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Effects of phase coherence on local density of states in superconducting proximity structures
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We theoretically study the local density of states in superconducting proximity structures where two
superconducting terminals are attached to a side surface of a normal-metal wire. Using the quasiclassical Green’s
function method, the energy spectrum is obtained for both spin-singlet s-wave and spin-triplet p-wave junctions.
In both cases, the decay length of the proximity effect at zero temperature is limited by a depairing effect due to
inelastic scattering. In addition to the depairing effect, in p-wave junctions the decay length depends sensitively
on the transparency at the junction interfaces, which is a unique property of odd-parity superconductors where
the anomalous proximity effect occurs.
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I. INTRODUCTION

The proximity effect is a phenomenon observed in a normal
metal (N) attached to a superconductor (SC) [1]. Cooper pairs
penetrating into an N causes superconducting-like phenomena
such as the screening of magnetic fields and the suppression
of the local density of states (LDOS) at the Fermi level (zero
energy). The penetration length of Cooper pairs is limited
by the thermal coherence length ξT = √

D/2πT , where D
is the diffusion constant in the N and T is the temperature.
Indeed, the Josephson current is present only when the spac-
ing between two SCs L1 is shorter than ξT [2]. Although ξT is
the typical length scale of the proximity effect, Volkov and
Takayanagi (VT) have shown that the characteristic length
depends on observables [3,4]. They studied the conductance
of an N wire whose side surface is connected to two supercon-
ducting terminals [see Fig. 1(b)]. The conductance depends
on the phase difference of the two SCs even when L1 � ξT

[3,4]. Thus this phenomenon is named the long-range phase-
coherent effect.

The analysis by VT is unfortunately restricted to the weak-
proximity-effect regime, where the solutions of the linearized
Usadel equation describe the long-range phase-coherent ef-
fect. However, the magnitude of the proximity effect is gen-
erally sensitive to the transparency of an N/SC interface and
the pairing symmetry of the SC. The strong proximity effect
leads to a gaplike energy spectrum at low energy in the LDOS
[5–8]. The boundary condition for the quasiclassical Green’s
function [9–12] enables this analysis.

Taking the essence of the circuit theory [11,12] into ac-
count, a boundary condition for the quasiclassical Usadel
Green’s function at an N/SC interface has been derived
[13–16]. This boundary condition enables us to describe
junctions of unconventional SCs such as high-Tc cuprate, spin-
triplet SCs, and topological SCs. It has been well established
that the Andreev bound states [17–22] (ABSs) due to the
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FIG. 1. Schematics of (a) T-shaped and (b) Volkov-Takayanagi
(VT) junctions. The N’/DN interfaces are located at x = ±L, where
N’ indicates an N lead. The barrier potential is present only at
the S/DN interfaces. The widths and the thickness of the wires
are assumed much narrower and thinner than the coherence length.
The superconductor(s) is attached to the DN at x = 0 in (a) and at
x = ±L1 (b). The superconductors have the phase difference δ� in
(b). Schematics of the (c) s-wave and (d) p-wave pair potentials in
momentum space. The inner circles indicate the Fermi surface. The
sign means the phase of the pair potential.
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unconventional pairing [20] modifies the proximity effect
in various ways. In an N/d-wave junction, the proximity
effect can not contribute to ensemble-averaged values over
random-impurity configurations [15,16]. However, the am-
plitude of the Josephson current in each d-wave/N/d-wave
junction can exceed the ensemble-averaged Josephson cur-
rent for the s-wave/N/s-wave junctions [23,24]. Spin-triplet
pairings [25–36] cause several anomalies (i.e., the anomalous
proximity effect) such as large zero-energy peaks in the LDOS
in the N [13,14,37,38] and resonant charge transport through
a dirty N [13,14,37–42]. The anomalous proximity effect
is a result of the penetration of the ABSs into the N or
equivalently the appearance of odd-frequency Cooper pairs
in the N [40,43–55]. Such unusual phenomena have attracted
much attention these days because they are equivalent to
the physics of Majorana fermions appearing topologically
nontrivial SCs [56–78]. At present, however, we do not know
how the anomalous proximity effect modifies the long-range
phase-coherent phenomena.

In this paper, we study the LDOS in a wire of a diffusive
normal metal (DN) by solving numerically the quasiclassi-
cal Usadel equation in the regime of the strong proximity
effect. We consider two types of proximity structures: the
T-shaped junction shown in Fig. 1(a) and the VT junction
shown in Fig. 1(b). We found in the T-shaped junction that the
quasiparticle density of states depends strongly on the barrier
potential at the junction interface. In the VT junction, the
LDOS between the two superconducting electrodes depends
sensitively on the phase difference of the two superconducting
electrodes. In an in-phase junction, the LDOS in DN between
the s-wave (p-wave) superconducting electrodes shows the
zero-energy dip (peak), whereas such dip and peak structures
vanish in an out-of-phase junction because of the destructive
interference of Cooper pairs. In an s-wave junction, the phase-
coherent effect is spatially limited by a decay length due to the
depairing of Cooper pairs. In a p-wave junction, in addition
to the depairing effect, the low transparency at the junction
interface limits the long-range phase-coherent effect as well.

This paper is organized as following. In Sec. II, the
Keldysh-Usadel formalism and the system we consider are
explained. In Sec. III, we discuss the calculated LDOS for the
T-shaped junction. In Sec. IV, we show the LDOS in the VT
junction and discuss the long-range coherence. In particular,
we focus on the junction length and depairing-ratio dependen-
cies of the LDOS. We summarize this paper in Sec. V.

II. KELDYSH-USADEL FORMALISM

A. Usadel equation

In this paper, we consider the junctions of a DN where
superconducting (S) wires are attached to a side surface of
the DN as shown in Fig. 1. We refer to the junction shown in
Figs. 1(a) and 1(b) as T-shaped and VT junctions, respectively.
In the T-shaped junction, a narrow S wire is attached to a
wire of the DN at |x| < w/2 and y = 0 with a finite interface
resistance Rb, where w is the width of the S arm which
is much shorter than the superconducting coherence length
in the diffusive system ξ0 = √

D/2πTc. In the VT junction,
narrow S wires are attached at |x ∓ L1| < w/2. The DN is

connected to lead wires of clean N at x = ±L, but sufficiently
narrow and thin in the y and z directions [i.e., Ly(z) � ξ0].

The Green’s function in the DN obeys the Usadel equation
[79],

D∇(G∇G) + i[H,G]− = 0, (1)

G(r, ε) =
(

ǧR(r, ε) ǧK (r, ε)
0 ǧA(r, ε)

)
, (2)

where D is the diffusion constant in the DN, ǧX with X =
K, R, and A are the Keyldysh, retarded, and advanced compo-
nents of the Usadel Green’s function, and H = diag[ȞR, ȞA].
Assuming the width of the DN is much narrower than ξ0,
we can ignore the spatial variation of the Green’s function
in the y direction in the DN. Namely, one needs to consider
a quasi-one-dimensional diffusive system where the Usadel
equation is reduced to

D∂x(G∂xG) + i[H,G]− + S�S (x) = 0, (3)

where the last term S(x, ε) represents effects of the S wires
(see Appendix A for details). The source term S(x, ε) is
reduced from the boundary condition in the y direction [3,4].
The steplike function is unity only at the place where the S
wires are attached: �S (x) = �(w/2 − |x|) for the T-shaped
junction and �S (x) = �(w/2 − |x − L1|) + �(w/2 − |x +
L1|) for the VT junction. In this paper, the symbols written
in bold mean matrices in the Keldysh space, and the accents ·̌
and ·̂ mean matrices in particle-hole space and spin space. The
identity matrices in particle-hole and spin space are respec-
tively denoted by τ̌0 and σ̂0. The Pauli matrices are denoted
by τ̌ j and σ̂ j with j ∈ [1, 3]. The Keldysh-Usadel equation
is supplemented by the so-called normalization condition:
GG = 1. The Keldysh Green’s function can be obtained from
the following relation:

ǧK = ǧRF̌ − F̌ ǧA, (4)

F̌ = τ̌0 fL + τ̌3 fT , (5)

where fL and fT = fT (x, ε) are the distribution func-
tions which are given by fL = tanh(ε/2T ) and fT = 0 in
equilibrium.

The LDOS is related to the retarded and advanced compo-
nents of the Usadel Green’s function. The Usadel equation for
X = R and A is given by

D∂x(ǧX ∂xǧX ) + i[ȞX , ǧX ]− + ŠX �S (x) = 0, (6)

ǧX (x, ε) =
[

ĝX f̂ X

− f̂
˜

X −ĝX

]
, (7)

where ȞX = εX τ̌3. The factor εX depends on X : εR = ε + iγ
and εA = ε − iγ , where ε and γ are the energy and the
depairing ratio. In the Dynes formulation, we can discuss the
depairing effect due to, for example, inelastic scattering by
introducing γ [80–84]. In this paper, we assumed that there
is no spin-dependent potential, that the Cooper pairs have one
single-spin component (i.e., �̂ = �μiσ̂μσ̂2 with �μ being the
scalar pair potential), and the phase difference between two
SCs is δ� = 0 or π (i.e., no-current states). In this case, one
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can parametrize the matrix structure of the Green’s functions
as follows:

ĝX = σ̂0gX , (8)

f̂ X = f X
μ (iσ̂μσ̂2), f̂

˜

X = f X
μ (iσ̂2σ̂μ), (9)

where μ is related to the direction of the synthetic spin of
Cooper pairs: μ = 0 and μ = 1–3 correspond to the spin-
singlet and spin-triplet pairings. The Usadel equation can be
simplified by this parametrization:

D∂x(g̃X ∂xg̃X ) + i[εX τ̃3, g̃X ]− + S̃X �S (x) = 0, (10)

g̃X (x, ε) =
(

gX f X

− f X −gX

)
, (11)

where we have introduced the symbol ·̃ meaning a 2 × 2
matrix in spin-reduced particle-hole space [e.g., ǧX (x, ε) =
g̃X (x, ε) ⊗ σ̂0]. Here we assumed the phase difference be-
tween two SCs is 0 or π , which simplifies the relation between
f X and f

˜

X as discussed in the Appendix B.
The standard angular parametrization makes the Usadel

equation much simpler [5,6,8]. The Green’s function can be
well parametrized by the following parameterization:

g̃X = τ̃3 cosh θ + iτ̃2 sinh θ, (12)

=
[

cosh θ sinh θ

− sinh θ − cosh θ

]
, (13)

where we omit the index X from θ = θX (x, ε). This
parametrization always satisfies the normalization condi-
tion: g̃X g̃X = τ̃0. The Usadel equation is reduced by this
parametrization:

D
∂2θ

∂x2
+ 2iεX sinh θ + �S (x)S(x, ε) = 0. (14)

B. Effects of superconducting terminals

The last term on the left-hand side of Eq. (14) [i.e., S(x, ε)]
represents the effect of the S arms attached to the side surface
of the DN [5,8]. The typical boundary conditions [9,10] are
no longer available for junctions of unconventional SCs [85].
To discuss the proximity effect by unconventional pairings,
one must employ the so-called Tanaka-Nazarov condition
[13,14], which is an extension of the circuit theory [11,12].
The source term S is derived from the boundary condition
in the y direction. We employ the Tanaka-Nazarov boundary
condition discussed in Refs. [13–16],

dθ

dȳ

∣∣∣∣
y=0

= RN

RbL̄y
〈F 〉φ, (15)

F = −2TN ( fS cosh θ0 − gS sinh θ0)

(2 − TN )� + TN (gS cosh θ0 − fS sinh θ0)
, (16)

where RN = ρN Ly/Lzw, ρN and Rb are the specific resistance
of the DN and the interface resistance at the NS inter-
face, ȳ = y/ξ0, and L̄y = Ly/ξ0. The angle-dependent function
TN (φ) = cos2 φ/(cos2 φ + z2

0 ) is the transmission coefficient

of the N/N interface at y = 0 with the δ-function barrier
potential h̄vF z0δ(y), φ is the angle of the momentum mea-
sured from the ky axis, and θ0(x) = θ (x)|y=0. The angle φ is
measured from the y axis. The angular bracket means angle
average: 〈· · · 〉φ ≡ (

∫ π/2
−π/2 · · · cos φdφ)(

∫ π/2
−π/2 TN cos φdφ)−1

.

The functions gS and fS can be obtained from the Green’s
functions in a homogeneous ballistic SC:

gS = gS+ + gS−, (17)

fS =
{

fS+ + fS− for singlet SCs

i(gS− fS+ − gS+ fS−) for triplet SCs,
(18)

gS±(φ) = ε√
ε2 − |�±|2 , fS±(φ) = �±√

ε2 − |�±|2 ,

(19)

� = 1 + gS+gS− − fS+ fS−, (20)

where the symbol X has been omitted and �+(φ) = �−(π −
φ). The pair potential depends on the pairing symmetry of the
SC:

�+(φ) =
{
�0 for an s-wave

�0 cos φ for a p-wave,
(21)

where �0 ∈ R is the amplitude of the pair potential in a
homogeneous SC.

The spatial derivative in the y direction in Eq. (1) is reduced
into the source term [3,4] given by

S(x, ε) = D

ξ 2
0

γ −1
B 〈F (x, ε, φ)〉φ, (22)

where γB = RbL̄2
y/RN is the dimensionless parameter. The

parameters γB and z0 can be determined independently. The
interface potential z0 determines Rb because it determines the
transparency TN , whereas γB determines how the effect of
the SC wire is significant. In numerical simulations, it may
be useful to introduce the dimensionless units: x̄ = x/ξ0 and
ε̄ = ε/�0. In this unit, the Usadel equation is reduced to

∂2θ

∂ x̄2
+ 2iε̄�0 sinh θ + �S

〈F 〉φ
γB

= 0, (23)

where �0 = �0/2πTc. Equation (23) shows that the larger γB

results in the weaker proximity effect.
The diffusivity changes the symmetry of Cooper pairs

because only the isotropic s-wave pairs can survive in diffu-
sive systems. In the present case, the symmetry of S wires
determines the symmetry of the Cooper pairs induced in the
DN. In the s-wave junction, spin-singlet s-wave Cooper pairs
are induced, whereas spin-triplet s-wave Cooper pairs are
induced in the p-wave junction [43,44]. To satisfy the Fermi-
Dirac statistics, the spin-triplet Cooper pairs must belong to
the odd-frequency pairing symmetry [86].

C. Boundary conditions

The Usadel Eq. (14) is supplemented by the boundary
conditions. The boundary conditions for the T-shaped junction
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FIG. 2. Deviations of the densities of states δν(x, ε) in the T-
shaped junction with an s-wave superconducting wire. The results
are obtained at x = 0, ξ0, 2ξ0, 3ξ0, 4ξ0. The barrier parameter is set
to γB = 1 in (a), (b), and (c), γB = 3.33 in (d). The interface-potential
parameter is set to z0 = 0.1 in (a), 1.0 in (b) and (d), and 3.0 in (c).
The length of the DN is set to L = 6ξ0. A superconductor with a
width w = 0.3ξ0 is attached to the DN at x = 0. The depairing ratio
is set to γ = 0.01�0. The structures such as coherence peak and
low-energy dip become sharper with increasing z0. The amplitude
becomes smaller with increasing γB.

and the VT junction without a phase difference are given by

θ (x, ε)

∣∣∣∣
x=±L

= 0,
dθ (x, ε)

dx

∣∣∣∣
x=0

= 0. (24)

The boundary conditions for the VT junction with the π -phase
difference is given by

θ (x, ε)

∣∣∣∣
x=±L

= 0, θ (x, ε)

∣∣∣∣
x=0

= 0. (25)

The details are written in the Appendix B.
The LDOS ν(x, ε) can be obtained from the Green’s

function,

ν(x, ε) = ν0

8
Tr[τ̌3(ǧR − ǧA)], (26)

where ν0 is the density of states per spin at the Fermi level in
the normal states. In proximity structures, it is convenient to
introduce the deviation of the LDOS:

δν(x, ε) = ν(x, ε) − ν0

ν0
. (27)

We solve numerically Eq. (23) using the so-called forward
elimination, backward substitution method.

III. T-SHAPED JUNCTIONS

We first discuss the roles of the important interface param-
eters (i.e., z0 and γB). The deviation of the LDOS δν(x, ε),
which is given in Eq. (27), in the T-shaped junction with an
s-wave SC are shown in Fig. 2. The deviation δν is obtained
at x = 0 (beneath the S wire), ξ0, 2ξ0, 3ξ0, 4ξ0. The length
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FIG. 3. Deviations of the densities of states δν(x, ε) in the T-
shaped junction with a p-wave SC. The parameters are set to L =
10ξ0, w = 0.3ξ0, and γ = 0.01�0. The zero-energy peak appears
because of the p-wave nature. The zero-energy peak becomes nar-
rower and higher with increasing the interface potential z0.

of the DN and the width of the S arm is set to L = 10ξ0 and
w = 0.3ξ0, respectively. The barrier parameter is set to γB = 1
in Figs. 2(a)–2(c), γB = 3.33 in (d). The interface-potential
parameter is set to z0 = 0.1 in Fig. 2(a), 1.0 in Figs. 2(b) and
2(d), and 3.0 in Fig. 2(c).

In an s-wave junction, the coherence peak appears beneath
the S arm at the energy ε ∼ �0 because of the proximity effect
[6–8]. Simultaneously, at low energy, an energy dip [6–8,87]
appears, reflecting the energy gap in the S arm [88]. The peak
height and dip depth monotonically decrease with increasing
the distance from the S terminal.

Comparing Figs. 2(a)–2(c), we can see that the coherence
peak around ε = �0 becomes sharper and higher as z0 in-
creases. On the other hand, the dip width in the energy and
real space do not strongly depends on z0. The dip width and
depth beneath the S arm are mainly determined by the spacing
between normal lead wires (i.e., 2L). We have confirmed that
the low-energy dip becomes narrower with increasing system
size [8]. Comparing Fig. 2(d) with 2(b), we can see that the
amplitude of δν becomes smaller with increasing the interface
resistance (i.e., increasing of γB). Contrary to the s-wave case,
in the T-shaped junction with a p-wave SC, the so-called zero-
energy peak appears as shown in Fig. 3 due to the anomalous
proximity effect by odd-frequency spin-triplet s-wave Cooper
pairs [13,14,38,43] where topologically protected zero-energy
states penetrate into the DN [41,42,89]. Differing from the
d-wave case (not shown), the zero energy peak can survive
in a p-wave junction even in a diffusive system reflecting the
orbital symmetry of odd-frequency pairing [43] and the topo-
logical nature of a p-wave SC [42,52,55]. The peak becomes
higher but narrower in energy space with increasing z0. The
peak width in real space, on the other hand, does not strongly
depend on the z0. As happened in the s-wave junctions, γB

basically changes only the amplitude of the deviation |δν|.
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FIG. 4. Correction of the local density of states (LDOS) in the
VT junction with s-wave superconducting arms. The phase differ-
ence is set to (a) δ� = 0 and (b) δ� = π . The results are obtained
between the center of the junction (i.e., x = 0) and the point where
a superconducting arm is attached (i.e., x = L1). The parameters
are set to L = 6ξ0, L1 = 5ξ0, w = 0.3ξ0, γ = 0.01�0, γB = 1, and
z0 = 1. The LDOS at the center of the junction is modified when
δ� = 0, whereas the correction vanishes when δ� = π . The results
mean Cooper pairs from each superconductor interfere in the DN.

The zero-energy anomaly in p-wave T-shaped junctions can
be observed by the charge transport measurements [38].

In the p-wave case, the ABSs are formed at zero energy by
the interference between the quasiparticles with ky and those
with −ky [22]. These ABSs penetrate into the DN because
of the resonance and modify LDOS. In the present case, the
large barrier potential z0 results in the small transmission
coefficient TN , which leads to more reflected quasiparticles.
As a result, the interference is enhanced and the zero-energy
peak becomes higher and sharper with increasing z0.

IV. VOLKOV-TAKAYANAGI JUNCTIONS

A. Quasiparticle spectrum

In a two-SC system such as Josephson junctions, the phase
difference between the two S wires significantly affects the
quasiparticle spectrum in the junction. The LDOS in the VT
junction with s-wave SCs are shown in Figs. 4(a) and 4(b),
where the phase difference is set to δ� = 0 and π , respec-
tively. The parameters are set to L = 6ξ0, L1 = 5ξ0, w =
0.3ξ0, γ = 0.01�0, γB = 1, and z0 = 1. When there is no
phase difference, there is an energy dip whose size is about
0.2�0 at the zero energy. This energy dip spreads between the
S arms even though the spacing between the two arms is set
to 2L1 = 10ξ0.

FIG. 5. LDOS in the VT junction with p-wave superconducting
arms. The parameters are set to L = 6ξ0, L1 = 5ξ0, w = 0.3ξ0, γ =
0.01�0, γB = 1, and z0 = 1. The parameters are set to the same
values as those used in Fig. 4. The zero-energy peak spreads spatially
between the two superconducting arms when δ� = 0, whereas it
vanishes when δ� = π because of the long-range phase coherence.

When the phase difference is δ� = π , the LDOS at the
center of the junction becomes completely flat as shown in
Fig. 4(b). In addition, even at intermediate points, the kink
around 0.2�0, which exists when δ� = 0, vanishes and δν is
more insensitive to ε. As a result, the energy dip is no longer
prominent in Fig. 4(b). This behavior can be interpreted in
terms of the destructive interference of Cooper pairs injected
from the S arms. The phase of the anomalous Green’s function
describing the Cooper pairs is related to the sign of the pair
potential. In the δ� = π junction, the Cooper pairs from
each arm have an opposite phase. In other words, the pair
amplitude of Cooper pairs perfectly cancel each other at the
center of a junction. As a consequence, the LDOS at the
center becomes completely flat. Reflecting this behavior, the
Green’s function has an additional symmetry in real space
f X (x, ε) = − f X (x, ε) (see Appendix B for details).

The LDOS in the p-wave VT junctions are shown in
Figs. 5(a) and 5(b), where the phase difference is set to δ� =
0 and π , respectively. When δ� = 0, the zero-energy peak
spreads between the two S wires (i.e., |x| � L1). The peak is
the highest beneath the S wires and the lowest at the center of
the junction. The low-energy dip at the center of the junction
is more prominent than that beneath the S wire. The dip width
at x = 0 is about 0.2�0, which is comparable with that for the
s-wave case shown in Fig. 4(a). When δ� = π , as happened
in the s-wave VT junction, the LDOS is completely flat at
x = 0. Moreover, the height of the zero energy peak is lower
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FIG. 6. Junction-length dependence of the LDOS correction at
the center of VT junctions with (a) s-wave and (b) p-wave supercon-
ducting arms. The junction length is changed from L = 2ξ0 to 10ξ0,
where δ� = 0 and the interval between the superconducting wire
and the normal lead is fixed at L − L1 = ξ0. The other parameters
are set to w = 0.3ξ0, γ = 0.01�0, γB = 1, and z0 = 1.

than the δ� = 0 case due to the destructive interference of the
Cooper pairs injected from each SC.

Differing from the typical p-wave Josephson junction [39],
in the VT junction the most constructive and destructive in-
terferences occur when δ� = 0 and δ� = π , respectively. As
shown in Fig. 1(b), the S wires are attached to the side surface
which is normal to the y axis. On the contrary, in the typical
Josephson junction, px-wave SCs attached in the x direction.
In the p-wave VT junction without a phase difference, the
anomalous Green’s functions injected from both of the S wires
have the same sign. When the phase difference is π , however,
Cooper pairs from each S wire have opposite phases, which
leads to the destructive interference.

B. Junction-length dependence

The coherence is diminished with increasing the junction
length. The junction-length dependence of the LDOS at the
center of the VT junction with the s- and p-wave SCs are
plotted in Figs. 6(a) and 6(b), respectively. In the calculations,
we set the phase difference δ� = 0, z0 = 1, and L − L1 = ξ0.
In the s-wave VT junction, the LDOS shows a dip structure at
low energy even in a sufficiently long junction. This energy
dip becomes wider with decreasing the junction length. The
height of the coherence peak around ε = �0 strongly depends
on the junction length. With decreasing the junction length,
δν|ε=� is almost zero for L1 > 3ξ0, is negative for L1 = 3ξ0,
and becomes positive for L1 = ξ0. In the short-junction limit,
δν becomes qualitatively the same as that in the T-shaped
junction.

The coherence in a p-wave junction modifies the LDOS,
as happened in the s-wave case. As shown in Fig. 6(b), the

FIG. 7. Junction-length dependence of the LDOS at x = 0 and
ε = 0. The results for the s-wave case are shown in (a) and (c), where
as those for p-wave are in (b) and (d). The depairing ratio is fixed
at γ = 0.01�0 in (a) and (b), and γ = 0.01�0 in (c) and (d). The
other parameters are set to γB = 1 and L − L1 = ξ0. In s-wave cases,
the correction becomes small with increasing the barrier potential
z0, whereas it becomes large with increasing z0. The correction
decreases more rapidly with increasing L1 when γ is large.

zero-energy peak and the energy dip can be seen even when
L = 9ξ0. The width of the zero-energy peak in energy space
decreases monotonically with increasing the junction length.
The peak height at x = 0 and ε = 0 decreases monotonically
with increasing the junction length.

The junction-length dependence of the correction at ε = 0
and x = 0 (i.e., δν|x=ε=0) in the s-wave VT junction is shown
in Fig. 7(a), where the barrier parameter at the interface is
set to z0 = 0.1, 1.0, and 3.0, and the depairing ratio is set to
γ = 0.01�0. The amplitude of the correction |δν| decreases
with increasing the junction length where the curvature of
|δν| as a function of L1 is positive. We have confirmed that
the curvature changes at a certain length. In the long-junction
limit (i.e., L1 � ξ0), δν|x=ε=0 approaches to 0 (i.e., normal
state) where the VT junction can be regarded as a pair of two
T-shaped junctions. In the p-wave junction, the amplitude of
the correction |δν| decreases with increasing L1 as seen in the
s-wave case. However, contrary to the s-wave case, the degree
of correction decreases with increasing L1 more rapidly when
the magnitude of z0 is large. This behavior is unique to the
spin-triplet p-wave junction.
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FIG. 8. Depairing-ratio dependence of the LDOS correction at
x = 0 and ε = 0 for (a) an s-wave junction and (b) an p-wave
junction. The interface barrier and the junction length are set to
z0 = 1.0 or 0.1 and L/ξ0 = 4 or 8. The length L1 is fixed to L1 =
L − ξ0. The correction of the LDOS converges at a certain value
regardless of the junction length, meaning that the decay length of
δν is determined by γ .

The junction-length dependencies with a larger depairing
ratio γ = 0.1�0 are shown in Figs. 7(c) and 7(d). In both
the s- and p-wave cases, the amplitudes of δν are smaller
and decrease more rapidly compared with the results for γ =
0.01�0. When L1 = 9ξ0, the correction δν is almost zero in
all of the cases. Therefore, the decay length for |δν(x, ε =
0)| in the strong-proximity-effect regime would be mainly
determined by

√
D/γ , which is consistent with the s-wave

results with the weak-proximity effect [3].

C. Depairing-ratio dependence

In real samples, depairing effects such as inelastic scatter-
ing are inevitably present. We lastly discuss the γ dependence
of δν. The γ dependence of δν|x=ε=0 for s- and p-wave
junctions are shown in Figs. 8(a) and 8(b), respectively. The
junction length and the interface barrier are fixed at L/ξ0 = 4
or 8 and z0 = 0.1 or 1.0. The corrections for L/ξ0 = 4 and 8
approach to a certain value even though the distance between
the two S electrodes are different. We therefore can conclude
that the decay length of δν in the VT junction is determined by
γ . This behavior is consistent with that demonstrated within
the weak-proximity-effect approximation [3,4]. In the s-wave
case, the slopes of δν|x=0,ε=0 curves do not strongly depends
on z0.

As shown in Fig. 8(b), the decay length of δν is determined
by γ in the p-wave junction as well. The corrections at γ =
0.001�0 are almost independent of the junction length, mean-
ing the decay length for the p-wave junction is determined
by the depairing ratio γ as well. Contrary to the s-wave case,

FIG. 9. Depairing-ratio dependence of the normalized correc-
tion. The normalized correction δν(γ ) is given in Eq. (28). The
parameters are set to γB = 1, L = 8ξ0, and L − L1 = ξ0. For p-wave
junctions, the correction at the zero-energy depends strongly on
the interface barrier z0 because the large barrier potential results in
the high zero-energy peak.

however, the slopes for the p-wave junctions strongly depends
on z0.

We show the γ dependence of δν(γ ) in Fig. 9, where δν(γ )
is a function of γ normalized by its value at γ = 0.001�0;

δν(γ ) = δν(x = 0, ε = 0; γ )

δν(x = 0, ε = 0; γ = 0.001�0)
. (28)

We compare the following four cases: the p-wave junctions
with z0 = 0.1, 1.0, and 3.0 and the s-wave junction with
z0 = 0.1. Figure 9 clearly shows that the decay length for the
p-wave junction strongly depends on z0. The p-wave result
with z0 = 0.1 and the s-wave results with z0 = 0.1 are not
qualitatively different. Therefore, we conclude that the decay
length for the p-wave junction depends on the amplitude of
Cooper pairs injected by the proximity effect.

Differing from the N/DN/p-wave junction [14] where the
zero-energy LDOS at the DN/p-wave interface diverges as
∝ 1/

√
γ , the zero-energy correction δν(x, ε = 0) does not

diverge even when γ → 0 everywhere in the DN because our
system is essentially different from the system where a p-wave
SC is used as an electrode [14,37].

V. CONCLUSION

We have theoretically studied the quasiparticle spectrum
in a junction of a diffusive N where SCs are attached to its
side surface. We have considered two types of junctions: the
T-shaped junction where one SC is attached to the diffusive
N and the VT junction where two SCs are attached to it. In
the T-shaped junction, when the SC is spin-singlet s-wave,
the LDOS, which can be measured by scanning tunneling
spectroscopy measurements, has a dip structure which is
consistent with the standard proximity effect. On the other
hand, in the spin-triplet p-wave case, there is a zero-energy
peak in the LDOS due to the anomalous proximity effect
by odd-frequency pairing. The amplitude of the correction in
the LDOS strongly depends on the interface barrier. In the
p-wave case, in particular, the larger barrier results in the
larger density of states at the zero energy.
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In the VT junction, the phase difference between the two
SCs significantly affects the energy spectrum. In the s-wave
junction without a phase difference, the low-energy dip ap-
pears at the center of the junction. On the contrary, when
the phase difference is π , such a low-energy dip vanishes
and the LDOS at the center becomes one in the normal state
because of the destructive interference of Cooper pairs. When
spin-triplet p-wave SCs are employed instead of spin-singlet
s-wave SCs, the zero-energy resonant states appear. When
there is no phase difference, the zero-energy peak spreads
spatially between the two SCs, whereas the peak vanishes at
the center of the junction when the phases differ by π .

We have also studied the characteristic length scale of the
phase coherence. We have shown that, in both of the s-wave
and p-wave cases, the decay length of the zero-energy state is
mainly characterized by the depairing ratio γ by, for example,
inelastic scattering. We have demonstrated that the decay
length is not simply determined by γ for spin-triplet p-wave
junctions. The decay length for a p-wave junction depends
also on the quality of the interface because the strength of the
resonance depends strongly on the interface barrier potential.
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APPENDIX A: THE SOURCE TERM OF THE
USADEL EQUATION

The SC wire attached to the side surface of a DN modifies
the Usadel equation in a different way from, for example,
S/DN/N junctions. An important assumption in the following
discussion is that the DN wire is sufficiently narrower than ξ0,
with which we can ignore the y and z dependencies of G in
the DN. At the DN/SC interface, however, we cannot ignore
the y dependence because the SC wire affects G through an
interface.

The boundary condition at the interface may be
described by

(G∂yG)|y=0 = B(x), (A1)

where B(x) is calculated from G(x, y = 0+, ε) and G(x, y =
0−, ε) = GS (x, ε) with GS (x, ε) being the Green’s function
in the SC wire. In the above equation, we ignore the z
dependence of the Green’s function because Lz � ξ0. The
Usadel equation becomes

D∂x(G∂xG) + D∂y(G∂yG) + i[H,G]− = 0, (A2)

where we have ignored the z dependence of G. The spatial
derivative with respect to y is converted into the source term
through the boundary condition Eq. (A1). Since the DN wire
is sufficiently narrow, the y dependence of G in the DN is
negligible. In this case, it is useful to introduce the y-averaged
Green’s function: G′(x, ε) = ∫ Ly

0 Gdy/Ly. The first term in
Eq. (A2) becomes

D

Ly

∫ Ly

0
∂x(G∂xG)dy ≈ D∂x(G′∂xG

′), (A3)

where we assume that the y dependence of G(x, y, ε) is
negligibly small. The second term in Eq. (A2) becomes

D

Ly

∫ Ly

0
∂y(G∂yG)dy = D

Ly
[G∂yG]Ly

0 , (A4)

= −DB(x)/Ly, (A5)

≈ −DB′(x)/Ly, (A6)

where (G∂yG)|y=Ly = 0 because of the particle-conservation
law. The function B′(x) is calculated from the y-averaged
Green’s function G′(x, ε) instead of G(x, y = 0+, ε). This
assumption is valid when we can neglect the y dependence
of G; Ly � ξ0.

Finally, we have the Usadel equation with a source term,

D∂x(G∂xG) + iε[τ̌3,G]− − �̃(x)
D

Ly
B(x) = 0, (A7)

where we have omitted the symbol ·′. When the x dependence
of the Green’s function in the SC wire is negligible, we can
apply this method even when w ∼ ξ0. In this case, we need
to regard the SC wire as a collection of narrower wires whose
width is w′ � ξ0 and the source term should be calculated
locally.

APPENDIX B: ADDITIONAL SYMMETRY OF THE
USADEL EQUATION

In the quasiclassical formalism, the anomalous Green’s
functions f and f

˜
are related by several symmetry relations.

In a diffusive system (i.e., Usadel formalism), the Green’s
functions can have additional symmetry compared with the
ballistic case.

1. General symmetry

The Usadel equation for the retarded and advanced com-
ponent is given by

D∇r
(
ǧX

o ∇rǧ
X
o

) + i
[
ȞX

o , ǧX
o

]
− = 0, (B1)

ȞX
o =

[
εX σ̂0 �̂(r)
�̂∗(r) −εX σ̂0

]
, (B2)

ǧX
o (r, ε) =

[
ĝX (r, ε) f̂ X (r, ε)

− f̂
˜

X (r, ε) −ĝ
˜

X (r, ε)

]
, (B3)

where ǧX
o with X = R (A) means retarded (advanced) Green’s

function. Assuming the single-component pair potential (i.e.,
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either of the even-frequency spin-singlet or odd-frequency
spin-triplet SCs), the matrix Ȟ becomes

ȞX
o =

[
εX σ̂0 �μ(r)iσ̂μσ̂2

�∗
μ(r)iσ̂ ∗

μσ̂2 −εX σ̂0

]
, (B4)

=
[

εX σ̂0 �μ(r)(iσ̂μσ̂2)
�∗

μ(r)(iσ̂2σ̂μ) −εX σ̂0

]
. (B5)

where �μ(r) ∈ C is the scalar pair potential with μ ∈ [0, 3].
In this case, it is convenient to parametrize the spin structure
of the Green’s function as the following:

ǧX
o =

[
gX σ̂0 f X

μ (iσ̂μσ̂2)

− f
˜

X
μ (iσ̂2σ̂μ) −gX σ̂0

]
. (B6)

We can simplify the Usadel equation by the unitary transform.
We first define the unitary matrix: [Ǔ1]−1 = diag[σ̂0,−iσ̂2σ̂μ].
Multiplying Ǔ1 and Ǔ −1

1 from the left and right side of the
Usadel Eq. (B1), we have the simplified Usadel equation:

D∇r(ǧ
X ∇rǧ

X ) + i[ȞX , ǧX ]− = 0, (B7)

ǧX (r, ε) =
[

gX f X

f
˜

X −gX

]
⊗ σ̂0, (B8)

ȞX (r, ε) =
[

εX �(r)
−�∗(r) −εX

]
⊗ σ̂0, (B9)

where we redefine the Greens functions and the matrix ȞX

as the following: ǧX (r, ε) = Ǔ1ǧX
0 (r, ε)Ǔ −1

1 and ȞX (r, ε) =
Ǔ1ȞX

0 (r, ε)Ǔ −1
1 , and the subscript μ is omitted.

The matrix ȞX (x, ε) satisfies several symmetric relations.
Hereafter, we consider the one-dimensional system. Using the
Pauli matrices in the particle-hole space, we can express the
matrix ȞX (x, ε) with a simpler form,

ȞX (x, ε) = τ̌3ε
X + iτ̌2�R(x) + iτ̌1�I(x), (B10)

where �R(I) ∈ R is the real (imaginary) part of the pair
potential. The first symmetry is given by

ȞR(x, ε) = −τ̌1[ȞA(x, ε)]∗τ̌1, (B11)

gR(x, ε) = −[gA(x, ε)]∗, (B12)

f R(x, ε) = [ f
˜

A(x, ε)]∗, (B13)

where we have used εR = [εA]∗. The relations above connect
the retarded and advanced Green’s functions. The second

symmetry is given by

ȞX (x, ε) = τ̌1[ȞX (x,−ε)]∗τ̌1, (B14)

gX (x, ε) = [gX (x,−ε)]∗, (B15)

f X (x, ε) = [ f
˜

X (x,−ε)]∗. (B16)

The third symmetry is given by

ȞX (x, ε) = −Ǔφ[ȞX (x, ε)]Ǔφ, (B17)

Ǔφ =
[

eiφ

e−iφ

]
, (B18)

where φ(x) is the local phase defined as φ = arctan(�I/�R).
We can reduce the following relations from Eq. (B17):

f X (x, ε)e−iφ(x) = − f
˜

X (x, ε)eiφ(x). (B19)

Namely, when the pair potential is a real function, we can
parametrize the Green’s function as

ǧX (r, ε) =
[

gX f X

− f X −gX

]
⊗ σ̂0. (B20)

2. Symmetry in Josephson(-ish) junctions

In Josephson(-ish) junctions, the Green’s functions have
additional symmetry. In this paper, we refer to the junctions
in which the relation φ(x) = −φ(−x) is satisfied as the
Josephson-ish junctions (e.g., VT junctions). In other words,
the real and imaginary parts of the pair potential are even and
odd functions of x:

�R(x) = �R(−x), (B21)

�I(x) = −�I(−x). (B22)

In this case, the matrix ȞX (x, ε) and the Green’s functions
satisfy the symmetry relations related to the real space:

ȞX (x, ε) = −τ̌1ȞX (−x, ε)τ̌1, (B23)

gX (x, ε) = gX (−x, ε), (B24)

f X (x, ε) = − f
˜

X (−x, ε). (B25)

Combining Eqs. (B19) and (B25), we have

f X (x, ε)e−iφ(x) = f X (−x, ε)eiφ(x). (B26)

In particular, the relation above can further be reduced when
the phase difference is either δ� = 0 or π :

f X (x, ε) = + f X (−x, ε) for δ� = 0,

f X (x, ε) = − f X (−x, ε) for δ� = π. (B27)
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