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Josephson lattice model for phase fluctuations of local pairs in copper oxide superconductors

Malte Harland,1 Sergey Brener,1 Alexander I. Lichtenstein,1 and Mikhail I. Katsnelson2

1Institute of Theoretical Physics, University of Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
2Institute for Molecules and Materials, Radboud University, 6525AJ, Nijmegen, The Netherlands

(Received 4 November 2018; revised manuscript received 18 February 2019; published 17 July 2019)

We derive an expression for the effective Josephson coupling from the microscopic Hubbard model. It serves
as a starting point for the description of phase fluctuations of local Cooper pairs in dx2−y2 -wave superconductors
in the framework of an effective XY model of plaquettes, the Josephson lattice. The expression for the effective
interaction is derived by means of the local-force theorem, and it depends on local symmetry-broken correlation
functions that we obtain using the cluster dynamical mean-field theory. Moreover, we apply the continuum limit
to the Josephson lattice to obtain an expression for the gradient term in the Ginzburg-Landau theory and compare
predicted London penetration depths and Kosterlitz-Thouless transition temperatures with experimental data for
YBa2Cu3O7−x .

DOI: 10.1103/PhysRevB.100.024510

I. INTRODUCTION

Since the discovery of High-Tc superconductivity [1] many
types of competing orders have been considered [2–9] which
could have strong effects on the superconducting critical
temperature. It is generally recognized that in the under-
doped copper-oxide superconductors the Kosterlitz-Thouless
(KT) physics [10] is crucial due to strong phase fluctu-
ations [11–16]. Important progress in the nonperturbative
[17] treatment of the antiferromagnetism and d-wave su-
perconductivity (dSC) in the Hubbard model is related to
the cluster dynamical mean-field theory (CDMFT) [18–30].
It yields a local d-wave superconducting order parameter,
but it neglects spatial correlations beyond the cluster. Re-
cently, large-scale DMRG calculations [31,32] confirmed
the existence of long-range superconducting correlations in
the Hubbard and t-J models. The CDMFT prediction for the
superconducting critical temperature Tc, however, is too
high, and long-range corrections are required for a realistic
description.

In this work, we apply a truncated description, coarse
graining, which is a very general and powerful tool that
allows for a replacement of a microscopic by a macro-
scopic description with microscopically defined parameters.
The prototype procedure in the theory of magnetism has
opened the way to a quantitative theory of magnetism for
real materials [33–35]. We map the CDMFT solution of the
Hubbard model onto the Josephson lattice model assuming a
separation of energy scales that correspond to the dSC phase
(Goldstone) and amplitude (Higgs) fluctuations. We start
from a numerically exact solution of the minimal CDMFT
problem with the two-by-two plaquette in a superconducting
bath as an effective impurity, and we obtain a local cluster
dSC order parameter. Subsequently, we introduce long-range
perturbations in the dSC-phase and derive the effective cou-
pling of the Josephson lattice model that describes phase
fluctuations.

II. THEORY: FROM HUBBARD TO JOSEPHSON

The one-band Hubbard model [36], which is widely ac-
cepted to capture the essential physics of cuprates [3–5], reads

H = −
∑
kσ

t (k)c†
kσ

ckσ + U
∑

r

nr↑nr↓, (1)

where t (k) are the Fourier-transformed hopping parameters
and U is the interelectron Coulomb repulsion parameter on
site r. c†

rσ and crσ , (c†
kσ

and ckσ ) are electron creation and anni-
hilation operators in site (momentum) representation, respec-
tively, and nrσ = c†

rσ crσ . We use the nearest-neighbor hopping
of the square lattice |t | as energy unit and for the next-nearest-
neighbor hopping t ′/t = −0.3 for YBa2Cu3O7−x [37].

In principle, the description of the two-dimensional (2D)
square lattice defined by the dispersion

t2D(k) = 2t[cos(kx ) + cos(ky)] + 4t ′ cos(kx ) cos(ky), (2)

is sufficient to obtain local pairs within the strong-coupling
planes. However, to calculate an effective interlayer Josephson
coupling and the out-of-plane London penetration depth, it is
essential to have interlayer hopping. Our three-dimensional
(3D) calculations, that include interlayer hopping, use an
anisotropic infinite layer model [38,39] with the dispersion

t3D(k) = t2D(k) + 2
t⊥
4

[cos(kx ) − cos(ky)]2 cos(kz ), (3)

which has interlayer hopping of dx2−y2 symmetry and is
generic for cuprates. For Eqs. (2) and (3), kx, ky, and kz are in
the Brillouin zone. Note that below we introduce a two-by-two
cluster formulation that corresponds to the reduced Brillouin
zone (Appendix A). This requires the choice of unit lengths
aa, ab, ac = 2 × 3.82 Å, 2 × 3.82 Å, 3.89 Å that is twice the
copper distance within the copper planes of YBCO [40,41].
Further, we choose the simplified effective hopping of t⊥/t =
0.15 for YBCO and the effective tight-binding hopping
|t | = 0.35 eV [27,39]. The screened Coulomb interaction is
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FIG. 1. Illustration of the Hubbard-plaquette lattice (ti j , U ) with
lattice vector r, self-energies �i and plaquette sites 0...3. It is mapped
to the Josephson lattice model with effective coupling Ji j of pla-
quettes due to phase fluctuations δθi of the d-wave superconducting
order parameter �i.

set to a standard value, U = 8|t |, of the order of the band-
width.

To address the specific problem of Josephson coupling in
cuprates, we consider a local U (1) rotation that changes the
phase of the plaquette’s dSC order parameter, similar to a
rotation of an effective moment attributed to a two-by-two
plaquette and keeps the amplitude of the local order parameter
constant; see Fig. 1. We investigate macroscopic phase coher-
ence between the plaquettes, reminiscent of the description of
magnetic ordering in terms of an effective Heisenberg Hamil-
tonian [33,34]. The model, which can address the issue of su-
perconducting phase ordering, is the Josephson lattice model

Heff = −
∑

i j

Ji j cos(θi − θ j ), (4)

i.e., an effective XY model of plaquettes. i, j are plaquette
indices, and θi is the phase of the order parameter of plaquette
i. The principal goal of our work is to obtain the Josephson
coupling parameters Ji j based on the Hubbard model solution
of the well-established CDMFT [19,21,22,26–29]. We
consider the elementary plaquette in the copper layer as a
supersite and introduce a superspinor C†

i = (c†
iα ), where i is

the index of the plaquette and α = 0...3 labels the sites within
the plaquette; see Fig. 1. To describe the superconducting
state, we use the Nambu-Gor’kov spinor representation of the
Green function, which is a 2 × 2 matrix. Thus, the full lattice
Green function Gi j is an 8 × 8 matrix.

The explicit microscopic expressions of Ji j is derived by
calculating the microscopic variation of the thermodynamic
potential � of the system under small variations of the dSC

phases, and comparing the result with Eq. (4). � depends on
the lattice Green function that we can express via the Dyson
equation(

Gp↑ F
F Gh↓

)−1

i j

=
(

Gp↑
0 0
0 Gh↓

0

)−1

i j

− δi j

(
�p↑ S

S �h↓

)
i

,

(5)

where the last term is the local self-energy of the CDMFT
(Appendix B). The superscripts p and h denote particle and
hole components of the Nambu-Gor’kov representation, re-
spectively. The anomalous parts of the self-energy S and
Green function F are matrices in plaquette sites α and de-
scribe local dSC pairing via the order parameter �CDMFT

dSC =
2T TrωF01 with F01 = −F02, according to d-wave symmetry
[18]. G0 denotes the noninteracting lattice Green function.
Furthermore, we consider finite temperatures T , and, there-
fore, the correlation functions depend on fermionic Matsubara
frequencies. The last term of Eq. (5), the local self-energy �i,
is obtained exactly by the numerical [42–44] solution of the
CDMFT.

To find the variation of the free energy

� = �sp − �dc,

�sp = −Tr ln(−G−1), (6)

�dc = Tr�G − �,

with the Luttinger-Ward functional [45] �, we use the local-
force theorem [34,46],

δ� �
∑

i j

Tr

(
δi jGiiδ

∗�i + 1

2
Gi jδ

∗� jG jiδ
∗�i

)
, (7)

where δ∗ denotes the local variation of the self-energy �

without taking into account its variation due to the CDMFT
self-consistency, and G is the CDMFT Green function without
variation. We omit matrix indices of intraplaquette and Nambu
space for simplicity. Equation (7) is rigorous in the first order
of the phase variations δθi [34]. However, we will use it
also for the second-order terms since the first-order variation
around the colinear state, θi = const., vanishes analytically
(Appendix C). It corresponds to neglecting vertex corrections
[45], which is reasonable to assume for the locally ordered
phase with a well-pronounced, local order parameter [47].
Thus, near the transition, it can be used as an estimate only.

We design the variation as an infinitesimal change of the
local phase δθi in a homogeneous environment. Therefore, it
reads

δ∗�i = eiδθiσz/2�ie
−iδθiσz/2 − �i =

(
�

p↑
i eiδθi Si

e−iδθi Si �
h↓
i

)
− �i �

(
0

(
iδθi − (δθi )2

2

)
Si( − iδθi − (δθi )2

2

)
Si 0

)
, (8)

in that the third Pauli matrix σz acts in the Nambu-space. This variation affects only the phases of the anomalous part of the local
self-energy. We substitute Eq. (8) into Eq. (7) and the two terms of the sum become

Giiδ
∗�i =

⎛
⎝ FiiSi

( − iδθi − (δθi )2

2

)
Gp↑

ii Si

(
iδθi − (δθi )2

2

)
Gh↓

ii Si
( − iδθi − (δθi )2

2

)
FiiSi

(
iδθi − (δθi )2

2

)
⎞
⎠, (9)
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Gi jδ
∗� jG jiδ

∗�i =
(

−Fi jS jFjiSi + Gp↑
i j S jG

h↓
ji Si · · ·

· · · −Fi jS jFjiSi + Gh↓
i j S jG

p↑
ji Si

)
× δθiδθ j . (10)

We keep terms up to second order in δθ , and since we are
interested in the trace, we omit off-diagonals in Eq. (10).
Equation (9) shows clearly that the trace makes the first
order vanish. Using δθi j ≡ (δθi − δθ j ) and 2δθiδθ j = −δθ2

i j +
δθ2

i + δθ2
j , we can separate local and nonlocal phase varia-

tions,

δ� =
∑

i j

Trωα

(
Gp↑

i j S jG
h↓
ji Si − δi jFiiSi − Fi jS jFjiSi

)
δθ2

i

+ 1

2

∑
i j

Trωα

(
Fi jS jFjiSi − Gp↑

i j S jG
h↓
ji Si

)
δθ2

i j . (11)

The trace goes over Matsubara frequencies and over the
sites within the plaquette (α). Furthermore, the matrices form
matrix-products in the α-space whereas they are diagonal in
Matsubara frequencies. To obtain Eq. (11) we have also used
the lattice symmetry Gi j = Gji.

The term ∝δθ2
i vanishes which reflects the gauge invari-

ance of the theory (Appendix C). The remaining term is that
of only nonlocal phase fluctuations ∝δθ2

i j ,

δ� ≡ 1

2

∑
i j

Ji jδθ
2
i j, (12)

which by comparison with Eq. (4) defines Ji j . Thereby, we
obtain the following expression of the Josephson lattice pa-
rameters:

Ji j = T Trωα

( − Gp↑
i j S jG

h↓
ji Si + Fi jS jFjiSi

)
, (13)

which is essentially the main result of the present work.

III. SHORT-RANGE JOSEPHSON LATTICE PARAMETERS

Effective Josephson couplings have been applied to investi-
gate experiments in that interplane Josephson coupling has an
essential role [48,49]. We present a selection of the Josephson
couplings Jr for plaquette-translations r in Fig. 2. Jr reduces
sharply with increasing plaquette-translation length |r|, and
thus the short-range components of Jr alone can give a com-
plete description. The strongest coupling is J100, followed by
the interlayer coupling J001. They have their maxima around
δ = 0.05 and δ = 0.1, respectively. All couplings diminish at
large dopings, δ > 0.1. We observe in Sec. IV that this stems
from the diminishing of the local order paramter (amplitude)
of the dSC.

In the range up to t⊥ = 0.45, t⊥ has a diminishing effect
on all in-plane Jr , shown in Fig. 2 (right). In contrast, the
interlayer coupling has to increase at small t⊥ since there has
to be J001 = 0 in a system of disconnected layers (t⊥ = 0).
J001 becomes the second largest coupling at t⊥ = 0.15, and at
t⊥ = 0.2 it reaches a maximum. For larger t⊥ all couplings
decrease, similar to the behavior at large dopings.

The first term of Eq. (13) (GSGS) is negative, and the
second (FSFS) is positive. GSGS is a mixed term with normal

(G) and anomalous (S) contributions. It makes the main con-
tribution to J; see Fig. 3. J can be finite only if there is a super-
conducting gap and therefore a finite anomalous self-energy S
as both terms depend on it. Regarding the largest contributions
to the nearest neighbor Josephson coupling J(1,0,0), GSGS is
about three times larger than FSFS. However, at small dop-
ings both terms contribute with similar magnitude, but their
doping dependence can be very different. At δ ∼ 0.05 the first
term drops sharply and J(1,0,0) is defined by GSGS. The second
and third in-plane nearest neighbors have contributions from
both terms and they can be of similar magnitude. However,
the doping dependence have different local features, e.g., a
local minimum of the second term appears in J(1,1,0), at a point
where the first term has a maximum.

IV. SUPERCONDUCTING STIFFNESS

To study macroscopic observables of the Josephson lat-
tice model, we take the continuum, long-wavelength limit of
Eq. (4). In this limit, the interaction becomes the supercon-
ducting stiffness (Appendix D)

Iab = T

(2π )d

∫
dd kTrωα

×
(

−∂Gp↑(k)

∂ka
S
∂Gh↓(k)

∂kb
S + ∂F (k)

∂ka
S
∂F (k)

∂kb
S

)
, (14)

with the effective Hamiltonian

Heff = 1

2

∑
ab

Iab

∫
dd r

∂θ

∂ra

∂θ

∂rb
. (15)

For our model Iab consists of an in-plane I‖ and a perpen-
dicular I⊥ component. I⊥ is nonzero only in the (3D) case
of interlayer hoppings t⊥ > 0. Equation (15) can be viewed
as the limit of the general Ginzburg-Landau equation for the
case of a constant absolute value of the superconducting order

0.00 0.05 0.10
10−5

10−4

10−3

10−2

J
r

t⊥ = 0.15

0.15 0.30 0.45

δ � 0.08 r
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(0, 0, 1)

FIG. 2. Josephson coupling Jr as a function of doping δ (left) and
interlayer hopping t⊥ (right) for different plaquette translations r at
T = 1/52
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−GSGS

0.05 0.10

FSFS

r
(1, 0, 0)
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(2, 0, 0)
(0, 0, 1)

FIG. 3. Josephson coupling Jr (left) and its constituents, GSGS
(center) and FSFS (right), as functions of doping δ and for different
plaquette translations r at T = 1/52 ∼ 0.02, t⊥ = 0.15.

parameter and negligible electromagnetic fields. The latter
condition is controlled by slow spatial variations of the phase
of the order parameter.

We start the discussion of the dSC stiffness for the 2D
case of t⊥ = 0. The temperature dependence of the dSC stiff-
ness can be divided into two, qualitatively different, regions
depending on the hole-dopings of the copper planes δ; see
Fig. 4 (top). In the underdoped regime (0 � δ � 0.075) the
temperature at that I‖ becomes nonzero is constant. Further-
more, I‖ shows saturation with decreasing T only in the
underdoped regime. In contrast, in the optimal- to over-doped
regime (0.1 � δ � 0.15), the temperature at that I‖ becomes
nonzero, as well as the low-temperature (T ∼ 0.02) value of
I‖, decrease with larger doping. The low-temperature dop-
ing dependence of I‖ qualitatively agrees with experimental
studies on YBCO [50,51] (and La2−xSrxCuO4 [52]) and also
with a study of the intensity of a current-current correlation
function’s Drude-like peak [21]. Note, that the latter method
can give just a number for the superfluid density whereas our
approach allows to restore the whole Hamiltonian with the
nonlocal effective Josephson parameters.

T
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]

80 120 160 200
T [K]

FIG. 4. Superconducting stiffness I‖ (top) and order parameter
for local Cooper-pair formation �CDMFT

dSC (bottom) as functions of the
temperature T for various dopings δ (t⊥ = 0).
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FIG. 5. In-plane superconducting stiffness I‖ (top, left), in-plane
penetration depth λab (top, right), perpendicular superconducting
stiffness I⊥ (center, left), perpendicular penetration depth (center,
right), and CDMFT dSC order parameter �CDMFT

dSC (bottom) as func-
tions of doping δ at T = 1/52 for different interlayer hoppings t⊥.

Regarding the accuracy of the local-force theorem, it is
important to check whether the saturation of the local order
parameter �CDMFT

dSC with respect to decreasing temperature
is reached. If this is the case, then the phase fluctuations
are effectively decoupled from the Higgs mode and can be
considered independently. Otherwise, amplitude fluctuations
of the dSC can become stronger and vertex corrections, that
we neglect, become significant [47]. Our calculations show
a saturation of �CDMFT

dSC at T ∼ 0.02 for dopings δ � 0.1.
Arbitrary low temperatures cannot be reached because of the
CTQMC-fermionic sign problem [44].

In Fig. 5 we compare the in-plane/perpendicular dSC
stiffness and penetration depth as well as the order parameter
of local Cooper pair formation for different t⊥ (3D). t⊥ has a
minor impact on I‖ which is probably related to our special
choice of in-plane plaquette and to the mean-field character of
the CDMFT. The perpendicular hopping t⊥ = 0.15 enhances
I‖ at optimal doping (δ ∼ 0.1) and reduces I‖ at overdoping.
At small dopings (δ < 0.05), I‖ is almost independent of t⊥.
Furthermore, for t⊥ = 0.15, I‖ is two orders of magnitude
larger than I⊥ (Fig. 5, center) reflecting the fact that, accord-
ing to the Josephson lattice model, the superfluid is more
concentrated within the strongly coupled copper planes. A
comparison of I‖/⊥ with �CDMFT

dSC (Fig. 5, bottom) shows that
I‖/⊥ has a more pronounced dome shape whereas �CDMFT

dSC has
a plateau, up to almost half-filling. Thus, relative to �CDMFT

dSC
the profile of I‖/⊥ is suppressed in the underdoped regime.

I is closely related to the London penetration depth [12,53]
(Appendix E), i.e.,

λ−2 = 16πe2

h̄2c2
I. (16)

λ has been measured in several experiments on
YBa2Cu3O7−x , also at different oxygen dopings x. The low-
temperature values lie in the range of λab = 0.1 − 0.24 μm
and λc = 0.6 − 7.8 μm [54–60]. Finite temperature effects
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FIG. 6. Phase diagram of the local dSC order parameter �CDMFT
dSC

with critical temperature T CDMFT
c depending on the temperature T

and doping δ (t⊥ = 0). Circles denote CDMFT calculations. The
transition temperature of the Josephson lattice model TKT has been
calculated from the superconducting stiffness at T = 1/52, at that
I‖(T ) is (not) saturated for the solid (dotted) part.

can add λab ∼ 0.1 μm around T ∼ 80 K [61]. In the
underdoped region (x = 0.4), the penetration depth is
λab = 0.24 μm which is within the predicted range by our
theory, around δ ∼ 0.03. Note, that the relation between
the oxygen doping of YBCO x and the hole doping of the
copper-oxide planes δ is understood only qualitatively. Our
largest value of λab ∼ 0.16 μm is similar to the experimental
result of λab = 0.15 μm for x = 0.05 (optimal oxygen
doping). Regarding the c direction for the underdoped regime
(x = 0.3–0.5), experiments have found λc = 5.2 − 7.8 μm
which we have calculated around δ = 0.025–0.05. In our
calculations λ is very sensitive to the details of the electronic
interlayer properties (Appendix F) and the uncertainty in the
interlayer hopping limits the accuracy of our predictions of λ.

In 2D, the XY model of Eq. (4) exhibits the KT transition
that corresponds to the unbinding of vortex-antivortex pairs.
The transition temperature reads [62]

TKT = π

2
I‖. (17)

This proportionality of transition temperature and dSC stiff-
ness can explain the Uemura relation [11] that has been
measured in underdoped copper-oxides, via the muon spin
relaxation rate. At T < TKT there is no real long-range order in
the system but power-law decay of the correlation function of
the superconducting order parameter. In this sense, interlayer
tunneling is essentially important to allow for a dimensional
crossover and long-range order [63,64]. In Fig. 6 we present
the transition temperatures of the CDMFT T CDMFT

c , i.e., of
local pair formation, and of the KT transition TKT. We use
I of the lowest temperature available, T ∼ 0.02, to calculate
the KT transition temperature. At δ � 0.1 the low-temperature
saturation of �CDMFT

dSC and I‖ has been reached (Fig. 4), and
thus, the application of our method is reliable. At δ � 0.1
amplitude fluctuations can change the transition temperature.

The suppression of the dSC by phase fluctuations is most
pronounced at small dopings. This is where local Cooper-
pairs, according to CDMFT, are well defined, up to half-
filling. At half-filling the system is a Mott insulator [24,27,65]

(Appendix B), for which we have added a T = 0 data point
of prior CDMFT studies [66]. The case of T CMDFT

c > TKT

suggests a pseudogap interpretation of preformed meta-stable
pairs [12,67] in the underdoped copper-oxides. However,
CDMFT supports other explanations as well [22,24,25,28].
Note, that local antiferromagnetic fluctuations are included
by CTQMC, but antiferromagnetic ordering and long-ranged
spin waves are not. The latter can contribute to the sup-
pression of superconductivity in cuprates, particularly at δ �
0.05 [68]. The maximum transition temperature of CDMFT
is T CDMFT, max

c ∼ 180 K, which is nearly twice as large as
the experimental value [40]. In contrast, including phase
fluctuations gives a major correction, as T max

KT ∼ 120 K. A
comparison with the critical temperature of YBCO Tc = 93 K
[59] and its Nernst region, which extends over a range up
to 20 K [69–71], shows that the Josephson lattice model and
phase disorder can be important for a quantitative description.

V. CONCLUSION

We have derived a mapping from the Hubbard to the
Josephson lattice model, i.e., Eq. (13), and obtained effec-
tive couplings that will be interesting to study further in
a more realistic bilayer model for, e.g., YBa2Cu3O7−x or
La2−xBaxCuO4 [7,72–74], in particular, in the framework
of the XY model. At T ∼ t/50 our theory is applicable to
the underdoped regime as there the order parameter is well
defined and the assumption of the separation of energy scales
of amplitude and phase fluctuations is reasonable. Further,
we have used analytical results of the XY model to compare
predictions, based on the obtained effective couplings, to ex-
periments on YBa2Cu3O7−x . The London penetration depths
have been confirmed to be reasonable estimates, and the KT
transition lies closer to the experimental value than the critical
temperature of the CDMFT, which can indicate long-range
phase disorder effects.
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APPENDIX A: TIGHT-BINDING MODEL

In most strong-coupling calculations on copper-oxides the-
oreticians use the single-band Hubbard model as the main
features are believed to exist in the square lattice symmetry.
However, starting density functional calculations one can also
integrate out the bands at energies distant from Fermi level
and obtain an effective one-band model, which has been done
for YBCO [39]. At this point we note that the complicated
structure of YBCO which consists of bilayers with the intra-
bilayer hopping of the order of 0.65 in units of t results in
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FIG. 7. Electronic tight-binding band structures of the different
hopping lattices 3D and 3D∗ and next-nearest-neighbor hoppings t ′. k
is the reciprocal lattice vector in the reduced Brillouin zone. The four
bands correspond to four sites within the two-by-two plaquette unit
cell. With our choice of cluster the reduced Brillouin zone has the
same shape as the original Brillouin zone of the square lattice. Thus,
we label the high symmetry points accordingly but with a prime.
�′ = (0, 0, 0), X ′ = (1, 0, 0), M ′ = (1, 1, 0), R′ = (1, 1, 1) in units
of half of the reduced Brillouin zone.

a splitting between bonding and antibonding bands with the
value of the splitting being much larger than the individual
bandwidth of each of those. This is the reason why it is
possible in the first approximation to consider an effective
one (antibonding) band model. In this section we compare the
effects of the band structures on the dSC stiffness also for a
simple perpendicular hopping.

The 2D dispersion is that of the square lattice,

t2D(k) = 2t[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky), (A1)

then, for three dimensions we can compare a simple perpen-
dicular hopping model (3Ds),

t3Ds(k) = t2D(k) + 2t⊥ cos(kz ), (A2)

with a more elaborated projection [39] (3D),

t3D(k) = t2D(k) + 2
t⊥
4

[cos(kx ) − cos(ky)]2 cos(kz ). (A3)

In Eq. (A1) to Eq. (A3) k is in the full Brillouin zone. For a
cluster formulation k has to be in the reduced Brillouin zone
according to the reduced translational symmetry. The band
structure shown in Fig. 7 has four bands corresponding to
the cluster of four sites. The hopping matrices tr of plaquette
translations r for the 3D model read

t(0,0,0) =

⎛
⎜⎝

0 t t t ′
t 0 t ′ t
t t ′ 0 t
t ′ t t 0

⎞
⎟⎠, t(1,0,0) =

⎛
⎜⎝

0 t 0 t ′
0 0 0 0
0 t ′ 0 t
0 0 0 0

⎞
⎟⎠, t(1,1,0) =

⎛
⎜⎝

0 0 0 t ′
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, t(0,1,0) =

⎛
⎜⎝

0 0 t t ′
0 0 t ′ t
0 0 0 0
0 0 0 0

⎞
⎟⎠,

t(−1,1,0) =

⎛
⎜⎝

0 0 0 0
0 0 t ′ 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, t(0,0,1) =

⎛
⎜⎝

t0 0 0 t2
0 t0 t2 0
0 t2 t0 0
t2 0 0 t0

⎞
⎟⎠, t(1,0,1) = t(1,0,−1) =

⎛
⎜⎝

t1 0 0 t2
0 t1 0 0
0 t2 t1 0
0 0 0 t1

⎞
⎟⎠,

t(0,1,1) = t(0,1,−1) =

⎛
⎜⎝

t1 0 0 t2
0 t1 t2 0
0 0 t1 0
0 0 0 t1

⎞
⎟⎠, t(1,1,1) = t(1,1,−1) =

⎛
⎜⎝

0 0 0 t2
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, t(−1,1,1) = t(−1,1,−1) =

⎛
⎜⎝

0 0 0 0
0 0 t2 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

(A4)

with t0 = t⊥/4, t1 = t⊥/16, t2 = t⊥/8 and t−r = tᵀr . The en-
tries correspond to the clustersites, labeled according to Fig. 1.

APPENDIX B: GREEN FUNCTIONS IN CDMFT

We solve the CDMFT [18,19,75] equation

G−1(iωn) =
(∑

k

G(iωn, k)

)−1

+ �(iωn), (B1)

G−1(iωn, k) = iωn + μ − t (k) + �(iωn), (B2)

with the lattice dispersion of the reduced Brillouin zone t (k)
numerically [42,43] and obtain the self-consistent local lattice
Green function that is the first term on the right-hand side
of Eq. (B1). The chemical potential for a certain doping can

be found by solving only Eq. (B2) iteratively. But this is an
additional quantity that has to converge with the CDMFT
cycles. To make the CDMFT more efficient in that regard, we
set a certain chemical potential μ as the parameter rather than
the doping. This gives a nonuniform mesh in the temperature-
doping phase diagram and requires a postprocessing of two-
dimensional interpolation. CDMFT maps the lattice prob-
lem to a multiorbital Anderson impurity model, in that the
different orbitals also represent the sites of the cluster. The
Anderson impurity model of arbitrary local interactions can
be solved exactly by the use of the continuous-time quantum
Monte Carlo method (CTHYB). The bath of that model is
dynamical and so is the mean field of CDMFT. But the
temporal correlations exist only locally, i.e., on the cluster.
Therefore, the self-energy between clusters vanishes.
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Using the symmetry of the plaquette, the local Green
function has the block structure

Gloc =

⎛
⎜⎝

G�

GX

GY

GM

⎞
⎟⎠, (B3)

where we labeled the plaquette orbitals according to the same
transformation properties of the high-symmetry points of the
Brillouin zone of the squarelattice. The transformation from
site-space to plaquette orbitals is a unitary transformation with

U = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠. (B4)

In principle, antiferromagnetic order can also be considered,
but it would reduce the blockstructure of Eq. (B3) and will be
computationally more expensive.

In our CDMFT approximation the self-energy exists only
within the cluster and not between clusters. To obtain the
lattice Green function one could try to interpolate the many-
body correlations between the clusters. This procedure is am-
biguous. Following the idea of strong correlations within the
plaquette being crucial, we do not interpolate the self-energy.
The locality of the self-energy is required for the applicability
of the local force theorem. In that aspect, the CDMFT we
use and the local force theorem are perfectly compatible as
they make the same assumptions. Therefore, the lattice Green
function reads

G(iωn, r) = 1

Nk

∑
k

eikr

iωn + μ − t (k) − �(iωn)
, (B5)

where r are cluster-translations and iω, μ, t (k), and �(iωn)
are matrices in Nambu plaquette-orbital or site-basis. k is
in the reduced Brillouin zone according to plaquette transla-
tions. For the CDMFT calculations we use 1025 Matsubara
frequencies, 64 k-points per dimension, 192 × 105 Monte
Carlo (MC) measurements, 200 updates per MC measurement
and 3 × 103 MC warm-up cycles. The number of Legendre-
coefficients for the representation of the Green function, that
we measure in the Monte Carlo process, depends mostly on
the temperature. A reasonable range for our calculations is
50–150. During the CDMFT loops we perform partial updates
of the self-energy using a mixing parameter of 0.5. For the
dSC symmetry breaking we initialized the CDMFT cycles
with a symmetry breaking seed in the self-energy.

A success of the DMFT is the description of the Mott
insulator, an insulator of odd-integer filling, that is gapped by
local correlation effects induced by U . It can be characterized
by the vanishing quasiparticle residue,

Z−1
k = 1 − ∂Re�k (ω)

∂ω

∣∣∣
ω=0

, (B6)

of that k-point, whose energy corresponds to the Fermi energy
and at T = 0. Furthermore, we have the quasiparticle energy,

ε̃X = −μ − 4t ′ + Re�X (ω = 0), (B7)

whose zeros can indicate the Lifshitz transition [29,30], at
that the Fermi surface turns from particlelike to holelike. We

0.0
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0.4
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−t′
0.3
0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.20

−5.0

−2.5

0.0

ε̃ ε̃
S(ω = 0)
U = 0

FIG. 8. The quasiparticle residue Z (top) and energy ε̃ of k =
X (bottom) as functions of the hole-doping δ. The noninteraction
quasiparticle energy (U = 0) and the anomalous part S are also
shown (bottom) (T = 1/52, t⊥ = 0).

present these quantitites for symmetry broken solutions. Thus,
there is a gap and no quasiparticles. However, assuming that
the feedback of a finite anomalous self-energy S on the nor-
mal parts is small and extract information on the underlying
electron quasiparticles and correlations.

The quasiparticle get significantly renormalized close to
half-filling resembling Mottness; see Fig. 8. The Mott insula-
tor is known to be connected to metallic states by a first-order
transition [75]. The anomalous part of the self-energy S makes
an essential contribution to the Josephson coupling and the
dSC stiffness. It can be seen in Fig. 8 that it becomes small at
small frequencies around δ ∼ 0.15 at T ∼ 0.2.

APPENDIX C: GAUGE INVARIANCE AND ITS
CONSEQUENCES

Sum-rules express correlations of certain transitions in
terms of sums over other transitions. We derive a set of
sum-rules starting from the Dyson equation. In this section
we work in the Nambu-space (omitting the spin labes for
convenience), but the quantities can still be matrices of other
subspaces. Therefore, we have

G =
(

Gp F
F Gh

)
,

G−1
0 =

((
Gp

0

)−1
0

0
(
Gh

0

)−1

)
,

� =
(

�p S
S �h

)
. (C1)

We temporarily switch to the bonding-/antibonding (+,−)
basis

2G+ = Gp + Gh, 2G− = Gp − Gh (C2)

and for � and G0 accordingly. We expand the correlation
functions in Pauli matices:

G = G+1 + (F, 0, G−)σ,

� = �+1 + (S, 0, �−)σ,

G0 = G+
0 1 + (0, 0, G−

0 )σ. (C3)
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The Dyson equation then reads

G−1 = (G+
0 − �+)1 + (S, 0, G−

0 − �−)σ. (C4)

The identity

GG−1 = 1 (C5)

leads to a set of four equations:

1 = G+(G+
0 − �+) − FS + G−(G−

0 − �−), (C6)

0 = F (G+
0 − �+) − G+S, (C7)

0 = F (G−
0 − �−) + G−S, (C8)

0 = G+(G−
0 − �−) + G−(G+

0 − �+). (C9)

From Eqs. (C7) and (C8) directly follows

(G+
0 − �+) = F−1G+S, (C10)

(G−
0 − �−) = −F−1G−S, (C11)

which we insert in Eq. (C6) also back-transforming the (+,−)
basis,

1 = −FS + 1
2 (GpF−1GhS + GhF−1GpS). (C12)

Furthermore, we insert Eq. (C7) and (C8) into Eq. (C9), which
results in

GpF−1Gh = GhF−1Gp. (C13)

Finally, combining Eqs. (C12) and (C13) gives an expression
for the anomalous part of the self-energy:

S = (GpF−1Gh − F )−1. (C14)

We substitute it into the coefficient of the local perturbations
∼δθ2

i of Eq. (11) and analyze it in two contributions.
With Eq. (C13) the first term immediately reads

GpSGhS = [GhF−1 − F (Gp)−1]−1[GpF−1 − F (Gh)−1]−1.

(C15)

The second involves a bit more algebra:

FS(1 + FS) = (GpF−1GhF−1 − 1)−1[1 + (GpF−1GhF−1 − 1)−1]

= (GpF−1GhF−1 − 1)−1GpF−1GhF−1(GpF−1GhF−1 − 1)−1

= [GhF−1 − F (Gp)−1]−1[GpF−1 − F (Gh)−1]−1.

(C16)

It makes the contribution of local phase fluctuations to
the variation of the thermodynamic potential vanish [see
Eq. (11)], i.e.,

GpSGhS − FS − FSFS = 0, (C17)

and therefore ensures the gauge invariance.

APPENDIX D: CONTINUOUS MEDIUM LIMIT

We take the continuum limit of the Josephson lattice model
to obtain a relation to the macroscopic observable, the su-
perconducting stiffness I . Starting from the long-wavelength
approximation,

H = 1

2

∑
i j

Ji jθ
2
i j, (D1)

we assume a rather uniform spatial profile of the low-energy
modes. Therefore, it is reasonable to interpolate linearly be-
tween the plaquettes (i, j) as we move them infinitesimally
close together and take the continuum-limit,

θi j → ∇θ (r)(r − r′)

=
∑

a

∂θ

∂ra
(r − r′)a.

(D2)

In this limit the Hamiltonian reads

H = 1

2

∑
ab

∫
dd r

∂θ

∂ra

∂θ

∂rb
Iab(r), (D3)

with the d-dimensional unit-cell volume V and the supercon-
ducting stiffness

Iab(r) = 1

V 2

∫
dd r′ J (r − r′)(r − r′)a(r − r′)b. (D4)

We substitute R = r − r′ and insert the Fourier representation
of J:

Iab = 1

V

∫
dd q

(2π )d

∫
dd R eiqRRaRbJ (q)

= − 1

V
∂qa∂qbJ (q)

∣∣∣
q=0

, (D5)

with

J (q) = V T

(2π )d

∫
dd k Trωα

(
FkSFk−qS − Gp↑

k SGh↓
k−qS

)
. (D6)

Next we have to evaluate the derivative. After performing the
derivative with respect to q, we can substitute k′ = k − q and
perform a partial integration that leads to

∂qa∂qbJ (q) = −V T

(2π )d

∫
dd k′Trωα

{(
∂k′

a
Fk′−q

)
S
(
∂k′

b
Fk′

)
S

− (
∂k′

a
Gp↑

k′−q

)
S
(
∂k′

b
Gh↓

k′
)
S
}

(D7)

and in Eq. (D5) finally to

Iab = T

(2π )d

∫
dd kTrωα

×
(

∂F (k)

∂ka
S
∂F (k)

∂kb
S − ∂Gp↑(k)

∂ka
S
∂Gh↓(k)

∂kb
S

)
, (D8)
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FIG. 9. Convergence of the dSC stiffness I with number of
Matsubara frequencies ωn (Nmax

ωn
= Nk = 128).

with the effective Hamiltonian

Heff = 1

2

∑
ab

Iab

∫
dd r

∂θ

∂ra

∂θ

∂rb
. (D9)

Note that the physical units of the dSC stiffness are
restored by

I‖ → aa

abac
t I‖, I⊥ → ac

aaab
t I⊥. (D10)

In particular, for numerical purposes we express the deriva-
tives in terms of derivatives applied to inverse Green func-
tions,

∂ka G = −G
(
∂ka G−1

)
G,

(D11)

since it reduces the differentiation to that of the electron
dispersion G−1(k) ∼ t (k), which can be performed analyt-
ically. Regarding the number of k points per dimension
and Matsubara frequencies ωn we choose Nk = Niωn = 64,
which is sufficient for an accuracy of ∼10−7; see Figs. 9
and 10.
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FIG. 10. Convergence of the dSC stiffness I with number of k-
points per dimension (Nmax

k = Nωn = 128).

APPENDIX E: LONDON PENETRATION DEPTH

The London penetration depth describes how far a mag-
netic field penetrates into the superconductor despite the
Meissner effect. The superconductor expels the magnetic field
by forming supercurrents. Thereby, the magnetic field decays
exponentially into the superconductor. To describe the Joseph-
son lattice model coupled to an electromagnetic field we start
from the gauge-invariant minimal coupling Hamiltonian,

H = 1

2

∑
ab

Iab

∫
dd r

(
∂θ

∂r
− e

h̄c
2A

)
a

(
∂θ

∂r
− e

h̄c
2A

)
b

.

(E1)
The factor of “2” in front of the gauge field A is essential
to ensure gauge invariance. The gauge transformation of the
superconducting order parameter � = 〈cc〉 is

c �→ cei e
h̄c χ , � �→ �ei e

h̄c 2χ , A �→ A + ∂χ

∂r
, (E2)

for arbitrary χ . Just as in Landau-Ginzburg theory � can be
regarded as the field of the order parameter and its phase we
define as θ . According to Eq. (E2), θ transforms under a gauge
transformation as θ �→ 2eχ/h̄c and hence Eq. (E1) is gauge
invariant.

Next we calculate the current given by the derivative of the
Hamiltonian with respect to the gauge field,

ja = −c
∂H

∂Aa

= 2e

h̄

∑
b

Iab

∫
dd r

(
∂θ

∂r
− e

h̄c
2A

)
b

, (E3)

absorb ∇θ into A �→ A′ by our choice of gauge,

ja = −2e

h̄

∑
b

Iab

∫
dd r

e

h̄c
2A′

b, (E4)

and insert it into the Maxwell equation for the current,

∇2A = −4π

c
j. (E5)

This gives a differential equation describing the exponential
decay of the vector potential into the superconductor

∇2A′ = λ−2A′, (E6)

with the penetration depth

λ−2 = 16πe2

h̄2c2
I. (E7)

Note that both I and λ are matrices in Eq. (E7). Furthermore,
Eq. (E5) assumes a certain geometry of the setup. The super-
current j that expels the magnetic field B = rotA inside the
superconductor and B are directed along the main axes of the
superconductor. The penetration depth λ describes how far the
magnetic field or, equivalently, the supercurrent extent into the
superconductor. Thus, the direction of the penetration depth is
orthogonal to both, that of j and of B.
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FIG. 11. In-plane superconducting stiffness I‖ (top, left), in-
plane penetration depth λab (top, right), perpendicular supercon-
ducting stiffness I⊥ (center, left), perpendicular penetration depth
(center, right), and CDMFT dSC order parameter �CDMFT

dSC (bottom)
as functions of doping δ at T = 1/52 ∼ 0.02. Quantities are shown
for different interlayer hoppings t⊥, next-nearest-neighbor hoppings
t ′, and also tight-binding lattices t (k).

APPENDIX F: DETAILS OF THE STIFFNESS
DEPENDENCE ON THE ELECTRONIC BAND STRUCTURE

Figure 11 presents the dSC stiffness for all three lattice
dispersions. The dSC stiffness of t3D(k) is of similar
magnitude as t3Ds(k). In the overdoped regime it is smaller
because of the smaller local order parameter �CDMFT

dSC . For
the underdoped to optimally doped regimes t3D(k) can be
regarded as an effective reduction of t ′ in terms of the
dSC stiffness. In contrast I⊥ is significantly suppressed by
the anisotropic interplane model 3D. Its minimal value of
λc ∼ 3000 nm is still in a reasonable range compared to
experiments [59]. Possibly the suppression occurs due to the
more pronounced flatness of the 3D model’s dispersion t3D(k).
The derivative of Eq. (14) is thus much smaller and reduces I .

Since I can be sensitive to the lattice dispersion it is inter-
esting to examine its dependence on the hopping parameters
further. Figure 12 shows I as a function of the interplane
hopping t⊥. Both lattice dispersions are considered. It has to
be stressed that for all the data of Fig. 12 a single CDMFT
calculation is used. The parameters are varied only within
the subsequent analysis of the Josephson lattice model. This
allows us to isolate the effect of the hopping parameters on
the phase fluctuations, neglecting the change in the strong-
coupling Higgs fluctuations of the plaquette. The CDMFT cal-
culation is performed for the 2D lattice and in the underdoped
regime (δ ∼ 0.05) at cold temperatures (T ∼ 0.02). This shall
reduce a potential bias in the comparison between the 3Ds and
3D models. For both lattices t⊥ reduces I‖ and increases I⊥.
Furthermore, the 3D model gives smaller I‖/⊥ for all values of
t⊥. In the 3Ds lattice I⊥ is more sensitive to t⊥ and in the 3D
lattice I‖ is more sensitive to t⊥.

A similar analysis is presented in Fig. 13. The single
CDMFT calculation is performed at t ′ = −0.3, δ ∼ 0.075,
T ∼ 0.02, and t⊥ = 0.15 in the 3Ds model. Then the sub-
sequent Josephson lattice calculations are done for different
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FIG. 12. Superconducting stiffness I‖/⊥ and penetration depth
λab/c as functions of the interlayer hopping t⊥ with in-plane next-
nearest-neighbor hopping t ′ = −0.3 (β = 52, δ = 0.05). Results are
shown for 3Ds and 3D lattice dispersions t (k). t⊥ changes only in the
Josephson lattice model. The small numbers are values of λ.

in-plane next-nearest-neighbor hoppings t ′. t ′ has a stronger
impact on I‖ than on I⊥, which is intuitive as t ′ and I‖ are
both in-plane quanitities. Also, in both cases, 3Ds and 3D,
t ′ increases I‖ and decreases I⊥. The fact that it increases I‖
is a very interesting trend, because in CDMFT t ′ diminishes
the local order parameter of dSC �CDMFT

dSC . This seems as
a contradiction if one interpretes T CDMFT

c as the Tc of the
cuprates [37], but this is clearly not the case as CDMFT
takes into account only spatial correlations within the cluster.
It can be speculated based on the 2D behavior of TKT ∼ I‖,
that t ′ has an enhancing effect on the phase fluctuations that
are crucial in the underdoped regime and thus increases the
critical temperature.

Figures 12 and 13 also allow us to estimate the uncertainty
of our predictions on λ imposed by the hopping parameters
t⊥, t ′, and to some extent also by the band structure. In
particular in the case of YBa2Cu3O7−x it is unclear how well
a single band model reflects the bilayer structure. Assuming
a one-band model the uncertainty of the correct t (k) and t⊥
translates to an estimated uncertainty of λab ∼ 40 nm and
λc ∼ 7500 nm.
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FIG. 13. Superconducting stiffness I‖/⊥ and penetration depth
λab/c as functions of the next-nearest-neighbor hopping t ′ with in-
terlayer hopping t⊥ = 0.15 (β = 52, δ = 0.075). Results are shown
for the 3Ds lattice dispersion t (k). t ′ changes only in the Josephson
lattice model. The small numbers are values of λ.
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