conditions, the
calculation of the non-Bloch winding numbers require in-
formation of bulk-state wave functions. However, in contrast
to systems with open boundary conditions, here both bulk-
state wave function and the non-Bloch winding numbers of
either bulk are dependent on parameters of the other bulk.
Our results demonstrate the importance of boundary con-
ditions for systems with non-Hermitian skin effects, which
would be helpful for experimental studies of non-Bloch
bulk-boundary correspondence. They also imply rich phe-
nomena for non-Hermitian domain wall systems in higher
dimensions.
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APPENDIX A: BOUNDARY CONDITION

We need to consider the boundary condition in order to
determine φ

(i)
a,b, ϕ

(i)
a,b (i = 1, 2) explicitly. The domain wall

boundary condition is expressed as

Eψa,1 =
(

tL
1 + γ

2

)
ψb,1 + t2ψb,NL+NR , (A1)

Eψb,NL =
(

tL
1 − γ

2

)
ψa,NL + t2ψa,NL+1, (A2)

Eψa,NL+1 =
(

tR
1 + γ

2

)
ψb,NL+1 + t2ψb,NL , (A3)

Eψb,NL+NR =
(

tR
1 − γ

2

)
ψa,NL+NR + t2ψa,1. (A4)

Substituting Eqs. (11), (12), and (A1)–(A4), we have

M� = 0, (A5)

with

M (A6)

=

⎛
⎜⎜⎜⎜⎜⎝

−t2 −t2 t2λ
NR
R,1 t2λ

NR
R,2

−t2λ
NL+1
L,1 f1 −t2λ

NL+1
L,2 f2 t2g1λR,1 t2g2λR,2

t2λ
NL
L,1 t2λ

NL
L,2 −t2 −t2

t2 f1λL,1 t2 f2λL,2 −t2λ
NR+1
R,1 g1 −t2λ

NR+1
R,2 g2

⎞
⎟⎟⎟⎟⎟⎠

(A7)

and � = [φ(1)
b φ

(2)
b ϕ

(1)
b ϕ

(2)
b ]

T
. M is the coefficient ma-

trix from which we derive Eq. (15).

APPENDIX B: DERIVATION OF ζ

Starting from Eq. (16), we first derive Eq. (17) with N =
NR = NL and N → ∞. Without loss of generality, we assume
|λL,1| � |λL,2| and |λR,1| � |λR,2|. We then define

{η1, η2, η3, η4}
= {|λL,1λR,1|, |λL,1λR,2|, |λL,2λR,1|, |λL,2λR,2|}, (B1)

such that η1 is the largest and η4 is the smallest. Depending on
the detailed ordering of ηm (m = 1, 2, 3, 4) and 1, Eq. (16) can
be simplified in different ways. In the following, we discuss
these situations case-by-case.

In the case of η1 � 1, η2 � 1, and η3 � 1, we transform
Eq. (16) into

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)(λL,2λR,2)N

= −(λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1)[1 − (λL,2λR,2)N ],

(B2)

which necessarily leads to |λL,2λR,2| = 1. This is because if
|λL,2λR,2| > 1 or |λL,2λR,2| < 1, Eq. (B2) becomes

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)

= (λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1), (B3)

or

(λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1) = 0, (B4)

where the absence of N makes these equations unable to
describe all the bulk states [10].

In the case of η1 � 1, η2 � 1, η3 � 1, and η4 � 1, Eq. (16)
reduces to

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)(λR,1)N

= (λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1)(λR,2)N . (B5)

It follows that |λR,1| = |λR,2|.
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In the case of η1 � 1, η3 � 1, η2 � 1, and η4 � 1, Eq. (16)
reduces to

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)(λL,1)N

= (λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1)(λL,2)N , (B6)

which gives |λL,1| = |λL,2|.
Finally, in the case of η2 � 1, η3 � 1, and η4 � 1, Eq. (16)

becomes

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)

= (λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1)[1 − (λL,1λR,1)N ],

(B7)

which leads to |λL,1λR,1| = 1.
Summarizing these four different cases, we define

ζ (λL,1, λL,2, λR,1, λR,2)

=

⎧⎪⎨
⎪⎩

|λL,2λR,2| − 1
|λR,1| − |λR,2|
|λL,1| − |λL,2|
|λL,1λR,1| − 1

η1 � 1 ∧ η2 � 1 ∧ η3 � 1,

η1 � η2 � 1 � η3 � η4,

η1 � η3 � 1 � η2 � η4,

η2 � 1 ∧ η3 � 1 ∧ η4 � 1,

(B8)

where the roots of ζ (λα,i ) = 0 give the bulk-state energy
spectrum.

As for the case with NL �= NR, we rewrite Eq. (16) in the
following form:

[1 − (λL,1λ
rN
R,1)N ][1 − (λL,2λ

rN
R,2)N ]

(λL,1 f1 − λR,1g1)(λL,2 f2 − λR,2g2)

= [1 − (λL,1λ
rN
R,2)N ][1 − (λL,2λ

rN
R,1)N ]

(λL,1 f1 − λR,2g2)(λL,2 f2 − λR,1g1)
. (B9)

It follows that Eq. (17) can be transformed into

ζ
(
λL,1, λL,2, λ

rN
R,1, λ

rN
R,2

) = 0, (B10)

where rN = NR/NL.

APPENDIX C: PROOF OF ν̃α,1 = ν̃α,2

In this Appendix we prove that the two different non-Bloch
Brillouin zones constructed from the solutions of Eq. (15) of
the same bulk yield the same non-Bloch winding numbers. For
this purpose, we start by clarifying the geometrical meaning
of non-Bloch winding numbers.

Starting from Eq. (21), we adopt the same procedure as in
Ref. [31] and split the winding-number integral into two parts:

ν̃α,i = ν̃
(1)
α,i + ν̃

(2)
α,i

2
=

∫
dθ

(1)
α,i + ∫

dθ
(2)
α,i

2
. (C1)

FIG. 6. Illustration of �n(1)
α,i and �n(2)

α,i, where the blue (i = 1) and
red (i = 2) lines correspond to vectors associated with distinct non-
Bloch Brillouin zones. The nx (ny) axis represents x (y) coordinates
of vectors �n(1)

α,i and �n(2)
α,i. Here we take tR

1 = 1.5t2, t L
1 = −0.1t2, γ =

1.33t2, and rN = 1.

Here the index i = (1, 2) denotes the two distinct non-Bloch
Brillouin zones, α denotes the left bulk or right bulk, and θ

(1)
α,i

and θ
(2)
α,i are defined as the polar angles of the vectors

�n(1)
α,i = (

Reh̃x
α,i − Imh̃y

α,i, Reh̃y
α,i + Imh̃x

α,i

)
, (C2)

�n(2)
α,i = (

Reh̃x
α,i + Imh̃y

α,i, Reh̃y
α,i − Imh̃x

α,i

)
. (C3)

Substituting the real and imaginary parts of Eq. (19) into
Eqs. (C2) and (C3), we have

�n(1)
α,i =

(
tα
1 − γ

2
+ t2|λα,i| cos pα,i, t2|λα,i| sin pα,i

)
, (C4)

�n(2)
α,i =

(
tα
1 + γ

2
+ t2

1

|λα,i| cos pα,i, t2
1

|λα,i| sin pα,i

)
. (C5)

In Fig. 6 we show an example of �n(1)
α,i and �n(2)

α,i. Geo-

metrically, the winding number ν̃
(1)
α,i (ν̃ (2)

α,i ) of a given bulk

is the number of times �n(1)
α,i (�n(2)

α,i) winds around the origin
as the corresponding non-Bloch Brillouin zone is traversed.
For instance, in Fig. 6, we have ν̃

(1)
L,i = ν̃

(2)
L,i = 1 and ν̃

(1)
R,i =

ν̃
(2)
R,i = 0.

To demonstrate the equivalence of different non-Bloch
Brillouin zones of a given bulk in defining non-Bloch winding

numbers, we further define cα = tα
1 − γ

2
tα
1 + γ

2
. Using Eq. (15) we

have

λα,1λα,2 = |λα,1|eipα,1 |λα,2|eipα,2 = cα, (C6)

which implies |λα,1||λα,2| = |cα| and pα,1 + pα,2 =
ln[sgn(cα )]. We then have

�n(1)
α,1 =

(
tα
1 − γ

2
+ t2|λα,1| cos pα,1, t2|λα,1| sin pα,1

)
= cα

(
tα
1 + γ

2
+ t2

1

|λα,2| cos pα,2, t2sgn(cα )
1

|λα,2| sin pα,2

)
(C7)

and

�n(1)
α,2 =

(
tα
1 − γ

2
+ t2|λα,2| cos pα,2, t2|λα,2| sin pα,2

)
= cα

(
tα
1 + γ

2
+ t2

1

|λα,1| cos pα,1, t2sgn(cα )
1

|λα,1| sin pα,1

)
. (C8)
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It is straightforward to show that �n(1)
α,1 = cα�n(2)

α,2 (cα �̃n(2)
α,2)

when cα > 0 (cα < 0), and �n(1)
α,2 = cα�n(2)

α,1 ( cα �̃n(2)
α,1) when cα >

0 (cα < 0). Here �̃nα is defined as the inversion-symmetric
counterpart of �nα with respect to the x axis. From the geo-
metric picture, it is easy to establish that the winding number
associated with �n(2)

α,2 (�n(1)
α,2) is the same as that associated with

�n(1)
α,1 (�n(2)

α,1), such that

ν̃
(1)
α,1 = ν̃

(2)
α,2, (C9)

ν̃
(2)
α,1 = ν̃

(1)
α,2. (C10)

Therefore, we have ν̃α,1 = ν̃α,2 according to Eq. (C1). Again,
a concrete example is shown in Fig. 6.
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